1/* Calculate (post)dominators in slightly super-linear time.
2   Copyright (C) 2000-2020 Free Software Foundation, Inc.
3   Contributed by Michael Matz (matz@ifh.de).
4
5   This file is part of GCC.
6
7   GCC is free software; you can redistribute it and/or modify it
8   under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3, or (at your option)
10   any later version.
11
12   GCC is distributed in the hope that it will be useful, but WITHOUT
13   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15   License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with GCC; see the file COPYING3.  If not see
19   <http://www.gnu.org/licenses/>.  */
20
21/* This file implements the well known algorithm from Lengauer and Tarjan
22   to compute the dominators in a control flow graph.  A basic block D is said
23   to dominate another block X, when all paths from the entry node of the CFG
24   to X go also over D.  The dominance relation is a transitive reflexive
25   relation and its minimal transitive reduction is a tree, called the
26   dominator tree.  So for each block X besides the entry block exists a
27   block I(X), called the immediate dominator of X, which is the parent of X
28   in the dominator tree.
29
30   The algorithm computes this dominator tree implicitly by computing for
31   each block its immediate dominator.  We use tree balancing and path
32   compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
33   slowly growing functional inverse of the Ackerman function.  */
34
35#include "config.h"
36#include "system.h"
37#include "coretypes.h"
38#include "backend.h"
39#include "timevar.h"
40#include "diagnostic-core.h"
41#include "cfganal.h"
42#include "et-forest.h"
43#include "graphds.h"
44
45/* We name our nodes with integers, beginning with 1.  Zero is reserved for
46   'undefined' or 'end of list'.  The name of each node is given by the dfs
47   number of the corresponding basic block.  Please note, that we include the
48   artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
49   support multiple entry points.  Its dfs number is of course 1.  */
50
51/* Type of Basic Block aka. TBB */
52typedef unsigned int TBB;
53
54namespace {
55
56/* This class holds various arrays reflecting the (sub)structure of the
57   flowgraph.  Most of them are of type TBB and are also indexed by TBB.  */
58
59class dom_info
60{
61public:
62  dom_info (function *, cdi_direction);
63  dom_info (vec <basic_block>, cdi_direction);
64  ~dom_info ();
65  void calc_dfs_tree ();
66  void calc_idoms ();
67
68  inline basic_block get_idom (basic_block);
69private:
70  void calc_dfs_tree_nonrec (basic_block);
71  void compress (TBB);
72  void dom_init (void);
73  TBB eval (TBB);
74  void link_roots (TBB, TBB);
75
76  /* The parent of a node in the DFS tree.  */
77  TBB *m_dfs_parent;
78  /* For a node x m_key[x] is roughly the node nearest to the root from which
79     exists a way to x only over nodes behind x.  Such a node is also called
80     semidominator.  */
81  TBB *m_key;
82  /* The value in m_path_min[x] is the node y on the path from x to the root of
83     the tree x is in with the smallest m_key[y].  */
84  TBB *m_path_min;
85  /* m_bucket[x] points to the first node of the set of nodes having x as
86     key.  */
87  TBB *m_bucket;
88  /* And m_next_bucket[x] points to the next node.  */
89  TBB *m_next_bucket;
90  /* After the algorithm is done, m_dom[x] contains the immediate dominator
91     of x.  */
92  TBB *m_dom;
93
94  /* The following few fields implement the structures needed for disjoint
95     sets.  */
96  /* m_set_chain[x] is the next node on the path from x to the representative
97     of the set containing x.  If m_set_chain[x]==0 then x is a root.  */
98  TBB *m_set_chain;
99  /* m_set_size[x] is the number of elements in the set named by x.  */
100  unsigned int *m_set_size;
101  /* m_set_child[x] is used for balancing the tree representing a set.  It can
102     be understood as the next sibling of x.  */
103  TBB *m_set_child;
104
105  /* If b is the number of a basic block (BB->index), m_dfs_order[b] is the
106     number of that node in DFS order counted from 1.  This is an index
107     into most of the other arrays in this structure.  */
108  TBB *m_dfs_order;
109  /* Points to last element in m_dfs_order array.  */
110  TBB *m_dfs_last;
111  /* If x is the DFS-index of a node which corresponds with a basic block,
112     m_dfs_to_bb[x] is that basic block.  Note, that in our structure there are
113     more nodes that basic blocks, so only
114     m_dfs_to_bb[m_dfs_order[bb->index]]==bb is true for every basic block bb,
115     but not the opposite.  */
116  basic_block *m_dfs_to_bb;
117
118  /* This is the next free DFS number when creating the DFS tree.  */
119  unsigned int m_dfsnum;
120  /* The number of nodes in the DFS tree (==m_dfsnum-1).  */
121  unsigned int m_nodes;
122
123  /* Blocks with bits set here have a fake edge to EXIT.  These are used
124     to turn a DFS forest into a proper tree.  */
125  bitmap m_fake_exit_edge;
126
127  /* Number of basic blocks in the function being compiled.  */
128  unsigned m_n_basic_blocks;
129
130  /* True, if we are computing postdominators (rather than dominators).  */
131  bool m_reverse;
132
133  /* Start block (the entry block for forward problem, exit block for backward
134     problem).  */
135  basic_block m_start_block;
136  /* Ending block.  */
137  basic_block m_end_block;
138};
139
140} // anonymous namespace
141
142void debug_dominance_info (cdi_direction);
143void debug_dominance_tree (cdi_direction, basic_block);
144
145/* Allocate and zero-initialize NUM elements of type T (T must be a
146   POD-type).  Note: after transition to C++11 or later,
147   `x = new_zero_array <T> (num);' can be replaced with
148   `x = new T[num] {};'.  */
149
150template<typename T>
151inline T *new_zero_array (unsigned num)
152{
153  T *result = new T[num];
154  memset (result, 0, sizeof (T) * num);
155  return result;
156}
157
158/* Helper function for constructors to initialize a part of class members.  */
159
160void
161dom_info::dom_init (void)
162{
163  unsigned num = m_n_basic_blocks;
164
165  m_dfs_parent = new_zero_array <TBB> (num);
166  m_dom = new_zero_array <TBB> (num);
167
168  m_path_min = new TBB[num];
169  m_key = new TBB[num];
170  m_set_size = new unsigned int[num];
171  for (unsigned i = 0; i < num; i++)
172    {
173      m_path_min[i] = m_key[i] = i;
174      m_set_size[i] = 1;
175    }
176
177  m_bucket = new_zero_array <TBB> (num);
178  m_next_bucket = new_zero_array <TBB> (num);
179
180  m_set_chain = new_zero_array <TBB> (num);
181  m_set_child = new_zero_array <TBB> (num);
182
183  m_dfs_to_bb = new_zero_array <basic_block> (num);
184
185  m_dfsnum = 1;
186  m_nodes = 0;
187}
188
189/* Allocate all needed memory in a pessimistic fashion (so we round up).  */
190
191dom_info::dom_info (function *fn, cdi_direction dir)
192{
193  m_n_basic_blocks = n_basic_blocks_for_fn (fn);
194
195  dom_init ();
196
197  unsigned last_bb_index = last_basic_block_for_fn (fn);
198  m_dfs_order = new_zero_array <TBB> (last_bb_index + 1);
199  m_dfs_last = &m_dfs_order[last_bb_index];
200
201  switch (dir)
202    {
203      case CDI_DOMINATORS:
204	m_reverse = false;
205	m_fake_exit_edge = NULL;
206	m_start_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
207	m_end_block = EXIT_BLOCK_PTR_FOR_FN (fn);
208	break;
209      case CDI_POST_DOMINATORS:
210	m_reverse = true;
211	m_fake_exit_edge = BITMAP_ALLOC (NULL);
212	m_start_block = EXIT_BLOCK_PTR_FOR_FN (fn);
213	m_end_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
214	break;
215      default:
216	gcc_unreachable ();
217    }
218}
219
220/* Constructor for reducible region REGION.  */
221
222dom_info::dom_info (vec<basic_block> region, cdi_direction dir)
223{
224  m_n_basic_blocks = region.length ();
225  unsigned nm1 = m_n_basic_blocks - 1;
226
227  dom_init ();
228
229  /* Determine max basic block index in region.  */
230  int max_index = region[0]->index;
231  for (unsigned i = 1; i <= nm1; i++)
232    if (region[i]->index > max_index)
233      max_index = region[i]->index;
234  max_index += 1;  /* set index on the first bb out of region.  */
235
236  m_dfs_order = new_zero_array <TBB> (max_index + 1);
237  m_dfs_last = &m_dfs_order[max_index];
238
239  m_fake_exit_edge = NULL; /* Assume that region is reducible.  */
240
241  switch (dir)
242    {
243      case CDI_DOMINATORS:
244	m_reverse = false;
245	m_start_block = region[0];
246	m_end_block = region[nm1];
247	break;
248      case CDI_POST_DOMINATORS:
249	m_reverse = true;
250	m_start_block = region[nm1];
251	m_end_block = region[0];
252	break;
253      default:
254	gcc_unreachable ();
255    }
256}
257
258inline basic_block
259dom_info::get_idom (basic_block bb)
260{
261  TBB d = m_dom[m_dfs_order[bb->index]];
262  return m_dfs_to_bb[d];
263}
264
265/* Map dominance calculation type to array index used for various
266   dominance information arrays.  This version is simple -- it will need
267   to be modified, obviously, if additional values are added to
268   cdi_direction.  */
269
270static inline unsigned int
271dom_convert_dir_to_idx (cdi_direction dir)
272{
273  gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
274  return dir - 1;
275}
276
277/* Free all allocated memory in dom_info.  */
278
279dom_info::~dom_info ()
280{
281  delete[] m_dfs_parent;
282  delete[] m_path_min;
283  delete[] m_key;
284  delete[] m_dom;
285  delete[] m_bucket;
286  delete[] m_next_bucket;
287  delete[] m_set_chain;
288  delete[] m_set_size;
289  delete[] m_set_child;
290  delete[] m_dfs_order;
291  delete[] m_dfs_to_bb;
292  BITMAP_FREE (m_fake_exit_edge);
293}
294
295/* The nonrecursive variant of creating a DFS tree.  BB is the starting basic
296   block for this tree and m_reverse is true, if predecessors should be visited
297   instead of successors of a node.  After this is done all nodes reachable
298   from BB were visited, have assigned their dfs number and are linked together
299   to form a tree.  */
300
301void
302dom_info::calc_dfs_tree_nonrec (basic_block bb)
303{
304  edge_iterator *stack = new edge_iterator[m_n_basic_blocks + 1];
305  int sp = 0;
306  unsigned d_i = dom_convert_dir_to_idx (m_reverse ? CDI_POST_DOMINATORS
307					 : CDI_DOMINATORS);
308
309  /* Initialize the first edge.  */
310  edge_iterator ei = m_reverse ? ei_start (bb->preds)
311			       : ei_start (bb->succs);
312
313  /* When the stack is empty we break out of this loop.  */
314  while (1)
315    {
316      basic_block bn;
317      edge_iterator einext;
318
319      /* This loop traverses edges e in depth first manner, and fills the
320         stack.  */
321      while (!ei_end_p (ei))
322	{
323	  edge e = ei_edge (ei);
324
325	  /* Deduce from E the current and the next block (BB and BN), and the
326	     next edge.  */
327	  if (m_reverse)
328	    {
329	      bn = e->src;
330
331	      /* If the next node BN is either already visited or a border
332		 block or out of region the current edge is useless, and simply
333		 overwritten with the next edge out of the current node.  */
334	      if (bn == m_end_block || bn->dom[d_i] == NULL
335		  || m_dfs_order[bn->index])
336		{
337		  ei_next (&ei);
338		  continue;
339		}
340	      bb = e->dest;
341	      einext = ei_start (bn->preds);
342	    }
343	  else
344	    {
345	      bn = e->dest;
346	      if (bn == m_end_block || bn->dom[d_i] == NULL
347		  || m_dfs_order[bn->index])
348		{
349		  ei_next (&ei);
350		  continue;
351		}
352	      bb = e->src;
353	      einext = ei_start (bn->succs);
354	    }
355
356	  gcc_assert (bn != m_start_block);
357
358	  /* Fill the DFS tree info calculatable _before_ recursing.  */
359	  TBB my_i;
360	  if (bb != m_start_block)
361	    my_i = m_dfs_order[bb->index];
362	  else
363	    my_i = *m_dfs_last;
364	  TBB child_i = m_dfs_order[bn->index] = m_dfsnum++;
365	  m_dfs_to_bb[child_i] = bn;
366	  m_dfs_parent[child_i] = my_i;
367
368	  /* Save the current point in the CFG on the stack, and recurse.  */
369	  stack[sp++] = ei;
370	  ei = einext;
371	}
372
373      if (!sp)
374	break;
375      ei = stack[--sp];
376
377      /* OK.  The edge-list was exhausted, meaning normally we would
378         end the recursion.  After returning from the recursive call,
379         there were (may be) other statements which were run after a
380         child node was completely considered by DFS.  Here is the
381         point to do it in the non-recursive variant.
382         E.g. The block just completed is in e->dest for forward DFS,
383         the block not yet completed (the parent of the one above)
384         in e->src.  This could be used e.g. for computing the number of
385         descendants or the tree depth.  */
386      ei_next (&ei);
387    }
388  delete[] stack;
389}
390
391/* The main entry for calculating the DFS tree or forest.  m_reverse is true,
392   if we are interested in the reverse flow graph.  In that case the result is
393   not necessarily a tree but a forest, because there may be nodes from which
394   the EXIT_BLOCK is unreachable.  */
395
396void
397dom_info::calc_dfs_tree ()
398{
399  *m_dfs_last = m_dfsnum;
400  m_dfs_to_bb[m_dfsnum] = m_start_block;
401  m_dfsnum++;
402
403  calc_dfs_tree_nonrec (m_start_block);
404
405  if (m_fake_exit_edge)
406    {
407      /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
408         They are reverse-unreachable.  In the dom-case we disallow such
409         nodes, but in post-dom we have to deal with them.
410
411	 There are two situations in which this occurs.  First, noreturn
412	 functions.  Second, infinite loops.  In the first case we need to
413	 pretend that there is an edge to the exit block.  In the second
414	 case, we wind up with a forest.  We need to process all noreturn
415	 blocks before we know if we've got any infinite loops.  */
416
417      basic_block b;
418      bool saw_unconnected = false;
419
420      FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
421	{
422	  if (EDGE_COUNT (b->succs) > 0)
423	    {
424	      if (m_dfs_order[b->index] == 0)
425		saw_unconnected = true;
426	      continue;
427	    }
428	  bitmap_set_bit (m_fake_exit_edge, b->index);
429	  m_dfs_order[b->index] = m_dfsnum;
430	  m_dfs_to_bb[m_dfsnum] = b;
431	  m_dfs_parent[m_dfsnum] = *m_dfs_last;
432	  m_dfsnum++;
433	  calc_dfs_tree_nonrec (b);
434	}
435
436      if (saw_unconnected)
437	{
438	  FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
439	    {
440	      if (m_dfs_order[b->index])
441		continue;
442	      basic_block b2 = dfs_find_deadend (b);
443	      gcc_checking_assert (m_dfs_order[b2->index] == 0);
444	      bitmap_set_bit (m_fake_exit_edge, b2->index);
445	      m_dfs_order[b2->index] = m_dfsnum;
446	      m_dfs_to_bb[m_dfsnum] = b2;
447	      m_dfs_parent[m_dfsnum] = *m_dfs_last;
448	      m_dfsnum++;
449	      calc_dfs_tree_nonrec (b2);
450	      gcc_checking_assert (m_dfs_order[b->index]);
451	    }
452	}
453    }
454
455  m_nodes = m_dfsnum - 1;
456
457  /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all.  */
458  gcc_assert (m_nodes == (unsigned int) m_n_basic_blocks - 1);
459}
460
461/* Compress the path from V to the root of its set and update path_min at the
462   same time.  After compress(di, V) set_chain[V] is the root of the set V is
463   in and path_min[V] is the node with the smallest key[] value on the path
464   from V to that root.  */
465
466void
467dom_info::compress (TBB v)
468{
469  /* Btw. It's not worth to unrecurse compress() as the depth is usually not
470     greater than 5 even for huge graphs (I've not seen call depth > 4).
471     Also performance wise compress() ranges _far_ behind eval().  */
472  TBB parent = m_set_chain[v];
473  if (m_set_chain[parent])
474    {
475      compress (parent);
476      if (m_key[m_path_min[parent]] < m_key[m_path_min[v]])
477	m_path_min[v] = m_path_min[parent];
478      m_set_chain[v] = m_set_chain[parent];
479    }
480}
481
482/* Compress the path from V to the set root of V if needed (when the root has
483   changed since the last call).  Returns the node with the smallest key[]
484   value on the path from V to the root.  */
485
486inline TBB
487dom_info::eval (TBB v)
488{
489  /* The representative of the set V is in, also called root (as the set
490     representation is a tree).  */
491  TBB rep = m_set_chain[v];
492
493  /* V itself is the root.  */
494  if (!rep)
495    return m_path_min[v];
496
497  /* Compress only if necessary.  */
498  if (m_set_chain[rep])
499    {
500      compress (v);
501      rep = m_set_chain[v];
502    }
503
504  if (m_key[m_path_min[rep]] >= m_key[m_path_min[v]])
505    return m_path_min[v];
506  else
507    return m_path_min[rep];
508}
509
510/* This essentially merges the two sets of V and W, giving a single set with
511   the new root V.  The internal representation of these disjoint sets is a
512   balanced tree.  Currently link(V,W) is only used with V being the parent
513   of W.  */
514
515void
516dom_info::link_roots (TBB v, TBB w)
517{
518  TBB s = w;
519
520  /* Rebalance the tree.  */
521  while (m_key[m_path_min[w]] < m_key[m_path_min[m_set_child[s]]])
522    {
523      if (m_set_size[s] + m_set_size[m_set_child[m_set_child[s]]]
524	  >= 2 * m_set_size[m_set_child[s]])
525	{
526	  m_set_chain[m_set_child[s]] = s;
527	  m_set_child[s] = m_set_child[m_set_child[s]];
528	}
529      else
530	{
531	  m_set_size[m_set_child[s]] = m_set_size[s];
532	  s = m_set_chain[s] = m_set_child[s];
533	}
534    }
535
536  m_path_min[s] = m_path_min[w];
537  m_set_size[v] += m_set_size[w];
538  if (m_set_size[v] < 2 * m_set_size[w])
539    std::swap (m_set_child[v], s);
540
541  /* Merge all subtrees.  */
542  while (s)
543    {
544      m_set_chain[s] = v;
545      s = m_set_child[s];
546    }
547}
548
549/* This calculates the immediate dominators (or post-dominators). THIS is our
550   working structure and should hold the DFS forest.
551   On return the immediate dominator to node V is in m_dom[V].  */
552
553void
554dom_info::calc_idoms ()
555{
556  /* Go backwards in DFS order, to first look at the leafs.  */
557  for (TBB v = m_nodes; v > 1; v--)
558    {
559      basic_block bb = m_dfs_to_bb[v];
560      edge e;
561
562      TBB par = m_dfs_parent[v];
563      TBB k = v;
564
565      edge_iterator ei = m_reverse ? ei_start (bb->succs)
566				   : ei_start (bb->preds);
567      edge_iterator einext;
568
569      if (m_fake_exit_edge)
570	{
571	  /* If this block has a fake edge to exit, process that first.  */
572	  if (bitmap_bit_p (m_fake_exit_edge, bb->index))
573	    {
574	      einext = ei;
575	      einext.index = 0;
576	      goto do_fake_exit_edge;
577	    }
578	}
579
580      /* Search all direct predecessors for the smallest node with a path
581         to them.  That way we have the smallest node with also a path to
582         us only over nodes behind us.  In effect we search for our
583         semidominator.  */
584      while (!ei_end_p (ei))
585	{
586	  basic_block b;
587	  TBB k1;
588
589	  e = ei_edge (ei);
590	  b = m_reverse ? e->dest : e->src;
591	  einext = ei;
592	  ei_next (&einext);
593
594	  if (b == m_start_block)
595	    {
596	    do_fake_exit_edge:
597	      k1 = *m_dfs_last;
598	    }
599	  else
600	    k1 = m_dfs_order[b->index];
601
602	  /* Call eval() only if really needed.  If k1 is above V in DFS tree,
603	     then we know, that eval(k1) == k1 and key[k1] == k1.  */
604	  if (k1 > v)
605	    k1 = m_key[eval (k1)];
606	  if (k1 < k)
607	    k = k1;
608
609	  ei = einext;
610	}
611
612      m_key[v] = k;
613      link_roots (par, v);
614      m_next_bucket[v] = m_bucket[k];
615      m_bucket[k] = v;
616
617      /* Transform semidominators into dominators.  */
618      for (TBB w = m_bucket[par]; w; w = m_next_bucket[w])
619	{
620	  k = eval (w);
621	  if (m_key[k] < m_key[w])
622	    m_dom[w] = k;
623	  else
624	    m_dom[w] = par;
625	}
626      /* We don't need to cleanup next_bucket[].  */
627      m_bucket[par] = 0;
628    }
629
630  /* Explicitly define the dominators.  */
631  m_dom[1] = 0;
632  for (TBB v = 2; v <= m_nodes; v++)
633    if (m_dom[v] != m_key[v])
634      m_dom[v] = m_dom[m_dom[v]];
635}
636
637/* Assign dfs numbers starting from NUM to NODE and its sons.  */
638
639static void
640assign_dfs_numbers (struct et_node *node, int *num)
641{
642  struct et_node *son;
643
644  node->dfs_num_in = (*num)++;
645
646  if (node->son)
647    {
648      assign_dfs_numbers (node->son, num);
649      for (son = node->son->right; son != node->son; son = son->right)
650	assign_dfs_numbers (son, num);
651    }
652
653  node->dfs_num_out = (*num)++;
654}
655
656/* Compute the data necessary for fast resolving of dominator queries in a
657   static dominator tree.  */
658
659static void
660compute_dom_fast_query (enum cdi_direction dir)
661{
662  int num = 0;
663  basic_block bb;
664  unsigned int dir_index = dom_convert_dir_to_idx (dir);
665
666  gcc_checking_assert (dom_info_available_p (dir));
667
668  if (dom_computed[dir_index] == DOM_OK)
669    return;
670
671  FOR_ALL_BB_FN (bb, cfun)
672    {
673      if (!bb->dom[dir_index]->father)
674	assign_dfs_numbers (bb->dom[dir_index], &num);
675    }
676
677  dom_computed[dir_index] = DOM_OK;
678}
679
680/* Analogous to the previous function but compute the data for reducible
681   region REGION.  */
682
683static void
684compute_dom_fast_query_in_region (enum cdi_direction dir,
685				  vec<basic_block> region)
686{
687  int num = 0;
688  basic_block bb;
689  unsigned int dir_index = dom_convert_dir_to_idx (dir);
690
691  gcc_checking_assert (dom_info_available_p (dir));
692
693  if (dom_computed[dir_index] == DOM_OK)
694    return;
695
696  /* Assign dfs numbers for region nodes except for entry and exit nodes.  */
697  for (unsigned int i = 1; i < region.length () - 1; i++)
698    {
699      bb = region[i];
700      if (!bb->dom[dir_index]->father)
701	assign_dfs_numbers (bb->dom[dir_index], &num);
702    }
703
704  dom_computed[dir_index] = DOM_OK;
705}
706
707/* The main entry point into this module.  DIR is set depending on whether
708   we want to compute dominators or postdominators.  */
709
710void
711calculate_dominance_info (cdi_direction dir)
712{
713  unsigned int dir_index = dom_convert_dir_to_idx (dir);
714
715  if (dom_computed[dir_index] == DOM_OK)
716    {
717      checking_verify_dominators (dir);
718      return;
719    }
720
721  timevar_push (TV_DOMINANCE);
722  if (!dom_info_available_p (dir))
723    {
724      gcc_assert (!n_bbs_in_dom_tree[dir_index]);
725
726      basic_block b;
727      FOR_ALL_BB_FN (b, cfun)
728	{
729	  b->dom[dir_index] = et_new_tree (b);
730	}
731      n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
732
733      dom_info di (cfun, dir);
734      di.calc_dfs_tree ();
735      di.calc_idoms ();
736
737      FOR_EACH_BB_FN (b, cfun)
738	{
739	  if (basic_block d = di.get_idom (b))
740	    et_set_father (b->dom[dir_index], d->dom[dir_index]);
741	}
742
743      dom_computed[dir_index] = DOM_NO_FAST_QUERY;
744    }
745  else
746    checking_verify_dominators (dir);
747
748  compute_dom_fast_query (dir);
749
750  timevar_pop (TV_DOMINANCE);
751}
752
753/* Analogous to the previous function but compute dominance info for regions
754   which are single entry, multiple exit regions for CDI_DOMINATORs and
755   multiple entry, single exit regions for CDI_POST_DOMINATORs.  */
756
757void
758calculate_dominance_info_for_region (cdi_direction dir,
759				     vec<basic_block> region)
760{
761  unsigned int dir_index = dom_convert_dir_to_idx (dir);
762  basic_block bb;
763  unsigned int i;
764
765  if (dom_computed[dir_index] == DOM_OK)
766    return;
767
768  timevar_push (TV_DOMINANCE);
769  /* Assume that dom info is not partially computed.  */
770  gcc_assert (!dom_info_available_p (dir));
771
772  FOR_EACH_VEC_ELT (region, i, bb)
773    {
774      bb->dom[dir_index] = et_new_tree (bb);
775    }
776  dom_info di (region, dir);
777  di.calc_dfs_tree ();
778  di.calc_idoms ();
779
780  FOR_EACH_VEC_ELT (region, i, bb)
781    if (basic_block d = di.get_idom (bb))
782      et_set_father (bb->dom[dir_index], d->dom[dir_index]);
783
784  dom_computed[dir_index] = DOM_NO_FAST_QUERY;
785  compute_dom_fast_query_in_region (dir, region);
786
787  timevar_pop (TV_DOMINANCE);
788}
789
790/* Free dominance information for direction DIR.  */
791void
792free_dominance_info (function *fn, enum cdi_direction dir)
793{
794  basic_block bb;
795  unsigned int dir_index = dom_convert_dir_to_idx (dir);
796
797  if (!dom_info_available_p (fn, dir))
798    return;
799
800  FOR_ALL_BB_FN (bb, fn)
801    {
802      et_free_tree_force (bb->dom[dir_index]);
803      bb->dom[dir_index] = NULL;
804    }
805  et_free_pools ();
806
807  fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
808
809  fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
810}
811
812void
813free_dominance_info (enum cdi_direction dir)
814{
815  free_dominance_info (cfun, dir);
816}
817
818/* Free dominance information for direction DIR in region REGION.  */
819
820void
821free_dominance_info_for_region (function *fn,
822				enum cdi_direction dir,
823				vec<basic_block> region)
824{
825  basic_block bb;
826  unsigned int i;
827  unsigned int dir_index = dom_convert_dir_to_idx (dir);
828
829  if (!dom_info_available_p (dir))
830    return;
831
832  FOR_EACH_VEC_ELT (region, i, bb)
833    {
834      et_free_tree_force (bb->dom[dir_index]);
835      bb->dom[dir_index] = NULL;
836    }
837  et_free_pools ();
838
839  fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
840
841  fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
842}
843
844/* Return the immediate dominator of basic block BB.  */
845basic_block
846get_immediate_dominator (enum cdi_direction dir, basic_block bb)
847{
848  unsigned int dir_index = dom_convert_dir_to_idx (dir);
849  struct et_node *node = bb->dom[dir_index];
850
851  gcc_checking_assert (dom_computed[dir_index]);
852
853  if (!node->father)
854    return NULL;
855
856  return (basic_block) node->father->data;
857}
858
859/* Set the immediate dominator of the block possibly removing
860   existing edge.  NULL can be used to remove any edge.  */
861void
862set_immediate_dominator (enum cdi_direction dir, basic_block bb,
863			 basic_block dominated_by)
864{
865  unsigned int dir_index = dom_convert_dir_to_idx (dir);
866  struct et_node *node = bb->dom[dir_index];
867
868  gcc_checking_assert (dom_computed[dir_index]);
869
870  if (node->father)
871    {
872      if (node->father->data == dominated_by)
873	return;
874      et_split (node);
875    }
876
877  if (dominated_by)
878    et_set_father (node, dominated_by->dom[dir_index]);
879
880  if (dom_computed[dir_index] == DOM_OK)
881    dom_computed[dir_index] = DOM_NO_FAST_QUERY;
882}
883
884/* Returns the list of basic blocks immediately dominated by BB, in the
885   direction DIR.  */
886vec<basic_block>
887get_dominated_by (enum cdi_direction dir, basic_block bb)
888{
889  unsigned int dir_index = dom_convert_dir_to_idx (dir);
890  struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
891  vec<basic_block> bbs = vNULL;
892
893  gcc_checking_assert (dom_computed[dir_index]);
894
895  if (!son)
896    return vNULL;
897
898  bbs.safe_push ((basic_block) son->data);
899  for (ason = son->right; ason != son; ason = ason->right)
900    bbs.safe_push ((basic_block) ason->data);
901
902  return bbs;
903}
904
905/* Returns the list of basic blocks that are immediately dominated (in
906   direction DIR) by some block between N_REGION ones stored in REGION,
907   except for blocks in the REGION itself.  */
908
909vec<basic_block>
910get_dominated_by_region (enum cdi_direction dir, basic_block *region,
911			 unsigned n_region)
912{
913  unsigned i;
914  basic_block dom;
915  vec<basic_block> doms = vNULL;
916
917  for (i = 0; i < n_region; i++)
918    region[i]->flags |= BB_DUPLICATED;
919  for (i = 0; i < n_region; i++)
920    for (dom = first_dom_son (dir, region[i]);
921	 dom;
922	 dom = next_dom_son (dir, dom))
923      if (!(dom->flags & BB_DUPLICATED))
924	doms.safe_push (dom);
925  for (i = 0; i < n_region; i++)
926    region[i]->flags &= ~BB_DUPLICATED;
927
928  return doms;
929}
930
931/* Returns the list of basic blocks including BB dominated by BB, in the
932   direction DIR up to DEPTH in the dominator tree.  The DEPTH of zero will
933   produce a vector containing all dominated blocks.  The vector will be sorted
934   in preorder.  */
935
936vec<basic_block>
937get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
938{
939  vec<basic_block> bbs = vNULL;
940  unsigned i;
941  unsigned next_level_start;
942
943  i = 0;
944  bbs.safe_push (bb);
945  next_level_start = 1; /* = bbs.length (); */
946
947  do
948    {
949      basic_block son;
950
951      bb = bbs[i++];
952      for (son = first_dom_son (dir, bb);
953	   son;
954	   son = next_dom_son (dir, son))
955	bbs.safe_push (son);
956
957      if (i == next_level_start && --depth)
958	next_level_start = bbs.length ();
959    }
960  while (i < next_level_start);
961
962  return bbs;
963}
964
965/* Returns the list of basic blocks including BB dominated by BB, in the
966   direction DIR.  The vector will be sorted in preorder.  */
967
968vec<basic_block>
969get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
970{
971  return get_dominated_to_depth (dir, bb, 0);
972}
973
974/* Redirect all edges pointing to BB to TO.  */
975void
976redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
977			       basic_block to)
978{
979  unsigned int dir_index = dom_convert_dir_to_idx (dir);
980  struct et_node *bb_node, *to_node, *son;
981
982  bb_node = bb->dom[dir_index];
983  to_node = to->dom[dir_index];
984
985  gcc_checking_assert (dom_computed[dir_index]);
986
987  if (!bb_node->son)
988    return;
989
990  while (bb_node->son)
991    {
992      son = bb_node->son;
993
994      et_split (son);
995      et_set_father (son, to_node);
996    }
997
998  if (dom_computed[dir_index] == DOM_OK)
999    dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1000}
1001
1002/* Find first basic block in the tree dominating both BB1 and BB2.  */
1003basic_block
1004nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
1005{
1006  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1007
1008  gcc_checking_assert (dom_computed[dir_index]);
1009
1010  if (!bb1)
1011    return bb2;
1012  if (!bb2)
1013    return bb1;
1014
1015  return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
1016}
1017
1018
1019/* Find the nearest common dominator for the basic blocks in BLOCKS,
1020   using dominance direction DIR.  */
1021
1022basic_block
1023nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
1024{
1025  unsigned i, first;
1026  bitmap_iterator bi;
1027  basic_block dom;
1028
1029  first = bitmap_first_set_bit (blocks);
1030  dom = BASIC_BLOCK_FOR_FN (cfun, first);
1031  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
1032    if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
1033      dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
1034
1035  return dom;
1036}
1037
1038/*  Given a dominator tree, we can determine whether one thing
1039    dominates another in constant time by using two DFS numbers:
1040
1041    1. The number for when we visit a node on the way down the tree
1042    2. The number for when we visit a node on the way back up the tree
1043
1044    You can view these as bounds for the range of dfs numbers the
1045    nodes in the subtree of the dominator tree rooted at that node
1046    will contain.
1047
1048    The dominator tree is always a simple acyclic tree, so there are
1049    only three possible relations two nodes in the dominator tree have
1050    to each other:
1051
1052    1. Node A is above Node B (and thus, Node A dominates node B)
1053
1054     A
1055     |
1056     C
1057    / \
1058   B   D
1059
1060
1061   In the above case, DFS_Number_In of A will be <= DFS_Number_In of
1062   B, and DFS_Number_Out of A will be >= DFS_Number_Out of B.  This is
1063   because we must hit A in the dominator tree *before* B on the walk
1064   down, and we will hit A *after* B on the walk back up
1065
1066   2. Node A is below node B (and thus, node B dominates node A)
1067
1068
1069     B
1070     |
1071     A
1072    / \
1073   C   D
1074
1075   In the above case, DFS_Number_In of A will be >= DFS_Number_In of
1076   B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
1077
1078   This is because we must hit A in the dominator tree *after* B on
1079   the walk down, and we will hit A *before* B on the walk back up
1080
1081   3. Node A and B are siblings (and thus, neither dominates the other)
1082
1083     C
1084     |
1085     D
1086    / \
1087   A   B
1088
1089   In the above case, DFS_Number_In of A will *always* be <=
1090   DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
1091   DFS_Number_Out of B.  This is because we will always finish the dfs
1092   walk of one of the subtrees before the other, and thus, the dfs
1093   numbers for one subtree can't intersect with the range of dfs
1094   numbers for the other subtree.  If you swap A and B's position in
1095   the dominator tree, the comparison changes direction, but the point
1096   is that both comparisons will always go the same way if there is no
1097   dominance relationship.
1098
1099   Thus, it is sufficient to write
1100
1101   A_Dominates_B (node A, node B)
1102   {
1103     return DFS_Number_In(A) <= DFS_Number_In(B)
1104            && DFS_Number_Out (A) >= DFS_Number_Out(B);
1105   }
1106
1107   A_Dominated_by_B (node A, node B)
1108   {
1109     return DFS_Number_In(A) >= DFS_Number_In(B)
1110            && DFS_Number_Out (A) <= DFS_Number_Out(B);
1111   }  */
1112
1113/* Return TRUE in case BB1 is dominated by BB2.  */
1114bool
1115dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
1116{
1117  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1118  struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
1119
1120  gcc_checking_assert (dom_computed[dir_index]);
1121
1122  if (dom_computed[dir_index] == DOM_OK)
1123    return (n1->dfs_num_in >= n2->dfs_num_in
1124  	    && n1->dfs_num_out <= n2->dfs_num_out);
1125
1126  return et_below (n1, n2);
1127}
1128
1129/* Returns the entry dfs number for basic block BB, in the direction DIR.  */
1130
1131unsigned
1132bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
1133{
1134  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1135  struct et_node *n = bb->dom[dir_index];
1136
1137  gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1138  return n->dfs_num_in;
1139}
1140
1141/* Returns the exit dfs number for basic block BB, in the direction DIR.  */
1142
1143unsigned
1144bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1145{
1146  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1147  struct et_node *n = bb->dom[dir_index];
1148
1149  gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1150  return n->dfs_num_out;
1151}
1152
1153/* Verify invariants of dominator structure.  */
1154DEBUG_FUNCTION void
1155verify_dominators (cdi_direction dir)
1156{
1157  gcc_assert (dom_info_available_p (dir));
1158
1159  dom_info di (cfun, dir);
1160  di.calc_dfs_tree ();
1161  di.calc_idoms ();
1162
1163  bool err = false;
1164  basic_block bb;
1165  FOR_EACH_BB_FN (bb, cfun)
1166    {
1167      basic_block imm_bb = get_immediate_dominator (dir, bb);
1168      if (!imm_bb)
1169	{
1170	  error ("dominator of %d status unknown", bb->index);
1171	  err = true;
1172	  continue;
1173	}
1174
1175      basic_block imm_bb_correct = di.get_idom (bb);
1176      if (imm_bb != imm_bb_correct)
1177	{
1178	  error ("dominator of %d should be %d, not %d",
1179		 bb->index, imm_bb_correct->index, imm_bb->index);
1180	  err = true;
1181	}
1182    }
1183
1184  gcc_assert (!err);
1185}
1186
1187/* Determine immediate dominator (or postdominator, according to DIR) of BB,
1188   assuming that dominators of other blocks are correct.  We also use it to
1189   recompute the dominators in a restricted area, by iterating it until it
1190   reaches a fixed point.  */
1191
1192basic_block
1193recompute_dominator (enum cdi_direction dir, basic_block bb)
1194{
1195  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1196  basic_block dom_bb = NULL;
1197  edge e;
1198  edge_iterator ei;
1199
1200  gcc_checking_assert (dom_computed[dir_index]);
1201
1202  if (dir == CDI_DOMINATORS)
1203    {
1204      FOR_EACH_EDGE (e, ei, bb->preds)
1205	{
1206	  if (!dominated_by_p (dir, e->src, bb))
1207	    dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1208	}
1209    }
1210  else
1211    {
1212      FOR_EACH_EDGE (e, ei, bb->succs)
1213	{
1214	  if (!dominated_by_p (dir, e->dest, bb))
1215	    dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1216	}
1217    }
1218
1219  return dom_bb;
1220}
1221
1222/* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1223   of BBS.  We assume that all the immediate dominators except for those of the
1224   blocks in BBS are correct.  If CONSERVATIVE is true, we also assume that the
1225   currently recorded immediate dominators of blocks in BBS really dominate the
1226   blocks.  The basic blocks for that we determine the dominator are removed
1227   from BBS.  */
1228
1229static void
1230prune_bbs_to_update_dominators (vec<basic_block> bbs,
1231				bool conservative)
1232{
1233  unsigned i;
1234  bool single;
1235  basic_block bb, dom = NULL;
1236  edge_iterator ei;
1237  edge e;
1238
1239  for (i = 0; bbs.iterate (i, &bb);)
1240    {
1241      if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1242	goto succeed;
1243
1244      if (single_pred_p (bb))
1245	{
1246	  set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1247	  goto succeed;
1248	}
1249
1250      if (!conservative)
1251	goto fail;
1252
1253      single = true;
1254      dom = NULL;
1255      FOR_EACH_EDGE (e, ei, bb->preds)
1256	{
1257	  if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1258	    continue;
1259
1260	  if (!dom)
1261	    dom = e->src;
1262	  else
1263	    {
1264	      single = false;
1265	      dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1266	    }
1267	}
1268
1269      gcc_assert (dom != NULL);
1270      if (single
1271	  || find_edge (dom, bb))
1272	{
1273	  set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1274	  goto succeed;
1275	}
1276
1277fail:
1278      i++;
1279      continue;
1280
1281succeed:
1282      bbs.unordered_remove (i);
1283    }
1284}
1285
1286/* Returns root of the dominance tree in the direction DIR that contains
1287   BB.  */
1288
1289static basic_block
1290root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1291{
1292  return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1293}
1294
1295/* See the comment in iterate_fix_dominators.  Finds the immediate dominators
1296   for the sons of Y, found using the SON and BROTHER arrays representing
1297   the dominance tree of graph G.  BBS maps the vertices of G to the basic
1298   blocks.  */
1299
1300static void
1301determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
1302			       int y, int *son, int *brother)
1303{
1304  bitmap gprime;
1305  int i, a, nc;
1306  vec<int> *sccs;
1307  basic_block bb, dom, ybb;
1308  unsigned si;
1309  edge e;
1310  edge_iterator ei;
1311
1312  if (son[y] == -1)
1313    return;
1314  if (y == (int) bbs.length ())
1315    ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1316  else
1317    ybb = bbs[y];
1318
1319  if (brother[son[y]] == -1)
1320    {
1321      /* Handle the common case Y has just one son specially.  */
1322      bb = bbs[son[y]];
1323      set_immediate_dominator (CDI_DOMINATORS, bb,
1324			       recompute_dominator (CDI_DOMINATORS, bb));
1325      identify_vertices (g, y, son[y]);
1326      return;
1327    }
1328
1329  gprime = BITMAP_ALLOC (NULL);
1330  for (a = son[y]; a != -1; a = brother[a])
1331    bitmap_set_bit (gprime, a);
1332
1333  nc = graphds_scc (g, gprime);
1334  BITMAP_FREE (gprime);
1335
1336  /* ???  Needed to work around the pre-processor confusion with
1337     using a multi-argument template type as macro argument.  */
1338  typedef vec<int> vec_int_heap;
1339  sccs = XCNEWVEC (vec_int_heap, nc);
1340  for (a = son[y]; a != -1; a = brother[a])
1341    sccs[g->vertices[a].component].safe_push (a);
1342
1343  for (i = nc - 1; i >= 0; i--)
1344    {
1345      dom = NULL;
1346      FOR_EACH_VEC_ELT (sccs[i], si, a)
1347	{
1348	  bb = bbs[a];
1349	  FOR_EACH_EDGE (e, ei, bb->preds)
1350	    {
1351	      if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1352		continue;
1353
1354	      dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1355	    }
1356	}
1357
1358      gcc_assert (dom != NULL);
1359      FOR_EACH_VEC_ELT (sccs[i], si, a)
1360	{
1361	  bb = bbs[a];
1362	  set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1363	}
1364    }
1365
1366  for (i = 0; i < nc; i++)
1367    sccs[i].release ();
1368  free (sccs);
1369
1370  for (a = son[y]; a != -1; a = brother[a])
1371    identify_vertices (g, y, a);
1372}
1373
1374/* Recompute dominance information for basic blocks in the set BBS.  The
1375   function assumes that the immediate dominators of all the other blocks
1376   in CFG are correct, and that there are no unreachable blocks.
1377
1378   If CONSERVATIVE is true, we additionally assume that all the ancestors of
1379   a block of BBS in the current dominance tree dominate it.  */
1380
1381void
1382iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
1383			bool conservative)
1384{
1385  unsigned i;
1386  basic_block bb, dom;
1387  struct graph *g;
1388  int n, y;
1389  size_t dom_i;
1390  edge e;
1391  edge_iterator ei;
1392  int *parent, *son, *brother;
1393  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1394
1395  /* We only support updating dominators.  There are some problems with
1396     updating postdominators (need to add fake edges from infinite loops
1397     and noreturn functions), and since we do not currently use
1398     iterate_fix_dominators for postdominators, any attempt to handle these
1399     problems would be unused, untested, and almost surely buggy.  We keep
1400     the DIR argument for consistency with the rest of the dominator analysis
1401     interface.  */
1402  gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
1403
1404  /* The algorithm we use takes inspiration from the following papers, although
1405     the details are quite different from any of them:
1406
1407     [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1408	 Dominator Tree of a Reducible Flowgraph
1409     [2]  V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1410	  dominator trees
1411     [3]  K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1412	  Algorithm
1413
1414     First, we use the following heuristics to decrease the size of the BBS
1415     set:
1416       a) if BB has a single predecessor, then its immediate dominator is this
1417	  predecessor
1418       additionally, if CONSERVATIVE is true:
1419       b) if all the predecessors of BB except for one (X) are dominated by BB,
1420	  then X is the immediate dominator of BB
1421       c) if the nearest common ancestor of the predecessors of BB is X and
1422	  X -> BB is an edge in CFG, then X is the immediate dominator of BB
1423
1424     Then, we need to establish the dominance relation among the basic blocks
1425     in BBS.  We split the dominance tree by removing the immediate dominator
1426     edges from BBS, creating a forest F.  We form a graph G whose vertices
1427     are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1428     X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1429     whose root is X.  We then determine dominance tree of G.  Note that
1430     for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1431     In this step, we can use arbitrary algorithm to determine dominators.
1432     We decided to prefer the algorithm [3] to the algorithm of
1433     Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1434     10 during gcc bootstrap), and [3] should perform better in this case.
1435
1436     Finally, we need to determine the immediate dominators for the basic
1437     blocks of BBS.  If the immediate dominator of X in G is Y, then
1438     the immediate dominator of X in CFG belongs to the tree of F rooted in
1439     Y.  We process the dominator tree T of G recursively, starting from leaves.
1440     Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1441     subtrees of the dominance tree of CFG rooted in X_i are already correct.
1442     Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}.  We make
1443     the following observations:
1444       (i) the immediate dominator of all blocks in a strongly connected
1445	   component of G' is the same
1446       (ii) if X has no predecessors in G', then the immediate dominator of X
1447	    is the nearest common ancestor of the predecessors of X in the
1448	    subtree of F rooted in Y
1449     Therefore, it suffices to find the topological ordering of G', and
1450     process the nodes X_i in this order using the rules (i) and (ii).
1451     Then, we contract all the nodes X_i with Y in G, so that the further
1452     steps work correctly.  */
1453
1454  if (!conservative)
1455    {
1456      /* Split the tree now.  If the idoms of blocks in BBS are not
1457	 conservatively correct, setting the dominators using the
1458	 heuristics in prune_bbs_to_update_dominators could
1459	 create cycles in the dominance "tree", and cause ICE.  */
1460      FOR_EACH_VEC_ELT (bbs, i, bb)
1461	set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1462    }
1463
1464  prune_bbs_to_update_dominators (bbs, conservative);
1465  n = bbs.length ();
1466
1467  if (n == 0)
1468    return;
1469
1470  if (n == 1)
1471    {
1472      bb = bbs[0];
1473      set_immediate_dominator (CDI_DOMINATORS, bb,
1474			       recompute_dominator (CDI_DOMINATORS, bb));
1475      return;
1476    }
1477
1478  timevar_push (TV_DOMINANCE);
1479
1480  /* Construct the graph G.  */
1481  hash_map<basic_block, int> map (251);
1482  FOR_EACH_VEC_ELT (bbs, i, bb)
1483    {
1484      /* If the dominance tree is conservatively correct, split it now.  */
1485      if (conservative)
1486	set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1487      map.put (bb, i);
1488    }
1489  map.put (ENTRY_BLOCK_PTR_FOR_FN (cfun), n);
1490
1491  g = new_graph (n + 1);
1492  for (y = 0; y < g->n_vertices; y++)
1493    g->vertices[y].data = BITMAP_ALLOC (NULL);
1494  FOR_EACH_VEC_ELT (bbs, i, bb)
1495    {
1496      FOR_EACH_EDGE (e, ei, bb->preds)
1497	{
1498	  dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1499	  if (dom == bb)
1500	    continue;
1501
1502	  dom_i = *map.get (dom);
1503
1504	  /* Do not include parallel edges to G.  */
1505	  if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
1506	    continue;
1507
1508	  add_edge (g, dom_i, i);
1509	}
1510    }
1511  for (y = 0; y < g->n_vertices; y++)
1512    BITMAP_FREE (g->vertices[y].data);
1513
1514  /* Find the dominator tree of G.  */
1515  son = XNEWVEC (int, n + 1);
1516  brother = XNEWVEC (int, n + 1);
1517  parent = XNEWVEC (int, n + 1);
1518  graphds_domtree (g, n, parent, son, brother);
1519
1520  /* Finally, traverse the tree and find the immediate dominators.  */
1521  for (y = n; son[y] != -1; y = son[y])
1522    continue;
1523  while (y != -1)
1524    {
1525      determine_dominators_for_sons (g, bbs, y, son, brother);
1526
1527      if (brother[y] != -1)
1528	{
1529	  y = brother[y];
1530	  while (son[y] != -1)
1531	    y = son[y];
1532	}
1533      else
1534	y = parent[y];
1535    }
1536
1537  free (son);
1538  free (brother);
1539  free (parent);
1540
1541  free_graph (g);
1542
1543  timevar_pop (TV_DOMINANCE);
1544}
1545
1546void
1547add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1548{
1549  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1550
1551  gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
1552
1553  n_bbs_in_dom_tree[dir_index]++;
1554
1555  bb->dom[dir_index] = et_new_tree (bb);
1556
1557  if (dom_computed[dir_index] == DOM_OK)
1558    dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1559}
1560
1561void
1562delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1563{
1564  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1565
1566  gcc_checking_assert (dom_computed[dir_index]);
1567
1568  et_free_tree (bb->dom[dir_index]);
1569  bb->dom[dir_index] = NULL;
1570  n_bbs_in_dom_tree[dir_index]--;
1571
1572  if (dom_computed[dir_index] == DOM_OK)
1573    dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1574}
1575
1576/* Returns the first son of BB in the dominator or postdominator tree
1577   as determined by DIR.  */
1578
1579basic_block
1580first_dom_son (enum cdi_direction dir, basic_block bb)
1581{
1582  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1583  struct et_node *son = bb->dom[dir_index]->son;
1584
1585  return (basic_block) (son ? son->data : NULL);
1586}
1587
1588/* Returns the next dominance son after BB in the dominator or postdominator
1589   tree as determined by DIR, or NULL if it was the last one.  */
1590
1591basic_block
1592next_dom_son (enum cdi_direction dir, basic_block bb)
1593{
1594  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1595  struct et_node *next = bb->dom[dir_index]->right;
1596
1597  return (basic_block) (next->father->son == next ? NULL : next->data);
1598}
1599
1600/* Return dominance availability for dominance info DIR.  */
1601
1602enum dom_state
1603dom_info_state (function *fn, enum cdi_direction dir)
1604{
1605  if (!fn->cfg)
1606    return DOM_NONE;
1607
1608  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1609  return fn->cfg->x_dom_computed[dir_index];
1610}
1611
1612enum dom_state
1613dom_info_state (enum cdi_direction dir)
1614{
1615  return dom_info_state (cfun, dir);
1616}
1617
1618/* Set the dominance availability for dominance info DIR to NEW_STATE.  */
1619
1620void
1621set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1622{
1623  unsigned int dir_index = dom_convert_dir_to_idx (dir);
1624
1625  dom_computed[dir_index] = new_state;
1626}
1627
1628/* Returns true if dominance information for direction DIR is available.  */
1629
1630bool
1631dom_info_available_p (function *fn, enum cdi_direction dir)
1632{
1633  return dom_info_state (fn, dir) != DOM_NONE;
1634}
1635
1636bool
1637dom_info_available_p (enum cdi_direction dir)
1638{
1639  return dom_info_available_p (cfun, dir);
1640}
1641
1642DEBUG_FUNCTION void
1643debug_dominance_info (enum cdi_direction dir)
1644{
1645  basic_block bb, bb2;
1646  FOR_EACH_BB_FN (bb, cfun)
1647    if ((bb2 = get_immediate_dominator (dir, bb)))
1648      fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1649}
1650
1651/* Prints to stderr representation of the dominance tree (for direction DIR)
1652   rooted in ROOT, indented by INDENT tabulators.  If INDENT_FIRST is false,
1653   the first line of the output is not indented.  */
1654
1655static void
1656debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1657			unsigned indent, bool indent_first)
1658{
1659  basic_block son;
1660  unsigned i;
1661  bool first = true;
1662
1663  if (indent_first)
1664    for (i = 0; i < indent; i++)
1665      fprintf (stderr, "\t");
1666  fprintf (stderr, "%d\t", root->index);
1667
1668  for (son = first_dom_son (dir, root);
1669       son;
1670       son = next_dom_son (dir, son))
1671    {
1672      debug_dominance_tree_1 (dir, son, indent + 1, !first);
1673      first = false;
1674    }
1675
1676  if (first)
1677    fprintf (stderr, "\n");
1678}
1679
1680/* Prints to stderr representation of the dominance tree (for direction DIR)
1681   rooted in ROOT.  */
1682
1683DEBUG_FUNCTION void
1684debug_dominance_tree (enum cdi_direction dir, basic_block root)
1685{
1686  debug_dominance_tree_1 (dir, root, 0, false);
1687}
1688