1/* Common subexpression elimination for GNU compiler.
2   Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "target.h"
25#include "rtl.h"
26#include "tree.h"
27#include "cfghooks.h"
28#include "df.h"
29#include "memmodel.h"
30#include "tm_p.h"
31#include "insn-config.h"
32#include "regs.h"
33#include "emit-rtl.h"
34#include "recog.h"
35#include "cfgrtl.h"
36#include "cfganal.h"
37#include "cfgcleanup.h"
38#include "alias.h"
39#include "toplev.h"
40#include "rtlhooks-def.h"
41#include "tree-pass.h"
42#include "dbgcnt.h"
43#include "rtl-iter.h"
44#include "regs.h"
45#include "function-abi.h"
46
47/* The basic idea of common subexpression elimination is to go
48   through the code, keeping a record of expressions that would
49   have the same value at the current scan point, and replacing
50   expressions encountered with the cheapest equivalent expression.
51
52   It is too complicated to keep track of the different possibilities
53   when control paths merge in this code; so, at each label, we forget all
54   that is known and start fresh.  This can be described as processing each
55   extended basic block separately.  We have a separate pass to perform
56   global CSE.
57
58   Note CSE can turn a conditional or computed jump into a nop or
59   an unconditional jump.  When this occurs we arrange to run the jump
60   optimizer after CSE to delete the unreachable code.
61
62   We use two data structures to record the equivalent expressions:
63   a hash table for most expressions, and a vector of "quantity
64   numbers" to record equivalent (pseudo) registers.
65
66   The use of the special data structure for registers is desirable
67   because it is faster.  It is possible because registers references
68   contain a fairly small number, the register number, taken from
69   a contiguously allocated series, and two register references are
70   identical if they have the same number.  General expressions
71   do not have any such thing, so the only way to retrieve the
72   information recorded on an expression other than a register
73   is to keep it in a hash table.
74
75Registers and "quantity numbers":
76
77   At the start of each basic block, all of the (hardware and pseudo)
78   registers used in the function are given distinct quantity
79   numbers to indicate their contents.  During scan, when the code
80   copies one register into another, we copy the quantity number.
81   When a register is loaded in any other way, we allocate a new
82   quantity number to describe the value generated by this operation.
83   `REG_QTY (N)' records what quantity register N is currently thought
84   of as containing.
85
86   All real quantity numbers are greater than or equal to zero.
87   If register N has not been assigned a quantity, `REG_QTY (N)' will
88   equal -N - 1, which is always negative.
89
90   Quantity numbers below zero do not exist and none of the `qty_table'
91   entries should be referenced with a negative index.
92
93   We also maintain a bidirectional chain of registers for each
94   quantity number.  The `qty_table` members `first_reg' and `last_reg',
95   and `reg_eqv_table' members `next' and `prev' hold these chains.
96
97   The first register in a chain is the one whose lifespan is least local.
98   Among equals, it is the one that was seen first.
99   We replace any equivalent register with that one.
100
101   If two registers have the same quantity number, it must be true that
102   REG expressions with qty_table `mode' must be in the hash table for both
103   registers and must be in the same class.
104
105   The converse is not true.  Since hard registers may be referenced in
106   any mode, two REG expressions might be equivalent in the hash table
107   but not have the same quantity number if the quantity number of one
108   of the registers is not the same mode as those expressions.
109
110Constants and quantity numbers
111
112   When a quantity has a known constant value, that value is stored
113   in the appropriate qty_table `const_rtx'.  This is in addition to
114   putting the constant in the hash table as is usual for non-regs.
115
116   Whether a reg or a constant is preferred is determined by the configuration
117   macro CONST_COSTS and will often depend on the constant value.  In any
118   event, expressions containing constants can be simplified, by fold_rtx.
119
120   When a quantity has a known nearly constant value (such as an address
121   of a stack slot), that value is stored in the appropriate qty_table
122   `const_rtx'.
123
124   Integer constants don't have a machine mode.  However, cse
125   determines the intended machine mode from the destination
126   of the instruction that moves the constant.  The machine mode
127   is recorded in the hash table along with the actual RTL
128   constant expression so that different modes are kept separate.
129
130Other expressions:
131
132   To record known equivalences among expressions in general
133   we use a hash table called `table'.  It has a fixed number of buckets
134   that contain chains of `struct table_elt' elements for expressions.
135   These chains connect the elements whose expressions have the same
136   hash codes.
137
138   Other chains through the same elements connect the elements which
139   currently have equivalent values.
140
141   Register references in an expression are canonicalized before hashing
142   the expression.  This is done using `reg_qty' and qty_table `first_reg'.
143   The hash code of a register reference is computed using the quantity
144   number, not the register number.
145
146   When the value of an expression changes, it is necessary to remove from the
147   hash table not just that expression but all expressions whose values
148   could be different as a result.
149
150     1. If the value changing is in memory, except in special cases
151     ANYTHING referring to memory could be changed.  That is because
152     nobody knows where a pointer does not point.
153     The function `invalidate_memory' removes what is necessary.
154
155     The special cases are when the address is constant or is
156     a constant plus a fixed register such as the frame pointer
157     or a static chain pointer.  When such addresses are stored in,
158     we can tell exactly which other such addresses must be invalidated
159     due to overlap.  `invalidate' does this.
160     All expressions that refer to non-constant
161     memory addresses are also invalidated.  `invalidate_memory' does this.
162
163     2. If the value changing is a register, all expressions
164     containing references to that register, and only those,
165     must be removed.
166
167   Because searching the entire hash table for expressions that contain
168   a register is very slow, we try to figure out when it isn't necessary.
169   Precisely, this is necessary only when expressions have been
170   entered in the hash table using this register, and then the value has
171   changed, and then another expression wants to be added to refer to
172   the register's new value.  This sequence of circumstances is rare
173   within any one basic block.
174
175   `REG_TICK' and `REG_IN_TABLE', accessors for members of
176   cse_reg_info, are used to detect this case.  REG_TICK (i) is
177   incremented whenever a value is stored in register i.
178   REG_IN_TABLE (i) holds -1 if no references to register i have been
179   entered in the table; otherwise, it contains the value REG_TICK (i)
180   had when the references were entered.  If we want to enter a
181   reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
182   remove old references.  Until we want to enter a new entry, the
183   mere fact that the two vectors don't match makes the entries be
184   ignored if anyone tries to match them.
185
186   Registers themselves are entered in the hash table as well as in
187   the equivalent-register chains.  However, `REG_TICK' and
188   `REG_IN_TABLE' do not apply to expressions which are simple
189   register references.  These expressions are removed from the table
190   immediately when they become invalid, and this can be done even if
191   we do not immediately search for all the expressions that refer to
192   the register.
193
194   A CLOBBER rtx in an instruction invalidates its operand for further
195   reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
196   invalidates everything that resides in memory.
197
198Related expressions:
199
200   Constant expressions that differ only by an additive integer
201   are called related.  When a constant expression is put in
202   the table, the related expression with no constant term
203   is also entered.  These are made to point at each other
204   so that it is possible to find out if there exists any
205   register equivalent to an expression related to a given expression.  */
206
207/* Length of qty_table vector.  We know in advance we will not need
208   a quantity number this big.  */
209
210static int max_qty;
211
212/* Next quantity number to be allocated.
213   This is 1 + the largest number needed so far.  */
214
215static int next_qty;
216
217/* Per-qty information tracking.
218
219   `first_reg' and `last_reg' track the head and tail of the
220   chain of registers which currently contain this quantity.
221
222   `mode' contains the machine mode of this quantity.
223
224   `const_rtx' holds the rtx of the constant value of this
225   quantity, if known.  A summations of the frame/arg pointer
226   and a constant can also be entered here.  When this holds
227   a known value, `const_insn' is the insn which stored the
228   constant value.
229
230   `comparison_{code,const,qty}' are used to track when a
231   comparison between a quantity and some constant or register has
232   been passed.  In such a case, we know the results of the comparison
233   in case we see it again.  These members record a comparison that
234   is known to be true.  `comparison_code' holds the rtx code of such
235   a comparison, else it is set to UNKNOWN and the other two
236   comparison members are undefined.  `comparison_const' holds
237   the constant being compared against, or zero if the comparison
238   is not against a constant.  `comparison_qty' holds the quantity
239   being compared against when the result is known.  If the comparison
240   is not with a register, `comparison_qty' is -1.  */
241
242struct qty_table_elem
243{
244  rtx const_rtx;
245  rtx_insn *const_insn;
246  rtx comparison_const;
247  int comparison_qty;
248  unsigned int first_reg, last_reg;
249  /* The sizes of these fields should match the sizes of the
250     code and mode fields of struct rtx_def (see rtl.h).  */
251  ENUM_BITFIELD(rtx_code) comparison_code : 16;
252  ENUM_BITFIELD(machine_mode) mode : 8;
253};
254
255/* The table of all qtys, indexed by qty number.  */
256static struct qty_table_elem *qty_table;
257
258/* For machines that have a CC0, we do not record its value in the hash
259   table since its use is guaranteed to be the insn immediately following
260   its definition and any other insn is presumed to invalidate it.
261
262   Instead, we store below the current and last value assigned to CC0.
263   If it should happen to be a constant, it is stored in preference
264   to the actual assigned value.  In case it is a constant, we store
265   the mode in which the constant should be interpreted.  */
266
267static rtx this_insn_cc0, prev_insn_cc0;
268static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
269
270/* Insn being scanned.  */
271
272static rtx_insn *this_insn;
273static bool optimize_this_for_speed_p;
274
275/* Index by register number, gives the number of the next (or
276   previous) register in the chain of registers sharing the same
277   value.
278
279   Or -1 if this register is at the end of the chain.
280
281   If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined.  */
282
283/* Per-register equivalence chain.  */
284struct reg_eqv_elem
285{
286  int next, prev;
287};
288
289/* The table of all register equivalence chains.  */
290static struct reg_eqv_elem *reg_eqv_table;
291
292struct cse_reg_info
293{
294  /* The timestamp at which this register is initialized.  */
295  unsigned int timestamp;
296
297  /* The quantity number of the register's current contents.  */
298  int reg_qty;
299
300  /* The number of times the register has been altered in the current
301     basic block.  */
302  int reg_tick;
303
304  /* The REG_TICK value at which rtx's containing this register are
305     valid in the hash table.  If this does not equal the current
306     reg_tick value, such expressions existing in the hash table are
307     invalid.  */
308  int reg_in_table;
309
310  /* The SUBREG that was set when REG_TICK was last incremented.  Set
311     to -1 if the last store was to the whole register, not a subreg.  */
312  unsigned int subreg_ticked;
313};
314
315/* A table of cse_reg_info indexed by register numbers.  */
316static struct cse_reg_info *cse_reg_info_table;
317
318/* The size of the above table.  */
319static unsigned int cse_reg_info_table_size;
320
321/* The index of the first entry that has not been initialized.  */
322static unsigned int cse_reg_info_table_first_uninitialized;
323
324/* The timestamp at the beginning of the current run of
325   cse_extended_basic_block.  We increment this variable at the beginning of
326   the current run of cse_extended_basic_block.  The timestamp field of a
327   cse_reg_info entry matches the value of this variable if and only
328   if the entry has been initialized during the current run of
329   cse_extended_basic_block.  */
330static unsigned int cse_reg_info_timestamp;
331
332/* A HARD_REG_SET containing all the hard registers for which there is
333   currently a REG expression in the hash table.  Note the difference
334   from the above variables, which indicate if the REG is mentioned in some
335   expression in the table.  */
336
337static HARD_REG_SET hard_regs_in_table;
338
339/* True if CSE has altered the CFG.  */
340static bool cse_cfg_altered;
341
342/* True if CSE has altered conditional jump insns in such a way
343   that jump optimization should be redone.  */
344static bool cse_jumps_altered;
345
346/* True if we put a LABEL_REF into the hash table for an INSN
347   without a REG_LABEL_OPERAND, we have to rerun jump after CSE
348   to put in the note.  */
349static bool recorded_label_ref;
350
351/* canon_hash stores 1 in do_not_record
352   if it notices a reference to CC0, PC, or some other volatile
353   subexpression.  */
354
355static int do_not_record;
356
357/* canon_hash stores 1 in hash_arg_in_memory
358   if it notices a reference to memory within the expression being hashed.  */
359
360static int hash_arg_in_memory;
361
362/* The hash table contains buckets which are chains of `struct table_elt's,
363   each recording one expression's information.
364   That expression is in the `exp' field.
365
366   The canon_exp field contains a canonical (from the point of view of
367   alias analysis) version of the `exp' field.
368
369   Those elements with the same hash code are chained in both directions
370   through the `next_same_hash' and `prev_same_hash' fields.
371
372   Each set of expressions with equivalent values
373   are on a two-way chain through the `next_same_value'
374   and `prev_same_value' fields, and all point with
375   the `first_same_value' field at the first element in
376   that chain.  The chain is in order of increasing cost.
377   Each element's cost value is in its `cost' field.
378
379   The `in_memory' field is nonzero for elements that
380   involve any reference to memory.  These elements are removed
381   whenever a write is done to an unidentified location in memory.
382   To be safe, we assume that a memory address is unidentified unless
383   the address is either a symbol constant or a constant plus
384   the frame pointer or argument pointer.
385
386   The `related_value' field is used to connect related expressions
387   (that differ by adding an integer).
388   The related expressions are chained in a circular fashion.
389   `related_value' is zero for expressions for which this
390   chain is not useful.
391
392   The `cost' field stores the cost of this element's expression.
393   The `regcost' field stores the value returned by approx_reg_cost for
394   this element's expression.
395
396   The `is_const' flag is set if the element is a constant (including
397   a fixed address).
398
399   The `flag' field is used as a temporary during some search routines.
400
401   The `mode' field is usually the same as GET_MODE (`exp'), but
402   if `exp' is a CONST_INT and has no machine mode then the `mode'
403   field is the mode it was being used as.  Each constant is
404   recorded separately for each mode it is used with.  */
405
406struct table_elt
407{
408  rtx exp;
409  rtx canon_exp;
410  struct table_elt *next_same_hash;
411  struct table_elt *prev_same_hash;
412  struct table_elt *next_same_value;
413  struct table_elt *prev_same_value;
414  struct table_elt *first_same_value;
415  struct table_elt *related_value;
416  int cost;
417  int regcost;
418  /* The size of this field should match the size
419     of the mode field of struct rtx_def (see rtl.h).  */
420  ENUM_BITFIELD(machine_mode) mode : 8;
421  char in_memory;
422  char is_const;
423  char flag;
424};
425
426/* We don't want a lot of buckets, because we rarely have very many
427   things stored in the hash table, and a lot of buckets slows
428   down a lot of loops that happen frequently.  */
429#define HASH_SHIFT	5
430#define HASH_SIZE	(1 << HASH_SHIFT)
431#define HASH_MASK	(HASH_SIZE - 1)
432
433/* Compute hash code of X in mode M.  Special-case case where X is a pseudo
434   register (hard registers may require `do_not_record' to be set).  */
435
436#define HASH(X, M)	\
437 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
438  ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
439  : canon_hash (X, M)) & HASH_MASK)
440
441/* Like HASH, but without side-effects.  */
442#define SAFE_HASH(X, M)	\
443 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
444  ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
445  : safe_hash (X, M)) & HASH_MASK)
446
447/* Determine whether register number N is considered a fixed register for the
448   purpose of approximating register costs.
449   It is desirable to replace other regs with fixed regs, to reduce need for
450   non-fixed hard regs.
451   A reg wins if it is either the frame pointer or designated as fixed.  */
452#define FIXED_REGNO_P(N)  \
453  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
454   || fixed_regs[N] || global_regs[N])
455
456/* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
457   hard registers and pointers into the frame are the cheapest with a cost
458   of 0.  Next come pseudos with a cost of one and other hard registers with
459   a cost of 2.  Aside from these special cases, call `rtx_cost'.  */
460
461#define CHEAP_REGNO(N)							\
462  (REGNO_PTR_FRAME_P (N)						\
463   || (HARD_REGISTER_NUM_P (N)						\
464       && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
465
466#define COST(X, MODE)							\
467  (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
468#define COST_IN(X, MODE, OUTER, OPNO)					\
469  (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
470
471/* Get the number of times this register has been updated in this
472   basic block.  */
473
474#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
475
476/* Get the point at which REG was recorded in the table.  */
477
478#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
479
480/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
481   SUBREG).  */
482
483#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
484
485/* Get the quantity number for REG.  */
486
487#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
488
489/* Determine if the quantity number for register X represents a valid index
490   into the qty_table.  */
491
492#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
493
494/* Compare table_elt X and Y and return true iff X is cheaper than Y.  */
495
496#define CHEAPER(X, Y) \
497 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
498
499static struct table_elt *table[HASH_SIZE];
500
501/* Chain of `struct table_elt's made so far for this function
502   but currently removed from the table.  */
503
504static struct table_elt *free_element_chain;
505
506/* Set to the cost of a constant pool reference if one was found for a
507   symbolic constant.  If this was found, it means we should try to
508   convert constants into constant pool entries if they don't fit in
509   the insn.  */
510
511static int constant_pool_entries_cost;
512static int constant_pool_entries_regcost;
513
514/* Trace a patch through the CFG.  */
515
516struct branch_path
517{
518  /* The basic block for this path entry.  */
519  basic_block bb;
520};
521
522/* This data describes a block that will be processed by
523   cse_extended_basic_block.  */
524
525struct cse_basic_block_data
526{
527  /* Total number of SETs in block.  */
528  int nsets;
529  /* Size of current branch path, if any.  */
530  int path_size;
531  /* Current path, indicating which basic_blocks will be processed.  */
532  struct branch_path *path;
533};
534
535
536/* Pointers to the live in/live out bitmaps for the boundaries of the
537   current EBB.  */
538static bitmap cse_ebb_live_in, cse_ebb_live_out;
539
540/* A simple bitmap to track which basic blocks have been visited
541   already as part of an already processed extended basic block.  */
542static sbitmap cse_visited_basic_blocks;
543
544static bool fixed_base_plus_p (rtx x);
545static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
546static int preferable (int, int, int, int);
547static void new_basic_block (void);
548static void make_new_qty (unsigned int, machine_mode);
549static void make_regs_eqv (unsigned int, unsigned int);
550static void delete_reg_equiv (unsigned int);
551static int mention_regs (rtx);
552static int insert_regs (rtx, struct table_elt *, int);
553static void remove_from_table (struct table_elt *, unsigned);
554static void remove_pseudo_from_table (rtx, unsigned);
555static struct table_elt *lookup (rtx, unsigned, machine_mode);
556static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
557static rtx lookup_as_function (rtx, enum rtx_code);
558static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
559					    machine_mode, int, int);
560static struct table_elt *insert (rtx, struct table_elt *, unsigned,
561				 machine_mode);
562static void merge_equiv_classes (struct table_elt *, struct table_elt *);
563static void invalidate (rtx, machine_mode);
564static void remove_invalid_refs (unsigned int);
565static void remove_invalid_subreg_refs (unsigned int, poly_uint64,
566					machine_mode);
567static void rehash_using_reg (rtx);
568static void invalidate_memory (void);
569static rtx use_related_value (rtx, struct table_elt *);
570
571static inline unsigned canon_hash (rtx, machine_mode);
572static inline unsigned safe_hash (rtx, machine_mode);
573static inline unsigned hash_rtx_string (const char *);
574
575static rtx canon_reg (rtx, rtx_insn *);
576static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
577					   machine_mode *,
578					   machine_mode *);
579static rtx fold_rtx (rtx, rtx_insn *);
580static rtx equiv_constant (rtx);
581static void record_jump_equiv (rtx_insn *, bool);
582static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
583			      int);
584static void cse_insn (rtx_insn *);
585static void cse_prescan_path (struct cse_basic_block_data *);
586static void invalidate_from_clobbers (rtx_insn *);
587static void invalidate_from_sets_and_clobbers (rtx_insn *);
588static void cse_extended_basic_block (struct cse_basic_block_data *);
589extern void dump_class (struct table_elt*);
590static void get_cse_reg_info_1 (unsigned int regno);
591static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
592
593static void flush_hash_table (void);
594static bool insn_live_p (rtx_insn *, int *);
595static bool set_live_p (rtx, rtx_insn *, int *);
596static void cse_change_cc_mode_insn (rtx_insn *, rtx);
597static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
598static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
599				       bool);
600
601
602#undef RTL_HOOKS_GEN_LOWPART
603#define RTL_HOOKS_GEN_LOWPART		gen_lowpart_if_possible
604
605static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
606
607/* Nonzero if X has the form (PLUS frame-pointer integer).  */
608
609static bool
610fixed_base_plus_p (rtx x)
611{
612  switch (GET_CODE (x))
613    {
614    case REG:
615      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
616	return true;
617      if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
618	return true;
619      return false;
620
621    case PLUS:
622      if (!CONST_INT_P (XEXP (x, 1)))
623	return false;
624      return fixed_base_plus_p (XEXP (x, 0));
625
626    default:
627      return false;
628    }
629}
630
631/* Dump the expressions in the equivalence class indicated by CLASSP.
632   This function is used only for debugging.  */
633DEBUG_FUNCTION void
634dump_class (struct table_elt *classp)
635{
636  struct table_elt *elt;
637
638  fprintf (stderr, "Equivalence chain for ");
639  print_rtl (stderr, classp->exp);
640  fprintf (stderr, ": \n");
641
642  for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
643    {
644      print_rtl (stderr, elt->exp);
645      fprintf (stderr, "\n");
646    }
647}
648
649/* Return an estimate of the cost of the registers used in an rtx.
650   This is mostly the number of different REG expressions in the rtx;
651   however for some exceptions like fixed registers we use a cost of
652   0.  If any other hard register reference occurs, return MAX_COST.  */
653
654static int
655approx_reg_cost (const_rtx x)
656{
657  int cost = 0;
658  subrtx_iterator::array_type array;
659  FOR_EACH_SUBRTX (iter, array, x, NONCONST)
660    {
661      const_rtx x = *iter;
662      if (REG_P (x))
663	{
664	  unsigned int regno = REGNO (x);
665	  if (!CHEAP_REGNO (regno))
666	    {
667	      if (regno < FIRST_PSEUDO_REGISTER)
668		{
669		  if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
670		    return MAX_COST;
671		  cost += 2;
672		}
673	      else
674		cost += 1;
675	    }
676	}
677    }
678  return cost;
679}
680
681/* Return a negative value if an rtx A, whose costs are given by COST_A
682   and REGCOST_A, is more desirable than an rtx B.
683   Return a positive value if A is less desirable, or 0 if the two are
684   equally good.  */
685static int
686preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
687{
688  /* First, get rid of cases involving expressions that are entirely
689     unwanted.  */
690  if (cost_a != cost_b)
691    {
692      if (cost_a == MAX_COST)
693	return 1;
694      if (cost_b == MAX_COST)
695	return -1;
696    }
697
698  /* Avoid extending lifetimes of hardregs.  */
699  if (regcost_a != regcost_b)
700    {
701      if (regcost_a == MAX_COST)
702	return 1;
703      if (regcost_b == MAX_COST)
704	return -1;
705    }
706
707  /* Normal operation costs take precedence.  */
708  if (cost_a != cost_b)
709    return cost_a - cost_b;
710  /* Only if these are identical consider effects on register pressure.  */
711  if (regcost_a != regcost_b)
712    return regcost_a - regcost_b;
713  return 0;
714}
715
716/* Internal function, to compute cost when X is not a register; called
717   from COST macro to keep it simple.  */
718
719static int
720notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
721{
722  scalar_int_mode int_mode, inner_mode;
723  return ((GET_CODE (x) == SUBREG
724	   && REG_P (SUBREG_REG (x))
725	   && is_int_mode (mode, &int_mode)
726	   && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
727	   && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
728	   && subreg_lowpart_p (x)
729	   && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
730	  ? 0
731	  : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
732}
733
734
735/* Initialize CSE_REG_INFO_TABLE.  */
736
737static void
738init_cse_reg_info (unsigned int nregs)
739{
740  /* Do we need to grow the table?  */
741  if (nregs > cse_reg_info_table_size)
742    {
743      unsigned int new_size;
744
745      if (cse_reg_info_table_size < 2048)
746	{
747	  /* Compute a new size that is a power of 2 and no smaller
748	     than the large of NREGS and 64.  */
749	  new_size = (cse_reg_info_table_size
750		      ? cse_reg_info_table_size : 64);
751
752	  while (new_size < nregs)
753	    new_size *= 2;
754	}
755      else
756	{
757	  /* If we need a big table, allocate just enough to hold
758	     NREGS registers.  */
759	  new_size = nregs;
760	}
761
762      /* Reallocate the table with NEW_SIZE entries.  */
763      free (cse_reg_info_table);
764      cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
765      cse_reg_info_table_size = new_size;
766      cse_reg_info_table_first_uninitialized = 0;
767    }
768
769  /* Do we have all of the first NREGS entries initialized?  */
770  if (cse_reg_info_table_first_uninitialized < nregs)
771    {
772      unsigned int old_timestamp = cse_reg_info_timestamp - 1;
773      unsigned int i;
774
775      /* Put the old timestamp on newly allocated entries so that they
776	 will all be considered out of date.  We do not touch those
777	 entries beyond the first NREGS entries to be nice to the
778	 virtual memory.  */
779      for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
780	cse_reg_info_table[i].timestamp = old_timestamp;
781
782      cse_reg_info_table_first_uninitialized = nregs;
783    }
784}
785
786/* Given REGNO, initialize the cse_reg_info entry for REGNO.  */
787
788static void
789get_cse_reg_info_1 (unsigned int regno)
790{
791  /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
792     entry will be considered to have been initialized.  */
793  cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
794
795  /* Initialize the rest of the entry.  */
796  cse_reg_info_table[regno].reg_tick = 1;
797  cse_reg_info_table[regno].reg_in_table = -1;
798  cse_reg_info_table[regno].subreg_ticked = -1;
799  cse_reg_info_table[regno].reg_qty = -regno - 1;
800}
801
802/* Find a cse_reg_info entry for REGNO.  */
803
804static inline struct cse_reg_info *
805get_cse_reg_info (unsigned int regno)
806{
807  struct cse_reg_info *p = &cse_reg_info_table[regno];
808
809  /* If this entry has not been initialized, go ahead and initialize
810     it.  */
811  if (p->timestamp != cse_reg_info_timestamp)
812    get_cse_reg_info_1 (regno);
813
814  return p;
815}
816
817/* Clear the hash table and initialize each register with its own quantity,
818   for a new basic block.  */
819
820static void
821new_basic_block (void)
822{
823  int i;
824
825  next_qty = 0;
826
827  /* Invalidate cse_reg_info_table.  */
828  cse_reg_info_timestamp++;
829
830  /* Clear out hash table state for this pass.  */
831  CLEAR_HARD_REG_SET (hard_regs_in_table);
832
833  /* The per-quantity values used to be initialized here, but it is
834     much faster to initialize each as it is made in `make_new_qty'.  */
835
836  for (i = 0; i < HASH_SIZE; i++)
837    {
838      struct table_elt *first;
839
840      first = table[i];
841      if (first != NULL)
842	{
843	  struct table_elt *last = first;
844
845	  table[i] = NULL;
846
847	  while (last->next_same_hash != NULL)
848	    last = last->next_same_hash;
849
850	  /* Now relink this hash entire chain into
851	     the free element list.  */
852
853	  last->next_same_hash = free_element_chain;
854	  free_element_chain = first;
855	}
856    }
857
858  prev_insn_cc0 = 0;
859}
860
861/* Say that register REG contains a quantity in mode MODE not in any
862   register before and initialize that quantity.  */
863
864static void
865make_new_qty (unsigned int reg, machine_mode mode)
866{
867  int q;
868  struct qty_table_elem *ent;
869  struct reg_eqv_elem *eqv;
870
871  gcc_assert (next_qty < max_qty);
872
873  q = REG_QTY (reg) = next_qty++;
874  ent = &qty_table[q];
875  ent->first_reg = reg;
876  ent->last_reg = reg;
877  ent->mode = mode;
878  ent->const_rtx = ent->const_insn = NULL;
879  ent->comparison_code = UNKNOWN;
880
881  eqv = &reg_eqv_table[reg];
882  eqv->next = eqv->prev = -1;
883}
884
885/* Make reg NEW equivalent to reg OLD.
886   OLD is not changing; NEW is.  */
887
888static void
889make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
890{
891  unsigned int lastr, firstr;
892  int q = REG_QTY (old_reg);
893  struct qty_table_elem *ent;
894
895  ent = &qty_table[q];
896
897  /* Nothing should become eqv until it has a "non-invalid" qty number.  */
898  gcc_assert (REGNO_QTY_VALID_P (old_reg));
899
900  REG_QTY (new_reg) = q;
901  firstr = ent->first_reg;
902  lastr = ent->last_reg;
903
904  /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
905     hard regs.  Among pseudos, if NEW will live longer than any other reg
906     of the same qty, and that is beyond the current basic block,
907     make it the new canonical replacement for this qty.  */
908  if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
909      /* Certain fixed registers might be of the class NO_REGS.  This means
910	 that not only can they not be allocated by the compiler, but
911	 they cannot be used in substitutions or canonicalizations
912	 either.  */
913      && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
914      && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
915	  || (new_reg >= FIRST_PSEUDO_REGISTER
916	      && (firstr < FIRST_PSEUDO_REGISTER
917		  || (bitmap_bit_p (cse_ebb_live_out, new_reg)
918		      && !bitmap_bit_p (cse_ebb_live_out, firstr))
919		  || (bitmap_bit_p (cse_ebb_live_in, new_reg)
920		      && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
921    {
922      reg_eqv_table[firstr].prev = new_reg;
923      reg_eqv_table[new_reg].next = firstr;
924      reg_eqv_table[new_reg].prev = -1;
925      ent->first_reg = new_reg;
926    }
927  else
928    {
929      /* If NEW is a hard reg (known to be non-fixed), insert at end.
930	 Otherwise, insert before any non-fixed hard regs that are at the
931	 end.  Registers of class NO_REGS cannot be used as an
932	 equivalent for anything.  */
933      while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
934	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
935	     && new_reg >= FIRST_PSEUDO_REGISTER)
936	lastr = reg_eqv_table[lastr].prev;
937      reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
938      if (reg_eqv_table[lastr].next >= 0)
939	reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
940      else
941	qty_table[q].last_reg = new_reg;
942      reg_eqv_table[lastr].next = new_reg;
943      reg_eqv_table[new_reg].prev = lastr;
944    }
945}
946
947/* Remove REG from its equivalence class.  */
948
949static void
950delete_reg_equiv (unsigned int reg)
951{
952  struct qty_table_elem *ent;
953  int q = REG_QTY (reg);
954  int p, n;
955
956  /* If invalid, do nothing.  */
957  if (! REGNO_QTY_VALID_P (reg))
958    return;
959
960  ent = &qty_table[q];
961
962  p = reg_eqv_table[reg].prev;
963  n = reg_eqv_table[reg].next;
964
965  if (n != -1)
966    reg_eqv_table[n].prev = p;
967  else
968    ent->last_reg = p;
969  if (p != -1)
970    reg_eqv_table[p].next = n;
971  else
972    ent->first_reg = n;
973
974  REG_QTY (reg) = -reg - 1;
975}
976
977/* Remove any invalid expressions from the hash table
978   that refer to any of the registers contained in expression X.
979
980   Make sure that newly inserted references to those registers
981   as subexpressions will be considered valid.
982
983   mention_regs is not called when a register itself
984   is being stored in the table.
985
986   Return 1 if we have done something that may have changed the hash code
987   of X.  */
988
989static int
990mention_regs (rtx x)
991{
992  enum rtx_code code;
993  int i, j;
994  const char *fmt;
995  int changed = 0;
996
997  if (x == 0)
998    return 0;
999
1000  code = GET_CODE (x);
1001  if (code == REG)
1002    {
1003      unsigned int regno = REGNO (x);
1004      unsigned int endregno = END_REGNO (x);
1005      unsigned int i;
1006
1007      for (i = regno; i < endregno; i++)
1008	{
1009	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1010	    remove_invalid_refs (i);
1011
1012	  REG_IN_TABLE (i) = REG_TICK (i);
1013	  SUBREG_TICKED (i) = -1;
1014	}
1015
1016      return 0;
1017    }
1018
1019  /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1020     pseudo if they don't use overlapping words.  We handle only pseudos
1021     here for simplicity.  */
1022  if (code == SUBREG && REG_P (SUBREG_REG (x))
1023      && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1024    {
1025      unsigned int i = REGNO (SUBREG_REG (x));
1026
1027      if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1028	{
1029	  /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1030	     the last store to this register really stored into this
1031	     subreg, then remove the memory of this subreg.
1032	     Otherwise, remove any memory of the entire register and
1033	     all its subregs from the table.  */
1034	  if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1035	      || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1036	    remove_invalid_refs (i);
1037	  else
1038	    remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1039	}
1040
1041      REG_IN_TABLE (i) = REG_TICK (i);
1042      SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1043      return 0;
1044    }
1045
1046  /* If X is a comparison or a COMPARE and either operand is a register
1047     that does not have a quantity, give it one.  This is so that a later
1048     call to record_jump_equiv won't cause X to be assigned a different
1049     hash code and not found in the table after that call.
1050
1051     It is not necessary to do this here, since rehash_using_reg can
1052     fix up the table later, but doing this here eliminates the need to
1053     call that expensive function in the most common case where the only
1054     use of the register is in the comparison.  */
1055
1056  if (code == COMPARE || COMPARISON_P (x))
1057    {
1058      if (REG_P (XEXP (x, 0))
1059	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1060	if (insert_regs (XEXP (x, 0), NULL, 0))
1061	  {
1062	    rehash_using_reg (XEXP (x, 0));
1063	    changed = 1;
1064	  }
1065
1066      if (REG_P (XEXP (x, 1))
1067	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1068	if (insert_regs (XEXP (x, 1), NULL, 0))
1069	  {
1070	    rehash_using_reg (XEXP (x, 1));
1071	    changed = 1;
1072	  }
1073    }
1074
1075  fmt = GET_RTX_FORMAT (code);
1076  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1077    if (fmt[i] == 'e')
1078      changed |= mention_regs (XEXP (x, i));
1079    else if (fmt[i] == 'E')
1080      for (j = 0; j < XVECLEN (x, i); j++)
1081	changed |= mention_regs (XVECEXP (x, i, j));
1082
1083  return changed;
1084}
1085
1086/* Update the register quantities for inserting X into the hash table
1087   with a value equivalent to CLASSP.
1088   (If the class does not contain a REG, it is irrelevant.)
1089   If MODIFIED is nonzero, X is a destination; it is being modified.
1090   Note that delete_reg_equiv should be called on a register
1091   before insert_regs is done on that register with MODIFIED != 0.
1092
1093   Nonzero value means that elements of reg_qty have changed
1094   so X's hash code may be different.  */
1095
1096static int
1097insert_regs (rtx x, struct table_elt *classp, int modified)
1098{
1099  if (REG_P (x))
1100    {
1101      unsigned int regno = REGNO (x);
1102      int qty_valid;
1103
1104      /* If REGNO is in the equivalence table already but is of the
1105	 wrong mode for that equivalence, don't do anything here.  */
1106
1107      qty_valid = REGNO_QTY_VALID_P (regno);
1108      if (qty_valid)
1109	{
1110	  struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1111
1112	  if (ent->mode != GET_MODE (x))
1113	    return 0;
1114	}
1115
1116      if (modified || ! qty_valid)
1117	{
1118	  if (classp)
1119	    for (classp = classp->first_same_value;
1120		 classp != 0;
1121		 classp = classp->next_same_value)
1122	      if (REG_P (classp->exp)
1123		  && GET_MODE (classp->exp) == GET_MODE (x))
1124		{
1125		  unsigned c_regno = REGNO (classp->exp);
1126
1127		  gcc_assert (REGNO_QTY_VALID_P (c_regno));
1128
1129		  /* Suppose that 5 is hard reg and 100 and 101 are
1130		     pseudos.  Consider
1131
1132		     (set (reg:si 100) (reg:si 5))
1133		     (set (reg:si 5) (reg:si 100))
1134		     (set (reg:di 101) (reg:di 5))
1135
1136		     We would now set REG_QTY (101) = REG_QTY (5), but the
1137		     entry for 5 is in SImode.  When we use this later in
1138		     copy propagation, we get the register in wrong mode.  */
1139		  if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1140		    continue;
1141
1142		  make_regs_eqv (regno, c_regno);
1143		  return 1;
1144		}
1145
1146	  /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1147	     than REG_IN_TABLE to find out if there was only a single preceding
1148	     invalidation - for the SUBREG - or another one, which would be
1149	     for the full register.  However, if we find here that REG_TICK
1150	     indicates that the register is invalid, it means that it has
1151	     been invalidated in a separate operation.  The SUBREG might be used
1152	     now (then this is a recursive call), or we might use the full REG
1153	     now and a SUBREG of it later.  So bump up REG_TICK so that
1154	     mention_regs will do the right thing.  */
1155	  if (! modified
1156	      && REG_IN_TABLE (regno) >= 0
1157	      && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1158	    REG_TICK (regno)++;
1159	  make_new_qty (regno, GET_MODE (x));
1160	  return 1;
1161	}
1162
1163      return 0;
1164    }
1165
1166  /* If X is a SUBREG, we will likely be inserting the inner register in the
1167     table.  If that register doesn't have an assigned quantity number at
1168     this point but does later, the insertion that we will be doing now will
1169     not be accessible because its hash code will have changed.  So assign
1170     a quantity number now.  */
1171
1172  else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1173	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1174    {
1175      insert_regs (SUBREG_REG (x), NULL, 0);
1176      mention_regs (x);
1177      return 1;
1178    }
1179  else
1180    return mention_regs (x);
1181}
1182
1183
1184/* Compute upper and lower anchors for CST.  Also compute the offset of CST
1185   from these anchors/bases such that *_BASE + *_OFFS = CST.  Return false iff
1186   CST is equal to an anchor.  */
1187
1188static bool
1189compute_const_anchors (rtx cst,
1190		       HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1191		       HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1192{
1193  unsigned HOST_WIDE_INT n = UINTVAL (cst);
1194
1195  *lower_base = n & ~(targetm.const_anchor - 1);
1196  if ((unsigned HOST_WIDE_INT) *lower_base == n)
1197    return false;
1198
1199  *upper_base = ((n + (targetm.const_anchor - 1))
1200		 & ~(targetm.const_anchor - 1));
1201  *upper_offs = n - *upper_base;
1202  *lower_offs = n - *lower_base;
1203  return true;
1204}
1205
1206/* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE.  */
1207
1208static void
1209insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1210		     machine_mode mode)
1211{
1212  struct table_elt *elt;
1213  unsigned hash;
1214  rtx anchor_exp;
1215  rtx exp;
1216
1217  anchor_exp = gen_int_mode (anchor, mode);
1218  hash = HASH (anchor_exp, mode);
1219  elt = lookup (anchor_exp, hash, mode);
1220  if (!elt)
1221    elt = insert (anchor_exp, NULL, hash, mode);
1222
1223  exp = plus_constant (mode, reg, offs);
1224  /* REG has just been inserted and the hash codes recomputed.  */
1225  mention_regs (exp);
1226  hash = HASH (exp, mode);
1227
1228  /* Use the cost of the register rather than the whole expression.  When
1229     looking up constant anchors we will further offset the corresponding
1230     expression therefore it does not make sense to prefer REGs over
1231     reg-immediate additions.  Prefer instead the oldest expression.  Also
1232     don't prefer pseudos over hard regs so that we derive constants in
1233     argument registers from other argument registers rather than from the
1234     original pseudo that was used to synthesize the constant.  */
1235  insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1236}
1237
1238/* The constant CST is equivalent to the register REG.  Create
1239   equivalences between the two anchors of CST and the corresponding
1240   register-offset expressions using REG.  */
1241
1242static void
1243insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1244{
1245  HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1246
1247  if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1248			      &upper_base, &upper_offs))
1249      return;
1250
1251  /* Ignore anchors of value 0.  Constants accessible from zero are
1252     simple.  */
1253  if (lower_base != 0)
1254    insert_const_anchor (lower_base, reg, -lower_offs, mode);
1255
1256  if (upper_base != 0)
1257    insert_const_anchor (upper_base, reg, -upper_offs, mode);
1258}
1259
1260/* We need to express ANCHOR_ELT->exp + OFFS.  Walk the equivalence list of
1261   ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1262   valid expression.  Return the cheapest and oldest of such expressions.  In
1263   *OLD, return how old the resulting expression is compared to the other
1264   equivalent expressions.  */
1265
1266static rtx
1267find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1268			   unsigned *old)
1269{
1270  struct table_elt *elt;
1271  unsigned idx;
1272  struct table_elt *match_elt;
1273  rtx match;
1274
1275  /* Find the cheapest and *oldest* expression to maximize the chance of
1276     reusing the same pseudo.  */
1277
1278  match_elt = NULL;
1279  match = NULL_RTX;
1280  for (elt = anchor_elt->first_same_value, idx = 0;
1281       elt;
1282       elt = elt->next_same_value, idx++)
1283    {
1284      if (match_elt && CHEAPER (match_elt, elt))
1285	return match;
1286
1287      if (REG_P (elt->exp)
1288	  || (GET_CODE (elt->exp) == PLUS
1289	      && REG_P (XEXP (elt->exp, 0))
1290	      && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1291	{
1292	  rtx x;
1293
1294	  /* Ignore expressions that are no longer valid.  */
1295	  if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1296	    continue;
1297
1298	  x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1299	  if (REG_P (x)
1300	      || (GET_CODE (x) == PLUS
1301		  && IN_RANGE (INTVAL (XEXP (x, 1)),
1302			       -targetm.const_anchor,
1303			       targetm.const_anchor - 1)))
1304	    {
1305	      match = x;
1306	      match_elt = elt;
1307	      *old = idx;
1308	    }
1309	}
1310    }
1311
1312  return match;
1313}
1314
1315/* Try to express the constant SRC_CONST using a register+offset expression
1316   derived from a constant anchor.  Return it if successful or NULL_RTX,
1317   otherwise.  */
1318
1319static rtx
1320try_const_anchors (rtx src_const, machine_mode mode)
1321{
1322  struct table_elt *lower_elt, *upper_elt;
1323  HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1324  rtx lower_anchor_rtx, upper_anchor_rtx;
1325  rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1326  unsigned lower_old, upper_old;
1327
1328  /* CONST_INT is used for CC modes, but we should leave those alone.  */
1329  if (GET_MODE_CLASS (mode) == MODE_CC)
1330    return NULL_RTX;
1331
1332  gcc_assert (SCALAR_INT_MODE_P (mode));
1333  if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1334			      &upper_base, &upper_offs))
1335    return NULL_RTX;
1336
1337  lower_anchor_rtx = GEN_INT (lower_base);
1338  upper_anchor_rtx = GEN_INT (upper_base);
1339  lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1340  upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1341
1342  if (lower_elt)
1343    lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1344  if (upper_elt)
1345    upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1346
1347  if (!lower_exp)
1348    return upper_exp;
1349  if (!upper_exp)
1350    return lower_exp;
1351
1352  /* Return the older expression.  */
1353  return (upper_old > lower_old ? upper_exp : lower_exp);
1354}
1355
1356/* Look in or update the hash table.  */
1357
1358/* Remove table element ELT from use in the table.
1359   HASH is its hash code, made using the HASH macro.
1360   It's an argument because often that is known in advance
1361   and we save much time not recomputing it.  */
1362
1363static void
1364remove_from_table (struct table_elt *elt, unsigned int hash)
1365{
1366  if (elt == 0)
1367    return;
1368
1369  /* Mark this element as removed.  See cse_insn.  */
1370  elt->first_same_value = 0;
1371
1372  /* Remove the table element from its equivalence class.  */
1373
1374  {
1375    struct table_elt *prev = elt->prev_same_value;
1376    struct table_elt *next = elt->next_same_value;
1377
1378    if (next)
1379      next->prev_same_value = prev;
1380
1381    if (prev)
1382      prev->next_same_value = next;
1383    else
1384      {
1385	struct table_elt *newfirst = next;
1386	while (next)
1387	  {
1388	    next->first_same_value = newfirst;
1389	    next = next->next_same_value;
1390	  }
1391      }
1392  }
1393
1394  /* Remove the table element from its hash bucket.  */
1395
1396  {
1397    struct table_elt *prev = elt->prev_same_hash;
1398    struct table_elt *next = elt->next_same_hash;
1399
1400    if (next)
1401      next->prev_same_hash = prev;
1402
1403    if (prev)
1404      prev->next_same_hash = next;
1405    else if (table[hash] == elt)
1406      table[hash] = next;
1407    else
1408      {
1409	/* This entry is not in the proper hash bucket.  This can happen
1410	   when two classes were merged by `merge_equiv_classes'.  Search
1411	   for the hash bucket that it heads.  This happens only very
1412	   rarely, so the cost is acceptable.  */
1413	for (hash = 0; hash < HASH_SIZE; hash++)
1414	  if (table[hash] == elt)
1415	    table[hash] = next;
1416      }
1417  }
1418
1419  /* Remove the table element from its related-value circular chain.  */
1420
1421  if (elt->related_value != 0 && elt->related_value != elt)
1422    {
1423      struct table_elt *p = elt->related_value;
1424
1425      while (p->related_value != elt)
1426	p = p->related_value;
1427      p->related_value = elt->related_value;
1428      if (p->related_value == p)
1429	p->related_value = 0;
1430    }
1431
1432  /* Now add it to the free element chain.  */
1433  elt->next_same_hash = free_element_chain;
1434  free_element_chain = elt;
1435}
1436
1437/* Same as above, but X is a pseudo-register.  */
1438
1439static void
1440remove_pseudo_from_table (rtx x, unsigned int hash)
1441{
1442  struct table_elt *elt;
1443
1444  /* Because a pseudo-register can be referenced in more than one
1445     mode, we might have to remove more than one table entry.  */
1446  while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1447    remove_from_table (elt, hash);
1448}
1449
1450/* Look up X in the hash table and return its table element,
1451   or 0 if X is not in the table.
1452
1453   MODE is the machine-mode of X, or if X is an integer constant
1454   with VOIDmode then MODE is the mode with which X will be used.
1455
1456   Here we are satisfied to find an expression whose tree structure
1457   looks like X.  */
1458
1459static struct table_elt *
1460lookup (rtx x, unsigned int hash, machine_mode mode)
1461{
1462  struct table_elt *p;
1463
1464  for (p = table[hash]; p; p = p->next_same_hash)
1465    if (mode == p->mode && ((x == p->exp && REG_P (x))
1466			    || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1467      return p;
1468
1469  return 0;
1470}
1471
1472/* Like `lookup' but don't care whether the table element uses invalid regs.
1473   Also ignore discrepancies in the machine mode of a register.  */
1474
1475static struct table_elt *
1476lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1477{
1478  struct table_elt *p;
1479
1480  if (REG_P (x))
1481    {
1482      unsigned int regno = REGNO (x);
1483
1484      /* Don't check the machine mode when comparing registers;
1485	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
1486      for (p = table[hash]; p; p = p->next_same_hash)
1487	if (REG_P (p->exp)
1488	    && REGNO (p->exp) == regno)
1489	  return p;
1490    }
1491  else
1492    {
1493      for (p = table[hash]; p; p = p->next_same_hash)
1494	if (mode == p->mode
1495	    && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1496	  return p;
1497    }
1498
1499  return 0;
1500}
1501
1502/* Look for an expression equivalent to X and with code CODE.
1503   If one is found, return that expression.  */
1504
1505static rtx
1506lookup_as_function (rtx x, enum rtx_code code)
1507{
1508  struct table_elt *p
1509    = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1510
1511  if (p == 0)
1512    return 0;
1513
1514  for (p = p->first_same_value; p; p = p->next_same_value)
1515    if (GET_CODE (p->exp) == code
1516	/* Make sure this is a valid entry in the table.  */
1517	&& exp_equiv_p (p->exp, p->exp, 1, false))
1518      return p->exp;
1519
1520  return 0;
1521}
1522
1523/* Insert X in the hash table, assuming HASH is its hash code and
1524   CLASSP is an element of the class it should go in (or 0 if a new
1525   class should be made).  COST is the code of X and reg_cost is the
1526   cost of registers in X.  It is inserted at the proper position to
1527   keep the class in the order cheapest first.
1528
1529   MODE is the machine-mode of X, or if X is an integer constant
1530   with VOIDmode then MODE is the mode with which X will be used.
1531
1532   For elements of equal cheapness, the most recent one
1533   goes in front, except that the first element in the list
1534   remains first unless a cheaper element is added.  The order of
1535   pseudo-registers does not matter, as canon_reg will be called to
1536   find the cheapest when a register is retrieved from the table.
1537
1538   The in_memory field in the hash table element is set to 0.
1539   The caller must set it nonzero if appropriate.
1540
1541   You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1542   and if insert_regs returns a nonzero value
1543   you must then recompute its hash code before calling here.
1544
1545   If necessary, update table showing constant values of quantities.  */
1546
1547static struct table_elt *
1548insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1549		   machine_mode mode, int cost, int reg_cost)
1550{
1551  struct table_elt *elt;
1552
1553  /* If X is a register and we haven't made a quantity for it,
1554     something is wrong.  */
1555  gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1556
1557  /* If X is a hard register, show it is being put in the table.  */
1558  if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1559    add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1560
1561  /* Put an element for X into the right hash bucket.  */
1562
1563  elt = free_element_chain;
1564  if (elt)
1565    free_element_chain = elt->next_same_hash;
1566  else
1567    elt = XNEW (struct table_elt);
1568
1569  elt->exp = x;
1570  elt->canon_exp = NULL_RTX;
1571  elt->cost = cost;
1572  elt->regcost = reg_cost;
1573  elt->next_same_value = 0;
1574  elt->prev_same_value = 0;
1575  elt->next_same_hash = table[hash];
1576  elt->prev_same_hash = 0;
1577  elt->related_value = 0;
1578  elt->in_memory = 0;
1579  elt->mode = mode;
1580  elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1581
1582  if (table[hash])
1583    table[hash]->prev_same_hash = elt;
1584  table[hash] = elt;
1585
1586  /* Put it into the proper value-class.  */
1587  if (classp)
1588    {
1589      classp = classp->first_same_value;
1590      if (CHEAPER (elt, classp))
1591	/* Insert at the head of the class.  */
1592	{
1593	  struct table_elt *p;
1594	  elt->next_same_value = classp;
1595	  classp->prev_same_value = elt;
1596	  elt->first_same_value = elt;
1597
1598	  for (p = classp; p; p = p->next_same_value)
1599	    p->first_same_value = elt;
1600	}
1601      else
1602	{
1603	  /* Insert not at head of the class.  */
1604	  /* Put it after the last element cheaper than X.  */
1605	  struct table_elt *p, *next;
1606
1607	  for (p = classp;
1608	       (next = p->next_same_value) && CHEAPER (next, elt);
1609	       p = next)
1610	    ;
1611
1612	  /* Put it after P and before NEXT.  */
1613	  elt->next_same_value = next;
1614	  if (next)
1615	    next->prev_same_value = elt;
1616
1617	  elt->prev_same_value = p;
1618	  p->next_same_value = elt;
1619	  elt->first_same_value = classp;
1620	}
1621    }
1622  else
1623    elt->first_same_value = elt;
1624
1625  /* If this is a constant being set equivalent to a register or a register
1626     being set equivalent to a constant, note the constant equivalence.
1627
1628     If this is a constant, it cannot be equivalent to a different constant,
1629     and a constant is the only thing that can be cheaper than a register.  So
1630     we know the register is the head of the class (before the constant was
1631     inserted).
1632
1633     If this is a register that is not already known equivalent to a
1634     constant, we must check the entire class.
1635
1636     If this is a register that is already known equivalent to an insn,
1637     update the qtys `const_insn' to show that `this_insn' is the latest
1638     insn making that quantity equivalent to the constant.  */
1639
1640  if (elt->is_const && classp && REG_P (classp->exp)
1641      && !REG_P (x))
1642    {
1643      int exp_q = REG_QTY (REGNO (classp->exp));
1644      struct qty_table_elem *exp_ent = &qty_table[exp_q];
1645
1646      exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1647      exp_ent->const_insn = this_insn;
1648    }
1649
1650  else if (REG_P (x)
1651	   && classp
1652	   && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1653	   && ! elt->is_const)
1654    {
1655      struct table_elt *p;
1656
1657      for (p = classp; p != 0; p = p->next_same_value)
1658	{
1659	  if (p->is_const && !REG_P (p->exp))
1660	    {
1661	      int x_q = REG_QTY (REGNO (x));
1662	      struct qty_table_elem *x_ent = &qty_table[x_q];
1663
1664	      x_ent->const_rtx
1665		= gen_lowpart (GET_MODE (x), p->exp);
1666	      x_ent->const_insn = this_insn;
1667	      break;
1668	    }
1669	}
1670    }
1671
1672  else if (REG_P (x)
1673	   && qty_table[REG_QTY (REGNO (x))].const_rtx
1674	   && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1675    qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1676
1677  /* If this is a constant with symbolic value,
1678     and it has a term with an explicit integer value,
1679     link it up with related expressions.  */
1680  if (GET_CODE (x) == CONST)
1681    {
1682      rtx subexp = get_related_value (x);
1683      unsigned subhash;
1684      struct table_elt *subelt, *subelt_prev;
1685
1686      if (subexp != 0)
1687	{
1688	  /* Get the integer-free subexpression in the hash table.  */
1689	  subhash = SAFE_HASH (subexp, mode);
1690	  subelt = lookup (subexp, subhash, mode);
1691	  if (subelt == 0)
1692	    subelt = insert (subexp, NULL, subhash, mode);
1693	  /* Initialize SUBELT's circular chain if it has none.  */
1694	  if (subelt->related_value == 0)
1695	    subelt->related_value = subelt;
1696	  /* Find the element in the circular chain that precedes SUBELT.  */
1697	  subelt_prev = subelt;
1698	  while (subelt_prev->related_value != subelt)
1699	    subelt_prev = subelt_prev->related_value;
1700	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
1701	     This way the element that follows SUBELT is the oldest one.  */
1702	  elt->related_value = subelt_prev->related_value;
1703	  subelt_prev->related_value = elt;
1704	}
1705    }
1706
1707  return elt;
1708}
1709
1710/* Wrap insert_with_costs by passing the default costs.  */
1711
1712static struct table_elt *
1713insert (rtx x, struct table_elt *classp, unsigned int hash,
1714	machine_mode mode)
1715{
1716  return insert_with_costs (x, classp, hash, mode,
1717			    COST (x, mode), approx_reg_cost (x));
1718}
1719
1720
1721/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1722   CLASS2 into CLASS1.  This is done when we have reached an insn which makes
1723   the two classes equivalent.
1724
1725   CLASS1 will be the surviving class; CLASS2 should not be used after this
1726   call.
1727
1728   Any invalid entries in CLASS2 will not be copied.  */
1729
1730static void
1731merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1732{
1733  struct table_elt *elt, *next, *new_elt;
1734
1735  /* Ensure we start with the head of the classes.  */
1736  class1 = class1->first_same_value;
1737  class2 = class2->first_same_value;
1738
1739  /* If they were already equal, forget it.  */
1740  if (class1 == class2)
1741    return;
1742
1743  for (elt = class2; elt; elt = next)
1744    {
1745      unsigned int hash;
1746      rtx exp = elt->exp;
1747      machine_mode mode = elt->mode;
1748
1749      next = elt->next_same_value;
1750
1751      /* Remove old entry, make a new one in CLASS1's class.
1752	 Don't do this for invalid entries as we cannot find their
1753	 hash code (it also isn't necessary).  */
1754      if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1755	{
1756	  bool need_rehash = false;
1757
1758	  hash_arg_in_memory = 0;
1759	  hash = HASH (exp, mode);
1760
1761	  if (REG_P (exp))
1762	    {
1763	      need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1764	      delete_reg_equiv (REGNO (exp));
1765	    }
1766
1767	  if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1768	    remove_pseudo_from_table (exp, hash);
1769	  else
1770	    remove_from_table (elt, hash);
1771
1772	  if (insert_regs (exp, class1, 0) || need_rehash)
1773	    {
1774	      rehash_using_reg (exp);
1775	      hash = HASH (exp, mode);
1776	    }
1777	  new_elt = insert (exp, class1, hash, mode);
1778	  new_elt->in_memory = hash_arg_in_memory;
1779	  if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1780	    new_elt->cost = MAX_COST;
1781	}
1782    }
1783}
1784
1785/* Flush the entire hash table.  */
1786
1787static void
1788flush_hash_table (void)
1789{
1790  int i;
1791  struct table_elt *p;
1792
1793  for (i = 0; i < HASH_SIZE; i++)
1794    for (p = table[i]; p; p = table[i])
1795      {
1796	/* Note that invalidate can remove elements
1797	   after P in the current hash chain.  */
1798	if (REG_P (p->exp))
1799	  invalidate (p->exp, VOIDmode);
1800	else
1801	  remove_from_table (p, i);
1802      }
1803}
1804
1805/* Check whether an anti dependence exists between X and EXP.  MODE and
1806   ADDR are as for canon_anti_dependence.  */
1807
1808static bool
1809check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1810{
1811  subrtx_iterator::array_type array;
1812  FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1813    {
1814      const_rtx x = *iter;
1815      if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1816	return true;
1817    }
1818  return false;
1819}
1820
1821/* Remove from the hash table, or mark as invalid, all expressions whose
1822   values could be altered by storing in register X.  */
1823
1824static void
1825invalidate_reg (rtx x)
1826{
1827  gcc_assert (GET_CODE (x) == REG);
1828
1829  /* If X is a register, dependencies on its contents are recorded
1830     through the qty number mechanism.  Just change the qty number of
1831     the register, mark it as invalid for expressions that refer to it,
1832     and remove it itself.  */
1833  unsigned int regno = REGNO (x);
1834  unsigned int hash = HASH (x, GET_MODE (x));
1835
1836  /* Remove REGNO from any quantity list it might be on and indicate
1837     that its value might have changed.  If it is a pseudo, remove its
1838     entry from the hash table.
1839
1840     For a hard register, we do the first two actions above for any
1841     additional hard registers corresponding to X.  Then, if any of these
1842     registers are in the table, we must remove any REG entries that
1843     overlap these registers.  */
1844
1845  delete_reg_equiv (regno);
1846  REG_TICK (regno)++;
1847  SUBREG_TICKED (regno) = -1;
1848
1849  if (regno >= FIRST_PSEUDO_REGISTER)
1850    remove_pseudo_from_table (x, hash);
1851  else
1852    {
1853      HOST_WIDE_INT in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1854      unsigned int endregno = END_REGNO (x);
1855      unsigned int rn;
1856      struct table_elt *p, *next;
1857
1858      CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1859
1860      for (rn = regno + 1; rn < endregno; rn++)
1861	{
1862	  in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1863	  CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1864	  delete_reg_equiv (rn);
1865	  REG_TICK (rn)++;
1866	  SUBREG_TICKED (rn) = -1;
1867	}
1868
1869      if (in_table)
1870	for (hash = 0; hash < HASH_SIZE; hash++)
1871	  for (p = table[hash]; p; p = next)
1872	    {
1873	      next = p->next_same_hash;
1874
1875	      if (!REG_P (p->exp) || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1876		continue;
1877
1878	      unsigned int tregno = REGNO (p->exp);
1879	      unsigned int tendregno = END_REGNO (p->exp);
1880	      if (tendregno > regno && tregno < endregno)
1881		remove_from_table (p, hash);
1882	    }
1883    }
1884}
1885
1886/* Remove from the hash table, or mark as invalid, all expressions whose
1887   values could be altered by storing in X.  X is a register, a subreg, or
1888   a memory reference with nonvarying address (because, when a memory
1889   reference with a varying address is stored in, all memory references are
1890   removed by invalidate_memory so specific invalidation is superfluous).
1891   FULL_MODE, if not VOIDmode, indicates that this much should be
1892   invalidated instead of just the amount indicated by the mode of X.  This
1893   is only used for bitfield stores into memory.
1894
1895   A nonvarying address may be just a register or just a symbol reference,
1896   or it may be either of those plus a numeric offset.  */
1897
1898static void
1899invalidate (rtx x, machine_mode full_mode)
1900{
1901  int i;
1902  struct table_elt *p;
1903  rtx addr;
1904
1905  switch (GET_CODE (x))
1906    {
1907    case REG:
1908      invalidate_reg (x);
1909      return;
1910
1911    case SUBREG:
1912      invalidate (SUBREG_REG (x), VOIDmode);
1913      return;
1914
1915    case PARALLEL:
1916      for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1917	invalidate (XVECEXP (x, 0, i), VOIDmode);
1918      return;
1919
1920    case EXPR_LIST:
1921      /* This is part of a disjoint return value; extract the location in
1922	 question ignoring the offset.  */
1923      invalidate (XEXP (x, 0), VOIDmode);
1924      return;
1925
1926    case MEM:
1927      addr = canon_rtx (get_addr (XEXP (x, 0)));
1928      /* Calculate the canonical version of X here so that
1929	 true_dependence doesn't generate new RTL for X on each call.  */
1930      x = canon_rtx (x);
1931
1932      /* Remove all hash table elements that refer to overlapping pieces of
1933	 memory.  */
1934      if (full_mode == VOIDmode)
1935	full_mode = GET_MODE (x);
1936
1937      for (i = 0; i < HASH_SIZE; i++)
1938	{
1939	  struct table_elt *next;
1940
1941	  for (p = table[i]; p; p = next)
1942	    {
1943	      next = p->next_same_hash;
1944	      if (p->in_memory)
1945		{
1946		  /* Just canonicalize the expression once;
1947		     otherwise each time we call invalidate
1948		     true_dependence will canonicalize the
1949		     expression again.  */
1950		  if (!p->canon_exp)
1951		    p->canon_exp = canon_rtx (p->exp);
1952		  if (check_dependence (p->canon_exp, x, full_mode, addr))
1953		    remove_from_table (p, i);
1954		}
1955	    }
1956	}
1957      return;
1958
1959    default:
1960      gcc_unreachable ();
1961    }
1962}
1963
1964/* Invalidate DEST.  Used when DEST is not going to be added
1965   into the hash table for some reason, e.g. do_not_record
1966   flagged on it.  */
1967
1968static void
1969invalidate_dest (rtx dest)
1970{
1971  if (REG_P (dest)
1972      || GET_CODE (dest) == SUBREG
1973      || MEM_P (dest))
1974    invalidate (dest, VOIDmode);
1975  else if (GET_CODE (dest) == STRICT_LOW_PART
1976	   || GET_CODE (dest) == ZERO_EXTRACT)
1977    invalidate (XEXP (dest, 0), GET_MODE (dest));
1978}
1979
1980/* Remove all expressions that refer to register REGNO,
1981   since they are already invalid, and we are about to
1982   mark that register valid again and don't want the old
1983   expressions to reappear as valid.  */
1984
1985static void
1986remove_invalid_refs (unsigned int regno)
1987{
1988  unsigned int i;
1989  struct table_elt *p, *next;
1990
1991  for (i = 0; i < HASH_SIZE; i++)
1992    for (p = table[i]; p; p = next)
1993      {
1994	next = p->next_same_hash;
1995	if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
1996	  remove_from_table (p, i);
1997      }
1998}
1999
2000/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2001   and mode MODE.  */
2002static void
2003remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset,
2004			    machine_mode mode)
2005{
2006  unsigned int i;
2007  struct table_elt *p, *next;
2008
2009  for (i = 0; i < HASH_SIZE; i++)
2010    for (p = table[i]; p; p = next)
2011      {
2012	rtx exp = p->exp;
2013	next = p->next_same_hash;
2014
2015	if (!REG_P (exp)
2016	    && (GET_CODE (exp) != SUBREG
2017		|| !REG_P (SUBREG_REG (exp))
2018		|| REGNO (SUBREG_REG (exp)) != regno
2019		|| ranges_maybe_overlap_p (SUBREG_BYTE (exp),
2020					   GET_MODE_SIZE (GET_MODE (exp)),
2021					   offset, GET_MODE_SIZE (mode)))
2022	    && refers_to_regno_p (regno, p->exp))
2023	  remove_from_table (p, i);
2024      }
2025}
2026
2027/* Recompute the hash codes of any valid entries in the hash table that
2028   reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2029
2030   This is called when we make a jump equivalence.  */
2031
2032static void
2033rehash_using_reg (rtx x)
2034{
2035  unsigned int i;
2036  struct table_elt *p, *next;
2037  unsigned hash;
2038
2039  if (GET_CODE (x) == SUBREG)
2040    x = SUBREG_REG (x);
2041
2042  /* If X is not a register or if the register is known not to be in any
2043     valid entries in the table, we have no work to do.  */
2044
2045  if (!REG_P (x)
2046      || REG_IN_TABLE (REGNO (x)) < 0
2047      || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2048    return;
2049
2050  /* Scan all hash chains looking for valid entries that mention X.
2051     If we find one and it is in the wrong hash chain, move it.  */
2052
2053  for (i = 0; i < HASH_SIZE; i++)
2054    for (p = table[i]; p; p = next)
2055      {
2056	next = p->next_same_hash;
2057	if (reg_mentioned_p (x, p->exp)
2058	    && exp_equiv_p (p->exp, p->exp, 1, false)
2059	    && i != (hash = SAFE_HASH (p->exp, p->mode)))
2060	  {
2061	    if (p->next_same_hash)
2062	      p->next_same_hash->prev_same_hash = p->prev_same_hash;
2063
2064	    if (p->prev_same_hash)
2065	      p->prev_same_hash->next_same_hash = p->next_same_hash;
2066	    else
2067	      table[i] = p->next_same_hash;
2068
2069	    p->next_same_hash = table[hash];
2070	    p->prev_same_hash = 0;
2071	    if (table[hash])
2072	      table[hash]->prev_same_hash = p;
2073	    table[hash] = p;
2074	  }
2075      }
2076}
2077
2078/* Remove from the hash table any expression that is a call-clobbered
2079   register in INSN.  Also update their TICK values.  */
2080
2081static void
2082invalidate_for_call (rtx_insn *insn)
2083{
2084  unsigned int regno;
2085  unsigned hash;
2086  struct table_elt *p, *next;
2087  int in_table = 0;
2088  hard_reg_set_iterator hrsi;
2089
2090  /* Go through all the hard registers.  For each that might be clobbered
2091     in call insn INSN, remove the register from quantity chains and update
2092     reg_tick if defined.  Also see if any of these registers is currently
2093     in the table.
2094
2095     ??? We could be more precise for partially-clobbered registers,
2096     and only invalidate values that actually occupy the clobbered part
2097     of the registers.  It doesn't seem worth the effort though, since
2098     we shouldn't see this situation much before RA.  Whatever choice
2099     we make here has to be consistent with the table walk below,
2100     so any change to this test will require a change there too.  */
2101  HARD_REG_SET callee_clobbers
2102    = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
2103  EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
2104    {
2105      delete_reg_equiv (regno);
2106      if (REG_TICK (regno) >= 0)
2107	{
2108	  REG_TICK (regno)++;
2109	  SUBREG_TICKED (regno) = -1;
2110	}
2111      in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2112    }
2113
2114  /* In the case where we have no call-clobbered hard registers in the
2115     table, we are done.  Otherwise, scan the table and remove any
2116     entry that overlaps a call-clobbered register.  */
2117
2118  if (in_table)
2119    for (hash = 0; hash < HASH_SIZE; hash++)
2120      for (p = table[hash]; p; p = next)
2121	{
2122	  next = p->next_same_hash;
2123
2124	  if (!REG_P (p->exp)
2125	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2126	    continue;
2127
2128	  /* This must use the same test as above rather than the
2129	     more accurate clobbers_reg_p.  */
2130	  if (overlaps_hard_reg_set_p (callee_clobbers, GET_MODE (p->exp),
2131				       REGNO (p->exp)))
2132	    remove_from_table (p, hash);
2133	}
2134}
2135
2136/* Given an expression X of type CONST,
2137   and ELT which is its table entry (or 0 if it
2138   is not in the hash table),
2139   return an alternate expression for X as a register plus integer.
2140   If none can be found, return 0.  */
2141
2142static rtx
2143use_related_value (rtx x, struct table_elt *elt)
2144{
2145  struct table_elt *relt = 0;
2146  struct table_elt *p, *q;
2147  HOST_WIDE_INT offset;
2148
2149  /* First, is there anything related known?
2150     If we have a table element, we can tell from that.
2151     Otherwise, must look it up.  */
2152
2153  if (elt != 0 && elt->related_value != 0)
2154    relt = elt;
2155  else if (elt == 0 && GET_CODE (x) == CONST)
2156    {
2157      rtx subexp = get_related_value (x);
2158      if (subexp != 0)
2159	relt = lookup (subexp,
2160		       SAFE_HASH (subexp, GET_MODE (subexp)),
2161		       GET_MODE (subexp));
2162    }
2163
2164  if (relt == 0)
2165    return 0;
2166
2167  /* Search all related table entries for one that has an
2168     equivalent register.  */
2169
2170  p = relt;
2171  while (1)
2172    {
2173      /* This loop is strange in that it is executed in two different cases.
2174	 The first is when X is already in the table.  Then it is searching
2175	 the RELATED_VALUE list of X's class (RELT).  The second case is when
2176	 X is not in the table.  Then RELT points to a class for the related
2177	 value.
2178
2179	 Ensure that, whatever case we are in, that we ignore classes that have
2180	 the same value as X.  */
2181
2182      if (rtx_equal_p (x, p->exp))
2183	q = 0;
2184      else
2185	for (q = p->first_same_value; q; q = q->next_same_value)
2186	  if (REG_P (q->exp))
2187	    break;
2188
2189      if (q)
2190	break;
2191
2192      p = p->related_value;
2193
2194      /* We went all the way around, so there is nothing to be found.
2195	 Alternatively, perhaps RELT was in the table for some other reason
2196	 and it has no related values recorded.  */
2197      if (p == relt || p == 0)
2198	break;
2199    }
2200
2201  if (q == 0)
2202    return 0;
2203
2204  offset = (get_integer_term (x) - get_integer_term (p->exp));
2205  /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
2206  return plus_constant (q->mode, q->exp, offset);
2207}
2208
2209
2210/* Hash a string.  Just add its bytes up.  */
2211static inline unsigned
2212hash_rtx_string (const char *ps)
2213{
2214  unsigned hash = 0;
2215  const unsigned char *p = (const unsigned char *) ps;
2216
2217  if (p)
2218    while (*p)
2219      hash += *p++;
2220
2221  return hash;
2222}
2223
2224/* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2225   When the callback returns true, we continue with the new rtx.  */
2226
2227unsigned
2228hash_rtx_cb (const_rtx x, machine_mode mode,
2229             int *do_not_record_p, int *hash_arg_in_memory_p,
2230             bool have_reg_qty, hash_rtx_callback_function cb)
2231{
2232  int i, j;
2233  unsigned hash = 0;
2234  enum rtx_code code;
2235  const char *fmt;
2236  machine_mode newmode;
2237  rtx newx;
2238
2239  /* Used to turn recursion into iteration.  We can't rely on GCC's
2240     tail-recursion elimination since we need to keep accumulating values
2241     in HASH.  */
2242 repeat:
2243  if (x == 0)
2244    return hash;
2245
2246  /* Invoke the callback first.  */
2247  if (cb != NULL
2248      && ((*cb) (x, mode, &newx, &newmode)))
2249    {
2250      hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2251                           hash_arg_in_memory_p, have_reg_qty, cb);
2252      return hash;
2253    }
2254
2255  code = GET_CODE (x);
2256  switch (code)
2257    {
2258    case REG:
2259      {
2260	unsigned int regno = REGNO (x);
2261
2262	if (do_not_record_p && !reload_completed)
2263	  {
2264	    /* On some machines, we can't record any non-fixed hard register,
2265	       because extending its life will cause reload problems.  We
2266	       consider ap, fp, sp, gp to be fixed for this purpose.
2267
2268	       We also consider CCmode registers to be fixed for this purpose;
2269	       failure to do so leads to failure to simplify 0<100 type of
2270	       conditionals.
2271
2272	       On all machines, we can't record any global registers.
2273	       Nor should we record any register that is in a small
2274	       class, as defined by TARGET_CLASS_LIKELY_SPILLED_P.  */
2275	    bool record;
2276
2277	    if (regno >= FIRST_PSEUDO_REGISTER)
2278	      record = true;
2279	    else if (x == frame_pointer_rtx
2280		     || x == hard_frame_pointer_rtx
2281		     || x == arg_pointer_rtx
2282		     || x == stack_pointer_rtx
2283		     || x == pic_offset_table_rtx)
2284	      record = true;
2285	    else if (global_regs[regno])
2286	      record = false;
2287	    else if (fixed_regs[regno])
2288	      record = true;
2289	    else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2290	      record = true;
2291	    else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2292	      record = false;
2293	    else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2294	      record = false;
2295	    else
2296	      record = true;
2297
2298	    if (!record)
2299	      {
2300		*do_not_record_p = 1;
2301		return 0;
2302	      }
2303	  }
2304
2305	hash += ((unsigned int) REG << 7);
2306        hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2307	return hash;
2308      }
2309
2310    /* We handle SUBREG of a REG specially because the underlying
2311       reg changes its hash value with every value change; we don't
2312       want to have to forget unrelated subregs when one subreg changes.  */
2313    case SUBREG:
2314      {
2315	if (REG_P (SUBREG_REG (x)))
2316	  {
2317	    hash += (((unsigned int) SUBREG << 7)
2318		     + REGNO (SUBREG_REG (x))
2319		     + (constant_lower_bound (SUBREG_BYTE (x))
2320			/ UNITS_PER_WORD));
2321	    return hash;
2322	  }
2323	break;
2324      }
2325
2326    case CONST_INT:
2327      hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2328               + (unsigned int) INTVAL (x));
2329      return hash;
2330
2331    case CONST_WIDE_INT:
2332      for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2333	hash += CONST_WIDE_INT_ELT (x, i);
2334      return hash;
2335
2336    case CONST_POLY_INT:
2337      {
2338	inchash::hash h;
2339	h.add_int (hash);
2340	for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2341	  h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
2342	return h.end ();
2343      }
2344
2345    case CONST_DOUBLE:
2346      /* This is like the general case, except that it only counts
2347	 the integers representing the constant.  */
2348      hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2349      if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2350	hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2351		 + (unsigned int) CONST_DOUBLE_HIGH (x));
2352      else
2353	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2354      return hash;
2355
2356    case CONST_FIXED:
2357      hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2358      hash += fixed_hash (CONST_FIXED_VALUE (x));
2359      return hash;
2360
2361    case CONST_VECTOR:
2362      {
2363	int units;
2364	rtx elt;
2365
2366	units = const_vector_encoded_nelts (x);
2367
2368	for (i = 0; i < units; ++i)
2369	  {
2370	    elt = CONST_VECTOR_ENCODED_ELT (x, i);
2371	    hash += hash_rtx_cb (elt, GET_MODE (elt),
2372                                 do_not_record_p, hash_arg_in_memory_p,
2373                                 have_reg_qty, cb);
2374	  }
2375
2376	return hash;
2377      }
2378
2379      /* Assume there is only one rtx object for any given label.  */
2380    case LABEL_REF:
2381      /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2382	 differences and differences between each stage's debugging dumps.  */
2383	 hash += (((unsigned int) LABEL_REF << 7)
2384		  + CODE_LABEL_NUMBER (label_ref_label (x)));
2385      return hash;
2386
2387    case SYMBOL_REF:
2388      {
2389	/* Don't hash on the symbol's address to avoid bootstrap differences.
2390	   Different hash values may cause expressions to be recorded in
2391	   different orders and thus different registers to be used in the
2392	   final assembler.  This also avoids differences in the dump files
2393	   between various stages.  */
2394	unsigned int h = 0;
2395	const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2396
2397	while (*p)
2398	  h += (h << 7) + *p++; /* ??? revisit */
2399
2400	hash += ((unsigned int) SYMBOL_REF << 7) + h;
2401	return hash;
2402      }
2403
2404    case MEM:
2405      /* We don't record if marked volatile or if BLKmode since we don't
2406	 know the size of the move.  */
2407      if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2408	{
2409	  *do_not_record_p = 1;
2410	  return 0;
2411	}
2412      if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2413	*hash_arg_in_memory_p = 1;
2414
2415      /* Now that we have already found this special case,
2416	 might as well speed it up as much as possible.  */
2417      hash += (unsigned) MEM;
2418      x = XEXP (x, 0);
2419      goto repeat;
2420
2421    case USE:
2422      /* A USE that mentions non-volatile memory needs special
2423	 handling since the MEM may be BLKmode which normally
2424	 prevents an entry from being made.  Pure calls are
2425	 marked by a USE which mentions BLKmode memory.
2426	 See calls.c:emit_call_1.  */
2427      if (MEM_P (XEXP (x, 0))
2428	  && ! MEM_VOLATILE_P (XEXP (x, 0)))
2429	{
2430	  hash += (unsigned) USE;
2431	  x = XEXP (x, 0);
2432
2433	  if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2434	    *hash_arg_in_memory_p = 1;
2435
2436	  /* Now that we have already found this special case,
2437	     might as well speed it up as much as possible.  */
2438	  hash += (unsigned) MEM;
2439	  x = XEXP (x, 0);
2440	  goto repeat;
2441	}
2442      break;
2443
2444    case PRE_DEC:
2445    case PRE_INC:
2446    case POST_DEC:
2447    case POST_INC:
2448    case PRE_MODIFY:
2449    case POST_MODIFY:
2450    case PC:
2451    case CC0:
2452    case CALL:
2453    case UNSPEC_VOLATILE:
2454      if (do_not_record_p) {
2455        *do_not_record_p = 1;
2456        return 0;
2457      }
2458      else
2459        return hash;
2460      break;
2461
2462    case ASM_OPERANDS:
2463      if (do_not_record_p && MEM_VOLATILE_P (x))
2464	{
2465	  *do_not_record_p = 1;
2466	  return 0;
2467	}
2468      else
2469	{
2470	  /* We don't want to take the filename and line into account.  */
2471	  hash += (unsigned) code + (unsigned) GET_MODE (x)
2472	    + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2473	    + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2474	    + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2475
2476	  if (ASM_OPERANDS_INPUT_LENGTH (x))
2477	    {
2478	      for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2479		{
2480		  hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2481                                        GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2482                                        do_not_record_p, hash_arg_in_memory_p,
2483                                        have_reg_qty, cb)
2484			   + hash_rtx_string
2485                           (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2486		}
2487
2488	      hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2489	      x = ASM_OPERANDS_INPUT (x, 0);
2490	      mode = GET_MODE (x);
2491	      goto repeat;
2492	    }
2493
2494	  return hash;
2495	}
2496      break;
2497
2498    default:
2499      break;
2500    }
2501
2502  i = GET_RTX_LENGTH (code) - 1;
2503  hash += (unsigned) code + (unsigned) GET_MODE (x);
2504  fmt = GET_RTX_FORMAT (code);
2505  for (; i >= 0; i--)
2506    {
2507      switch (fmt[i])
2508	{
2509	case 'e':
2510	  /* If we are about to do the last recursive call
2511	     needed at this level, change it into iteration.
2512	     This function  is called enough to be worth it.  */
2513	  if (i == 0)
2514	    {
2515	      x = XEXP (x, i);
2516	      goto repeat;
2517	    }
2518
2519	  hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2520                               hash_arg_in_memory_p,
2521                               have_reg_qty, cb);
2522	  break;
2523
2524	case 'E':
2525	  for (j = 0; j < XVECLEN (x, i); j++)
2526	    hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2527                                 hash_arg_in_memory_p,
2528                                 have_reg_qty, cb);
2529	  break;
2530
2531	case 's':
2532	  hash += hash_rtx_string (XSTR (x, i));
2533	  break;
2534
2535	case 'i':
2536	  hash += (unsigned int) XINT (x, i);
2537	  break;
2538
2539	case 'p':
2540	  hash += constant_lower_bound (SUBREG_BYTE (x));
2541	  break;
2542
2543	case '0': case 't':
2544	  /* Unused.  */
2545	  break;
2546
2547	default:
2548	  gcc_unreachable ();
2549	}
2550    }
2551
2552  return hash;
2553}
2554
2555/* Hash an rtx.  We are careful to make sure the value is never negative.
2556   Equivalent registers hash identically.
2557   MODE is used in hashing for CONST_INTs only;
2558   otherwise the mode of X is used.
2559
2560   Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2561
2562   If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2563   a MEM rtx which does not have the MEM_READONLY_P flag set.
2564
2565   Note that cse_insn knows that the hash code of a MEM expression
2566   is just (int) MEM plus the hash code of the address.  */
2567
2568unsigned
2569hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2570	  int *hash_arg_in_memory_p, bool have_reg_qty)
2571{
2572  return hash_rtx_cb (x, mode, do_not_record_p,
2573                      hash_arg_in_memory_p, have_reg_qty, NULL);
2574}
2575
2576/* Hash an rtx X for cse via hash_rtx.
2577   Stores 1 in do_not_record if any subexpression is volatile.
2578   Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2579   does not have the MEM_READONLY_P flag set.  */
2580
2581static inline unsigned
2582canon_hash (rtx x, machine_mode mode)
2583{
2584  return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2585}
2586
2587/* Like canon_hash but with no side effects, i.e. do_not_record
2588   and hash_arg_in_memory are not changed.  */
2589
2590static inline unsigned
2591safe_hash (rtx x, machine_mode mode)
2592{
2593  int dummy_do_not_record;
2594  return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2595}
2596
2597/* Return 1 iff X and Y would canonicalize into the same thing,
2598   without actually constructing the canonicalization of either one.
2599   If VALIDATE is nonzero,
2600   we assume X is an expression being processed from the rtl
2601   and Y was found in the hash table.  We check register refs
2602   in Y for being marked as valid.
2603
2604   If FOR_GCSE is true, we compare X and Y for equivalence for GCSE.  */
2605
2606int
2607exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2608{
2609  int i, j;
2610  enum rtx_code code;
2611  const char *fmt;
2612
2613  /* Note: it is incorrect to assume an expression is equivalent to itself
2614     if VALIDATE is nonzero.  */
2615  if (x == y && !validate)
2616    return 1;
2617
2618  if (x == 0 || y == 0)
2619    return x == y;
2620
2621  code = GET_CODE (x);
2622  if (code != GET_CODE (y))
2623    return 0;
2624
2625  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2626  if (GET_MODE (x) != GET_MODE (y))
2627    return 0;
2628
2629  /* MEMs referring to different address space are not equivalent.  */
2630  if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2631    return 0;
2632
2633  switch (code)
2634    {
2635    case PC:
2636    case CC0:
2637    CASE_CONST_UNIQUE:
2638      return x == y;
2639
2640    case CONST_VECTOR:
2641      if (!same_vector_encodings_p (x, y))
2642	return false;
2643      break;
2644
2645    case LABEL_REF:
2646      return label_ref_label (x) == label_ref_label (y);
2647
2648    case SYMBOL_REF:
2649      return XSTR (x, 0) == XSTR (y, 0);
2650
2651    case REG:
2652      if (for_gcse)
2653	return REGNO (x) == REGNO (y);
2654      else
2655	{
2656	  unsigned int regno = REGNO (y);
2657	  unsigned int i;
2658	  unsigned int endregno = END_REGNO (y);
2659
2660	  /* If the quantities are not the same, the expressions are not
2661	     equivalent.  If there are and we are not to validate, they
2662	     are equivalent.  Otherwise, ensure all regs are up-to-date.  */
2663
2664	  if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2665	    return 0;
2666
2667	  if (! validate)
2668	    return 1;
2669
2670	  for (i = regno; i < endregno; i++)
2671	    if (REG_IN_TABLE (i) != REG_TICK (i))
2672	      return 0;
2673
2674	  return 1;
2675	}
2676
2677    case MEM:
2678      if (for_gcse)
2679	{
2680	  /* A volatile mem should not be considered equivalent to any
2681	     other.  */
2682	  if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2683	    return 0;
2684
2685	  /* Can't merge two expressions in different alias sets, since we
2686	     can decide that the expression is transparent in a block when
2687	     it isn't, due to it being set with the different alias set.
2688
2689	     Also, can't merge two expressions with different MEM_ATTRS.
2690	     They could e.g. be two different entities allocated into the
2691	     same space on the stack (see e.g. PR25130).  In that case, the
2692	     MEM addresses can be the same, even though the two MEMs are
2693	     absolutely not equivalent.
2694
2695	     But because really all MEM attributes should be the same for
2696	     equivalent MEMs, we just use the invariant that MEMs that have
2697	     the same attributes share the same mem_attrs data structure.  */
2698	  if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2699	    return 0;
2700
2701	  /* If we are handling exceptions, we cannot consider two expressions
2702	     with different trapping status as equivalent, because simple_mem
2703	     might accept one and reject the other.  */
2704	  if (cfun->can_throw_non_call_exceptions
2705	      && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2706	    return 0;
2707	}
2708      break;
2709
2710    /*  For commutative operations, check both orders.  */
2711    case PLUS:
2712    case MULT:
2713    case AND:
2714    case IOR:
2715    case XOR:
2716    case NE:
2717    case EQ:
2718      return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2719			     validate, for_gcse)
2720	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2721				validate, for_gcse))
2722	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2723				validate, for_gcse)
2724		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2725				   validate, for_gcse)));
2726
2727    case ASM_OPERANDS:
2728      /* We don't use the generic code below because we want to
2729	 disregard filename and line numbers.  */
2730
2731      /* A volatile asm isn't equivalent to any other.  */
2732      if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2733	return 0;
2734
2735      if (GET_MODE (x) != GET_MODE (y)
2736	  || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2737	  || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2738		     ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2739	  || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2740	  || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2741	return 0;
2742
2743      if (ASM_OPERANDS_INPUT_LENGTH (x))
2744	{
2745	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2746	    if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2747			       ASM_OPERANDS_INPUT (y, i),
2748			       validate, for_gcse)
2749		|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2750			   ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2751	      return 0;
2752	}
2753
2754      return 1;
2755
2756    default:
2757      break;
2758    }
2759
2760  /* Compare the elements.  If any pair of corresponding elements
2761     fail to match, return 0 for the whole thing.  */
2762
2763  fmt = GET_RTX_FORMAT (code);
2764  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2765    {
2766      switch (fmt[i])
2767	{
2768	case 'e':
2769	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2770			      validate, for_gcse))
2771	    return 0;
2772	  break;
2773
2774	case 'E':
2775	  if (XVECLEN (x, i) != XVECLEN (y, i))
2776	    return 0;
2777	  for (j = 0; j < XVECLEN (x, i); j++)
2778	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2779				validate, for_gcse))
2780	      return 0;
2781	  break;
2782
2783	case 's':
2784	  if (strcmp (XSTR (x, i), XSTR (y, i)))
2785	    return 0;
2786	  break;
2787
2788	case 'i':
2789	  if (XINT (x, i) != XINT (y, i))
2790	    return 0;
2791	  break;
2792
2793	case 'w':
2794	  if (XWINT (x, i) != XWINT (y, i))
2795	    return 0;
2796	  break;
2797
2798	case 'p':
2799	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2800	    return 0;
2801	  break;
2802
2803	case '0':
2804	case 't':
2805	  break;
2806
2807	default:
2808	  gcc_unreachable ();
2809	}
2810    }
2811
2812  return 1;
2813}
2814
2815/* Subroutine of canon_reg.  Pass *XLOC through canon_reg, and validate
2816   the result if necessary.  INSN is as for canon_reg.  */
2817
2818static void
2819validate_canon_reg (rtx *xloc, rtx_insn *insn)
2820{
2821  if (*xloc)
2822    {
2823      rtx new_rtx = canon_reg (*xloc, insn);
2824
2825      /* If replacing pseudo with hard reg or vice versa, ensure the
2826         insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2827      gcc_assert (insn && new_rtx);
2828      validate_change (insn, xloc, new_rtx, 1);
2829    }
2830}
2831
2832/* Canonicalize an expression:
2833   replace each register reference inside it
2834   with the "oldest" equivalent register.
2835
2836   If INSN is nonzero validate_change is used to ensure that INSN remains valid
2837   after we make our substitution.  The calls are made with IN_GROUP nonzero
2838   so apply_change_group must be called upon the outermost return from this
2839   function (unless INSN is zero).  The result of apply_change_group can
2840   generally be discarded since the changes we are making are optional.  */
2841
2842static rtx
2843canon_reg (rtx x, rtx_insn *insn)
2844{
2845  int i;
2846  enum rtx_code code;
2847  const char *fmt;
2848
2849  if (x == 0)
2850    return x;
2851
2852  code = GET_CODE (x);
2853  switch (code)
2854    {
2855    case PC:
2856    case CC0:
2857    case CONST:
2858    CASE_CONST_ANY:
2859    case SYMBOL_REF:
2860    case LABEL_REF:
2861    case ADDR_VEC:
2862    case ADDR_DIFF_VEC:
2863      return x;
2864
2865    case REG:
2866      {
2867	int first;
2868	int q;
2869	struct qty_table_elem *ent;
2870
2871	/* Never replace a hard reg, because hard regs can appear
2872	   in more than one machine mode, and we must preserve the mode
2873	   of each occurrence.  Also, some hard regs appear in
2874	   MEMs that are shared and mustn't be altered.  Don't try to
2875	   replace any reg that maps to a reg of class NO_REGS.  */
2876	if (REGNO (x) < FIRST_PSEUDO_REGISTER
2877	    || ! REGNO_QTY_VALID_P (REGNO (x)))
2878	  return x;
2879
2880	q = REG_QTY (REGNO (x));
2881	ent = &qty_table[q];
2882	first = ent->first_reg;
2883	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2884		: REGNO_REG_CLASS (first) == NO_REGS ? x
2885		: gen_rtx_REG (ent->mode, first));
2886      }
2887
2888    default:
2889      break;
2890    }
2891
2892  fmt = GET_RTX_FORMAT (code);
2893  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2894    {
2895      int j;
2896
2897      if (fmt[i] == 'e')
2898	validate_canon_reg (&XEXP (x, i), insn);
2899      else if (fmt[i] == 'E')
2900	for (j = 0; j < XVECLEN (x, i); j++)
2901	  validate_canon_reg (&XVECEXP (x, i, j), insn);
2902    }
2903
2904  return x;
2905}
2906
2907/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2908   operation (EQ, NE, GT, etc.), follow it back through the hash table and
2909   what values are being compared.
2910
2911   *PARG1 and *PARG2 are updated to contain the rtx representing the values
2912   actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
2913   was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2914   compared to produce cc0.
2915
2916   The return value is the comparison operator and is either the code of
2917   A or the code corresponding to the inverse of the comparison.  */
2918
2919static enum rtx_code
2920find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2921		      machine_mode *pmode1, machine_mode *pmode2)
2922{
2923  rtx arg1, arg2;
2924  hash_set<rtx> *visited = NULL;
2925  /* Set nonzero when we find something of interest.  */
2926  rtx x = NULL;
2927
2928  arg1 = *parg1, arg2 = *parg2;
2929
2930  /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */
2931
2932  while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2933    {
2934      int reverse_code = 0;
2935      struct table_elt *p = 0;
2936
2937      /* Remember state from previous iteration.  */
2938      if (x)
2939	{
2940	  if (!visited)
2941	    visited = new hash_set<rtx>;
2942	  visited->add (x);
2943	  x = 0;
2944	}
2945
2946      /* If arg1 is a COMPARE, extract the comparison arguments from it.
2947	 On machines with CC0, this is the only case that can occur, since
2948	 fold_rtx will return the COMPARE or item being compared with zero
2949	 when given CC0.  */
2950
2951      if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2952	x = arg1;
2953
2954      /* If ARG1 is a comparison operator and CODE is testing for
2955	 STORE_FLAG_VALUE, get the inner arguments.  */
2956
2957      else if (COMPARISON_P (arg1))
2958	{
2959#ifdef FLOAT_STORE_FLAG_VALUE
2960	  REAL_VALUE_TYPE fsfv;
2961#endif
2962
2963	  if (code == NE
2964	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2965		  && code == LT && STORE_FLAG_VALUE == -1)
2966#ifdef FLOAT_STORE_FLAG_VALUE
2967	      || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2968		  && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2969		      REAL_VALUE_NEGATIVE (fsfv)))
2970#endif
2971	      )
2972	    x = arg1;
2973	  else if (code == EQ
2974		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2975		       && code == GE && STORE_FLAG_VALUE == -1)
2976#ifdef FLOAT_STORE_FLAG_VALUE
2977		   || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2978		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2979			   REAL_VALUE_NEGATIVE (fsfv)))
2980#endif
2981		   )
2982	    x = arg1, reverse_code = 1;
2983	}
2984
2985      /* ??? We could also check for
2986
2987	 (ne (and (eq (...) (const_int 1))) (const_int 0))
2988
2989	 and related forms, but let's wait until we see them occurring.  */
2990
2991      if (x == 0)
2992	/* Look up ARG1 in the hash table and see if it has an equivalence
2993	   that lets us see what is being compared.  */
2994	p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2995      if (p)
2996	{
2997	  p = p->first_same_value;
2998
2999	  /* If what we compare is already known to be constant, that is as
3000	     good as it gets.
3001	     We need to break the loop in this case, because otherwise we
3002	     can have an infinite loop when looking at a reg that is known
3003	     to be a constant which is the same as a comparison of a reg
3004	     against zero which appears later in the insn stream, which in
3005	     turn is constant and the same as the comparison of the first reg
3006	     against zero...  */
3007	  if (p->is_const)
3008	    break;
3009	}
3010
3011      for (; p; p = p->next_same_value)
3012	{
3013	  machine_mode inner_mode = GET_MODE (p->exp);
3014#ifdef FLOAT_STORE_FLAG_VALUE
3015	  REAL_VALUE_TYPE fsfv;
3016#endif
3017
3018	  /* If the entry isn't valid, skip it.  */
3019	  if (! exp_equiv_p (p->exp, p->exp, 1, false))
3020	    continue;
3021
3022	  /* If it's a comparison we've used before, skip it.  */
3023	  if (visited && visited->contains (p->exp))
3024	    continue;
3025
3026	  if (GET_CODE (p->exp) == COMPARE
3027	      /* Another possibility is that this machine has a compare insn
3028		 that includes the comparison code.  In that case, ARG1 would
3029		 be equivalent to a comparison operation that would set ARG1 to
3030		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
3031		 ORIG_CODE is the actual comparison being done; if it is an EQ,
3032		 we must reverse ORIG_CODE.  On machine with a negative value
3033		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
3034	      || ((code == NE
3035		   || (code == LT
3036		       && val_signbit_known_set_p (inner_mode,
3037						   STORE_FLAG_VALUE))
3038#ifdef FLOAT_STORE_FLAG_VALUE
3039		   || (code == LT
3040		       && SCALAR_FLOAT_MODE_P (inner_mode)
3041		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3042			   REAL_VALUE_NEGATIVE (fsfv)))
3043#endif
3044		   )
3045		  && COMPARISON_P (p->exp)))
3046	    {
3047	      x = p->exp;
3048	      break;
3049	    }
3050	  else if ((code == EQ
3051		    || (code == GE
3052			&& val_signbit_known_set_p (inner_mode,
3053						    STORE_FLAG_VALUE))
3054#ifdef FLOAT_STORE_FLAG_VALUE
3055		    || (code == GE
3056			&& SCALAR_FLOAT_MODE_P (inner_mode)
3057			&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3058			    REAL_VALUE_NEGATIVE (fsfv)))
3059#endif
3060		    )
3061		   && COMPARISON_P (p->exp))
3062	    {
3063	      reverse_code = 1;
3064	      x = p->exp;
3065	      break;
3066	    }
3067
3068	  /* If this non-trapping address, e.g. fp + constant, the
3069	     equivalent is a better operand since it may let us predict
3070	     the value of the comparison.  */
3071	  else if (!rtx_addr_can_trap_p (p->exp))
3072	    {
3073	      arg1 = p->exp;
3074	      continue;
3075	    }
3076	}
3077
3078      /* If we didn't find a useful equivalence for ARG1, we are done.
3079	 Otherwise, set up for the next iteration.  */
3080      if (x == 0)
3081	break;
3082
3083      /* If we need to reverse the comparison, make sure that is
3084	 possible -- we can't necessarily infer the value of GE from LT
3085	 with floating-point operands.  */
3086      if (reverse_code)
3087	{
3088	  enum rtx_code reversed = reversed_comparison_code (x, NULL);
3089	  if (reversed == UNKNOWN)
3090	    break;
3091	  else
3092	    code = reversed;
3093	}
3094      else if (COMPARISON_P (x))
3095	code = GET_CODE (x);
3096      arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3097    }
3098
3099  /* Return our results.  Return the modes from before fold_rtx
3100     because fold_rtx might produce const_int, and then it's too late.  */
3101  *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3102  *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3103
3104  if (visited)
3105    delete visited;
3106  return code;
3107}
3108
3109/* If X is a nontrivial arithmetic operation on an argument for which
3110   a constant value can be determined, return the result of operating
3111   on that value, as a constant.  Otherwise, return X, possibly with
3112   one or more operands changed to a forward-propagated constant.
3113
3114   If X is a register whose contents are known, we do NOT return
3115   those contents here; equiv_constant is called to perform that task.
3116   For SUBREGs and MEMs, we do that both here and in equiv_constant.
3117
3118   INSN is the insn that we may be modifying.  If it is 0, make a copy
3119   of X before modifying it.  */
3120
3121static rtx
3122fold_rtx (rtx x, rtx_insn *insn)
3123{
3124  enum rtx_code code;
3125  machine_mode mode;
3126  const char *fmt;
3127  int i;
3128  rtx new_rtx = 0;
3129  int changed = 0;
3130  poly_int64 xval;
3131
3132  /* Operands of X.  */
3133  /* Workaround -Wmaybe-uninitialized false positive during
3134     profiledbootstrap by initializing them.  */
3135  rtx folded_arg0 = NULL_RTX;
3136  rtx folded_arg1 = NULL_RTX;
3137
3138  /* Constant equivalents of first three operands of X;
3139     0 when no such equivalent is known.  */
3140  rtx const_arg0;
3141  rtx const_arg1;
3142  rtx const_arg2;
3143
3144  /* The mode of the first operand of X.  We need this for sign and zero
3145     extends.  */
3146  machine_mode mode_arg0;
3147
3148  if (x == 0)
3149    return x;
3150
3151  /* Try to perform some initial simplifications on X.  */
3152  code = GET_CODE (x);
3153  switch (code)
3154    {
3155    case MEM:
3156    case SUBREG:
3157    /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3158       than it would in other contexts.  Basically its mode does not
3159       signify the size of the object read.  That information is carried
3160       by size operand.    If we happen to have a MEM of the appropriate
3161       mode in our tables with a constant value we could simplify the
3162       extraction incorrectly if we allowed substitution of that value
3163       for the MEM.   */
3164    case ZERO_EXTRACT:
3165    case SIGN_EXTRACT:
3166      if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3167        return new_rtx;
3168      return x;
3169
3170    case CONST:
3171    CASE_CONST_ANY:
3172    case SYMBOL_REF:
3173    case LABEL_REF:
3174    case REG:
3175    case PC:
3176      /* No use simplifying an EXPR_LIST
3177	 since they are used only for lists of args
3178	 in a function call's REG_EQUAL note.  */
3179    case EXPR_LIST:
3180      return x;
3181
3182    case CC0:
3183      return prev_insn_cc0;
3184
3185    case ASM_OPERANDS:
3186      if (insn)
3187	{
3188	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3189	    validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3190			     fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3191	}
3192      return x;
3193
3194    case CALL:
3195      if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3196	return x;
3197      break;
3198
3199    /* Anything else goes through the loop below.  */
3200    default:
3201      break;
3202    }
3203
3204  mode = GET_MODE (x);
3205  const_arg0 = 0;
3206  const_arg1 = 0;
3207  const_arg2 = 0;
3208  mode_arg0 = VOIDmode;
3209
3210  /* Try folding our operands.
3211     Then see which ones have constant values known.  */
3212
3213  fmt = GET_RTX_FORMAT (code);
3214  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3215    if (fmt[i] == 'e')
3216      {
3217	rtx folded_arg = XEXP (x, i), const_arg;
3218	machine_mode mode_arg = GET_MODE (folded_arg);
3219
3220	switch (GET_CODE (folded_arg))
3221	  {
3222	  case MEM:
3223	  case REG:
3224	  case SUBREG:
3225	    const_arg = equiv_constant (folded_arg);
3226	    break;
3227
3228	  case CONST:
3229	  CASE_CONST_ANY:
3230	  case SYMBOL_REF:
3231	  case LABEL_REF:
3232	    const_arg = folded_arg;
3233	    break;
3234
3235	  case CC0:
3236	    /* The cc0-user and cc0-setter may be in different blocks if
3237	       the cc0-setter potentially traps.  In that case PREV_INSN_CC0
3238	       will have been cleared as we exited the block with the
3239	       setter.
3240
3241	       While we could potentially track cc0 in this case, it just
3242	       doesn't seem to be worth it given that cc0 targets are not
3243	       terribly common or important these days and trapping math
3244	       is rarely used.  The combination of those two conditions
3245	       necessary to trip this situation is exceedingly rare in the
3246	       real world.  */
3247	    if (!prev_insn_cc0)
3248	      {
3249		const_arg = NULL_RTX;
3250	      }
3251	    else
3252	      {
3253		folded_arg = prev_insn_cc0;
3254		mode_arg = prev_insn_cc0_mode;
3255		const_arg = equiv_constant (folded_arg);
3256	      }
3257	    break;
3258
3259	  default:
3260	    folded_arg = fold_rtx (folded_arg, insn);
3261	    const_arg = equiv_constant (folded_arg);
3262	    break;
3263	  }
3264
3265	/* For the first three operands, see if the operand
3266	   is constant or equivalent to a constant.  */
3267	switch (i)
3268	  {
3269	  case 0:
3270	    folded_arg0 = folded_arg;
3271	    const_arg0 = const_arg;
3272	    mode_arg0 = mode_arg;
3273	    break;
3274	  case 1:
3275	    folded_arg1 = folded_arg;
3276	    const_arg1 = const_arg;
3277	    break;
3278	  case 2:
3279	    const_arg2 = const_arg;
3280	    break;
3281	  }
3282
3283	/* Pick the least expensive of the argument and an equivalent constant
3284	   argument.  */
3285	if (const_arg != 0
3286	    && const_arg != folded_arg
3287	    && (COST_IN (const_arg, mode_arg, code, i)
3288		<= COST_IN (folded_arg, mode_arg, code, i))
3289
3290	    /* It's not safe to substitute the operand of a conversion
3291	       operator with a constant, as the conversion's identity
3292	       depends upon the mode of its operand.  This optimization
3293	       is handled by the call to simplify_unary_operation.  */
3294	    && (GET_RTX_CLASS (code) != RTX_UNARY
3295		|| GET_MODE (const_arg) == mode_arg0
3296		|| (code != ZERO_EXTEND
3297		    && code != SIGN_EXTEND
3298		    && code != TRUNCATE
3299		    && code != FLOAT_TRUNCATE
3300		    && code != FLOAT_EXTEND
3301		    && code != FLOAT
3302		    && code != FIX
3303		    && code != UNSIGNED_FLOAT
3304		    && code != UNSIGNED_FIX)))
3305	  folded_arg = const_arg;
3306
3307	if (folded_arg == XEXP (x, i))
3308	  continue;
3309
3310	if (insn == NULL_RTX && !changed)
3311	  x = copy_rtx (x);
3312	changed = 1;
3313	validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3314      }
3315
3316  if (changed)
3317    {
3318      /* Canonicalize X if necessary, and keep const_argN and folded_argN
3319	 consistent with the order in X.  */
3320      if (canonicalize_change_group (insn, x))
3321	{
3322	  std::swap (const_arg0, const_arg1);
3323	  std::swap (folded_arg0, folded_arg1);
3324	}
3325
3326      apply_change_group ();
3327    }
3328
3329  /* If X is an arithmetic operation, see if we can simplify it.  */
3330
3331  switch (GET_RTX_CLASS (code))
3332    {
3333    case RTX_UNARY:
3334      {
3335	/* We can't simplify extension ops unless we know the
3336	   original mode.  */
3337	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3338	    && mode_arg0 == VOIDmode)
3339	  break;
3340
3341	new_rtx = simplify_unary_operation (code, mode,
3342					    const_arg0 ? const_arg0 : folded_arg0,
3343					    mode_arg0);
3344      }
3345      break;
3346
3347    case RTX_COMPARE:
3348    case RTX_COMM_COMPARE:
3349      /* See what items are actually being compared and set FOLDED_ARG[01]
3350	 to those values and CODE to the actual comparison code.  If any are
3351	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
3352	 do anything if both operands are already known to be constant.  */
3353
3354      /* ??? Vector mode comparisons are not supported yet.  */
3355      if (VECTOR_MODE_P (mode))
3356	break;
3357
3358      if (const_arg0 == 0 || const_arg1 == 0)
3359	{
3360	  struct table_elt *p0, *p1;
3361	  rtx true_rtx, false_rtx;
3362	  machine_mode mode_arg1;
3363
3364	  if (SCALAR_FLOAT_MODE_P (mode))
3365	    {
3366#ifdef FLOAT_STORE_FLAG_VALUE
3367	      true_rtx = (const_double_from_real_value
3368			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
3369#else
3370	      true_rtx = NULL_RTX;
3371#endif
3372	      false_rtx = CONST0_RTX (mode);
3373	    }
3374	  else
3375	    {
3376	      true_rtx = const_true_rtx;
3377	      false_rtx = const0_rtx;
3378	    }
3379
3380	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3381				       &mode_arg0, &mode_arg1);
3382
3383	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3384	     what kinds of things are being compared, so we can't do
3385	     anything with this comparison.  */
3386
3387	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3388	    break;
3389
3390	  const_arg0 = equiv_constant (folded_arg0);
3391	  const_arg1 = equiv_constant (folded_arg1);
3392
3393	  /* If we do not now have two constants being compared, see
3394	     if we can nevertheless deduce some things about the
3395	     comparison.  */
3396	  if (const_arg0 == 0 || const_arg1 == 0)
3397	    {
3398	      if (const_arg1 != NULL)
3399		{
3400		  rtx cheapest_simplification;
3401		  int cheapest_cost;
3402		  rtx simp_result;
3403		  struct table_elt *p;
3404
3405		  /* See if we can find an equivalent of folded_arg0
3406		     that gets us a cheaper expression, possibly a
3407		     constant through simplifications.  */
3408		  p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3409			      mode_arg0);
3410
3411		  if (p != NULL)
3412		    {
3413		      cheapest_simplification = x;
3414		      cheapest_cost = COST (x, mode);
3415
3416		      for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3417			{
3418			  int cost;
3419
3420			  /* If the entry isn't valid, skip it.  */
3421			  if (! exp_equiv_p (p->exp, p->exp, 1, false))
3422			    continue;
3423
3424			  /* Try to simplify using this equivalence.  */
3425			  simp_result
3426			    = simplify_relational_operation (code, mode,
3427							     mode_arg0,
3428							     p->exp,
3429							     const_arg1);
3430
3431			  if (simp_result == NULL)
3432			    continue;
3433
3434			  cost = COST (simp_result, mode);
3435			  if (cost < cheapest_cost)
3436			    {
3437			      cheapest_cost = cost;
3438			      cheapest_simplification = simp_result;
3439			    }
3440			}
3441
3442		      /* If we have a cheaper expression now, use that
3443			 and try folding it further, from the top.  */
3444		      if (cheapest_simplification != x)
3445			return fold_rtx (copy_rtx (cheapest_simplification),
3446					 insn);
3447		    }
3448		}
3449
3450	      /* See if the two operands are the same.  */
3451
3452	      if ((REG_P (folded_arg0)
3453		   && REG_P (folded_arg1)
3454		   && (REG_QTY (REGNO (folded_arg0))
3455		       == REG_QTY (REGNO (folded_arg1))))
3456		  || ((p0 = lookup (folded_arg0,
3457				    SAFE_HASH (folded_arg0, mode_arg0),
3458				    mode_arg0))
3459		      && (p1 = lookup (folded_arg1,
3460				       SAFE_HASH (folded_arg1, mode_arg0),
3461				       mode_arg0))
3462		      && p0->first_same_value == p1->first_same_value))
3463		folded_arg1 = folded_arg0;
3464
3465	      /* If FOLDED_ARG0 is a register, see if the comparison we are
3466		 doing now is either the same as we did before or the reverse
3467		 (we only check the reverse if not floating-point).  */
3468	      else if (REG_P (folded_arg0))
3469		{
3470		  int qty = REG_QTY (REGNO (folded_arg0));
3471
3472		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3473		    {
3474		      struct qty_table_elem *ent = &qty_table[qty];
3475
3476		      if ((comparison_dominates_p (ent->comparison_code, code)
3477			   || (! FLOAT_MODE_P (mode_arg0)
3478			       && comparison_dominates_p (ent->comparison_code,
3479						          reverse_condition (code))))
3480			  && (rtx_equal_p (ent->comparison_const, folded_arg1)
3481			      || (const_arg1
3482				  && rtx_equal_p (ent->comparison_const,
3483						  const_arg1))
3484			      || (REG_P (folded_arg1)
3485				  && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3486			{
3487			  if (comparison_dominates_p (ent->comparison_code, code))
3488			    {
3489			      if (true_rtx)
3490				return true_rtx;
3491			      else
3492				break;
3493			    }
3494			  else
3495			    return false_rtx;
3496			}
3497		    }
3498		}
3499	    }
3500	}
3501
3502      /* If we are comparing against zero, see if the first operand is
3503	 equivalent to an IOR with a constant.  If so, we may be able to
3504	 determine the result of this comparison.  */
3505      if (const_arg1 == const0_rtx && !const_arg0)
3506	{
3507	  rtx y = lookup_as_function (folded_arg0, IOR);
3508	  rtx inner_const;
3509
3510	  if (y != 0
3511	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3512	      && CONST_INT_P (inner_const)
3513	      && INTVAL (inner_const) != 0)
3514	    folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3515	}
3516
3517      {
3518	rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3519	rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3520	new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3521						 op0, op1);
3522      }
3523      break;
3524
3525    case RTX_BIN_ARITH:
3526    case RTX_COMM_ARITH:
3527      switch (code)
3528	{
3529	case PLUS:
3530	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
3531	     with that LABEL_REF as its second operand.  If so, the result is
3532	     the first operand of that MINUS.  This handles switches with an
3533	     ADDR_DIFF_VEC table.  */
3534	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3535	    {
3536	      rtx y
3537		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
3538		: lookup_as_function (folded_arg0, MINUS);
3539
3540	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3541		  && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
3542		return XEXP (y, 0);
3543
3544	      /* Now try for a CONST of a MINUS like the above.  */
3545	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3546			: lookup_as_function (folded_arg0, CONST))) != 0
3547		  && GET_CODE (XEXP (y, 0)) == MINUS
3548		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3549		  && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
3550		return XEXP (XEXP (y, 0), 0);
3551	    }
3552
3553	  /* Likewise if the operands are in the other order.  */
3554	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3555	    {
3556	      rtx y
3557		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
3558		: lookup_as_function (folded_arg1, MINUS);
3559
3560	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3561		  && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
3562		return XEXP (y, 0);
3563
3564	      /* Now try for a CONST of a MINUS like the above.  */
3565	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3566			: lookup_as_function (folded_arg1, CONST))) != 0
3567		  && GET_CODE (XEXP (y, 0)) == MINUS
3568		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3569		  && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
3570		return XEXP (XEXP (y, 0), 0);
3571	    }
3572
3573	  /* If second operand is a register equivalent to a negative
3574	     CONST_INT, see if we can find a register equivalent to the
3575	     positive constant.  Make a MINUS if so.  Don't do this for
3576	     a non-negative constant since we might then alternate between
3577	     choosing positive and negative constants.  Having the positive
3578	     constant previously-used is the more common case.  Be sure
3579	     the resulting constant is non-negative; if const_arg1 were
3580	     the smallest negative number this would overflow: depending
3581	     on the mode, this would either just be the same value (and
3582	     hence not save anything) or be incorrect.  */
3583	  if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3584	      && INTVAL (const_arg1) < 0
3585	      /* This used to test
3586
3587	         -INTVAL (const_arg1) >= 0
3588
3589		 But The Sun V5.0 compilers mis-compiled that test.  So
3590		 instead we test for the problematic value in a more direct
3591		 manner and hope the Sun compilers get it correct.  */
3592	      && INTVAL (const_arg1) !=
3593	        (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
3594	      && REG_P (folded_arg1))
3595	    {
3596	      rtx new_const = GEN_INT (-INTVAL (const_arg1));
3597	      struct table_elt *p
3598		= lookup (new_const, SAFE_HASH (new_const, mode), mode);
3599
3600	      if (p)
3601		for (p = p->first_same_value; p; p = p->next_same_value)
3602		  if (REG_P (p->exp))
3603		    return simplify_gen_binary (MINUS, mode, folded_arg0,
3604						canon_reg (p->exp, NULL));
3605	    }
3606	  goto from_plus;
3607
3608	case MINUS:
3609	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3610	     If so, produce (PLUS Z C2-C).  */
3611	  if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval))
3612	    {
3613	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3614	      if (y && poly_int_rtx_p (XEXP (y, 1)))
3615		return fold_rtx (plus_constant (mode, copy_rtx (y), -xval),
3616				 NULL);
3617	    }
3618
3619	  /* Fall through.  */
3620
3621	from_plus:
3622	case SMIN:    case SMAX:      case UMIN:    case UMAX:
3623	case IOR:     case AND:       case XOR:
3624	case MULT:
3625	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
3626	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3627	     is known to be of similar form, we may be able to replace the
3628	     operation with a combined operation.  This may eliminate the
3629	     intermediate operation if every use is simplified in this way.
3630	     Note that the similar optimization done by combine.c only works
3631	     if the intermediate operation's result has only one reference.  */
3632
3633	  if (REG_P (folded_arg0)
3634	      && const_arg1 && CONST_INT_P (const_arg1))
3635	    {
3636	      int is_shift
3637		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3638	      rtx y, inner_const, new_const;
3639	      rtx canon_const_arg1 = const_arg1;
3640	      enum rtx_code associate_code;
3641
3642	      if (is_shift
3643		  && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode)
3644		      || INTVAL (const_arg1) < 0))
3645		{
3646		  if (SHIFT_COUNT_TRUNCATED)
3647		    canon_const_arg1 = gen_int_shift_amount
3648		      (mode, (INTVAL (const_arg1)
3649			      & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3650		  else
3651		    break;
3652		}
3653
3654	      y = lookup_as_function (folded_arg0, code);
3655	      if (y == 0)
3656		break;
3657
3658	      /* If we have compiled a statement like
3659		 "if (x == (x & mask1))", and now are looking at
3660		 "x & mask2", we will have a case where the first operand
3661		 of Y is the same as our first operand.  Unless we detect
3662		 this case, an infinite loop will result.  */
3663	      if (XEXP (y, 0) == folded_arg0)
3664		break;
3665
3666	      inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3667	      if (!inner_const || !CONST_INT_P (inner_const))
3668		break;
3669
3670	      /* Don't associate these operations if they are a PLUS with the
3671		 same constant and it is a power of two.  These might be doable
3672		 with a pre- or post-increment.  Similarly for two subtracts of
3673		 identical powers of two with post decrement.  */
3674
3675	      if (code == PLUS && const_arg1 == inner_const
3676		  && ((HAVE_PRE_INCREMENT
3677			  && pow2p_hwi (INTVAL (const_arg1)))
3678		      || (HAVE_POST_INCREMENT
3679			  && pow2p_hwi (INTVAL (const_arg1)))
3680		      || (HAVE_PRE_DECREMENT
3681			  && pow2p_hwi (- INTVAL (const_arg1)))
3682		      || (HAVE_POST_DECREMENT
3683			  && pow2p_hwi (- INTVAL (const_arg1)))))
3684		break;
3685
3686	      /* ??? Vector mode shifts by scalar
3687		 shift operand are not supported yet.  */
3688	      if (is_shift && VECTOR_MODE_P (mode))
3689                break;
3690
3691	      if (is_shift
3692		  && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode)
3693		      || INTVAL (inner_const) < 0))
3694		{
3695		  if (SHIFT_COUNT_TRUNCATED)
3696		    inner_const = gen_int_shift_amount
3697		      (mode, (INTVAL (inner_const)
3698			      & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3699		  else
3700		    break;
3701		}
3702
3703	      /* Compute the code used to compose the constants.  For example,
3704		 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS.  */
3705
3706	      associate_code = (is_shift || code == MINUS ? PLUS : code);
3707
3708	      new_const = simplify_binary_operation (associate_code, mode,
3709						     canon_const_arg1,
3710						     inner_const);
3711
3712	      if (new_const == 0)
3713		break;
3714
3715	      /* If we are associating shift operations, don't let this
3716		 produce a shift of the size of the object or larger.
3717		 This could occur when we follow a sign-extend by a right
3718		 shift on a machine that does a sign-extend as a pair
3719		 of shifts.  */
3720
3721	      if (is_shift
3722		  && CONST_INT_P (new_const)
3723		  && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode))
3724		{
3725		  /* As an exception, we can turn an ASHIFTRT of this
3726		     form into a shift of the number of bits - 1.  */
3727		  if (code == ASHIFTRT)
3728		    new_const = gen_int_shift_amount
3729		      (mode, GET_MODE_UNIT_BITSIZE (mode) - 1);
3730		  else if (!side_effects_p (XEXP (y, 0)))
3731		    return CONST0_RTX (mode);
3732		  else
3733		    break;
3734		}
3735
3736	      y = copy_rtx (XEXP (y, 0));
3737
3738	      /* If Y contains our first operand (the most common way this
3739		 can happen is if Y is a MEM), we would do into an infinite
3740		 loop if we tried to fold it.  So don't in that case.  */
3741
3742	      if (! reg_mentioned_p (folded_arg0, y))
3743		y = fold_rtx (y, insn);
3744
3745	      return simplify_gen_binary (code, mode, y, new_const);
3746	    }
3747	  break;
3748
3749	case DIV:       case UDIV:
3750	  /* ??? The associative optimization performed immediately above is
3751	     also possible for DIV and UDIV using associate_code of MULT.
3752	     However, we would need extra code to verify that the
3753	     multiplication does not overflow, that is, there is no overflow
3754	     in the calculation of new_const.  */
3755	  break;
3756
3757	default:
3758	  break;
3759	}
3760
3761      new_rtx = simplify_binary_operation (code, mode,
3762				       const_arg0 ? const_arg0 : folded_arg0,
3763				       const_arg1 ? const_arg1 : folded_arg1);
3764      break;
3765
3766    case RTX_OBJ:
3767      /* (lo_sum (high X) X) is simply X.  */
3768      if (code == LO_SUM && const_arg0 != 0
3769	  && GET_CODE (const_arg0) == HIGH
3770	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3771	return const_arg1;
3772      break;
3773
3774    case RTX_TERNARY:
3775    case RTX_BITFIELD_OPS:
3776      new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3777					const_arg0 ? const_arg0 : folded_arg0,
3778					const_arg1 ? const_arg1 : folded_arg1,
3779					const_arg2 ? const_arg2 : XEXP (x, 2));
3780      break;
3781
3782    default:
3783      break;
3784    }
3785
3786  return new_rtx ? new_rtx : x;
3787}
3788
3789/* Return a constant value currently equivalent to X.
3790   Return 0 if we don't know one.  */
3791
3792static rtx
3793equiv_constant (rtx x)
3794{
3795  if (REG_P (x)
3796      && REGNO_QTY_VALID_P (REGNO (x)))
3797    {
3798      int x_q = REG_QTY (REGNO (x));
3799      struct qty_table_elem *x_ent = &qty_table[x_q];
3800
3801      if (x_ent->const_rtx)
3802	x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3803    }
3804
3805  if (x == 0 || CONSTANT_P (x))
3806    return x;
3807
3808  if (GET_CODE (x) == SUBREG)
3809    {
3810      machine_mode mode = GET_MODE (x);
3811      machine_mode imode = GET_MODE (SUBREG_REG (x));
3812      rtx new_rtx;
3813
3814      /* See if we previously assigned a constant value to this SUBREG.  */
3815      if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3816	  || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3817	  || (NUM_POLY_INT_COEFFS > 1
3818	      && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
3819          || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3820          || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3821        return new_rtx;
3822
3823      /* If we didn't and if doing so makes sense, see if we previously
3824	 assigned a constant value to the enclosing word mode SUBREG.  */
3825      if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)
3826	  && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode)))
3827	{
3828	  poly_int64 byte = (SUBREG_BYTE (x)
3829			     - subreg_lowpart_offset (mode, word_mode));
3830	  if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD))
3831	    {
3832	      rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3833	      new_rtx = lookup_as_function (y, CONST_INT);
3834	      if (new_rtx)
3835		return gen_lowpart (mode, new_rtx);
3836	    }
3837	}
3838
3839      /* Otherwise see if we already have a constant for the inner REG,
3840	 and if that is enough to calculate an equivalent constant for
3841	 the subreg.  Note that the upper bits of paradoxical subregs
3842	 are undefined, so they cannot be said to equal anything.  */
3843      if (REG_P (SUBREG_REG (x))
3844	  && !paradoxical_subreg_p (x)
3845	  && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3846        return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3847
3848      return 0;
3849    }
3850
3851  /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3852     the hash table in case its value was seen before.  */
3853
3854  if (MEM_P (x))
3855    {
3856      struct table_elt *elt;
3857
3858      x = avoid_constant_pool_reference (x);
3859      if (CONSTANT_P (x))
3860	return x;
3861
3862      elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3863      if (elt == 0)
3864	return 0;
3865
3866      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3867	if (elt->is_const && CONSTANT_P (elt->exp))
3868	  return elt->exp;
3869    }
3870
3871  return 0;
3872}
3873
3874/* Given INSN, a jump insn, TAKEN indicates if we are following the
3875   "taken" branch.
3876
3877   In certain cases, this can cause us to add an equivalence.  For example,
3878   if we are following the taken case of
3879	if (i == 2)
3880   we can add the fact that `i' and '2' are now equivalent.
3881
3882   In any case, we can record that this comparison was passed.  If the same
3883   comparison is seen later, we will know its value.  */
3884
3885static void
3886record_jump_equiv (rtx_insn *insn, bool taken)
3887{
3888  int cond_known_true;
3889  rtx op0, op1;
3890  rtx set;
3891  machine_mode mode, mode0, mode1;
3892  int reversed_nonequality = 0;
3893  enum rtx_code code;
3894
3895  /* Ensure this is the right kind of insn.  */
3896  gcc_assert (any_condjump_p (insn));
3897
3898  set = pc_set (insn);
3899
3900  /* See if this jump condition is known true or false.  */
3901  if (taken)
3902    cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3903  else
3904    cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3905
3906  /* Get the type of comparison being done and the operands being compared.
3907     If we had to reverse a non-equality condition, record that fact so we
3908     know that it isn't valid for floating-point.  */
3909  code = GET_CODE (XEXP (SET_SRC (set), 0));
3910  op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3911  op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3912
3913  /* On a cc0 target the cc0-setter and cc0-user may end up in different
3914     blocks.  When that happens the tracking of the cc0-setter via
3915     PREV_INSN_CC0 is spoiled.  That means that fold_rtx may return
3916     NULL_RTX.  In those cases, there's nothing to record.  */
3917  if (op0 == NULL_RTX || op1 == NULL_RTX)
3918    return;
3919
3920  code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3921  if (! cond_known_true)
3922    {
3923      code = reversed_comparison_code_parts (code, op0, op1, insn);
3924
3925      /* Don't remember if we can't find the inverse.  */
3926      if (code == UNKNOWN)
3927	return;
3928    }
3929
3930  /* The mode is the mode of the non-constant.  */
3931  mode = mode0;
3932  if (mode1 != VOIDmode)
3933    mode = mode1;
3934
3935  record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3936}
3937
3938/* Yet another form of subreg creation.  In this case, we want something in
3939   MODE, and we should assume OP has MODE iff it is naturally modeless.  */
3940
3941static rtx
3942record_jump_cond_subreg (machine_mode mode, rtx op)
3943{
3944  machine_mode op_mode = GET_MODE (op);
3945  if (op_mode == mode || op_mode == VOIDmode)
3946    return op;
3947  return lowpart_subreg (mode, op, op_mode);
3948}
3949
3950/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3951   REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3952   Make any useful entries we can with that information.  Called from
3953   above function and called recursively.  */
3954
3955static void
3956record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3957		  rtx op1, int reversed_nonequality)
3958{
3959  unsigned op0_hash, op1_hash;
3960  int op0_in_memory, op1_in_memory;
3961  struct table_elt *op0_elt, *op1_elt;
3962
3963  /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3964     we know that they are also equal in the smaller mode (this is also
3965     true for all smaller modes whether or not there is a SUBREG, but
3966     is not worth testing for with no SUBREG).  */
3967
3968  /* Note that GET_MODE (op0) may not equal MODE.  */
3969  if (code == EQ && paradoxical_subreg_p (op0))
3970    {
3971      machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3972      rtx tem = record_jump_cond_subreg (inner_mode, op1);
3973      if (tem)
3974	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3975			  reversed_nonequality);
3976    }
3977
3978  if (code == EQ && paradoxical_subreg_p (op1))
3979    {
3980      machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3981      rtx tem = record_jump_cond_subreg (inner_mode, op0);
3982      if (tem)
3983	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3984			  reversed_nonequality);
3985    }
3986
3987  /* Similarly, if this is an NE comparison, and either is a SUBREG
3988     making a smaller mode, we know the whole thing is also NE.  */
3989
3990  /* Note that GET_MODE (op0) may not equal MODE;
3991     if we test MODE instead, we can get an infinite recursion
3992     alternating between two modes each wider than MODE.  */
3993
3994  if (code == NE
3995      && partial_subreg_p (op0)
3996      && subreg_lowpart_p (op0))
3997    {
3998      machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3999      rtx tem = record_jump_cond_subreg (inner_mode, op1);
4000      if (tem)
4001	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4002			  reversed_nonequality);
4003    }
4004
4005  if (code == NE
4006      && partial_subreg_p (op1)
4007      && subreg_lowpart_p (op1))
4008    {
4009      machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4010      rtx tem = record_jump_cond_subreg (inner_mode, op0);
4011      if (tem)
4012	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4013			  reversed_nonequality);
4014    }
4015
4016  /* Hash both operands.  */
4017
4018  do_not_record = 0;
4019  hash_arg_in_memory = 0;
4020  op0_hash = HASH (op0, mode);
4021  op0_in_memory = hash_arg_in_memory;
4022
4023  if (do_not_record)
4024    return;
4025
4026  do_not_record = 0;
4027  hash_arg_in_memory = 0;
4028  op1_hash = HASH (op1, mode);
4029  op1_in_memory = hash_arg_in_memory;
4030
4031  if (do_not_record)
4032    return;
4033
4034  /* Look up both operands.  */
4035  op0_elt = lookup (op0, op0_hash, mode);
4036  op1_elt = lookup (op1, op1_hash, mode);
4037
4038  /* If both operands are already equivalent or if they are not in the
4039     table but are identical, do nothing.  */
4040  if ((op0_elt != 0 && op1_elt != 0
4041       && op0_elt->first_same_value == op1_elt->first_same_value)
4042      || op0 == op1 || rtx_equal_p (op0, op1))
4043    return;
4044
4045  /* If we aren't setting two things equal all we can do is save this
4046     comparison.   Similarly if this is floating-point.  In the latter
4047     case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4048     If we record the equality, we might inadvertently delete code
4049     whose intent was to change -0 to +0.  */
4050
4051  if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4052    {
4053      struct qty_table_elem *ent;
4054      int qty;
4055
4056      /* If we reversed a floating-point comparison, if OP0 is not a
4057	 register, or if OP1 is neither a register or constant, we can't
4058	 do anything.  */
4059
4060      if (!REG_P (op1))
4061	op1 = equiv_constant (op1);
4062
4063      if ((reversed_nonequality && FLOAT_MODE_P (mode))
4064	  || !REG_P (op0) || op1 == 0)
4065	return;
4066
4067      /* Put OP0 in the hash table if it isn't already.  This gives it a
4068	 new quantity number.  */
4069      if (op0_elt == 0)
4070	{
4071	  if (insert_regs (op0, NULL, 0))
4072	    {
4073	      rehash_using_reg (op0);
4074	      op0_hash = HASH (op0, mode);
4075
4076	      /* If OP0 is contained in OP1, this changes its hash code
4077		 as well.  Faster to rehash than to check, except
4078		 for the simple case of a constant.  */
4079	      if (! CONSTANT_P (op1))
4080		op1_hash = HASH (op1,mode);
4081	    }
4082
4083	  op0_elt = insert (op0, NULL, op0_hash, mode);
4084	  op0_elt->in_memory = op0_in_memory;
4085	}
4086
4087      qty = REG_QTY (REGNO (op0));
4088      ent = &qty_table[qty];
4089
4090      ent->comparison_code = code;
4091      if (REG_P (op1))
4092	{
4093	  /* Look it up again--in case op0 and op1 are the same.  */
4094	  op1_elt = lookup (op1, op1_hash, mode);
4095
4096	  /* Put OP1 in the hash table so it gets a new quantity number.  */
4097	  if (op1_elt == 0)
4098	    {
4099	      if (insert_regs (op1, NULL, 0))
4100		{
4101		  rehash_using_reg (op1);
4102		  op1_hash = HASH (op1, mode);
4103		}
4104
4105	      op1_elt = insert (op1, NULL, op1_hash, mode);
4106	      op1_elt->in_memory = op1_in_memory;
4107	    }
4108
4109	  ent->comparison_const = NULL_RTX;
4110	  ent->comparison_qty = REG_QTY (REGNO (op1));
4111	}
4112      else
4113	{
4114	  ent->comparison_const = op1;
4115	  ent->comparison_qty = -1;
4116	}
4117
4118      return;
4119    }
4120
4121  /* If either side is still missing an equivalence, make it now,
4122     then merge the equivalences.  */
4123
4124  if (op0_elt == 0)
4125    {
4126      if (insert_regs (op0, NULL, 0))
4127	{
4128	  rehash_using_reg (op0);
4129	  op0_hash = HASH (op0, mode);
4130	}
4131
4132      op0_elt = insert (op0, NULL, op0_hash, mode);
4133      op0_elt->in_memory = op0_in_memory;
4134    }
4135
4136  if (op1_elt == 0)
4137    {
4138      if (insert_regs (op1, NULL, 0))
4139	{
4140	  rehash_using_reg (op1);
4141	  op1_hash = HASH (op1, mode);
4142	}
4143
4144      op1_elt = insert (op1, NULL, op1_hash, mode);
4145      op1_elt->in_memory = op1_in_memory;
4146    }
4147
4148  merge_equiv_classes (op0_elt, op1_elt);
4149}
4150
4151/* CSE processing for one instruction.
4152
4153   Most "true" common subexpressions are mostly optimized away in GIMPLE,
4154   but the few that "leak through" are cleaned up by cse_insn, and complex
4155   addressing modes are often formed here.
4156
4157   The main function is cse_insn, and between here and that function
4158   a couple of helper functions is defined to keep the size of cse_insn
4159   within reasonable proportions.
4160
4161   Data is shared between the main and helper functions via STRUCT SET,
4162   that contains all data related for every set in the instruction that
4163   is being processed.
4164
4165   Note that cse_main processes all sets in the instruction.  Most
4166   passes in GCC only process simple SET insns or single_set insns, but
4167   CSE processes insns with multiple sets as well.  */
4168
4169/* Data on one SET contained in the instruction.  */
4170
4171struct set
4172{
4173  /* The SET rtx itself.  */
4174  rtx rtl;
4175  /* The SET_SRC of the rtx (the original value, if it is changing).  */
4176  rtx src;
4177  /* The hash-table element for the SET_SRC of the SET.  */
4178  struct table_elt *src_elt;
4179  /* Hash value for the SET_SRC.  */
4180  unsigned src_hash;
4181  /* Hash value for the SET_DEST.  */
4182  unsigned dest_hash;
4183  /* The SET_DEST, with SUBREG, etc., stripped.  */
4184  rtx inner_dest;
4185  /* Nonzero if the SET_SRC is in memory.  */
4186  char src_in_memory;
4187  /* Nonzero if the SET_SRC contains something
4188     whose value cannot be predicted and understood.  */
4189  char src_volatile;
4190  /* Original machine mode, in case it becomes a CONST_INT.
4191     The size of this field should match the size of the mode
4192     field of struct rtx_def (see rtl.h).  */
4193  ENUM_BITFIELD(machine_mode) mode : 8;
4194  /* Hash value of constant equivalent for SET_SRC.  */
4195  unsigned src_const_hash;
4196  /* A constant equivalent for SET_SRC, if any.  */
4197  rtx src_const;
4198  /* Table entry for constant equivalent for SET_SRC, if any.  */
4199  struct table_elt *src_const_elt;
4200  /* Table entry for the destination address.  */
4201  struct table_elt *dest_addr_elt;
4202};
4203
4204/* Special handling for (set REG0 REG1) where REG0 is the
4205   "cheapest", cheaper than REG1.  After cse, REG1 will probably not
4206   be used in the sequel, so (if easily done) change this insn to
4207   (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4208   that computed their value.  Then REG1 will become a dead store
4209   and won't cloud the situation for later optimizations.
4210
4211   Do not make this change if REG1 is a hard register, because it will
4212   then be used in the sequel and we may be changing a two-operand insn
4213   into a three-operand insn.
4214
4215   This is the last transformation that cse_insn will try to do.  */
4216
4217static void
4218try_back_substitute_reg (rtx set, rtx_insn *insn)
4219{
4220  rtx dest = SET_DEST (set);
4221  rtx src = SET_SRC (set);
4222
4223  if (REG_P (dest)
4224      && REG_P (src) && ! HARD_REGISTER_P (src)
4225      && REGNO_QTY_VALID_P (REGNO (src)))
4226    {
4227      int src_q = REG_QTY (REGNO (src));
4228      struct qty_table_elem *src_ent = &qty_table[src_q];
4229
4230      if (src_ent->first_reg == REGNO (dest))
4231	{
4232	  /* Scan for the previous nonnote insn, but stop at a basic
4233	     block boundary.  */
4234	  rtx_insn *prev = insn;
4235	  rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4236	  do
4237	    {
4238	      prev = PREV_INSN (prev);
4239	    }
4240	  while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4241
4242	  /* Do not swap the registers around if the previous instruction
4243	     attaches a REG_EQUIV note to REG1.
4244
4245	     ??? It's not entirely clear whether we can transfer a REG_EQUIV
4246	     from the pseudo that originally shadowed an incoming argument
4247	     to another register.  Some uses of REG_EQUIV might rely on it
4248	     being attached to REG1 rather than REG2.
4249
4250	     This section previously turned the REG_EQUIV into a REG_EQUAL
4251	     note.  We cannot do that because REG_EQUIV may provide an
4252	     uninitialized stack slot when REG_PARM_STACK_SPACE is used.  */
4253	  if (NONJUMP_INSN_P (prev)
4254	      && GET_CODE (PATTERN (prev)) == SET
4255	      && SET_DEST (PATTERN (prev)) == src
4256	      && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4257	    {
4258	      rtx note;
4259
4260	      validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4261	      validate_change (insn, &SET_DEST (set), src, 1);
4262	      validate_change (insn, &SET_SRC (set), dest, 1);
4263	      apply_change_group ();
4264
4265	      /* If INSN has a REG_EQUAL note, and this note mentions
4266		 REG0, then we must delete it, because the value in
4267		 REG0 has changed.  If the note's value is REG1, we must
4268		 also delete it because that is now this insn's dest.  */
4269	      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4270	      if (note != 0
4271		  && (reg_mentioned_p (dest, XEXP (note, 0))
4272		      || rtx_equal_p (src, XEXP (note, 0))))
4273		remove_note (insn, note);
4274
4275	      /* If INSN has a REG_ARGS_SIZE note, move it to PREV.  */
4276	      note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4277	      if (note != 0)
4278		{
4279		  remove_note (insn, note);
4280		  gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX));
4281		  set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0));
4282		}
4283	    }
4284	}
4285    }
4286}
4287
4288/* Record all the SETs in this instruction into SETS_PTR,
4289   and return the number of recorded sets.  */
4290static int
4291find_sets_in_insn (rtx_insn *insn, struct set **psets)
4292{
4293  struct set *sets = *psets;
4294  int n_sets = 0;
4295  rtx x = PATTERN (insn);
4296
4297  if (GET_CODE (x) == SET)
4298    {
4299      /* Ignore SETs that are unconditional jumps.
4300	 They never need cse processing, so this does not hurt.
4301	 The reason is not efficiency but rather
4302	 so that we can test at the end for instructions
4303	 that have been simplified to unconditional jumps
4304	 and not be misled by unchanged instructions
4305	 that were unconditional jumps to begin with.  */
4306      if (SET_DEST (x) == pc_rtx
4307	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
4308	;
4309      /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4310	 The hard function value register is used only once, to copy to
4311	 someplace else, so it isn't worth cse'ing.  */
4312      else if (GET_CODE (SET_SRC (x)) == CALL)
4313	;
4314      else
4315	sets[n_sets++].rtl = x;
4316    }
4317  else if (GET_CODE (x) == PARALLEL)
4318    {
4319      int i, lim = XVECLEN (x, 0);
4320
4321      /* Go over the expressions of the PARALLEL in forward order, to
4322	 put them in the same order in the SETS array.  */
4323      for (i = 0; i < lim; i++)
4324	{
4325	  rtx y = XVECEXP (x, 0, i);
4326	  if (GET_CODE (y) == SET)
4327	    {
4328	      /* As above, we ignore unconditional jumps and call-insns and
4329		 ignore the result of apply_change_group.  */
4330	      if (SET_DEST (y) == pc_rtx
4331		  && GET_CODE (SET_SRC (y)) == LABEL_REF)
4332		;
4333	      else if (GET_CODE (SET_SRC (y)) == CALL)
4334		;
4335	      else
4336		sets[n_sets++].rtl = y;
4337	    }
4338	}
4339    }
4340
4341  return n_sets;
4342}
4343
4344/* Subroutine of canonicalize_insn.  X is an ASM_OPERANDS in INSN.  */
4345
4346static void
4347canon_asm_operands (rtx x, rtx_insn *insn)
4348{
4349  for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4350    {
4351      rtx input = ASM_OPERANDS_INPUT (x, i);
4352      if (!(REG_P (input) && HARD_REGISTER_P (input)))
4353	{
4354	  input = canon_reg (input, insn);
4355	  validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4356	}
4357    }
4358}
4359
4360/* Where possible, substitute every register reference in the N_SETS
4361   number of SETS in INSN with the canonical register.
4362
4363   Register canonicalization propagatest the earliest register (i.e.
4364   one that is set before INSN) with the same value.  This is a very
4365   useful, simple form of CSE, to clean up warts from expanding GIMPLE
4366   to RTL.  For instance, a CONST for an address is usually expanded
4367   multiple times to loads into different registers, thus creating many
4368   subexpressions of the form:
4369
4370   (set (reg1) (some_const))
4371   (set (mem (... reg1 ...) (thing)))
4372   (set (reg2) (some_const))
4373   (set (mem (... reg2 ...) (thing)))
4374
4375   After canonicalizing, the code takes the following form:
4376
4377   (set (reg1) (some_const))
4378   (set (mem (... reg1 ...) (thing)))
4379   (set (reg2) (some_const))
4380   (set (mem (... reg1 ...) (thing)))
4381
4382   The set to reg2 is now trivially dead, and the memory reference (or
4383   address, or whatever) may be a candidate for further CSEing.
4384
4385   In this function, the result of apply_change_group can be ignored;
4386   see canon_reg.  */
4387
4388static void
4389canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4390{
4391  struct set *sets = *psets;
4392  rtx tem;
4393  rtx x = PATTERN (insn);
4394  int i;
4395
4396  if (CALL_P (insn))
4397    {
4398      for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4399	if (GET_CODE (XEXP (tem, 0)) != SET)
4400	  XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4401    }
4402
4403  if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4404    {
4405      canon_reg (SET_SRC (x), insn);
4406      apply_change_group ();
4407      fold_rtx (SET_SRC (x), insn);
4408    }
4409  else if (GET_CODE (x) == CLOBBER)
4410    {
4411      /* If we clobber memory, canon the address.
4412	 This does nothing when a register is clobbered
4413	 because we have already invalidated the reg.  */
4414      if (MEM_P (XEXP (x, 0)))
4415	canon_reg (XEXP (x, 0), insn);
4416    }
4417  else if (GET_CODE (x) == USE
4418	   && ! (REG_P (XEXP (x, 0))
4419		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4420    /* Canonicalize a USE of a pseudo register or memory location.  */
4421    canon_reg (x, insn);
4422  else if (GET_CODE (x) == ASM_OPERANDS)
4423    canon_asm_operands (x, insn);
4424  else if (GET_CODE (x) == CALL)
4425    {
4426      canon_reg (x, insn);
4427      apply_change_group ();
4428      fold_rtx (x, insn);
4429    }
4430  else if (DEBUG_INSN_P (insn))
4431    canon_reg (PATTERN (insn), insn);
4432  else if (GET_CODE (x) == PARALLEL)
4433    {
4434      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4435	{
4436	  rtx y = XVECEXP (x, 0, i);
4437	  if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4438	    {
4439	      canon_reg (SET_SRC (y), insn);
4440	      apply_change_group ();
4441	      fold_rtx (SET_SRC (y), insn);
4442	    }
4443	  else if (GET_CODE (y) == CLOBBER)
4444	    {
4445	      if (MEM_P (XEXP (y, 0)))
4446		canon_reg (XEXP (y, 0), insn);
4447	    }
4448	  else if (GET_CODE (y) == USE
4449		   && ! (REG_P (XEXP (y, 0))
4450			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4451	    canon_reg (y, insn);
4452	  else if (GET_CODE (y) == ASM_OPERANDS)
4453	    canon_asm_operands (y, insn);
4454	  else if (GET_CODE (y) == CALL)
4455	    {
4456	      canon_reg (y, insn);
4457	      apply_change_group ();
4458	      fold_rtx (y, insn);
4459	    }
4460	}
4461    }
4462
4463  if (n_sets == 1 && REG_NOTES (insn) != 0
4464      && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4465    {
4466      /* We potentially will process this insn many times.  Therefore,
4467	 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4468	 unique set in INSN.
4469
4470	 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4471	 because cse_insn handles those specially.  */
4472      if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4473	  && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4474	remove_note (insn, tem);
4475      else
4476	{
4477	  canon_reg (XEXP (tem, 0), insn);
4478	  apply_change_group ();
4479	  XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4480	  df_notes_rescan (insn);
4481	}
4482    }
4483
4484  /* Canonicalize sources and addresses of destinations.
4485     We do this in a separate pass to avoid problems when a MATCH_DUP is
4486     present in the insn pattern.  In that case, we want to ensure that
4487     we don't break the duplicate nature of the pattern.  So we will replace
4488     both operands at the same time.  Otherwise, we would fail to find an
4489     equivalent substitution in the loop calling validate_change below.
4490
4491     We used to suppress canonicalization of DEST if it appears in SRC,
4492     but we don't do this any more.  */
4493
4494  for (i = 0; i < n_sets; i++)
4495    {
4496      rtx dest = SET_DEST (sets[i].rtl);
4497      rtx src = SET_SRC (sets[i].rtl);
4498      rtx new_rtx = canon_reg (src, insn);
4499
4500      validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4501
4502      if (GET_CODE (dest) == ZERO_EXTRACT)
4503	{
4504	  validate_change (insn, &XEXP (dest, 1),
4505			   canon_reg (XEXP (dest, 1), insn), 1);
4506	  validate_change (insn, &XEXP (dest, 2),
4507			   canon_reg (XEXP (dest, 2), insn), 1);
4508	}
4509
4510      while (GET_CODE (dest) == SUBREG
4511	     || GET_CODE (dest) == ZERO_EXTRACT
4512	     || GET_CODE (dest) == STRICT_LOW_PART)
4513	dest = XEXP (dest, 0);
4514
4515      if (MEM_P (dest))
4516	canon_reg (dest, insn);
4517    }
4518
4519  /* Now that we have done all the replacements, we can apply the change
4520     group and see if they all work.  Note that this will cause some
4521     canonicalizations that would have worked individually not to be applied
4522     because some other canonicalization didn't work, but this should not
4523     occur often.
4524
4525     The result of apply_change_group can be ignored; see canon_reg.  */
4526
4527  apply_change_group ();
4528}
4529
4530/* Main function of CSE.
4531   First simplify sources and addresses of all assignments
4532   in the instruction, using previously-computed equivalents values.
4533   Then install the new sources and destinations in the table
4534   of available values.  */
4535
4536static void
4537cse_insn (rtx_insn *insn)
4538{
4539  rtx x = PATTERN (insn);
4540  int i;
4541  rtx tem;
4542  int n_sets = 0;
4543
4544  rtx src_eqv = 0;
4545  struct table_elt *src_eqv_elt = 0;
4546  int src_eqv_volatile = 0;
4547  int src_eqv_in_memory = 0;
4548  unsigned src_eqv_hash = 0;
4549
4550  struct set *sets = (struct set *) 0;
4551
4552  if (GET_CODE (x) == SET)
4553    sets = XALLOCA (struct set);
4554  else if (GET_CODE (x) == PARALLEL)
4555    sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4556
4557  this_insn = insn;
4558  /* Records what this insn does to set CC0.  */
4559  this_insn_cc0 = 0;
4560  this_insn_cc0_mode = VOIDmode;
4561
4562  /* Find all regs explicitly clobbered in this insn,
4563     to ensure they are not replaced with any other regs
4564     elsewhere in this insn.  */
4565  invalidate_from_sets_and_clobbers (insn);
4566
4567  /* Record all the SETs in this instruction.  */
4568  n_sets = find_sets_in_insn (insn, &sets);
4569
4570  /* Substitute the canonical register where possible.  */
4571  canonicalize_insn (insn, &sets, n_sets);
4572
4573  /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4574     if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT.  The
4575     latter condition is necessary because SRC_EQV is handled specially for
4576     this case, and if it isn't set, then there will be no equivalence
4577     for the destination.  */
4578  if (n_sets == 1 && REG_NOTES (insn) != 0
4579      && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4580    {
4581
4582      if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4583	  && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4584	      || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4585	src_eqv = copy_rtx (XEXP (tem, 0));
4586      /* If DEST is of the form ZERO_EXTACT, as in:
4587	 (set (zero_extract:SI (reg:SI 119)
4588		  (const_int 16 [0x10])
4589		  (const_int 16 [0x10]))
4590	      (const_int 51154 [0xc7d2]))
4591	 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4592	 point.  Note that this is different from SRC_EQV. We can however
4593	 calculate SRC_EQV with the position and width of ZERO_EXTRACT.  */
4594      else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4595	       && CONST_INT_P (XEXP (tem, 0))
4596	       && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4597	       && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4598	{
4599	  rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4600	  /* This is the mode of XEXP (tem, 0) as well.  */
4601	  scalar_int_mode dest_mode
4602	    = as_a <scalar_int_mode> (GET_MODE (dest_reg));
4603	  rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4604	  rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4605	  HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4606	  HOST_WIDE_INT mask;
4607	  unsigned int shift;
4608	  if (BITS_BIG_ENDIAN)
4609	    shift = (GET_MODE_PRECISION (dest_mode)
4610		     - INTVAL (pos) - INTVAL (width));
4611	  else
4612	    shift = INTVAL (pos);
4613	  if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4614	    mask = HOST_WIDE_INT_M1;
4615	  else
4616	    mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
4617	  val = (val >> shift) & mask;
4618	  src_eqv = GEN_INT (val);
4619	}
4620    }
4621
4622  /* Set sets[i].src_elt to the class each source belongs to.
4623     Detect assignments from or to volatile things
4624     and set set[i] to zero so they will be ignored
4625     in the rest of this function.
4626
4627     Nothing in this loop changes the hash table or the register chains.  */
4628
4629  for (i = 0; i < n_sets; i++)
4630    {
4631      bool repeat = false;
4632      bool noop_insn = false;
4633      rtx src, dest;
4634      rtx src_folded;
4635      struct table_elt *elt = 0, *p;
4636      machine_mode mode;
4637      rtx src_eqv_here;
4638      rtx src_const = 0;
4639      rtx src_related = 0;
4640      bool src_related_is_const_anchor = false;
4641      struct table_elt *src_const_elt = 0;
4642      int src_cost = MAX_COST;
4643      int src_eqv_cost = MAX_COST;
4644      int src_folded_cost = MAX_COST;
4645      int src_related_cost = MAX_COST;
4646      int src_elt_cost = MAX_COST;
4647      int src_regcost = MAX_COST;
4648      int src_eqv_regcost = MAX_COST;
4649      int src_folded_regcost = MAX_COST;
4650      int src_related_regcost = MAX_COST;
4651      int src_elt_regcost = MAX_COST;
4652      /* Set nonzero if we need to call force_const_mem on with the
4653	 contents of src_folded before using it.  */
4654      int src_folded_force_flag = 0;
4655      scalar_int_mode int_mode;
4656
4657      dest = SET_DEST (sets[i].rtl);
4658      src = SET_SRC (sets[i].rtl);
4659
4660      /* If SRC is a constant that has no machine mode,
4661	 hash it with the destination's machine mode.
4662	 This way we can keep different modes separate.  */
4663
4664      mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4665      sets[i].mode = mode;
4666
4667      if (src_eqv)
4668	{
4669	  machine_mode eqvmode = mode;
4670	  if (GET_CODE (dest) == STRICT_LOW_PART)
4671	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4672	  do_not_record = 0;
4673	  hash_arg_in_memory = 0;
4674	  src_eqv_hash = HASH (src_eqv, eqvmode);
4675
4676	  /* Find the equivalence class for the equivalent expression.  */
4677
4678	  if (!do_not_record)
4679	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4680
4681	  src_eqv_volatile = do_not_record;
4682	  src_eqv_in_memory = hash_arg_in_memory;
4683	}
4684
4685      /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4686	 value of the INNER register, not the destination.  So it is not
4687	 a valid substitution for the source.  But save it for later.  */
4688      if (GET_CODE (dest) == STRICT_LOW_PART)
4689	src_eqv_here = 0;
4690      else
4691	src_eqv_here = src_eqv;
4692
4693      /* Simplify and foldable subexpressions in SRC.  Then get the fully-
4694	 simplified result, which may not necessarily be valid.  */
4695      src_folded = fold_rtx (src, NULL);
4696
4697#if 0
4698      /* ??? This caused bad code to be generated for the m68k port with -O2.
4699	 Suppose src is (CONST_INT -1), and that after truncation src_folded
4700	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
4701	 At the end we will add src and src_const to the same equivalence
4702	 class.  We now have 3 and -1 on the same equivalence class.  This
4703	 causes later instructions to be mis-optimized.  */
4704      /* If storing a constant in a bitfield, pre-truncate the constant
4705	 so we will be able to record it later.  */
4706      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4707	{
4708	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4709
4710	  if (CONST_INT_P (src)
4711	      && CONST_INT_P (width)
4712	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4713	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4714	    src_folded
4715	      = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
4716					  << INTVAL (width)) - 1));
4717	}
4718#endif
4719
4720      /* Compute SRC's hash code, and also notice if it
4721	 should not be recorded at all.  In that case,
4722	 prevent any further processing of this assignment.
4723
4724	 We set DO_NOT_RECORD if the destination has a REG_UNUSED note.
4725	 This avoids getting the source register into the tables, where it
4726	 may be invalidated later (via REG_QTY), then trigger an ICE upon
4727	 re-insertion.
4728
4729	 This is only a problem in multi-set insns.  If it were a single
4730	 set the dead copy would have been removed.  If the RHS were anything
4731	 but a simple REG, then we won't call insert_regs and thus there's
4732	 no potential for triggering the ICE.  */
4733      do_not_record = (REG_P (dest)
4734		       && REG_P (src)
4735		       && find_reg_note (insn, REG_UNUSED, dest));
4736      hash_arg_in_memory = 0;
4737
4738      sets[i].src = src;
4739      sets[i].src_hash = HASH (src, mode);
4740      sets[i].src_volatile = do_not_record;
4741      sets[i].src_in_memory = hash_arg_in_memory;
4742
4743      /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4744	 a pseudo, do not record SRC.  Using SRC as a replacement for
4745	 anything else will be incorrect in that situation.  Note that
4746	 this usually occurs only for stack slots, in which case all the
4747	 RTL would be referring to SRC, so we don't lose any optimization
4748	 opportunities by not having SRC in the hash table.  */
4749
4750      if (MEM_P (src)
4751	  && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4752	  && REG_P (dest)
4753	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4754	sets[i].src_volatile = 1;
4755
4756      else if (GET_CODE (src) == ASM_OPERANDS
4757	       && GET_CODE (x) == PARALLEL)
4758	{
4759	  /* Do not record result of a non-volatile inline asm with
4760	     more than one result.  */
4761	  if (n_sets > 1)
4762	    sets[i].src_volatile = 1;
4763
4764	  int j, lim = XVECLEN (x, 0);
4765	  for (j = 0; j < lim; j++)
4766	    {
4767	      rtx y = XVECEXP (x, 0, j);
4768	      /* And do not record result of a non-volatile inline asm
4769		 with "memory" clobber.  */
4770	      if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4771		{
4772		  sets[i].src_volatile = 1;
4773		  break;
4774		}
4775	    }
4776	}
4777
4778#if 0
4779      /* It is no longer clear why we used to do this, but it doesn't
4780	 appear to still be needed.  So let's try without it since this
4781	 code hurts cse'ing widened ops.  */
4782      /* If source is a paradoxical subreg (such as QI treated as an SI),
4783	 treat it as volatile.  It may do the work of an SI in one context
4784	 where the extra bits are not being used, but cannot replace an SI
4785	 in general.  */
4786      if (paradoxical_subreg_p (src))
4787	sets[i].src_volatile = 1;
4788#endif
4789
4790      /* Locate all possible equivalent forms for SRC.  Try to replace
4791         SRC in the insn with each cheaper equivalent.
4792
4793         We have the following types of equivalents: SRC itself, a folded
4794         version, a value given in a REG_EQUAL note, or a value related
4795	 to a constant.
4796
4797         Each of these equivalents may be part of an additional class
4798         of equivalents (if more than one is in the table, they must be in
4799         the same class; we check for this).
4800
4801	 If the source is volatile, we don't do any table lookups.
4802
4803         We note any constant equivalent for possible later use in a
4804         REG_NOTE.  */
4805
4806      if (!sets[i].src_volatile)
4807	elt = lookup (src, sets[i].src_hash, mode);
4808
4809      sets[i].src_elt = elt;
4810
4811      if (elt && src_eqv_here && src_eqv_elt)
4812	{
4813	  if (elt->first_same_value != src_eqv_elt->first_same_value)
4814	    {
4815	      /* The REG_EQUAL is indicating that two formerly distinct
4816		 classes are now equivalent.  So merge them.  */
4817	      merge_equiv_classes (elt, src_eqv_elt);
4818	      src_eqv_hash = HASH (src_eqv, elt->mode);
4819	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4820	    }
4821
4822	  src_eqv_here = 0;
4823	}
4824
4825      else if (src_eqv_elt)
4826	elt = src_eqv_elt;
4827
4828      /* Try to find a constant somewhere and record it in `src_const'.
4829	 Record its table element, if any, in `src_const_elt'.  Look in
4830	 any known equivalences first.  (If the constant is not in the
4831	 table, also set `sets[i].src_const_hash').  */
4832      if (elt)
4833	for (p = elt->first_same_value; p; p = p->next_same_value)
4834	  if (p->is_const)
4835	    {
4836	      src_const = p->exp;
4837	      src_const_elt = elt;
4838	      break;
4839	    }
4840
4841      if (src_const == 0
4842	  && (CONSTANT_P (src_folded)
4843	      /* Consider (minus (label_ref L1) (label_ref L2)) as
4844		 "constant" here so we will record it. This allows us
4845		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
4846	      || (GET_CODE (src_folded) == MINUS
4847		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4848		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4849	src_const = src_folded, src_const_elt = elt;
4850      else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4851	src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4852
4853      /* If we don't know if the constant is in the table, get its
4854	 hash code and look it up.  */
4855      if (src_const && src_const_elt == 0)
4856	{
4857	  sets[i].src_const_hash = HASH (src_const, mode);
4858	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4859	}
4860
4861      sets[i].src_const = src_const;
4862      sets[i].src_const_elt = src_const_elt;
4863
4864      /* If the constant and our source are both in the table, mark them as
4865	 equivalent.  Otherwise, if a constant is in the table but the source
4866	 isn't, set ELT to it.  */
4867      if (src_const_elt && elt
4868	  && src_const_elt->first_same_value != elt->first_same_value)
4869	merge_equiv_classes (elt, src_const_elt);
4870      else if (src_const_elt && elt == 0)
4871	elt = src_const_elt;
4872
4873      /* See if there is a register linearly related to a constant
4874         equivalent of SRC.  */
4875      if (src_const
4876	  && (GET_CODE (src_const) == CONST
4877	      || (src_const_elt && src_const_elt->related_value != 0)))
4878	{
4879	  src_related = use_related_value (src_const, src_const_elt);
4880	  if (src_related)
4881	    {
4882	      struct table_elt *src_related_elt
4883		= lookup (src_related, HASH (src_related, mode), mode);
4884	      if (src_related_elt && elt)
4885		{
4886		  if (elt->first_same_value
4887		      != src_related_elt->first_same_value)
4888		    /* This can occur when we previously saw a CONST
4889		       involving a SYMBOL_REF and then see the SYMBOL_REF
4890		       twice.  Merge the involved classes.  */
4891		    merge_equiv_classes (elt, src_related_elt);
4892
4893		  src_related = 0;
4894		  src_related_elt = 0;
4895		}
4896	      else if (src_related_elt && elt == 0)
4897		elt = src_related_elt;
4898	    }
4899	}
4900
4901      /* See if we have a CONST_INT that is already in a register in a
4902	 wider mode.  */
4903
4904      if (src_const && src_related == 0 && CONST_INT_P (src_const)
4905	  && is_int_mode (mode, &int_mode)
4906	  && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4907	{
4908	  opt_scalar_int_mode wider_mode_iter;
4909	  FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
4910	    {
4911	      scalar_int_mode wider_mode = wider_mode_iter.require ();
4912	      if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4913		break;
4914
4915	      struct table_elt *const_elt
4916		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4917
4918	      if (const_elt == 0)
4919		continue;
4920
4921	      for (const_elt = const_elt->first_same_value;
4922		   const_elt; const_elt = const_elt->next_same_value)
4923		if (REG_P (const_elt->exp))
4924		  {
4925		    src_related = gen_lowpart (int_mode, const_elt->exp);
4926		    break;
4927		  }
4928
4929	      if (src_related != 0)
4930		break;
4931	    }
4932	}
4933
4934      /* Another possibility is that we have an AND with a constant in
4935	 a mode narrower than a word.  If so, it might have been generated
4936	 as part of an "if" which would narrow the AND.  If we already
4937	 have done the AND in a wider mode, we can use a SUBREG of that
4938	 value.  */
4939
4940      if (flag_expensive_optimizations && ! src_related
4941	  && is_a <scalar_int_mode> (mode, &int_mode)
4942	  && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4943	  && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
4944	{
4945	  opt_scalar_int_mode tmode_iter;
4946	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4947
4948	  FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4949	    {
4950	      scalar_int_mode tmode = tmode_iter.require ();
4951	      if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4952		break;
4953
4954	      rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4955	      struct table_elt *larger_elt;
4956
4957	      if (inner)
4958		{
4959		  PUT_MODE (new_and, tmode);
4960		  XEXP (new_and, 0) = inner;
4961		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4962		  if (larger_elt == 0)
4963		    continue;
4964
4965		  for (larger_elt = larger_elt->first_same_value;
4966		       larger_elt; larger_elt = larger_elt->next_same_value)
4967		    if (REG_P (larger_elt->exp))
4968		      {
4969			src_related
4970			  = gen_lowpart (int_mode, larger_elt->exp);
4971			break;
4972		      }
4973
4974		  if (src_related)
4975		    break;
4976		}
4977	    }
4978	}
4979
4980      /* See if a MEM has already been loaded with a widening operation;
4981	 if it has, we can use a subreg of that.  Many CISC machines
4982	 also have such operations, but this is only likely to be
4983	 beneficial on these machines.  */
4984
4985      rtx_code extend_op;
4986      if (flag_expensive_optimizations && src_related == 0
4987	  && MEM_P (src) && ! do_not_record
4988	  && is_a <scalar_int_mode> (mode, &int_mode)
4989	  && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
4990	{
4991	  struct rtx_def memory_extend_buf;
4992	  rtx memory_extend_rtx = &memory_extend_buf;
4993
4994	  /* Set what we are trying to extend and the operation it might
4995	     have been extended with.  */
4996	  memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4997	  PUT_CODE (memory_extend_rtx, extend_op);
4998	  XEXP (memory_extend_rtx, 0) = src;
4999
5000	  opt_scalar_int_mode tmode_iter;
5001	  FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
5002	    {
5003	      struct table_elt *larger_elt;
5004
5005	      scalar_int_mode tmode = tmode_iter.require ();
5006	      if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
5007		break;
5008
5009	      PUT_MODE (memory_extend_rtx, tmode);
5010	      larger_elt = lookup (memory_extend_rtx,
5011				   HASH (memory_extend_rtx, tmode), tmode);
5012	      if (larger_elt == 0)
5013		continue;
5014
5015	      for (larger_elt = larger_elt->first_same_value;
5016		   larger_elt; larger_elt = larger_elt->next_same_value)
5017		if (REG_P (larger_elt->exp))
5018		  {
5019		    src_related = gen_lowpart (int_mode, larger_elt->exp);
5020		    break;
5021		  }
5022
5023	      if (src_related)
5024		break;
5025	    }
5026	}
5027
5028      /* Try to express the constant using a register+offset expression
5029	 derived from a constant anchor.  */
5030
5031      if (targetm.const_anchor
5032	  && !src_related
5033	  && src_const
5034	  && GET_CODE (src_const) == CONST_INT)
5035	{
5036	  src_related = try_const_anchors (src_const, mode);
5037	  src_related_is_const_anchor = src_related != NULL_RTX;
5038	}
5039
5040
5041      if (src == src_folded)
5042	src_folded = 0;
5043
5044      /* At this point, ELT, if nonzero, points to a class of expressions
5045         equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5046	 and SRC_RELATED, if nonzero, each contain additional equivalent
5047	 expressions.  Prune these latter expressions by deleting expressions
5048	 already in the equivalence class.
5049
5050	 Check for an equivalent identical to the destination.  If found,
5051	 this is the preferred equivalent since it will likely lead to
5052	 elimination of the insn.  Indicate this by placing it in
5053	 `src_related'.  */
5054
5055      if (elt)
5056	elt = elt->first_same_value;
5057      for (p = elt; p; p = p->next_same_value)
5058	{
5059	  enum rtx_code code = GET_CODE (p->exp);
5060
5061	  /* If the expression is not valid, ignore it.  Then we do not
5062	     have to check for validity below.  In most cases, we can use
5063	     `rtx_equal_p', since canonicalization has already been done.  */
5064	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5065	    continue;
5066
5067	  /* Also skip paradoxical subregs, unless that's what we're
5068	     looking for.  */
5069	  if (paradoxical_subreg_p (p->exp)
5070	      && ! (src != 0
5071		    && GET_CODE (src) == SUBREG
5072		    && GET_MODE (src) == GET_MODE (p->exp)
5073		    && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5074					 GET_MODE (SUBREG_REG (p->exp)))))
5075	    continue;
5076
5077	  if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5078	    src = 0;
5079	  else if (src_folded && GET_CODE (src_folded) == code
5080		   && rtx_equal_p (src_folded, p->exp))
5081	    src_folded = 0;
5082	  else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5083		   && rtx_equal_p (src_eqv_here, p->exp))
5084	    src_eqv_here = 0;
5085	  else if (src_related && GET_CODE (src_related) == code
5086		   && rtx_equal_p (src_related, p->exp))
5087	    src_related = 0;
5088
5089	  /* This is the same as the destination of the insns, we want
5090	     to prefer it.  Copy it to src_related.  The code below will
5091	     then give it a negative cost.  */
5092	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5093	    src_related = p->exp;
5094	}
5095
5096      /* Find the cheapest valid equivalent, trying all the available
5097         possibilities.  Prefer items not in the hash table to ones
5098         that are when they are equal cost.  Note that we can never
5099         worsen an insn as the current contents will also succeed.
5100	 If we find an equivalent identical to the destination, use it as best,
5101	 since this insn will probably be eliminated in that case.  */
5102      if (src)
5103	{
5104	  if (rtx_equal_p (src, dest))
5105	    src_cost = src_regcost = -1;
5106	  else
5107	    {
5108	      src_cost = COST (src, mode);
5109	      src_regcost = approx_reg_cost (src);
5110	    }
5111	}
5112
5113      if (src_eqv_here)
5114	{
5115	  if (rtx_equal_p (src_eqv_here, dest))
5116	    src_eqv_cost = src_eqv_regcost = -1;
5117	  else
5118	    {
5119	      src_eqv_cost = COST (src_eqv_here, mode);
5120	      src_eqv_regcost = approx_reg_cost (src_eqv_here);
5121	    }
5122	}
5123
5124      if (src_folded)
5125	{
5126	  if (rtx_equal_p (src_folded, dest))
5127	    src_folded_cost = src_folded_regcost = -1;
5128	  else
5129	    {
5130	      src_folded_cost = COST (src_folded, mode);
5131	      src_folded_regcost = approx_reg_cost (src_folded);
5132	    }
5133	}
5134
5135      if (src_related)
5136	{
5137	  if (rtx_equal_p (src_related, dest))
5138	    src_related_cost = src_related_regcost = -1;
5139	  else
5140	    {
5141	      src_related_cost = COST (src_related, mode);
5142	      src_related_regcost = approx_reg_cost (src_related);
5143
5144	      /* If a const-anchor is used to synthesize a constant that
5145		 normally requires multiple instructions then slightly prefer
5146		 it over the original sequence.  These instructions are likely
5147		 to become redundant now.  We can't compare against the cost
5148		 of src_eqv_here because, on MIPS for example, multi-insn
5149		 constants have zero cost; they are assumed to be hoisted from
5150		 loops.  */
5151	      if (src_related_is_const_anchor
5152		  && src_related_cost == src_cost
5153		  && src_eqv_here)
5154		src_related_cost--;
5155	    }
5156	}
5157
5158      /* If this was an indirect jump insn, a known label will really be
5159	 cheaper even though it looks more expensive.  */
5160      if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5161	src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5162
5163      /* Terminate loop when replacement made.  This must terminate since
5164         the current contents will be tested and will always be valid.  */
5165      while (1)
5166	{
5167	  rtx trial;
5168
5169	  /* Skip invalid entries.  */
5170	  while (elt && !REG_P (elt->exp)
5171		 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5172	    elt = elt->next_same_value;
5173
5174	  /* A paradoxical subreg would be bad here: it'll be the right
5175	     size, but later may be adjusted so that the upper bits aren't
5176	     what we want.  So reject it.  */
5177	  if (elt != 0
5178	      && paradoxical_subreg_p (elt->exp)
5179	      /* It is okay, though, if the rtx we're trying to match
5180		 will ignore any of the bits we can't predict.  */
5181	      && ! (src != 0
5182		    && GET_CODE (src) == SUBREG
5183		    && GET_MODE (src) == GET_MODE (elt->exp)
5184		    && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5185					 GET_MODE (SUBREG_REG (elt->exp)))))
5186	    {
5187	      elt = elt->next_same_value;
5188	      continue;
5189	    }
5190
5191	  if (elt)
5192	    {
5193	      src_elt_cost = elt->cost;
5194	      src_elt_regcost = elt->regcost;
5195	    }
5196
5197	  /* Find cheapest and skip it for the next time.   For items
5198	     of equal cost, use this order:
5199	     src_folded, src, src_eqv, src_related and hash table entry.  */
5200	  if (src_folded
5201	      && preferable (src_folded_cost, src_folded_regcost,
5202			     src_cost, src_regcost) <= 0
5203	      && preferable (src_folded_cost, src_folded_regcost,
5204			     src_eqv_cost, src_eqv_regcost) <= 0
5205	      && preferable (src_folded_cost, src_folded_regcost,
5206			     src_related_cost, src_related_regcost) <= 0
5207	      && preferable (src_folded_cost, src_folded_regcost,
5208			     src_elt_cost, src_elt_regcost) <= 0)
5209	    {
5210	      trial = src_folded, src_folded_cost = MAX_COST;
5211	      if (src_folded_force_flag)
5212		{
5213		  rtx forced = force_const_mem (mode, trial);
5214		  if (forced)
5215		    trial = forced;
5216		}
5217	    }
5218	  else if (src
5219		   && preferable (src_cost, src_regcost,
5220				  src_eqv_cost, src_eqv_regcost) <= 0
5221		   && preferable (src_cost, src_regcost,
5222				  src_related_cost, src_related_regcost) <= 0
5223		   && preferable (src_cost, src_regcost,
5224				  src_elt_cost, src_elt_regcost) <= 0)
5225	    trial = src, src_cost = MAX_COST;
5226	  else if (src_eqv_here
5227		   && preferable (src_eqv_cost, src_eqv_regcost,
5228				  src_related_cost, src_related_regcost) <= 0
5229		   && preferable (src_eqv_cost, src_eqv_regcost,
5230				  src_elt_cost, src_elt_regcost) <= 0)
5231	    trial = src_eqv_here, src_eqv_cost = MAX_COST;
5232	  else if (src_related
5233		   && preferable (src_related_cost, src_related_regcost,
5234				  src_elt_cost, src_elt_regcost) <= 0)
5235	    trial = src_related, src_related_cost = MAX_COST;
5236	  else
5237	    {
5238	      trial = elt->exp;
5239	      elt = elt->next_same_value;
5240	      src_elt_cost = MAX_COST;
5241	    }
5242
5243	  /* Try to optimize
5244	     (set (reg:M N) (const_int A))
5245	     (set (reg:M2 O) (const_int B))
5246	     (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5247		  (reg:M2 O)).  */
5248	  if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5249	      && CONST_INT_P (trial)
5250	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5251	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5252	      && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5253	      && (known_ge
5254		  (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))),
5255		   INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))))
5256	      && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5257		  + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5258		  <= HOST_BITS_PER_WIDE_INT))
5259	    {
5260	      rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5261	      rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5262	      rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5263	      unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5264	      struct table_elt *dest_elt
5265		= lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5266	      rtx dest_cst = NULL;
5267
5268	      if (dest_elt)
5269		for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5270		  if (p->is_const && CONST_INT_P (p->exp))
5271		    {
5272		      dest_cst = p->exp;
5273		      break;
5274		    }
5275	      if (dest_cst)
5276		{
5277		  HOST_WIDE_INT val = INTVAL (dest_cst);
5278		  HOST_WIDE_INT mask;
5279		  unsigned int shift;
5280		  /* This is the mode of DEST_CST as well.  */
5281		  scalar_int_mode dest_mode
5282		    = as_a <scalar_int_mode> (GET_MODE (dest_reg));
5283		  if (BITS_BIG_ENDIAN)
5284		    shift = GET_MODE_PRECISION (dest_mode)
5285			    - INTVAL (pos) - INTVAL (width);
5286		  else
5287		    shift = INTVAL (pos);
5288		  if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5289		    mask = HOST_WIDE_INT_M1;
5290		  else
5291		    mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
5292		  val &= ~(mask << shift);
5293		  val |= (INTVAL (trial) & mask) << shift;
5294		  val = trunc_int_for_mode (val, dest_mode);
5295		  validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5296					   dest_reg, 1);
5297		  validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5298					   GEN_INT (val), 1);
5299		  if (apply_change_group ())
5300		    {
5301		      rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5302		      if (note)
5303			{
5304			  remove_note (insn, note);
5305			  df_notes_rescan (insn);
5306			}
5307		      src_eqv = NULL_RTX;
5308		      src_eqv_elt = NULL;
5309		      src_eqv_volatile = 0;
5310		      src_eqv_in_memory = 0;
5311		      src_eqv_hash = 0;
5312		      repeat = true;
5313		      break;
5314		    }
5315		}
5316	    }
5317
5318	  /* We don't normally have an insn matching (set (pc) (pc)), so
5319	     check for this separately here.  We will delete such an
5320	     insn below.
5321
5322	     For other cases such as a table jump or conditional jump
5323	     where we know the ultimate target, go ahead and replace the
5324	     operand.  While that may not make a valid insn, we will
5325	     reemit the jump below (and also insert any necessary
5326	     barriers).  */
5327	  if (n_sets == 1 && dest == pc_rtx
5328	      && (trial == pc_rtx
5329		  || (GET_CODE (trial) == LABEL_REF
5330		      && ! condjump_p (insn))))
5331	    {
5332	      /* Don't substitute non-local labels, this confuses CFG.  */
5333	      if (GET_CODE (trial) == LABEL_REF
5334		  && LABEL_REF_NONLOCAL_P (trial))
5335		continue;
5336
5337	      SET_SRC (sets[i].rtl) = trial;
5338	      cse_jumps_altered = true;
5339	      break;
5340	    }
5341
5342	  /* Similarly, lots of targets don't allow no-op
5343	     (set (mem x) (mem x)) moves.  Even (set (reg x) (reg x))
5344	     might be impossible for certain registers (like CC registers).  */
5345	  else if (n_sets == 1
5346		   && !CALL_P (insn)
5347		   && (MEM_P (trial) || REG_P (trial))
5348		   && rtx_equal_p (trial, dest)
5349		   && !side_effects_p (dest)
5350		   && (cfun->can_delete_dead_exceptions
5351		       || insn_nothrow_p (insn))
5352		   /* We can only remove the later store if the earlier aliases
5353		      at least all accesses the later one.  */
5354		   && (!MEM_P (trial)
5355		       || ((MEM_ALIAS_SET (dest) == MEM_ALIAS_SET (trial)
5356			    || alias_set_subset_of (MEM_ALIAS_SET (dest),
5357						    MEM_ALIAS_SET (trial)))
5358			    && (!MEM_EXPR (trial)
5359				|| refs_same_for_tbaa_p (MEM_EXPR (trial),
5360							 MEM_EXPR (dest))))))
5361	    {
5362	      SET_SRC (sets[i].rtl) = trial;
5363	      noop_insn = true;
5364	      break;
5365	    }
5366
5367	  /* Reject certain invalid forms of CONST that we create.  */
5368	  else if (CONSTANT_P (trial)
5369		   && GET_CODE (trial) == CONST
5370		   /* Reject cases that will cause decode_rtx_const to
5371		      die.  On the alpha when simplifying a switch, we
5372		      get (const (truncate (minus (label_ref)
5373		      (label_ref)))).  */
5374		   && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5375		       /* Likewise on IA-64, except without the
5376			  truncate.  */
5377		       || (GET_CODE (XEXP (trial, 0)) == MINUS
5378			   && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5379			   && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5380	    /* Do nothing for this case.  */
5381	    ;
5382
5383	  /* Do not replace anything with a MEM, except the replacement
5384	     is a no-op.  This allows this loop to terminate.  */
5385	  else if (MEM_P (trial) && !rtx_equal_p (trial, SET_SRC(sets[i].rtl)))
5386	    /* Do nothing for this case.  */
5387	    ;
5388
5389	  /* Look for a substitution that makes a valid insn.  */
5390	  else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5391					    trial, 0))
5392	    {
5393	      rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5394
5395	      /* The result of apply_change_group can be ignored; see
5396		 canon_reg.  */
5397
5398	      validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5399	      apply_change_group ();
5400
5401	      break;
5402	    }
5403
5404	  /* If we previously found constant pool entries for
5405	     constants and this is a constant, try making a
5406	     pool entry.  Put it in src_folded unless we already have done
5407	     this since that is where it likely came from.  */
5408
5409	  else if (constant_pool_entries_cost
5410		   && CONSTANT_P (trial)
5411		   && (src_folded == 0
5412		       || (!MEM_P (src_folded)
5413			   && ! src_folded_force_flag))
5414		   && GET_MODE_CLASS (mode) != MODE_CC
5415		   && mode != VOIDmode)
5416	    {
5417	      src_folded_force_flag = 1;
5418	      src_folded = trial;
5419	      src_folded_cost = constant_pool_entries_cost;
5420	      src_folded_regcost = constant_pool_entries_regcost;
5421	    }
5422	}
5423
5424      /* If we changed the insn too much, handle this set from scratch.  */
5425      if (repeat)
5426	{
5427	  i--;
5428	  continue;
5429	}
5430
5431      src = SET_SRC (sets[i].rtl);
5432
5433      /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5434	 However, there is an important exception:  If both are registers
5435	 that are not the head of their equivalence class, replace SET_SRC
5436	 with the head of the class.  If we do not do this, we will have
5437	 both registers live over a portion of the basic block.  This way,
5438	 their lifetimes will likely abut instead of overlapping.  */
5439      if (REG_P (dest)
5440	  && REGNO_QTY_VALID_P (REGNO (dest)))
5441	{
5442	  int dest_q = REG_QTY (REGNO (dest));
5443	  struct qty_table_elem *dest_ent = &qty_table[dest_q];
5444
5445	  if (dest_ent->mode == GET_MODE (dest)
5446	      && dest_ent->first_reg != REGNO (dest)
5447	      && REG_P (src) && REGNO (src) == REGNO (dest)
5448	      /* Don't do this if the original insn had a hard reg as
5449		 SET_SRC or SET_DEST.  */
5450	      && (!REG_P (sets[i].src)
5451		  || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5452	      && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5453	    /* We can't call canon_reg here because it won't do anything if
5454	       SRC is a hard register.  */
5455	    {
5456	      int src_q = REG_QTY (REGNO (src));
5457	      struct qty_table_elem *src_ent = &qty_table[src_q];
5458	      int first = src_ent->first_reg;
5459	      rtx new_src
5460		= (first >= FIRST_PSEUDO_REGISTER
5461		   ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5462
5463	      /* We must use validate-change even for this, because this
5464		 might be a special no-op instruction, suitable only to
5465		 tag notes onto.  */
5466	      if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5467		{
5468		  src = new_src;
5469		  /* If we had a constant that is cheaper than what we are now
5470		     setting SRC to, use that constant.  We ignored it when we
5471		     thought we could make this into a no-op.  */
5472		  if (src_const && COST (src_const, mode) < COST (src, mode)
5473		      && validate_change (insn, &SET_SRC (sets[i].rtl),
5474					  src_const, 0))
5475		    src = src_const;
5476		}
5477	    }
5478	}
5479
5480      /* If we made a change, recompute SRC values.  */
5481      if (src != sets[i].src)
5482	{
5483	  do_not_record = 0;
5484	  hash_arg_in_memory = 0;
5485	  sets[i].src = src;
5486	  sets[i].src_hash = HASH (src, mode);
5487	  sets[i].src_volatile = do_not_record;
5488	  sets[i].src_in_memory = hash_arg_in_memory;
5489	  sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5490	}
5491
5492      /* If this is a single SET, we are setting a register, and we have an
5493	 equivalent constant, we want to add a REG_EQUAL note if the constant
5494	 is different from the source.  We don't want to do it for a constant
5495	 pseudo since verifying that this pseudo hasn't been eliminated is a
5496	 pain; moreover such a note won't help anything.
5497
5498	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5499	 which can be created for a reference to a compile time computable
5500	 entry in a jump table.  */
5501      if (n_sets == 1
5502	  && REG_P (dest)
5503	  && src_const
5504	  && !REG_P (src_const)
5505	  && !(GET_CODE (src_const) == SUBREG
5506	       && REG_P (SUBREG_REG (src_const)))
5507	  && !(GET_CODE (src_const) == CONST
5508	       && GET_CODE (XEXP (src_const, 0)) == MINUS
5509	       && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5510	       && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5511	  && !rtx_equal_p (src, src_const))
5512	{
5513	  /* Make sure that the rtx is not shared.  */
5514	  src_const = copy_rtx (src_const);
5515
5516	  /* Record the actual constant value in a REG_EQUAL note,
5517	     making a new one if one does not already exist.  */
5518	  set_unique_reg_note (insn, REG_EQUAL, src_const);
5519	  df_notes_rescan (insn);
5520	}
5521
5522      /* Now deal with the destination.  */
5523      do_not_record = 0;
5524
5525      /* Look within any ZERO_EXTRACT to the MEM or REG within it.  */
5526      while (GET_CODE (dest) == SUBREG
5527	     || GET_CODE (dest) == ZERO_EXTRACT
5528	     || GET_CODE (dest) == STRICT_LOW_PART)
5529	dest = XEXP (dest, 0);
5530
5531      sets[i].inner_dest = dest;
5532
5533      if (MEM_P (dest))
5534	{
5535#ifdef PUSH_ROUNDING
5536	  /* Stack pushes invalidate the stack pointer.  */
5537	  rtx addr = XEXP (dest, 0);
5538	  if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5539	      && XEXP (addr, 0) == stack_pointer_rtx)
5540	    invalidate (stack_pointer_rtx, VOIDmode);
5541#endif
5542	  dest = fold_rtx (dest, insn);
5543	}
5544
5545      /* Compute the hash code of the destination now,
5546	 before the effects of this instruction are recorded,
5547	 since the register values used in the address computation
5548	 are those before this instruction.  */
5549      sets[i].dest_hash = HASH (dest, mode);
5550
5551      /* Don't enter a bit-field in the hash table
5552	 because the value in it after the store
5553	 may not equal what was stored, due to truncation.  */
5554
5555      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5556	{
5557	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5558
5559	  if (src_const != 0 && CONST_INT_P (src_const)
5560	      && CONST_INT_P (width)
5561	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5562	      && ! (INTVAL (src_const)
5563		    & (HOST_WIDE_INT_M1U << INTVAL (width))))
5564	    /* Exception: if the value is constant,
5565	       and it won't be truncated, record it.  */
5566	    ;
5567	  else
5568	    {
5569	      /* This is chosen so that the destination will be invalidated
5570		 but no new value will be recorded.
5571		 We must invalidate because sometimes constant
5572		 values can be recorded for bitfields.  */
5573	      sets[i].src_elt = 0;
5574	      sets[i].src_volatile = 1;
5575	      src_eqv = 0;
5576	      src_eqv_elt = 0;
5577	    }
5578	}
5579
5580      /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5581	 the insn.  */
5582      else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5583	{
5584	  /* One less use of the label this insn used to jump to.  */
5585	  cse_cfg_altered |= delete_insn_and_edges (insn);
5586	  cse_jumps_altered = true;
5587	  /* No more processing for this set.  */
5588	  sets[i].rtl = 0;
5589	}
5590
5591      /* Similarly for no-op moves.  */
5592      else if (noop_insn)
5593	{
5594	  if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5595	    cse_cfg_altered = true;
5596	  cse_cfg_altered |= delete_insn_and_edges (insn);
5597	  /* No more processing for this set.  */
5598	  sets[i].rtl = 0;
5599	}
5600
5601      /* If this SET is now setting PC to a label, we know it used to
5602	 be a conditional or computed branch.  */
5603      else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5604	       && !LABEL_REF_NONLOCAL_P (src))
5605	{
5606	  /* We reemit the jump in as many cases as possible just in
5607	     case the form of an unconditional jump is significantly
5608	     different than a computed jump or conditional jump.
5609
5610	     If this insn has multiple sets, then reemitting the
5611	     jump is nontrivial.  So instead we just force rerecognition
5612	     and hope for the best.  */
5613	  if (n_sets == 1)
5614	    {
5615	      rtx_jump_insn *new_rtx;
5616	      rtx note;
5617
5618	      rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5619	      new_rtx = emit_jump_insn_before (seq, insn);
5620	      JUMP_LABEL (new_rtx) = XEXP (src, 0);
5621	      LABEL_NUSES (XEXP (src, 0))++;
5622
5623	      /* Make sure to copy over REG_NON_LOCAL_GOTO.  */
5624	      note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5625	      if (note)
5626		{
5627		  XEXP (note, 1) = NULL_RTX;
5628		  REG_NOTES (new_rtx) = note;
5629		}
5630
5631	      cse_cfg_altered |= delete_insn_and_edges (insn);
5632	      insn = new_rtx;
5633	    }
5634	  else
5635	    INSN_CODE (insn) = -1;
5636
5637	  /* Do not bother deleting any unreachable code, let jump do it.  */
5638	  cse_jumps_altered = true;
5639	  sets[i].rtl = 0;
5640	}
5641
5642      /* If destination is volatile, invalidate it and then do no further
5643	 processing for this assignment.  */
5644
5645      else if (do_not_record)
5646	{
5647	  invalidate_dest (dest);
5648	  sets[i].rtl = 0;
5649	}
5650
5651      if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5652	{
5653	  do_not_record = 0;
5654	  sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5655	  if (do_not_record)
5656	    {
5657	      invalidate_dest (SET_DEST (sets[i].rtl));
5658	      sets[i].rtl = 0;
5659	    }
5660	}
5661
5662      /* If setting CC0, record what it was set to, or a constant, if it
5663	 is equivalent to a constant.  If it is being set to a floating-point
5664	 value, make a COMPARE with the appropriate constant of 0.  If we
5665	 don't do this, later code can interpret this as a test against
5666	 const0_rtx, which can cause problems if we try to put it into an
5667	 insn as a floating-point operand.  */
5668      if (dest == cc0_rtx)
5669	{
5670	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5671	  this_insn_cc0_mode = mode;
5672	  if (FLOAT_MODE_P (mode))
5673	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5674					     CONST0_RTX (mode));
5675	}
5676    }
5677
5678  /* Now enter all non-volatile source expressions in the hash table
5679     if they are not already present.
5680     Record their equivalence classes in src_elt.
5681     This way we can insert the corresponding destinations into
5682     the same classes even if the actual sources are no longer in them
5683     (having been invalidated).  */
5684
5685  if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5686      && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5687    {
5688      struct table_elt *elt;
5689      struct table_elt *classp = sets[0].src_elt;
5690      rtx dest = SET_DEST (sets[0].rtl);
5691      machine_mode eqvmode = GET_MODE (dest);
5692
5693      if (GET_CODE (dest) == STRICT_LOW_PART)
5694	{
5695	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5696	  classp = 0;
5697	}
5698      if (insert_regs (src_eqv, classp, 0))
5699	{
5700	  rehash_using_reg (src_eqv);
5701	  src_eqv_hash = HASH (src_eqv, eqvmode);
5702	}
5703      elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5704      elt->in_memory = src_eqv_in_memory;
5705      src_eqv_elt = elt;
5706
5707      /* Check to see if src_eqv_elt is the same as a set source which
5708	 does not yet have an elt, and if so set the elt of the set source
5709	 to src_eqv_elt.  */
5710      for (i = 0; i < n_sets; i++)
5711	if (sets[i].rtl && sets[i].src_elt == 0
5712	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5713	  sets[i].src_elt = src_eqv_elt;
5714    }
5715
5716  for (i = 0; i < n_sets; i++)
5717    if (sets[i].rtl && ! sets[i].src_volatile
5718	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5719      {
5720	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5721	  {
5722	    /* REG_EQUAL in setting a STRICT_LOW_PART
5723	       gives an equivalent for the entire destination register,
5724	       not just for the subreg being stored in now.
5725	       This is a more interesting equivalence, so we arrange later
5726	       to treat the entire reg as the destination.  */
5727	    sets[i].src_elt = src_eqv_elt;
5728	    sets[i].src_hash = src_eqv_hash;
5729	  }
5730	else
5731	  {
5732	    /* Insert source and constant equivalent into hash table, if not
5733	       already present.  */
5734	    struct table_elt *classp = src_eqv_elt;
5735	    rtx src = sets[i].src;
5736	    rtx dest = SET_DEST (sets[i].rtl);
5737	    machine_mode mode
5738	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5739
5740	    /* It's possible that we have a source value known to be
5741	       constant but don't have a REG_EQUAL note on the insn.
5742	       Lack of a note will mean src_eqv_elt will be NULL.  This
5743	       can happen where we've generated a SUBREG to access a
5744	       CONST_INT that is already in a register in a wider mode.
5745	       Ensure that the source expression is put in the proper
5746	       constant class.  */
5747	    if (!classp)
5748	      classp = sets[i].src_const_elt;
5749
5750	    if (sets[i].src_elt == 0)
5751	      {
5752		struct table_elt *elt;
5753
5754		/* Note that these insert_regs calls cannot remove
5755		   any of the src_elt's, because they would have failed to
5756		   match if not still valid.  */
5757		if (insert_regs (src, classp, 0))
5758		  {
5759		    rehash_using_reg (src);
5760		    sets[i].src_hash = HASH (src, mode);
5761		  }
5762		elt = insert (src, classp, sets[i].src_hash, mode);
5763		elt->in_memory = sets[i].src_in_memory;
5764		/* If inline asm has any clobbers, ensure we only reuse
5765		   existing inline asms and never try to put the ASM_OPERANDS
5766		   into an insn that isn't inline asm.  */
5767		if (GET_CODE (src) == ASM_OPERANDS
5768		    && GET_CODE (x) == PARALLEL)
5769		  elt->cost = MAX_COST;
5770		sets[i].src_elt = classp = elt;
5771	      }
5772	    if (sets[i].src_const && sets[i].src_const_elt == 0
5773		&& src != sets[i].src_const
5774		&& ! rtx_equal_p (sets[i].src_const, src))
5775	      sets[i].src_elt = insert (sets[i].src_const, classp,
5776					sets[i].src_const_hash, mode);
5777	  }
5778      }
5779    else if (sets[i].src_elt == 0)
5780      /* If we did not insert the source into the hash table (e.g., it was
5781	 volatile), note the equivalence class for the REG_EQUAL value, if any,
5782	 so that the destination goes into that class.  */
5783      sets[i].src_elt = src_eqv_elt;
5784
5785  /* Record destination addresses in the hash table.  This allows us to
5786     check if they are invalidated by other sets.  */
5787  for (i = 0; i < n_sets; i++)
5788    {
5789      if (sets[i].rtl)
5790	{
5791	  rtx x = sets[i].inner_dest;
5792	  struct table_elt *elt;
5793	  machine_mode mode;
5794	  unsigned hash;
5795
5796	  if (MEM_P (x))
5797	    {
5798	      x = XEXP (x, 0);
5799	      mode = GET_MODE (x);
5800	      hash = HASH (x, mode);
5801	      elt = lookup (x, hash, mode);
5802	      if (!elt)
5803		{
5804		  if (insert_regs (x, NULL, 0))
5805		    {
5806		      rtx dest = SET_DEST (sets[i].rtl);
5807
5808		      rehash_using_reg (x);
5809		      hash = HASH (x, mode);
5810		      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5811		    }
5812		  elt = insert (x, NULL, hash, mode);
5813		}
5814
5815	      sets[i].dest_addr_elt = elt;
5816	    }
5817	  else
5818	    sets[i].dest_addr_elt = NULL;
5819	}
5820    }
5821
5822  invalidate_from_clobbers (insn);
5823
5824  /* Some registers are invalidated by subroutine calls.  Memory is
5825     invalidated by non-constant calls.  */
5826
5827  if (CALL_P (insn))
5828    {
5829      if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5830	invalidate_memory ();
5831      else
5832	/* For const/pure calls, invalidate any argument slots, because
5833	   those are owned by the callee.  */
5834	for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5835	  if (GET_CODE (XEXP (tem, 0)) == USE
5836	      && MEM_P (XEXP (XEXP (tem, 0), 0)))
5837	    invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
5838      invalidate_for_call (insn);
5839    }
5840
5841  /* Now invalidate everything set by this instruction.
5842     If a SUBREG or other funny destination is being set,
5843     sets[i].rtl is still nonzero, so here we invalidate the reg
5844     a part of which is being set.  */
5845
5846  for (i = 0; i < n_sets; i++)
5847    if (sets[i].rtl)
5848      {
5849	/* We can't use the inner dest, because the mode associated with
5850	   a ZERO_EXTRACT is significant.  */
5851	rtx dest = SET_DEST (sets[i].rtl);
5852
5853	/* Needed for registers to remove the register from its
5854	   previous quantity's chain.
5855	   Needed for memory if this is a nonvarying address, unless
5856	   we have just done an invalidate_memory that covers even those.  */
5857	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5858	  invalidate (dest, VOIDmode);
5859	else if (MEM_P (dest))
5860	  invalidate (dest, VOIDmode);
5861	else if (GET_CODE (dest) == STRICT_LOW_PART
5862		 || GET_CODE (dest) == ZERO_EXTRACT)
5863	  invalidate (XEXP (dest, 0), GET_MODE (dest));
5864      }
5865
5866  /* Don't cse over a call to setjmp; on some machines (eg VAX)
5867     the regs restored by the longjmp come from a later time
5868     than the setjmp.  */
5869  if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5870    {
5871      flush_hash_table ();
5872      goto done;
5873    }
5874
5875  /* Make sure registers mentioned in destinations
5876     are safe for use in an expression to be inserted.
5877     This removes from the hash table
5878     any invalid entry that refers to one of these registers.
5879
5880     We don't care about the return value from mention_regs because
5881     we are going to hash the SET_DEST values unconditionally.  */
5882
5883  for (i = 0; i < n_sets; i++)
5884    {
5885      if (sets[i].rtl)
5886	{
5887	  rtx x = SET_DEST (sets[i].rtl);
5888
5889	  if (!REG_P (x))
5890	    mention_regs (x);
5891	  else
5892	    {
5893	      /* We used to rely on all references to a register becoming
5894		 inaccessible when a register changes to a new quantity,
5895		 since that changes the hash code.  However, that is not
5896		 safe, since after HASH_SIZE new quantities we get a
5897		 hash 'collision' of a register with its own invalid
5898		 entries.  And since SUBREGs have been changed not to
5899		 change their hash code with the hash code of the register,
5900		 it wouldn't work any longer at all.  So we have to check
5901		 for any invalid references lying around now.
5902		 This code is similar to the REG case in mention_regs,
5903		 but it knows that reg_tick has been incremented, and
5904		 it leaves reg_in_table as -1 .  */
5905	      unsigned int regno = REGNO (x);
5906	      unsigned int endregno = END_REGNO (x);
5907	      unsigned int i;
5908
5909	      for (i = regno; i < endregno; i++)
5910		{
5911		  if (REG_IN_TABLE (i) >= 0)
5912		    {
5913		      remove_invalid_refs (i);
5914		      REG_IN_TABLE (i) = -1;
5915		    }
5916		}
5917	    }
5918	}
5919    }
5920
5921  /* We may have just removed some of the src_elt's from the hash table.
5922     So replace each one with the current head of the same class.
5923     Also check if destination addresses have been removed.  */
5924
5925  for (i = 0; i < n_sets; i++)
5926    if (sets[i].rtl)
5927      {
5928	if (sets[i].dest_addr_elt
5929	    && sets[i].dest_addr_elt->first_same_value == 0)
5930	  {
5931	    /* The elt was removed, which means this destination is not
5932	       valid after this instruction.  */
5933	    sets[i].rtl = NULL_RTX;
5934	  }
5935	else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5936	  /* If elt was removed, find current head of same class,
5937	     or 0 if nothing remains of that class.  */
5938	  {
5939	    struct table_elt *elt = sets[i].src_elt;
5940
5941	    while (elt && elt->prev_same_value)
5942	      elt = elt->prev_same_value;
5943
5944	    while (elt && elt->first_same_value == 0)
5945	      elt = elt->next_same_value;
5946	    sets[i].src_elt = elt ? elt->first_same_value : 0;
5947	  }
5948      }
5949
5950  /* Now insert the destinations into their equivalence classes.  */
5951
5952  for (i = 0; i < n_sets; i++)
5953    if (sets[i].rtl)
5954      {
5955	rtx dest = SET_DEST (sets[i].rtl);
5956	struct table_elt *elt;
5957
5958	/* Don't record value if we are not supposed to risk allocating
5959	   floating-point values in registers that might be wider than
5960	   memory.  */
5961	if ((flag_float_store
5962	     && MEM_P (dest)
5963	     && FLOAT_MODE_P (GET_MODE (dest)))
5964	    /* Don't record BLKmode values, because we don't know the
5965	       size of it, and can't be sure that other BLKmode values
5966	       have the same or smaller size.  */
5967	    || GET_MODE (dest) == BLKmode
5968	    /* If we didn't put a REG_EQUAL value or a source into the hash
5969	       table, there is no point is recording DEST.  */
5970	    || sets[i].src_elt == 0)
5971	  continue;
5972
5973	/* STRICT_LOW_PART isn't part of the value BEING set,
5974	   and neither is the SUBREG inside it.
5975	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
5976	if (GET_CODE (dest) == STRICT_LOW_PART)
5977	  dest = SUBREG_REG (XEXP (dest, 0));
5978
5979	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5980	  /* Registers must also be inserted into chains for quantities.  */
5981	  if (insert_regs (dest, sets[i].src_elt, 1))
5982	    {
5983	      /* If `insert_regs' changes something, the hash code must be
5984		 recalculated.  */
5985	      rehash_using_reg (dest);
5986	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5987	    }
5988
5989	/* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5990	   outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined.  */
5991	if (paradoxical_subreg_p (dest))
5992	  continue;
5993
5994	elt = insert (dest, sets[i].src_elt,
5995		      sets[i].dest_hash, GET_MODE (dest));
5996
5997	/* If this is a constant, insert the constant anchors with the
5998	   equivalent register-offset expressions using register DEST.  */
5999	if (targetm.const_anchor
6000	    && REG_P (dest)
6001	    && SCALAR_INT_MODE_P (GET_MODE (dest))
6002	    && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
6003	  insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
6004
6005	elt->in_memory = (MEM_P (sets[i].inner_dest)
6006			  && !MEM_READONLY_P (sets[i].inner_dest));
6007
6008	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6009	   narrower than M2, and both M1 and M2 are the same number of words,
6010	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6011	   make that equivalence as well.
6012
6013	   However, BAR may have equivalences for which gen_lowpart
6014	   will produce a simpler value than gen_lowpart applied to
6015	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6016	   BAR's equivalences.  If we don't get a simplified form, make
6017	   the SUBREG.  It will not be used in an equivalence, but will
6018	   cause two similar assignments to be detected.
6019
6020	   Note the loop below will find SUBREG_REG (DEST) since we have
6021	   already entered SRC and DEST of the SET in the table.  */
6022
6023	if (GET_CODE (dest) == SUBREG
6024	    && (known_equal_after_align_down
6025		(GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1,
6026		 GET_MODE_SIZE (GET_MODE (dest)) - 1,
6027		 UNITS_PER_WORD))
6028	    && !partial_subreg_p (dest)
6029	    && sets[i].src_elt != 0)
6030	  {
6031	    machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6032	    struct table_elt *elt, *classp = 0;
6033
6034	    for (elt = sets[i].src_elt->first_same_value; elt;
6035		 elt = elt->next_same_value)
6036	      {
6037		rtx new_src = 0;
6038		unsigned src_hash;
6039		struct table_elt *src_elt;
6040
6041		/* Ignore invalid entries.  */
6042		if (!REG_P (elt->exp)
6043		    && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6044		  continue;
6045
6046		/* We may have already been playing subreg games.  If the
6047		   mode is already correct for the destination, use it.  */
6048		if (GET_MODE (elt->exp) == new_mode)
6049		  new_src = elt->exp;
6050		else
6051		  {
6052		    poly_uint64 byte
6053		      = subreg_lowpart_offset (new_mode, GET_MODE (dest));
6054		    new_src = simplify_gen_subreg (new_mode, elt->exp,
6055					           GET_MODE (dest), byte);
6056		  }
6057
6058		/* The call to simplify_gen_subreg fails if the value
6059		   is VOIDmode, yet we can't do any simplification, e.g.
6060		   for EXPR_LISTs denoting function call results.
6061		   It is invalid to construct a SUBREG with a VOIDmode
6062		   SUBREG_REG, hence a zero new_src means we can't do
6063		   this substitution.  */
6064		if (! new_src)
6065		  continue;
6066
6067		src_hash = HASH (new_src, new_mode);
6068		src_elt = lookup (new_src, src_hash, new_mode);
6069
6070		/* Put the new source in the hash table is if isn't
6071		   already.  */
6072		if (src_elt == 0)
6073		  {
6074		    if (insert_regs (new_src, classp, 0))
6075		      {
6076			rehash_using_reg (new_src);
6077			src_hash = HASH (new_src, new_mode);
6078		      }
6079		    src_elt = insert (new_src, classp, src_hash, new_mode);
6080		    src_elt->in_memory = elt->in_memory;
6081		    if (GET_CODE (new_src) == ASM_OPERANDS
6082			&& elt->cost == MAX_COST)
6083		      src_elt->cost = MAX_COST;
6084		  }
6085		else if (classp && classp != src_elt->first_same_value)
6086		  /* Show that two things that we've seen before are
6087		     actually the same.  */
6088		  merge_equiv_classes (src_elt, classp);
6089
6090		classp = src_elt->first_same_value;
6091		/* Ignore invalid entries.  */
6092		while (classp
6093		       && !REG_P (classp->exp)
6094		       && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6095		  classp = classp->next_same_value;
6096	      }
6097	  }
6098      }
6099
6100  /* Special handling for (set REG0 REG1) where REG0 is the
6101     "cheapest", cheaper than REG1.  After cse, REG1 will probably not
6102     be used in the sequel, so (if easily done) change this insn to
6103     (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6104     that computed their value.  Then REG1 will become a dead store
6105     and won't cloud the situation for later optimizations.
6106
6107     Do not make this change if REG1 is a hard register, because it will
6108     then be used in the sequel and we may be changing a two-operand insn
6109     into a three-operand insn.
6110
6111     Also do not do this if we are operating on a copy of INSN.  */
6112
6113  if (n_sets == 1 && sets[0].rtl)
6114    try_back_substitute_reg (sets[0].rtl, insn);
6115
6116done:;
6117}
6118
6119/* Remove from the hash table all expressions that reference memory.  */
6120
6121static void
6122invalidate_memory (void)
6123{
6124  int i;
6125  struct table_elt *p, *next;
6126
6127  for (i = 0; i < HASH_SIZE; i++)
6128    for (p = table[i]; p; p = next)
6129      {
6130	next = p->next_same_hash;
6131	if (p->in_memory)
6132	  remove_from_table (p, i);
6133      }
6134}
6135
6136/* Perform invalidation on the basis of everything about INSN,
6137   except for invalidating the actual places that are SET in it.
6138   This includes the places CLOBBERed, and anything that might
6139   alias with something that is SET or CLOBBERed.  */
6140
6141static void
6142invalidate_from_clobbers (rtx_insn *insn)
6143{
6144  rtx x = PATTERN (insn);
6145
6146  if (GET_CODE (x) == CLOBBER)
6147    {
6148      rtx ref = XEXP (x, 0);
6149      if (ref)
6150	{
6151	  if (REG_P (ref) || GET_CODE (ref) == SUBREG
6152	      || MEM_P (ref))
6153	    invalidate (ref, VOIDmode);
6154	  else if (GET_CODE (ref) == STRICT_LOW_PART
6155		   || GET_CODE (ref) == ZERO_EXTRACT)
6156	    invalidate (XEXP (ref, 0), GET_MODE (ref));
6157	}
6158    }
6159  else if (GET_CODE (x) == PARALLEL)
6160    {
6161      int i;
6162      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6163	{
6164	  rtx y = XVECEXP (x, 0, i);
6165	  if (GET_CODE (y) == CLOBBER)
6166	    {
6167	      rtx ref = XEXP (y, 0);
6168	      if (REG_P (ref) || GET_CODE (ref) == SUBREG
6169		  || MEM_P (ref))
6170		invalidate (ref, VOIDmode);
6171	      else if (GET_CODE (ref) == STRICT_LOW_PART
6172		       || GET_CODE (ref) == ZERO_EXTRACT)
6173		invalidate (XEXP (ref, 0), GET_MODE (ref));
6174	    }
6175	}
6176    }
6177}
6178
6179/* Perform invalidation on the basis of everything about INSN.
6180   This includes the places CLOBBERed, and anything that might
6181   alias with something that is SET or CLOBBERed.  */
6182
6183static void
6184invalidate_from_sets_and_clobbers (rtx_insn *insn)
6185{
6186  rtx tem;
6187  rtx x = PATTERN (insn);
6188
6189  if (CALL_P (insn))
6190    {
6191      for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6192	{
6193	  rtx temx = XEXP (tem, 0);
6194	  if (GET_CODE (temx) == CLOBBER)
6195	    invalidate (SET_DEST (temx), VOIDmode);
6196	}
6197    }
6198
6199  /* Ensure we invalidate the destination register of a CALL insn.
6200     This is necessary for machines where this register is a fixed_reg,
6201     because no other code would invalidate it.  */
6202  if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6203    invalidate (SET_DEST (x), VOIDmode);
6204
6205  else if (GET_CODE (x) == PARALLEL)
6206    {
6207      int i;
6208
6209      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6210	{
6211	  rtx y = XVECEXP (x, 0, i);
6212	  if (GET_CODE (y) == CLOBBER)
6213	    {
6214	      rtx clobbered = XEXP (y, 0);
6215
6216	      if (REG_P (clobbered)
6217		  || GET_CODE (clobbered) == SUBREG)
6218		invalidate (clobbered, VOIDmode);
6219	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
6220		       || GET_CODE (clobbered) == ZERO_EXTRACT)
6221		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6222	    }
6223	  else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6224	    invalidate (SET_DEST (y), VOIDmode);
6225	}
6226    }
6227}
6228
6229static rtx cse_process_note (rtx);
6230
6231/* A simplify_replace_fn_rtx callback for cse_process_note.  Process X,
6232   part of the REG_NOTES of an insn.  Replace any registers with either
6233   an equivalent constant or the canonical form of the register.
6234   Only replace addresses if the containing MEM remains valid.
6235
6236   Return the replacement for X, or null if it should be simplified
6237   recursively.  */
6238
6239static rtx
6240cse_process_note_1 (rtx x, const_rtx, void *)
6241{
6242  if (MEM_P (x))
6243    {
6244      validate_change (x, &XEXP (x, 0), cse_process_note (XEXP (x, 0)), false);
6245      return x;
6246    }
6247
6248  if (REG_P (x))
6249    {
6250      int i = REG_QTY (REGNO (x));
6251
6252      /* Return a constant or a constant register.  */
6253      if (REGNO_QTY_VALID_P (REGNO (x)))
6254	{
6255	  struct qty_table_elem *ent = &qty_table[i];
6256
6257	  if (ent->const_rtx != NULL_RTX
6258	      && (CONSTANT_P (ent->const_rtx)
6259		  || REG_P (ent->const_rtx)))
6260	    {
6261	      rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6262	      if (new_rtx)
6263		return copy_rtx (new_rtx);
6264	    }
6265	}
6266
6267      /* Otherwise, canonicalize this register.  */
6268      return canon_reg (x, NULL);
6269    }
6270
6271  return NULL_RTX;
6272}
6273
6274/* Process X, part of the REG_NOTES of an insn.  Replace any registers in it
6275   with either an equivalent constant or the canonical form of the register.
6276   Only replace addresses if the containing MEM remains valid.  */
6277
6278static rtx
6279cse_process_note (rtx x)
6280{
6281  return simplify_replace_fn_rtx (x, NULL_RTX, cse_process_note_1, NULL);
6282}
6283
6284
6285/* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6286
6287   DATA is a pointer to a struct cse_basic_block_data, that is used to
6288   describe the path.
6289   It is filled with a queue of basic blocks, starting with FIRST_BB
6290   and following a trace through the CFG.
6291
6292   If all paths starting at FIRST_BB have been followed, or no new path
6293   starting at FIRST_BB can be constructed, this function returns FALSE.
6294   Otherwise, DATA->path is filled and the function returns TRUE indicating
6295   that a path to follow was found.
6296
6297   If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6298   block in the path will be FIRST_BB.  */
6299
6300static bool
6301cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6302	       int follow_jumps)
6303{
6304  basic_block bb;
6305  edge e;
6306  int path_size;
6307
6308  bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6309
6310  /* See if there is a previous path.  */
6311  path_size = data->path_size;
6312
6313  /* There is a previous path.  Make sure it started with FIRST_BB.  */
6314  if (path_size)
6315    gcc_assert (data->path[0].bb == first_bb);
6316
6317  /* There was only one basic block in the last path.  Clear the path and
6318     return, so that paths starting at another basic block can be tried.  */
6319  if (path_size == 1)
6320    {
6321      path_size = 0;
6322      goto done;
6323    }
6324
6325  /* If the path was empty from the beginning, construct a new path.  */
6326  if (path_size == 0)
6327    data->path[path_size++].bb = first_bb;
6328  else
6329    {
6330      /* Otherwise, path_size must be equal to or greater than 2, because
6331	 a previous path exists that is at least two basic blocks long.
6332
6333	 Update the previous branch path, if any.  If the last branch was
6334	 previously along the branch edge, take the fallthrough edge now.  */
6335      while (path_size >= 2)
6336	{
6337	  basic_block last_bb_in_path, previous_bb_in_path;
6338	  edge e;
6339
6340	  --path_size;
6341	  last_bb_in_path = data->path[path_size].bb;
6342	  previous_bb_in_path = data->path[path_size - 1].bb;
6343
6344	  /* If we previously followed a path along the branch edge, try
6345	     the fallthru edge now.  */
6346	  if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6347	      && any_condjump_p (BB_END (previous_bb_in_path))
6348	      && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6349	      && e == BRANCH_EDGE (previous_bb_in_path))
6350	    {
6351	      bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6352	      if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6353		  && single_pred_p (bb)
6354		  /* We used to assert here that we would only see blocks
6355		     that we have not visited yet.  But we may end up
6356		     visiting basic blocks twice if the CFG has changed
6357		     in this run of cse_main, because when the CFG changes
6358		     the topological sort of the CFG also changes.  A basic
6359		     blocks that previously had more than two predecessors
6360		     may now have a single predecessor, and become part of
6361		     a path that starts at another basic block.
6362
6363		     We still want to visit each basic block only once, so
6364		     halt the path here if we have already visited BB.  */
6365		  && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6366		{
6367		  bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6368		  data->path[path_size++].bb = bb;
6369		  break;
6370		}
6371	    }
6372
6373	  data->path[path_size].bb = NULL;
6374	}
6375
6376      /* If only one block remains in the path, bail.  */
6377      if (path_size == 1)
6378	{
6379	  path_size = 0;
6380	  goto done;
6381	}
6382    }
6383
6384  /* Extend the path if possible.  */
6385  if (follow_jumps)
6386    {
6387      bb = data->path[path_size - 1].bb;
6388      while (bb && path_size < param_max_cse_path_length)
6389	{
6390	  if (single_succ_p (bb))
6391	    e = single_succ_edge (bb);
6392	  else if (EDGE_COUNT (bb->succs) == 2
6393		   && any_condjump_p (BB_END (bb)))
6394	    {
6395	      /* First try to follow the branch.  If that doesn't lead
6396		 to a useful path, follow the fallthru edge.  */
6397	      e = BRANCH_EDGE (bb);
6398	      if (!single_pred_p (e->dest))
6399		e = FALLTHRU_EDGE (bb);
6400	    }
6401	  else
6402	    e = NULL;
6403
6404	  if (e
6405	      && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6406	      && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6407	      && single_pred_p (e->dest)
6408	      /* Avoid visiting basic blocks twice.  The large comment
6409		 above explains why this can happen.  */
6410	      && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6411	    {
6412	      basic_block bb2 = e->dest;
6413	      bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6414	      data->path[path_size++].bb = bb2;
6415	      bb = bb2;
6416	    }
6417	  else
6418	    bb = NULL;
6419	}
6420    }
6421
6422done:
6423  data->path_size = path_size;
6424  return path_size != 0;
6425}
6426
6427/* Dump the path in DATA to file F.  NSETS is the number of sets
6428   in the path.  */
6429
6430static void
6431cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6432{
6433  int path_entry;
6434
6435  fprintf (f, ";; Following path with %d sets: ", nsets);
6436  for (path_entry = 0; path_entry < data->path_size; path_entry++)
6437    fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6438  fputc ('\n', f);
6439  fflush (f);
6440}
6441
6442
6443/* Return true if BB has exception handling successor edges.  */
6444
6445static bool
6446have_eh_succ_edges (basic_block bb)
6447{
6448  edge e;
6449  edge_iterator ei;
6450
6451  FOR_EACH_EDGE (e, ei, bb->succs)
6452    if (e->flags & EDGE_EH)
6453      return true;
6454
6455  return false;
6456}
6457
6458
6459/* Scan to the end of the path described by DATA.  Return an estimate of
6460   the total number of SETs of all insns in the path.  */
6461
6462static void
6463cse_prescan_path (struct cse_basic_block_data *data)
6464{
6465  int nsets = 0;
6466  int path_size = data->path_size;
6467  int path_entry;
6468
6469  /* Scan to end of each basic block in the path.  */
6470  for (path_entry = 0; path_entry < path_size; path_entry++)
6471    {
6472      basic_block bb;
6473      rtx_insn *insn;
6474
6475      bb = data->path[path_entry].bb;
6476
6477      FOR_BB_INSNS (bb, insn)
6478	{
6479	  if (!INSN_P (insn))
6480	    continue;
6481
6482	  /* A PARALLEL can have lots of SETs in it,
6483	     especially if it is really an ASM_OPERANDS.  */
6484	  if (GET_CODE (PATTERN (insn)) == PARALLEL)
6485	    nsets += XVECLEN (PATTERN (insn), 0);
6486	  else
6487	    nsets += 1;
6488	}
6489    }
6490
6491  data->nsets = nsets;
6492}
6493
6494/* Return true if the pattern of INSN uses a LABEL_REF for which
6495   there isn't a REG_LABEL_OPERAND note.  */
6496
6497static bool
6498check_for_label_ref (rtx_insn *insn)
6499{
6500  /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6501     note for it, we must rerun jump since it needs to place the note.  If
6502     this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6503     don't do this since no REG_LABEL_OPERAND will be added.  */
6504  subrtx_iterator::array_type array;
6505  FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6506    {
6507      const_rtx x = *iter;
6508      if (GET_CODE (x) == LABEL_REF
6509	  && !LABEL_REF_NONLOCAL_P (x)
6510	  && (!JUMP_P (insn)
6511	      || !label_is_jump_target_p (label_ref_label (x), insn))
6512	  && LABEL_P (label_ref_label (x))
6513	  && INSN_UID (label_ref_label (x)) != 0
6514	  && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
6515	return true;
6516    }
6517  return false;
6518}
6519
6520/* Process a single extended basic block described by EBB_DATA.  */
6521
6522static void
6523cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6524{
6525  int path_size = ebb_data->path_size;
6526  int path_entry;
6527  int num_insns = 0;
6528
6529  /* Allocate the space needed by qty_table.  */
6530  qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6531
6532  new_basic_block ();
6533  cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6534  cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6535  for (path_entry = 0; path_entry < path_size; path_entry++)
6536    {
6537      basic_block bb;
6538      rtx_insn *insn;
6539
6540      bb = ebb_data->path[path_entry].bb;
6541
6542      /* Invalidate recorded information for eh regs if there is an EH
6543	 edge pointing to that bb.  */
6544      if (bb_has_eh_pred (bb))
6545	{
6546	  df_ref def;
6547
6548	  FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6549	    if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6550	      invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6551	}
6552
6553      optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6554      FOR_BB_INSNS (bb, insn)
6555	{
6556	  /* If we have processed 1,000 insns, flush the hash table to
6557	     avoid extreme quadratic behavior.  We must not include NOTEs
6558	     in the count since there may be more of them when generating
6559	     debugging information.  If we clear the table at different
6560	     times, code generated with -g -O might be different than code
6561	     generated with -O but not -g.
6562
6563	     FIXME: This is a real kludge and needs to be done some other
6564		    way.  */
6565	  if (NONDEBUG_INSN_P (insn)
6566	      && num_insns++ > param_max_cse_insns)
6567	    {
6568	      flush_hash_table ();
6569	      num_insns = 0;
6570	    }
6571
6572	  if (INSN_P (insn))
6573	    {
6574	      /* Process notes first so we have all notes in canonical forms
6575		 when looking for duplicate operations.  */
6576	      bool changed = false;
6577	      for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
6578		if (REG_NOTE_KIND (note) == REG_EQUAL)
6579		  {
6580		    rtx newval = cse_process_note (XEXP (note, 0));
6581		    if (newval != XEXP (note, 0))
6582		      {
6583			XEXP (note, 0) = newval;
6584			changed = true;
6585		      }
6586		  }
6587	      if (changed)
6588		df_notes_rescan (insn);
6589
6590	      cse_insn (insn);
6591
6592	      /* If we haven't already found an insn where we added a LABEL_REF,
6593		 check this one.  */
6594	      if (INSN_P (insn) && !recorded_label_ref
6595		  && check_for_label_ref (insn))
6596		recorded_label_ref = true;
6597
6598	      if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6599		{
6600		  /* If the previous insn sets CC0 and this insn no
6601		     longer references CC0, delete the previous insn.
6602		     Here we use fact that nothing expects CC0 to be
6603		     valid over an insn, which is true until the final
6604		     pass.  */
6605		  rtx_insn *prev_insn;
6606		  rtx tem;
6607
6608		  prev_insn = prev_nonnote_nondebug_insn (insn);
6609		  if (prev_insn && NONJUMP_INSN_P (prev_insn)
6610		      && (tem = single_set (prev_insn)) != NULL_RTX
6611		      && SET_DEST (tem) == cc0_rtx
6612		      && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6613		    delete_insn (prev_insn);
6614
6615		  /* If this insn is not the last insn in the basic
6616		     block, it will be PREV_INSN(insn) in the next
6617		     iteration.  If we recorded any CC0-related
6618		     information for this insn, remember it.  */
6619		  if (insn != BB_END (bb))
6620		    {
6621		      prev_insn_cc0 = this_insn_cc0;
6622		      prev_insn_cc0_mode = this_insn_cc0_mode;
6623		    }
6624		}
6625	    }
6626	}
6627
6628      /* With non-call exceptions, we are not always able to update
6629	 the CFG properly inside cse_insn.  So clean up possibly
6630	 redundant EH edges here.  */
6631      if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6632	cse_cfg_altered |= purge_dead_edges (bb);
6633
6634      /* If we changed a conditional jump, we may have terminated
6635	 the path we are following.  Check that by verifying that
6636	 the edge we would take still exists.  If the edge does
6637	 not exist anymore, purge the remainder of the path.
6638	 Note that this will cause us to return to the caller.  */
6639      if (path_entry < path_size - 1)
6640	{
6641	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6642	  if (!find_edge (bb, next_bb))
6643	    {
6644	      do
6645		{
6646		  path_size--;
6647
6648		  /* If we truncate the path, we must also reset the
6649		     visited bit on the remaining blocks in the path,
6650		     or we will never visit them at all.  */
6651		  bitmap_clear_bit (cse_visited_basic_blocks,
6652			     ebb_data->path[path_size].bb->index);
6653		  ebb_data->path[path_size].bb = NULL;
6654		}
6655	      while (path_size - 1 != path_entry);
6656	      ebb_data->path_size = path_size;
6657	    }
6658	}
6659
6660      /* If this is a conditional jump insn, record any known
6661	 equivalences due to the condition being tested.  */
6662      insn = BB_END (bb);
6663      if (path_entry < path_size - 1
6664	  && EDGE_COUNT (bb->succs) == 2
6665	  && JUMP_P (insn)
6666	  && single_set (insn)
6667	  && any_condjump_p (insn))
6668	{
6669	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6670	  bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6671	  record_jump_equiv (insn, taken);
6672	}
6673
6674      /* Clear the CC0-tracking related insns, they can't provide
6675	 useful information across basic block boundaries.  */
6676      prev_insn_cc0 = 0;
6677    }
6678
6679  gcc_assert (next_qty <= max_qty);
6680
6681  free (qty_table);
6682}
6683
6684
6685/* Perform cse on the instructions of a function.
6686   F is the first instruction.
6687   NREGS is one plus the highest pseudo-reg number used in the instruction.
6688
6689   Return 2 if jump optimizations should be redone due to simplifications
6690   in conditional jump instructions.
6691   Return 1 if the CFG should be cleaned up because it has been modified.
6692   Return 0 otherwise.  */
6693
6694static int
6695cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6696{
6697  struct cse_basic_block_data ebb_data;
6698  basic_block bb;
6699  int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6700  int i, n_blocks;
6701
6702  /* CSE doesn't use dominane info but can invalidate it in different ways.
6703     For simplicity free dominance info here.  */
6704  free_dominance_info (CDI_DOMINATORS);
6705
6706  df_set_flags (DF_LR_RUN_DCE);
6707  df_note_add_problem ();
6708  df_analyze ();
6709  df_set_flags (DF_DEFER_INSN_RESCAN);
6710
6711  reg_scan (get_insns (), max_reg_num ());
6712  init_cse_reg_info (nregs);
6713
6714  ebb_data.path = XNEWVEC (struct branch_path,
6715			   param_max_cse_path_length);
6716
6717  cse_cfg_altered = false;
6718  cse_jumps_altered = false;
6719  recorded_label_ref = false;
6720  constant_pool_entries_cost = 0;
6721  constant_pool_entries_regcost = 0;
6722  ebb_data.path_size = 0;
6723  ebb_data.nsets = 0;
6724  rtl_hooks = cse_rtl_hooks;
6725
6726  init_recog ();
6727  init_alias_analysis ();
6728
6729  reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6730
6731  /* Set up the table of already visited basic blocks.  */
6732  cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6733  bitmap_clear (cse_visited_basic_blocks);
6734
6735  /* Loop over basic blocks in reverse completion order (RPO),
6736     excluding the ENTRY and EXIT blocks.  */
6737  n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6738  i = 0;
6739  while (i < n_blocks)
6740    {
6741      /* Find the first block in the RPO queue that we have not yet
6742	 processed before.  */
6743      do
6744	{
6745	  bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6746	}
6747      while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6748	     && i < n_blocks);
6749
6750      /* Find all paths starting with BB, and process them.  */
6751      while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6752	{
6753	  /* Pre-scan the path.  */
6754	  cse_prescan_path (&ebb_data);
6755
6756	  /* If this basic block has no sets, skip it.  */
6757	  if (ebb_data.nsets == 0)
6758	    continue;
6759
6760	  /* Get a reasonable estimate for the maximum number of qty's
6761	     needed for this path.  For this, we take the number of sets
6762	     and multiply that by MAX_RECOG_OPERANDS.  */
6763	  max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6764
6765	  /* Dump the path we're about to process.  */
6766	  if (dump_file)
6767	    cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6768
6769	  cse_extended_basic_block (&ebb_data);
6770	}
6771    }
6772
6773  /* Clean up.  */
6774  end_alias_analysis ();
6775  free (reg_eqv_table);
6776  free (ebb_data.path);
6777  sbitmap_free (cse_visited_basic_blocks);
6778  free (rc_order);
6779  rtl_hooks = general_rtl_hooks;
6780
6781  if (cse_jumps_altered || recorded_label_ref)
6782    return 2;
6783  else if (cse_cfg_altered)
6784    return 1;
6785  else
6786    return 0;
6787}
6788
6789/* Count the number of times registers are used (not set) in X.
6790   COUNTS is an array in which we accumulate the count, INCR is how much
6791   we count each register usage.
6792
6793   Don't count a usage of DEST, which is the SET_DEST of a SET which
6794   contains X in its SET_SRC.  This is because such a SET does not
6795   modify the liveness of DEST.
6796   DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6797   We must then count uses of a SET_DEST regardless, because the insn can't be
6798   deleted here.  */
6799
6800static void
6801count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6802{
6803  enum rtx_code code;
6804  rtx note;
6805  const char *fmt;
6806  int i, j;
6807
6808  if (x == 0)
6809    return;
6810
6811  switch (code = GET_CODE (x))
6812    {
6813    case REG:
6814      if (x != dest)
6815	counts[REGNO (x)] += incr;
6816      return;
6817
6818    case PC:
6819    case CC0:
6820    case CONST:
6821    CASE_CONST_ANY:
6822    case SYMBOL_REF:
6823    case LABEL_REF:
6824      return;
6825
6826    case CLOBBER:
6827      /* If we are clobbering a MEM, mark any registers inside the address
6828         as being used.  */
6829      if (MEM_P (XEXP (x, 0)))
6830	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6831      return;
6832
6833    case SET:
6834      /* Unless we are setting a REG, count everything in SET_DEST.  */
6835      if (!REG_P (SET_DEST (x)))
6836	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6837      count_reg_usage (SET_SRC (x), counts,
6838		       dest ? dest : SET_DEST (x),
6839		       incr);
6840      return;
6841
6842    case DEBUG_INSN:
6843      return;
6844
6845    case CALL_INSN:
6846    case INSN:
6847    case JUMP_INSN:
6848      /* We expect dest to be NULL_RTX here.  If the insn may throw,
6849	 or if it cannot be deleted due to side-effects, mark this fact
6850	 by setting DEST to pc_rtx.  */
6851      if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6852	  || side_effects_p (PATTERN (x)))
6853	dest = pc_rtx;
6854      if (code == CALL_INSN)
6855	count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6856      count_reg_usage (PATTERN (x), counts, dest, incr);
6857
6858      /* Things used in a REG_EQUAL note aren't dead since loop may try to
6859	 use them.  */
6860
6861      note = find_reg_equal_equiv_note (x);
6862      if (note)
6863	{
6864	  rtx eqv = XEXP (note, 0);
6865
6866	  if (GET_CODE (eqv) == EXPR_LIST)
6867	  /* This REG_EQUAL note describes the result of a function call.
6868	     Process all the arguments.  */
6869	    do
6870	      {
6871		count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6872		eqv = XEXP (eqv, 1);
6873	      }
6874	    while (eqv && GET_CODE (eqv) == EXPR_LIST);
6875	  else
6876	    count_reg_usage (eqv, counts, dest, incr);
6877	}
6878      return;
6879
6880    case EXPR_LIST:
6881      if (REG_NOTE_KIND (x) == REG_EQUAL
6882	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6883	  /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6884	     involving registers in the address.  */
6885	  || GET_CODE (XEXP (x, 0)) == CLOBBER)
6886	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6887
6888      count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6889      return;
6890
6891    case ASM_OPERANDS:
6892      /* Iterate over just the inputs, not the constraints as well.  */
6893      for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6894	count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6895      return;
6896
6897    case INSN_LIST:
6898    case INT_LIST:
6899      gcc_unreachable ();
6900
6901    default:
6902      break;
6903    }
6904
6905  fmt = GET_RTX_FORMAT (code);
6906  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6907    {
6908      if (fmt[i] == 'e')
6909	count_reg_usage (XEXP (x, i), counts, dest, incr);
6910      else if (fmt[i] == 'E')
6911	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6912	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6913    }
6914}
6915
6916/* Return true if X is a dead register.  */
6917
6918static inline int
6919is_dead_reg (const_rtx x, int *counts)
6920{
6921  return (REG_P (x)
6922	  && REGNO (x) >= FIRST_PSEUDO_REGISTER
6923	  && counts[REGNO (x)] == 0);
6924}
6925
6926/* Return true if set is live.  */
6927static bool
6928set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0.  */
6929	    int *counts)
6930{
6931  rtx_insn *tem;
6932
6933  if (set_noop_p (set))
6934    ;
6935
6936  else if (GET_CODE (SET_DEST (set)) == CC0
6937	   && !side_effects_p (SET_SRC (set))
6938	   && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6939	       || !INSN_P (tem)
6940	       || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6941    return false;
6942  else if (!is_dead_reg (SET_DEST (set), counts)
6943	   || side_effects_p (SET_SRC (set)))
6944    return true;
6945  return false;
6946}
6947
6948/* Return true if insn is live.  */
6949
6950static bool
6951insn_live_p (rtx_insn *insn, int *counts)
6952{
6953  int i;
6954  if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6955    return true;
6956  else if (GET_CODE (PATTERN (insn)) == SET)
6957    return set_live_p (PATTERN (insn), insn, counts);
6958  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6959    {
6960      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6961	{
6962	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
6963
6964	  if (GET_CODE (elt) == SET)
6965	    {
6966	      if (set_live_p (elt, insn, counts))
6967		return true;
6968	    }
6969	  else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6970	    return true;
6971	}
6972      return false;
6973    }
6974  else if (DEBUG_INSN_P (insn))
6975    {
6976      rtx_insn *next;
6977
6978      if (DEBUG_MARKER_INSN_P (insn))
6979	return true;
6980
6981      for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6982	if (NOTE_P (next))
6983	  continue;
6984	else if (!DEBUG_INSN_P (next))
6985	  return true;
6986	/* If we find an inspection point, such as a debug begin stmt,
6987	   we want to keep the earlier debug insn.  */
6988	else if (DEBUG_MARKER_INSN_P (next))
6989	  return true;
6990	else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6991	  return false;
6992
6993      return true;
6994    }
6995  else
6996    return true;
6997}
6998
6999/* Count the number of stores into pseudo.  Callback for note_stores.  */
7000
7001static void
7002count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
7003{
7004  int *counts = (int *) data;
7005  if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
7006    counts[REGNO (x)]++;
7007}
7008
7009/* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
7010   pseudo doesn't have a replacement.  COUNTS[X] is zero if register X
7011   is dead and REPLACEMENTS[X] is null if it has no replacemenet.
7012   Set *SEEN_REPL to true if we see a dead register that does have
7013   a replacement.  */
7014
7015static bool
7016is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
7017		    bool *seen_repl)
7018{
7019  subrtx_iterator::array_type array;
7020  FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
7021    {
7022      const_rtx x = *iter;
7023      if (is_dead_reg (x, counts))
7024	{
7025	  if (replacements && replacements[REGNO (x)] != NULL_RTX)
7026	    *seen_repl = true;
7027	  else
7028	    return true;
7029	}
7030    }
7031  return false;
7032}
7033
7034/* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7035   Callback for simplify_replace_fn_rtx.  */
7036
7037static rtx
7038replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7039{
7040  rtx *replacements = (rtx *) data;
7041
7042  if (REG_P (x)
7043      && REGNO (x) >= FIRST_PSEUDO_REGISTER
7044      && replacements[REGNO (x)] != NULL_RTX)
7045    {
7046      if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7047	return replacements[REGNO (x)];
7048      return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7049			     GET_MODE (replacements[REGNO (x)]));
7050    }
7051  return NULL_RTX;
7052}
7053
7054/* Scan all the insns and delete any that are dead; i.e., they store a register
7055   that is never used or they copy a register to itself.
7056
7057   This is used to remove insns made obviously dead by cse, loop or other
7058   optimizations.  It improves the heuristics in loop since it won't try to
7059   move dead invariants out of loops or make givs for dead quantities.  The
7060   remaining passes of the compilation are also sped up.  */
7061
7062int
7063delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7064{
7065  int *counts;
7066  rtx_insn *insn, *prev;
7067  rtx *replacements = NULL;
7068  int ndead = 0;
7069
7070  timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7071  /* First count the number of times each register is used.  */
7072  if (MAY_HAVE_DEBUG_BIND_INSNS)
7073    {
7074      counts = XCNEWVEC (int, nreg * 3);
7075      for (insn = insns; insn; insn = NEXT_INSN (insn))
7076	if (DEBUG_BIND_INSN_P (insn))
7077	  count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7078			   NULL_RTX, 1);
7079	else if (INSN_P (insn))
7080	  {
7081	    count_reg_usage (insn, counts, NULL_RTX, 1);
7082	    note_stores (insn, count_stores, counts + nreg * 2);
7083	  }
7084      /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7085	 First one counts how many times each pseudo is used outside
7086	 of debug insns, second counts how many times each pseudo is
7087	 used in debug insns and third counts how many times a pseudo
7088	 is stored.  */
7089    }
7090  else
7091    {
7092      counts = XCNEWVEC (int, nreg);
7093      for (insn = insns; insn; insn = NEXT_INSN (insn))
7094	if (INSN_P (insn))
7095	  count_reg_usage (insn, counts, NULL_RTX, 1);
7096      /* If no debug insns can be present, COUNTS is just an array
7097	 which counts how many times each pseudo is used.  */
7098    }
7099  /* Pseudo PIC register should be considered as used due to possible
7100     new usages generated.  */
7101  if (!reload_completed
7102      && pic_offset_table_rtx
7103      && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7104    counts[REGNO (pic_offset_table_rtx)]++;
7105  /* Go from the last insn to the first and delete insns that only set unused
7106     registers or copy a register to itself.  As we delete an insn, remove
7107     usage counts for registers it uses.
7108
7109     The first jump optimization pass may leave a real insn as the last
7110     insn in the function.   We must not skip that insn or we may end
7111     up deleting code that is not really dead.
7112
7113     If some otherwise unused register is only used in DEBUG_INSNs,
7114     try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7115     the setter.  Then go through DEBUG_INSNs and if a DEBUG_EXPR
7116     has been created for the unused register, replace it with
7117     the DEBUG_EXPR, otherwise reset the DEBUG_INSN.  */
7118  for (insn = get_last_insn (); insn; insn = prev)
7119    {
7120      int live_insn = 0;
7121
7122      prev = PREV_INSN (insn);
7123      if (!INSN_P (insn))
7124	continue;
7125
7126      live_insn = insn_live_p (insn, counts);
7127
7128      /* If this is a dead insn, delete it and show registers in it aren't
7129	 being used.  */
7130
7131      if (! live_insn && dbg_cnt (delete_trivial_dead))
7132	{
7133	  if (DEBUG_INSN_P (insn))
7134	    {
7135	      if (DEBUG_BIND_INSN_P (insn))
7136		count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7137				 NULL_RTX, -1);
7138	    }
7139	  else
7140	    {
7141	      rtx set;
7142	      if (MAY_HAVE_DEBUG_BIND_INSNS
7143		  && (set = single_set (insn)) != NULL_RTX
7144		  && is_dead_reg (SET_DEST (set), counts)
7145		  /* Used at least once in some DEBUG_INSN.  */
7146		  && counts[REGNO (SET_DEST (set)) + nreg] > 0
7147		  /* And set exactly once.  */
7148		  && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7149		  && !side_effects_p (SET_SRC (set))
7150		  && asm_noperands (PATTERN (insn)) < 0)
7151		{
7152		  rtx dval, bind_var_loc;
7153		  rtx_insn *bind;
7154
7155		  /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL).  */
7156		  dval = make_debug_expr_from_rtl (SET_DEST (set));
7157
7158		  /* Emit a debug bind insn before the insn in which
7159		     reg dies.  */
7160		  bind_var_loc =
7161		    gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7162					  DEBUG_EXPR_TREE_DECL (dval),
7163					  SET_SRC (set),
7164					  VAR_INIT_STATUS_INITIALIZED);
7165		  count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7166
7167		  bind = emit_debug_insn_before (bind_var_loc, insn);
7168		  df_insn_rescan (bind);
7169
7170		  if (replacements == NULL)
7171		    replacements = XCNEWVEC (rtx, nreg);
7172		  replacements[REGNO (SET_DEST (set))] = dval;
7173		}
7174
7175	      count_reg_usage (insn, counts, NULL_RTX, -1);
7176	      ndead++;
7177	    }
7178	  cse_cfg_altered |= delete_insn_and_edges (insn);
7179	}
7180    }
7181
7182  if (MAY_HAVE_DEBUG_BIND_INSNS)
7183    {
7184      for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7185	if (DEBUG_BIND_INSN_P (insn))
7186	  {
7187	    /* If this debug insn references a dead register that wasn't replaced
7188	       with an DEBUG_EXPR, reset the DEBUG_INSN.  */
7189	    bool seen_repl = false;
7190	    if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7191				    counts, replacements, &seen_repl))
7192	      {
7193		INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7194		df_insn_rescan (insn);
7195	      }
7196	    else if (seen_repl)
7197	      {
7198		INSN_VAR_LOCATION_LOC (insn)
7199		  = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7200					     NULL_RTX, replace_dead_reg,
7201					     replacements);
7202		df_insn_rescan (insn);
7203	      }
7204	  }
7205      free (replacements);
7206    }
7207
7208  if (dump_file && ndead)
7209    fprintf (dump_file, "Deleted %i trivially dead insns\n",
7210	     ndead);
7211  /* Clean up.  */
7212  free (counts);
7213  timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7214  return ndead;
7215}
7216
7217/* If LOC contains references to NEWREG in a different mode, change them
7218   to use NEWREG instead.  */
7219
7220static void
7221cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7222		    rtx *loc, rtx_insn *insn, rtx newreg)
7223{
7224  FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7225    {
7226      rtx *loc = *iter;
7227      rtx x = *loc;
7228      if (x
7229	  && REG_P (x)
7230	  && REGNO (x) == REGNO (newreg)
7231	  && GET_MODE (x) != GET_MODE (newreg))
7232	{
7233	  validate_change (insn, loc, newreg, 1);
7234	  iter.skip_subrtxes ();
7235	}
7236    }
7237}
7238
7239/* Change the mode of any reference to the register REGNO (NEWREG) to
7240   GET_MODE (NEWREG) in INSN.  */
7241
7242static void
7243cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7244{
7245  int success;
7246
7247  if (!INSN_P (insn))
7248    return;
7249
7250  subrtx_ptr_iterator::array_type array;
7251  cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7252  cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7253
7254  /* If the following assertion was triggered, there is most probably
7255     something wrong with the cc_modes_compatible back end function.
7256     CC modes only can be considered compatible if the insn - with the mode
7257     replaced by any of the compatible modes - can still be recognized.  */
7258  success = apply_change_group ();
7259  gcc_assert (success);
7260}
7261
7262/* Change the mode of any reference to the register REGNO (NEWREG) to
7263   GET_MODE (NEWREG), starting at START.  Stop before END.  Stop at
7264   any instruction which modifies NEWREG.  */
7265
7266static void
7267cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7268{
7269  rtx_insn *insn;
7270
7271  for (insn = start; insn != end; insn = NEXT_INSN (insn))
7272    {
7273      if (! INSN_P (insn))
7274	continue;
7275
7276      if (reg_set_p (newreg, insn))
7277	return;
7278
7279      cse_change_cc_mode_insn (insn, newreg);
7280    }
7281}
7282
7283/* BB is a basic block which finishes with CC_REG as a condition code
7284   register which is set to CC_SRC.  Look through the successors of BB
7285   to find blocks which have a single predecessor (i.e., this one),
7286   and look through those blocks for an assignment to CC_REG which is
7287   equivalent to CC_SRC.  CAN_CHANGE_MODE indicates whether we are
7288   permitted to change the mode of CC_SRC to a compatible mode.  This
7289   returns VOIDmode if no equivalent assignments were found.
7290   Otherwise it returns the mode which CC_SRC should wind up with.
7291   ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7292   but is passed unmodified down to recursive calls in order to prevent
7293   endless recursion.
7294
7295   The main complexity in this function is handling the mode issues.
7296   We may have more than one duplicate which we can eliminate, and we
7297   try to find a mode which will work for multiple duplicates.  */
7298
7299static machine_mode
7300cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7301	      bool can_change_mode)
7302{
7303  bool found_equiv;
7304  machine_mode mode;
7305  unsigned int insn_count;
7306  edge e;
7307  rtx_insn *insns[2];
7308  machine_mode modes[2];
7309  rtx_insn *last_insns[2];
7310  unsigned int i;
7311  rtx newreg;
7312  edge_iterator ei;
7313
7314  /* We expect to have two successors.  Look at both before picking
7315     the final mode for the comparison.  If we have more successors
7316     (i.e., some sort of table jump, although that seems unlikely),
7317     then we require all beyond the first two to use the same
7318     mode.  */
7319
7320  found_equiv = false;
7321  mode = GET_MODE (cc_src);
7322  insn_count = 0;
7323  FOR_EACH_EDGE (e, ei, bb->succs)
7324    {
7325      rtx_insn *insn;
7326      rtx_insn *end;
7327
7328      if (e->flags & EDGE_COMPLEX)
7329	continue;
7330
7331      if (EDGE_COUNT (e->dest->preds) != 1
7332	  || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7333	  /* Avoid endless recursion on unreachable blocks.  */
7334	  || e->dest == orig_bb)
7335	continue;
7336
7337      end = NEXT_INSN (BB_END (e->dest));
7338      for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7339	{
7340	  rtx set;
7341
7342	  if (! INSN_P (insn))
7343	    continue;
7344
7345	  /* If CC_SRC is modified, we have to stop looking for
7346	     something which uses it.  */
7347	  if (modified_in_p (cc_src, insn))
7348	    break;
7349
7350	  /* Check whether INSN sets CC_REG to CC_SRC.  */
7351	  set = single_set (insn);
7352	  if (set
7353	      && REG_P (SET_DEST (set))
7354	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7355	    {
7356	      bool found;
7357	      machine_mode set_mode;
7358	      machine_mode comp_mode;
7359
7360	      found = false;
7361	      set_mode = GET_MODE (SET_SRC (set));
7362	      comp_mode = set_mode;
7363	      if (rtx_equal_p (cc_src, SET_SRC (set)))
7364		found = true;
7365	      else if (GET_CODE (cc_src) == COMPARE
7366		       && GET_CODE (SET_SRC (set)) == COMPARE
7367		       && mode != set_mode
7368		       && rtx_equal_p (XEXP (cc_src, 0),
7369				       XEXP (SET_SRC (set), 0))
7370		       && rtx_equal_p (XEXP (cc_src, 1),
7371				       XEXP (SET_SRC (set), 1)))
7372
7373		{
7374		  comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7375		  if (comp_mode != VOIDmode
7376		      && (can_change_mode || comp_mode == mode))
7377		    found = true;
7378		}
7379
7380	      if (found)
7381		{
7382		  found_equiv = true;
7383		  if (insn_count < ARRAY_SIZE (insns))
7384		    {
7385		      insns[insn_count] = insn;
7386		      modes[insn_count] = set_mode;
7387		      last_insns[insn_count] = end;
7388		      ++insn_count;
7389
7390		      if (mode != comp_mode)
7391			{
7392			  gcc_assert (can_change_mode);
7393			  mode = comp_mode;
7394
7395			  /* The modified insn will be re-recognized later.  */
7396			  PUT_MODE (cc_src, mode);
7397			}
7398		    }
7399		  else
7400		    {
7401		      if (set_mode != mode)
7402			{
7403			  /* We found a matching expression in the
7404			     wrong mode, but we don't have room to
7405			     store it in the array.  Punt.  This case
7406			     should be rare.  */
7407			  break;
7408			}
7409		      /* INSN sets CC_REG to a value equal to CC_SRC
7410			 with the right mode.  We can simply delete
7411			 it.  */
7412		      delete_insn (insn);
7413		    }
7414
7415		  /* We found an instruction to delete.  Keep looking,
7416		     in the hopes of finding a three-way jump.  */
7417		  continue;
7418		}
7419
7420	      /* We found an instruction which sets the condition
7421		 code, so don't look any farther.  */
7422	      break;
7423	    }
7424
7425	  /* If INSN sets CC_REG in some other way, don't look any
7426	     farther.  */
7427	  if (reg_set_p (cc_reg, insn))
7428	    break;
7429	}
7430
7431      /* If we fell off the bottom of the block, we can keep looking
7432	 through successors.  We pass CAN_CHANGE_MODE as false because
7433	 we aren't prepared to handle compatibility between the
7434	 further blocks and this block.  */
7435      if (insn == end)
7436	{
7437	  machine_mode submode;
7438
7439	  submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7440	  if (submode != VOIDmode)
7441	    {
7442	      gcc_assert (submode == mode);
7443	      found_equiv = true;
7444	      can_change_mode = false;
7445	    }
7446	}
7447    }
7448
7449  if (! found_equiv)
7450    return VOIDmode;
7451
7452  /* Now INSN_COUNT is the number of instructions we found which set
7453     CC_REG to a value equivalent to CC_SRC.  The instructions are in
7454     INSNS.  The modes used by those instructions are in MODES.  */
7455
7456  newreg = NULL_RTX;
7457  for (i = 0; i < insn_count; ++i)
7458    {
7459      if (modes[i] != mode)
7460	{
7461	  /* We need to change the mode of CC_REG in INSNS[i] and
7462	     subsequent instructions.  */
7463	  if (! newreg)
7464	    {
7465	      if (GET_MODE (cc_reg) == mode)
7466		newreg = cc_reg;
7467	      else
7468		newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7469	    }
7470	  cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7471				    newreg);
7472	}
7473
7474      cse_cfg_altered |= delete_insn_and_edges (insns[i]);
7475    }
7476
7477  return mode;
7478}
7479
7480/* If we have a fixed condition code register (or two), walk through
7481   the instructions and try to eliminate duplicate assignments.  */
7482
7483static void
7484cse_condition_code_reg (void)
7485{
7486  unsigned int cc_regno_1;
7487  unsigned int cc_regno_2;
7488  rtx cc_reg_1;
7489  rtx cc_reg_2;
7490  basic_block bb;
7491
7492  if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7493    return;
7494
7495  cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7496  if (cc_regno_2 != INVALID_REGNUM)
7497    cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7498  else
7499    cc_reg_2 = NULL_RTX;
7500
7501  FOR_EACH_BB_FN (bb, cfun)
7502    {
7503      rtx_insn *last_insn;
7504      rtx cc_reg;
7505      rtx_insn *insn;
7506      rtx_insn *cc_src_insn;
7507      rtx cc_src;
7508      machine_mode mode;
7509      machine_mode orig_mode;
7510
7511      /* Look for blocks which end with a conditional jump based on a
7512	 condition code register.  Then look for the instruction which
7513	 sets the condition code register.  Then look through the
7514	 successor blocks for instructions which set the condition
7515	 code register to the same value.  There are other possible
7516	 uses of the condition code register, but these are by far the
7517	 most common and the ones which we are most likely to be able
7518	 to optimize.  */
7519
7520      last_insn = BB_END (bb);
7521      if (!JUMP_P (last_insn))
7522	continue;
7523
7524      if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7525	cc_reg = cc_reg_1;
7526      else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7527	cc_reg = cc_reg_2;
7528      else
7529	continue;
7530
7531      cc_src_insn = NULL;
7532      cc_src = NULL_RTX;
7533      for (insn = PREV_INSN (last_insn);
7534	   insn && insn != PREV_INSN (BB_HEAD (bb));
7535	   insn = PREV_INSN (insn))
7536	{
7537	  rtx set;
7538
7539	  if (! INSN_P (insn))
7540	    continue;
7541	  set = single_set (insn);
7542	  if (set
7543	      && REG_P (SET_DEST (set))
7544	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7545	    {
7546	      cc_src_insn = insn;
7547	      cc_src = SET_SRC (set);
7548	      break;
7549	    }
7550	  else if (reg_set_p (cc_reg, insn))
7551	    break;
7552	}
7553
7554      if (! cc_src_insn)
7555	continue;
7556
7557      if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7558	continue;
7559
7560      /* Now CC_REG is a condition code register used for a
7561	 conditional jump at the end of the block, and CC_SRC, in
7562	 CC_SRC_INSN, is the value to which that condition code
7563	 register is set, and CC_SRC is still meaningful at the end of
7564	 the basic block.  */
7565
7566      orig_mode = GET_MODE (cc_src);
7567      mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7568      if (mode != VOIDmode)
7569	{
7570	  gcc_assert (mode == GET_MODE (cc_src));
7571	  if (mode != orig_mode)
7572	    {
7573	      rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7574
7575	      cse_change_cc_mode_insn (cc_src_insn, newreg);
7576
7577	      /* Do the same in the following insns that use the
7578		 current value of CC_REG within BB.  */
7579	      cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7580					NEXT_INSN (last_insn),
7581					newreg);
7582	    }
7583	}
7584    }
7585}
7586
7587
7588/* Perform common subexpression elimination.  Nonzero value from
7589   `cse_main' means that jumps were simplified and some code may now
7590   be unreachable, so do jump optimization again.  */
7591static unsigned int
7592rest_of_handle_cse (void)
7593{
7594  int tem;
7595
7596  if (dump_file)
7597    dump_flow_info (dump_file, dump_flags);
7598
7599  tem = cse_main (get_insns (), max_reg_num ());
7600
7601  /* If we are not running more CSE passes, then we are no longer
7602     expecting CSE to be run.  But always rerun it in a cheap mode.  */
7603  cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7604
7605  if (tem == 2)
7606    {
7607      timevar_push (TV_JUMP);
7608      rebuild_jump_labels (get_insns ());
7609      cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7610      timevar_pop (TV_JUMP);
7611    }
7612  else if (tem == 1 || optimize > 1)
7613    cse_cfg_altered |= cleanup_cfg (0);
7614
7615  return 0;
7616}
7617
7618namespace {
7619
7620const pass_data pass_data_cse =
7621{
7622  RTL_PASS, /* type */
7623  "cse1", /* name */
7624  OPTGROUP_NONE, /* optinfo_flags */
7625  TV_CSE, /* tv_id */
7626  0, /* properties_required */
7627  0, /* properties_provided */
7628  0, /* properties_destroyed */
7629  0, /* todo_flags_start */
7630  TODO_df_finish, /* todo_flags_finish */
7631};
7632
7633class pass_cse : public rtl_opt_pass
7634{
7635public:
7636  pass_cse (gcc::context *ctxt)
7637    : rtl_opt_pass (pass_data_cse, ctxt)
7638  {}
7639
7640  /* opt_pass methods: */
7641  virtual bool gate (function *) { return optimize > 0; }
7642  virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7643
7644}; // class pass_cse
7645
7646} // anon namespace
7647
7648rtl_opt_pass *
7649make_pass_cse (gcc::context *ctxt)
7650{
7651  return new pass_cse (ctxt);
7652}
7653
7654
7655/* Run second CSE pass after loop optimizations.  */
7656static unsigned int
7657rest_of_handle_cse2 (void)
7658{
7659  int tem;
7660
7661  if (dump_file)
7662    dump_flow_info (dump_file, dump_flags);
7663
7664  tem = cse_main (get_insns (), max_reg_num ());
7665
7666  /* Run a pass to eliminate duplicated assignments to condition code
7667     registers.  We have to run this after bypass_jumps, because it
7668     makes it harder for that pass to determine whether a jump can be
7669     bypassed safely.  */
7670  cse_condition_code_reg ();
7671
7672  delete_trivially_dead_insns (get_insns (), max_reg_num ());
7673
7674  if (tem == 2)
7675    {
7676      timevar_push (TV_JUMP);
7677      rebuild_jump_labels (get_insns ());
7678      cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7679      timevar_pop (TV_JUMP);
7680    }
7681  else if (tem == 1 || cse_cfg_altered)
7682    cse_cfg_altered |= cleanup_cfg (0);
7683
7684  cse_not_expected = 1;
7685  return 0;
7686}
7687
7688
7689namespace {
7690
7691const pass_data pass_data_cse2 =
7692{
7693  RTL_PASS, /* type */
7694  "cse2", /* name */
7695  OPTGROUP_NONE, /* optinfo_flags */
7696  TV_CSE2, /* tv_id */
7697  0, /* properties_required */
7698  0, /* properties_provided */
7699  0, /* properties_destroyed */
7700  0, /* todo_flags_start */
7701  TODO_df_finish, /* todo_flags_finish */
7702};
7703
7704class pass_cse2 : public rtl_opt_pass
7705{
7706public:
7707  pass_cse2 (gcc::context *ctxt)
7708    : rtl_opt_pass (pass_data_cse2, ctxt)
7709  {}
7710
7711  /* opt_pass methods: */
7712  virtual bool gate (function *)
7713    {
7714      return optimize > 0 && flag_rerun_cse_after_loop;
7715    }
7716
7717  virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7718
7719}; // class pass_cse2
7720
7721} // anon namespace
7722
7723rtl_opt_pass *
7724make_pass_cse2 (gcc::context *ctxt)
7725{
7726  return new pass_cse2 (ctxt);
7727}
7728
7729/* Run second CSE pass after loop optimizations.  */
7730static unsigned int
7731rest_of_handle_cse_after_global_opts (void)
7732{
7733  int save_cfj;
7734  int tem;
7735
7736  /* We only want to do local CSE, so don't follow jumps.  */
7737  save_cfj = flag_cse_follow_jumps;
7738  flag_cse_follow_jumps = 0;
7739
7740  rebuild_jump_labels (get_insns ());
7741  tem = cse_main (get_insns (), max_reg_num ());
7742  cse_cfg_altered |= purge_all_dead_edges ();
7743  delete_trivially_dead_insns (get_insns (), max_reg_num ());
7744
7745  cse_not_expected = !flag_rerun_cse_after_loop;
7746
7747  /* If cse altered any jumps, rerun jump opts to clean things up.  */
7748  if (tem == 2)
7749    {
7750      timevar_push (TV_JUMP);
7751      rebuild_jump_labels (get_insns ());
7752      cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7753      timevar_pop (TV_JUMP);
7754    }
7755  else if (tem == 1 || cse_cfg_altered)
7756    cse_cfg_altered |= cleanup_cfg (0);
7757
7758  flag_cse_follow_jumps = save_cfj;
7759  return 0;
7760}
7761
7762namespace {
7763
7764const pass_data pass_data_cse_after_global_opts =
7765{
7766  RTL_PASS, /* type */
7767  "cse_local", /* name */
7768  OPTGROUP_NONE, /* optinfo_flags */
7769  TV_CSE, /* tv_id */
7770  0, /* properties_required */
7771  0, /* properties_provided */
7772  0, /* properties_destroyed */
7773  0, /* todo_flags_start */
7774  TODO_df_finish, /* todo_flags_finish */
7775};
7776
7777class pass_cse_after_global_opts : public rtl_opt_pass
7778{
7779public:
7780  pass_cse_after_global_opts (gcc::context *ctxt)
7781    : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7782  {}
7783
7784  /* opt_pass methods: */
7785  virtual bool gate (function *)
7786    {
7787      return optimize > 0 && flag_rerun_cse_after_global_opts;
7788    }
7789
7790  virtual unsigned int execute (function *)
7791    {
7792      return rest_of_handle_cse_after_global_opts ();
7793    }
7794
7795}; // class pass_cse_after_global_opts
7796
7797} // anon namespace
7798
7799rtl_opt_pass *
7800make_pass_cse_after_global_opts (gcc::context *ctxt)
7801{
7802  return new pass_cse_after_global_opts (ctxt);
7803}
7804