1/* Definitions of target machine for GNU compiler. NEC V850 series
2   Copyright (C) 1996-2020 Free Software Foundation, Inc.
3   Contributed by Jeff Law (law@cygnus.com).
4
5   This file is part of GCC.
6
7   GCC is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3, or (at your option)
10   any later version.
11
12   GCC is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   Under Section 7 of GPL version 3, you are granted additional
18   permissions described in the GCC Runtime Library Exception, version
19   3.1, as published by the Free Software Foundation.
20
21   You should have received a copy of the GNU General Public License and
22   a copy of the GCC Runtime Library Exception along with this program;
23   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24   <http://www.gnu.org/licenses/>.  */
25
26#ifndef GCC_V850_H
27#define GCC_V850_H
28
29#undef LIB_SPEC
30#define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -lgcc --end-group}}"
31
32#undef ENDFILE_SPEC
33#undef LINK_SPEC
34#undef STARTFILE_SPEC
35#undef ASM_SPEC
36
37#define TARGET_CPU_generic 	1
38#define TARGET_CPU_v850e   	2
39#define TARGET_CPU_v850e1	3
40#define TARGET_CPU_v850e2	4
41#define TARGET_CPU_v850e2v3	5
42#define TARGET_CPU_v850e3v5	6
43
44#ifndef TARGET_CPU_DEFAULT
45#define TARGET_CPU_DEFAULT	TARGET_CPU_generic
46#endif
47
48#define MASK_DEFAULT            MASK_V850
49#define SUBTARGET_ASM_SPEC 	"%{!mv*:-mv850}"
50#define SUBTARGET_CPP_SPEC 	"%{!mv*:-D__v850__}"
51
52/* Choose which processor will be the default.
53   We must pass a -mv850xx option to the assembler if no explicit -mv* option
54   is given, because the assembler's processor default may not be correct.  */
55#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
56#undef  MASK_DEFAULT
57#define MASK_DEFAULT            MASK_V850E
58#undef  SUBTARGET_ASM_SPEC
59#define SUBTARGET_ASM_SPEC 	"%{!mv*:-mv850e}"
60#undef  SUBTARGET_CPP_SPEC
61#define SUBTARGET_CPP_SPEC 	"%{!mv*:-D__v850e__}"
62#endif
63
64#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
65#undef  MASK_DEFAULT
66#define MASK_DEFAULT            MASK_V850E     /* No practical difference.  */
67#undef  SUBTARGET_ASM_SPEC
68#define SUBTARGET_ASM_SPEC	"%{!mv*:-mv850e1}"
69#undef  SUBTARGET_CPP_SPEC
70#define SUBTARGET_CPP_SPEC	"%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
71#endif
72
73#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e2
74#undef  MASK_DEFAULT
75#define MASK_DEFAULT            MASK_V850E2
76#undef  SUBTARGET_ASM_SPEC
77#define SUBTARGET_ASM_SPEC 	"%{!mv*:-mv850e2}"
78#undef  SUBTARGET_CPP_SPEC
79#define SUBTARGET_CPP_SPEC 	"%{!mv*:-D__v850e2__} %{mv850e2:-D__v850e2__}"
80#endif
81
82#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e2v3
83#undef  MASK_DEFAULT
84#define MASK_DEFAULT            MASK_V850E2V3
85#undef  SUBTARGET_ASM_SPEC
86#define SUBTARGET_ASM_SPEC	"%{!mv*:-mv850e2v3}"
87#undef  SUBTARGET_CPP_SPEC
88#define SUBTARGET_CPP_SPEC	"%{!mv*:-D__v850e2v3__} %{mv850e2v3:-D__v850e2v3__}"
89#endif
90
91#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e3v5
92#undef  MASK_DEFAULT
93#define MASK_DEFAULT            MASK_V850E3V5
94#undef  SUBTARGET_ASM_SPEC
95#define SUBTARGET_ASM_SPEC	"%{!mv*:-mv850e3v5}"
96#undef  SUBTARGET_CPP_SPEC
97#define SUBTARGET_CPP_SPEC	"%{!mv*:-D__v850e3v5__} %{mv850e3v5:-D__v850e3v5__}"
98#undef  TARGET_VERSION
99#define TARGET_VERSION		fprintf (stderr, " (Renesas V850E3V5)");
100#endif
101
102#define TARGET_V850E3V5_UP ((TARGET_V850E3V5))
103#define TARGET_V850E2V3_UP ((TARGET_V850E2V3) || TARGET_V850E3V5_UP)
104#define TARGET_V850E2_UP   ((TARGET_V850E2)   || TARGET_V850E2V3_UP)
105#define TARGET_V850E_UP    ((TARGET_V850E)    || TARGET_V850E2_UP)
106#define TARGET_ALL         ((TARGET_V850)     || TARGET_V850E_UP)
107
108#define ASM_SPEC "%{m850es:-mv850e1}%{!mv850es:%{mv*:-mv%*}} \
109%{mrelax:-mrelax} \
110%{m8byte-align:-m8byte-align} \
111%{msoft-float:-msoft-float} \
112%{mhard-float:-mhard-float} \
113%{mgcc-abi:-mgcc-abi}"
114
115#define LINK_SPEC "%{mgcc-abi:-m v850}"
116
117#define CPP_SPEC "\
118  %{mv850e3v5:-D__v850e3v5__} \
119  %{mv850e2v3:-D__v850e2v3__} \
120  %{mv850e2:-D__v850e2__} \
121  %{mv850es:-D__v850e1__} \
122  %{mv850e1:-D__v850e1__} \
123  %{mv850e:-D__v850e__} \
124  %{mv850:-D__v850__} \
125  %(subtarget_cpp_spec) \
126  %{mep:-D__EP__}"
127
128#define EXTRA_SPECS \
129 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
130 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
131
132
133/* Macro to decide when FPU instructions can be used.  */
134#define TARGET_USE_FPU  (TARGET_V850E2V3_UP && ! TARGET_SOFT_FLOAT)
135
136#define TARGET_CPU_CPP_BUILTINS()		\
137  do						\
138    {						\
139      builtin_define( "__v851__" );		\
140      builtin_define( "__v850" );		\
141      builtin_define( "__v850__" );		\
142      builtin_assert( "machine=v850" );		\
143      builtin_assert( "cpu=v850" );		\
144      if (TARGET_EP)				\
145	builtin_define ("__EP__");		\
146      if (TARGET_GCC_ABI)			\
147	builtin_define ("__V850_GCC_ABI__");	\
148      else					\
149	builtin_define ("__V850_RH850_ABI__");	\
150      if (! TARGET_DISABLE_CALLT)		\
151	builtin_define ("__V850_CALLT__");	\
152      if (TARGET_8BYTE_ALIGN)			\
153	builtin_define ("__V850_8BYTE_ALIGN__");\
154      builtin_define (TARGET_USE_FPU ?		\
155		      "__FPU_OK__" : "__NO_FPU__");\
156    }						\
157  while(0)
158
159#define MASK_CPU (MASK_V850 | MASK_V850E | MASK_V850E1 | MASK_V850E2 | MASK_V850E2V3 | MASK_V850E3V5)
160
161/* Target machine storage layout */
162
163/* Define this if most significant bit is lowest numbered
164   in instructions that operate on numbered bit-fields.
165   This is not true on the NEC V850.  */
166#define BITS_BIG_ENDIAN 0
167
168/* Define this if most significant byte of a word is the lowest numbered.  */
169/* This is not true on the NEC V850.  */
170#define BYTES_BIG_ENDIAN 0
171
172/* Define this if most significant word of a multiword number is lowest
173   numbered.
174   This is not true on the NEC V850.  */
175#define WORDS_BIG_ENDIAN 0
176
177/* Width of a word, in units (bytes).  */
178#define UNITS_PER_WORD		4
179
180/* Define this macro if it is advisable to hold scalars in registers
181   in a wider mode than that declared by the program.  In such cases,
182   the value is constrained to be within the bounds of the declared
183   type, but kept valid in the wider mode.  The signedness of the
184   extension may differ from that of the type.
185
186   Some simple experiments have shown that leaving UNSIGNEDP alone
187   generates the best overall code.  */
188
189#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
190  if (GET_MODE_CLASS (MODE) == MODE_INT \
191      && GET_MODE_SIZE (MODE) < 4)      \
192    { (MODE) = SImode; }
193
194/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
195#define PARM_BOUNDARY		32
196
197/* The stack goes in 32-bit lumps.  */
198#define STACK_BOUNDARY 		BIGGEST_ALIGNMENT
199
200/* Allocation boundary (in *bits*) for the code of a function.
201   16 is the minimum boundary; 32 would give better performance.  */
202#define FUNCTION_BOUNDARY 	(((! TARGET_GCC_ABI) || optimize_size) ? 16 : 32)
203
204/* No data type wants to be aligned rounder than this.  */
205#define BIGGEST_ALIGNMENT	(TARGET_8BYTE_ALIGN ? 64 : 32)
206
207/* Alignment of field after `int : 0' in a structure.  */
208#define EMPTY_FIELD_BOUNDARY 32
209
210/* No structure field wants to be aligned rounder than this.  */
211#define BIGGEST_FIELD_ALIGNMENT BIGGEST_ALIGNMENT
212
213/* Define this if move instructions will actually fail to work
214   when given unaligned data.  */
215#define STRICT_ALIGNMENT  (!TARGET_NO_STRICT_ALIGN)
216
217/* Define this as 1 if `char' should by default be signed; else as 0.
218
219   On the NEC V850, loads do sign extension, so make this default.  */
220#define DEFAULT_SIGNED_CHAR 1
221
222#undef  SIZE_TYPE
223#define SIZE_TYPE "unsigned int"
224
225#undef  PTRDIFF_TYPE
226#define PTRDIFF_TYPE "int"
227
228#undef  WCHAR_TYPE
229#define WCHAR_TYPE "long int"
230
231#undef  WCHAR_TYPE_SIZE
232#define WCHAR_TYPE_SIZE BITS_PER_WORD
233
234/* Standard register usage.  */
235
236/* Number of actual hardware registers.
237   The hardware registers are assigned numbers for the compiler
238   from 0 to just below FIRST_PSEUDO_REGISTER.
239
240   All registers that the compiler knows about must be given numbers,
241   even those that are not normally considered general registers.  */
242
243#define FIRST_PSEUDO_REGISTER 36
244
245/* 1 for registers that have pervasive standard uses
246   and are not available for the register allocator.  */
247
248#define FIXED_REGISTERS \
249  { 1, 1, 1, 1, 1, 1, 0, 0, \
250    0, 0, 0, 0, 0, 0, 0, 0, \
251    0, 0, 0, 0, 0, 0, 0, 0, \
252    0, 0, 0, 0, 0, 0, 1, 0, \
253    1, 1,	\
254    1, 1}
255
256/* 1 for registers not available across function calls.
257   These must include the FIXED_REGISTERS and also any
258   registers that can be used without being saved.
259   The latter must include the registers where values are returned
260   and the register where structure-value addresses are passed.
261   Aside from that, you can include as many other registers as you
262   like.  */
263
264#define CALL_USED_REGISTERS \
265  { 1, 1, 1, 1, 1, 1, 1, 1, \
266    1, 1, 1, 1, 1, 1, 1, 1, \
267    1, 1, 1, 1, 0, 0, 0, 0, \
268    0, 0, 0, 0, 0, 0, 1, 1, \
269    1, 1,	\
270    1, 1}
271
272/* List the order in which to allocate registers.  Each register must be
273   listed once, even those in FIXED_REGISTERS.
274
275   On the 850, we make the return registers first, then all of the volatile
276   registers, then the saved registers in reverse order to better save the
277   registers with an out of line function, and finally the fixed
278   registers.  */
279
280#define REG_ALLOC_ORDER							\
281{									\
282  10, 11,				/* return registers */		\
283  12, 13, 14, 15, 16, 17, 18, 19,	/* scratch registers */		\
284   6,  7,  8,  9, 31,			/* argument registers */	\
285  29, 28, 27, 26, 25, 24, 23, 22,	/* saved registers */		\
286  21, 20,  2,								\
287   0,  1,  3,  4,  5, 30, 32, 33,      /* fixed registers */           \
288  34, 35								\
289}
290
291
292/* Define the classes of registers for register constraints in the
293   machine description.  Also define ranges of constants.
294
295   One of the classes must always be named ALL_REGS and include all hard regs.
296   If there is more than one class, another class must be named NO_REGS
297   and contain no registers.
298
299   The name GENERAL_REGS must be the name of a class (or an alias for
300   another name such as ALL_REGS).  This is the class of registers
301   that is allowed by "g" or "r" in a register constraint.
302   Also, registers outside this class are allocated only when
303   instructions express preferences for them.
304
305   The classes must be numbered in nondecreasing order; that is,
306   a larger-numbered class must never be contained completely
307   in a smaller-numbered class.
308
309   For any two classes, it is very desirable that there be another
310   class that represents their union.  */
311
312enum reg_class
313{
314  NO_REGS, EVEN_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
315};
316
317#define N_REG_CLASSES (int) LIM_REG_CLASSES
318
319/* Give names of register classes as strings for dump file.  */
320
321#define REG_CLASS_NAMES \
322{ "NO_REGS", "EVEN_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
323
324/* Define which registers fit in which classes.
325   This is an initializer for a vector of HARD_REG_SET
326   of length N_REG_CLASSES.  */
327
328#define REG_CLASS_CONTENTS                     \
329{                                              \
330  { 0x00000000,0x0 }, /* NO_REGS      */       \
331  { 0x55555554,0x0 }, /* EVEN_REGS */          \
332  { 0xfffffffe,0x0 }, /* GENERAL_REGS */       \
333  { 0xffffffff,0x0 }, /* ALL_REGS      */      \
334}
335
336/* The same information, inverted:
337   Return the class number of the smallest class containing
338   reg number REGNO.  This could be a conditional expression
339   or could index an array.  */
340
341#define REGNO_REG_CLASS(REGNO)  ((REGNO == CC_REGNUM || REGNO == FCC_REGNUM) ? NO_REGS : GENERAL_REGS)
342
343/* The class value for index registers, and the one for base regs.  */
344
345#define INDEX_REG_CLASS NO_REGS
346#define BASE_REG_CLASS  GENERAL_REGS
347
348/* Macros to check register numbers against specific register classes.  */
349
350/* These assume that REGNO is a hard or pseudo reg number.
351   They give nonzero only if REGNO is a hard reg of the suitable class
352   or a pseudo reg currently allocated to a suitable hard reg.
353   Since they use reg_renumber, they are safe only once reg_renumber
354   has been allocated, which happens in reginfo.c during register
355   allocation.  */
356
357#define REGNO_OK_FOR_BASE_P(regno)             \
358  (((regno) < FIRST_PSEUDO_REGISTER            \
359    && (regno) != CC_REGNUM                    \
360    && (regno) != FCC_REGNUM)                  \
361   || reg_renumber[regno] >= 0)
362
363#define REGNO_OK_FOR_INDEX_P(regno) 0
364
365/* Convenience wrappers around insn_const_int_ok_for_constraint.  */
366
367#define CONST_OK_FOR_I(VALUE) \
368  insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_I)
369#define CONST_OK_FOR_J(VALUE) \
370  insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_J)
371#define CONST_OK_FOR_K(VALUE) \
372  insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_K)
373#define CONST_OK_FOR_L(VALUE) \
374  insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_L)
375#define CONST_OK_FOR_M(VALUE) \
376  insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_M)
377#define CONST_OK_FOR_N(VALUE) \
378  insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_N)
379#define CONST_OK_FOR_O(VALUE) \
380  insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_O)
381#define CONST_OK_FOR_W(VALUE) \
382  insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_W)
383
384/* Stack layout; function entry, exit and calling.  */
385
386/* Define this if pushing a word on the stack
387   makes the stack pointer a smaller address.  */
388
389#define STACK_GROWS_DOWNWARD 1
390
391/* Define this to nonzero if the nominal address of the stack frame
392   is at the high-address end of the local variables;
393   that is, each additional local variable allocated
394   goes at a more negative offset in the frame.  */
395
396#define FRAME_GROWS_DOWNWARD 1
397
398/* Offset of first parameter from the argument pointer register value.  */
399/* Is equal to the size of the saved fp + pc, even if an fp isn't
400   saved since the value is used before we know.  */
401
402#define FIRST_PARM_OFFSET(FNDECL) 0
403
404/* Specify the registers used for certain standard purposes.
405   The values of these macros are register numbers.  */
406
407/* Register to use for pushing function arguments.  */
408#define STACK_POINTER_REGNUM SP_REGNUM
409
410/* Base register for access to local variables of the function.  */
411#define FRAME_POINTER_REGNUM 34
412
413/* Register containing return address from latest function call.  */
414#define LINK_POINTER_REGNUM LP_REGNUM
415
416/* On some machines the offset between the frame pointer and starting
417   offset of the automatic variables is not known until after register
418   allocation has been done (for example, because the saved registers
419   are between these two locations).  On those machines, define
420   `FRAME_POINTER_REGNUM' the number of a special, fixed register to
421   be used internally until the offset is known, and define
422   `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
423   used for the frame pointer.
424
425   You should define this macro only in the very rare circumstances
426   when it is not possible to calculate the offset between the frame
427   pointer and the automatic variables until after register
428   allocation has been completed.  When this macro is defined, you
429   must also indicate in your definition of `ELIMINABLE_REGS' how to
430   eliminate `FRAME_POINTER_REGNUM' into either
431   `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
432
433   Do not define this macro if it would be the same as
434   `FRAME_POINTER_REGNUM'.  */
435#undef  HARD_FRAME_POINTER_REGNUM
436#define HARD_FRAME_POINTER_REGNUM 29
437
438/* Base register for access to arguments of the function.  */
439#define ARG_POINTER_REGNUM 35
440
441/* Register in which static-chain is passed to a function.
442   This must be a call used register.  */
443#define STATIC_CHAIN_REGNUM 19
444
445/* If defined, this macro specifies a table of register pairs used to
446   eliminate unneeded registers that point into the stack frame.  If
447   it is not defined, the only elimination attempted by the compiler
448   is to replace references to the frame pointer with references to
449   the stack pointer.
450
451   The definition of this macro is a list of structure
452   initializations, each of which specifies an original and
453   replacement register.
454
455   On some machines, the position of the argument pointer is not
456   known until the compilation is completed.  In such a case, a
457   separate hard register must be used for the argument pointer.
458   This register can be eliminated by replacing it with either the
459   frame pointer or the argument pointer, depending on whether or not
460   the frame pointer has been eliminated.
461
462   In this case, you might specify:
463        #define ELIMINABLE_REGS  \
464        {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
465         {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
466         {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
467
468   Note that the elimination of the argument pointer with the stack
469   pointer is specified first since that is the preferred elimination.  */
470
471#define ELIMINABLE_REGS							\
472{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },			\
473 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },			\
474 { ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM },			\
475 { ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM }}			\
476
477/* This macro returns the initial difference between the specified pair
478   of registers.  */
479
480#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
481{									\
482  if ((FROM) == FRAME_POINTER_REGNUM)					\
483    (OFFSET) = get_frame_size () + crtl->outgoing_args_size;	\
484  else if ((FROM) == ARG_POINTER_REGNUM)				\
485   (OFFSET) = compute_frame_size (get_frame_size (), (long *)0);	\
486  else									\
487    gcc_unreachable ();							\
488}
489
490/* Keep the stack pointer constant throughout the function.  */
491#define ACCUMULATE_OUTGOING_ARGS 1
492
493#define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
494
495/* Define a data type for recording info about an argument list
496   during the scan of that argument list.  This data type should
497   hold all necessary information about the function itself
498   and about the args processed so far, enough to enable macros
499   such as FUNCTION_ARG to determine where the next arg should go.  */
500
501#define CUMULATIVE_ARGS struct cum_arg
502struct cum_arg { int nbytes; };
503
504/* Initialize a variable CUM of type CUMULATIVE_ARGS
505   for a call to a function whose data type is FNTYPE.
506   For a library call, FNTYPE is 0.  */
507
508#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
509  do { (CUM).nbytes = 0; } while (0)
510
511/* When a parameter is passed in a register, stack space is still
512   allocated for it.  */
513#define REG_PARM_STACK_SPACE(DECL) 0
514
515/* 1 if N is a possible register number for function argument passing.  */
516
517#define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
518
519#define DEFAULT_PCC_STRUCT_RETURN 0
520
521/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
522   the stack pointer does not matter.  The value is tested only in
523   functions that have frame pointers.
524   No definition is equivalent to always zero.  */
525
526#define EXIT_IGNORE_STACK 1
527
528/* Define this macro as a C expression that is nonzero for registers
529   used by the epilogue or the `return' pattern.  */
530
531#define EPILOGUE_USES(REGNO) \
532  (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
533
534/* Output assembler code to FILE to increment profiler label # LABELNO
535   for profiling a function entry.  */
536
537#define FUNCTION_PROFILER(FILE, LABELNO) ;
538
539/* Length in units of the trampoline for entering a nested function.  */
540
541#define TRAMPOLINE_SIZE 24
542
543/* Addressing modes, and classification of registers for them.  */
544
545
546/* 1 if X is an rtx for a constant that is a valid address.  */
547
548/* ??? This seems too exclusive.  May get better code by accepting more
549   possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs.  */
550
551#define CONSTANT_ADDRESS_P(X) constraint_satisfied_p (X, CONSTRAINT_K)
552
553/* Maximum number of registers that can appear in a valid memory address.  */
554
555#define MAX_REGS_PER_ADDRESS 1
556
557/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
558   return the mode to be used for the comparison.
559
560   For floating-point equality comparisons, CCFPEQmode should be used.
561   VOIDmode should be used in all other cases.
562
563   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
564   possible, to allow for more combinations.  */
565
566#define SELECT_CC_MODE(OP, X, Y)       v850_select_cc_mode (OP, X, Y)
567
568/* Nonzero if access to memory by bytes or half words is no faster
569   than accessing full words.  */
570#define SLOW_BYTE_ACCESS 1
571
572/* According expr.c, a value of around 6 should minimize code size, and
573   for the V850 series, that's our primary concern.  */
574#define MOVE_RATIO(speed) 6
575
576/* Indirect calls are expensive, never turn a direct call
577   into an indirect call.  */
578#define NO_FUNCTION_CSE 1
579
580/* The four different data regions on the v850.  */
581typedef enum
582{
583  DATA_AREA_NORMAL,
584  DATA_AREA_SDA,
585  DATA_AREA_TDA,
586  DATA_AREA_ZDA
587} v850_data_area;
588
589#define TEXT_SECTION_ASM_OP  "\t.section .text"
590#define DATA_SECTION_ASM_OP  "\t.section .data"
591#define BSS_SECTION_ASM_OP   "\t.section .bss"
592#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
593#define SBSS_SECTION_ASM_OP  "\t.section .sbss,\"aw\""
594
595#define SCOMMON_ASM_OP 	       "\t.scomm\t"
596#define ZCOMMON_ASM_OP 	       "\t.zcomm\t"
597#define TCOMMON_ASM_OP 	       "\t.tcomm\t"
598
599#define ASM_COMMENT_START "#"
600
601/* Output to assembler file text saying following lines
602   may contain character constants, extra white space, comments, etc.  */
603
604#define ASM_APP_ON "#APP\n"
605
606/* Output to assembler file text saying following lines
607   no longer contain unusual constructs.  */
608
609#define ASM_APP_OFF "#NO_APP\n"
610
611#undef  USER_LABEL_PREFIX
612#define USER_LABEL_PREFIX "_"
613
614/* This says how to output the assembler to define a global
615   uninitialized but not common symbol.  */
616
617#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
618  asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
619
620#undef  ASM_OUTPUT_ALIGNED_BSS
621#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
622  v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
623
624/* This says how to output the assembler to define a global
625   uninitialized, common symbol.  */
626#undef  ASM_OUTPUT_ALIGNED_COMMON
627#undef  ASM_OUTPUT_COMMON
628#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
629     v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
630
631/* This says how to output the assembler to define a local
632   uninitialized symbol.  */
633#undef  ASM_OUTPUT_ALIGNED_LOCAL
634#undef  ASM_OUTPUT_LOCAL
635#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
636     v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
637
638/* Globalizing directive for a label.  */
639#define GLOBAL_ASM_OP "\t.global "
640
641#define ASM_PN_FORMAT "%s___%lu"
642
643/* This is how we tell the assembler that two symbols have the same value.  */
644
645#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
646  do { assemble_name(FILE, NAME1); 	 \
647       fputs(" = ", FILE);		 \
648       assemble_name(FILE, NAME2);	 \
649       fputc('\n', FILE); } while (0)
650
651
652/* How to refer to registers in assembler output.
653   This sequence is indexed by compiler's hard-register-number (see above).  */
654
655#define REGISTER_NAMES                                         \
656{  "r0",  "r1",  "r2",  "sp",  "gp",  "r5",  "r6" , "r7",      \
657   "r8",  "r9", "r10", "r11", "r12", "r13", "r14", "r15",      \
658  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",      \
659  "r24", "r25", "r26", "r27", "r28", "r29",  "ep", "r31",      \
660  "psw", "fcc",      \
661  ".fp", ".ap"}
662
663/* Register numbers */
664
665#define ADDITIONAL_REGISTER_NAMES              \
666{ { "zero",    ZERO_REGNUM },                  \
667  { "hp",      2 },                            \
668  { "r3",      3 },                            \
669  { "r4",      4 },                            \
670  { "tp",      5 },                            \
671  { "fp",      29 },                           \
672  { "r30",     30 },                           \
673  { "lp",      LP_REGNUM} }
674
675/* This is how to output an element of a case-vector that is absolute.  */
676
677#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
678  fprintf (FILE, "\t%s .L%d\n",					\
679	   (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
680
681/* This is how to output an element of a case-vector that is relative.  */
682
683/* Disable the shift, which is for the currently disabled "switch"
684   opcode.  Se casesi in v850.md.  */
685
686#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) 		\
687  fprintf (FILE, "\t%s %s.L%d-.L%d%s\n",				\
688	   (TARGET_BIG_SWITCH ? ".long" : ".short"),			\
689	   (0 && ! TARGET_BIG_SWITCH && (TARGET_V850E_UP) ? "(" : ""),             \
690	   VALUE, REL,							\
691	   (0 && ! TARGET_BIG_SWITCH && (TARGET_V850E_UP) ? ")>>1" : ""))
692
693#define ASM_OUTPUT_ALIGN(FILE, LOG)	\
694  if ((LOG) != 0)			\
695    fprintf (FILE, "\t.align %d\n", (LOG))
696
697/* We don't have to worry about dbx compatibility for the v850.  */
698#define DEFAULT_GDB_EXTENSIONS 1
699
700/* Use dwarf2 debugging info by default.  */
701#undef  PREFERRED_DEBUGGING_TYPE
702#define PREFERRED_DEBUGGING_TYPE   DWARF2_DEBUG
703
704#define DWARF2_FRAME_INFO          1
705#define DWARF2_UNWIND_INFO         0
706#define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LINK_POINTER_REGNUM)
707#define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LINK_POINTER_REGNUM)
708
709#ifndef ASM_GENERATE_INTERNAL_LABEL
710#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM)  \
711  sprintf (STRING, "*.%s%u", PREFIX, (unsigned int)(NUM))
712#endif
713
714/* Specify the machine mode that this machine uses
715   for the index in the tablejump instruction.  */
716#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
717
718/* Define as C expression which evaluates to nonzero if the tablejump
719   instruction expects the table to contain offsets from the address of the
720   table.
721   Do not define this if the table should contain absolute addresses.  */
722#define CASE_VECTOR_PC_RELATIVE 1
723
724/* The switch instruction requires that the jump table immediately follow
725   it.  */
726#define JUMP_TABLES_IN_TEXT_SECTION (!TARGET_JUMP_TABLES_IN_DATA_SECTION)
727
728#undef ASM_OUTPUT_BEFORE_CASE_LABEL
729#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
730  ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1))
731
732#define WORD_REGISTER_OPERATIONS 1
733
734/* Byte and short loads sign extend the value to a word.  */
735#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
736
737/* Max number of bytes we can move from memory to memory
738   in one reasonably fast instruction.  */
739#define MOVE_MAX	4
740
741/* Define if shifts truncate the shift count
742   which implies one can omit a sign-extension or zero-extension
743   of a shift count.  */
744#define SHIFT_COUNT_TRUNCATED 1
745
746/* Specify the machine mode that pointers have.
747   After generation of rtl, the compiler makes no further distinction
748   between pointers and any other objects of this machine mode.  */
749#define Pmode SImode
750
751/* A function address in a call instruction
752   is a byte address (for indexing purposes)
753   so give the MEM rtx a byte's mode.  */
754#define FUNCTION_MODE QImode
755
756/* Tell compiler we want to support GHS pragmas */
757#define REGISTER_TARGET_PRAGMAS() do {				\
758  c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt);	\
759  c_register_pragma ("ghs", "section",   ghs_pragma_section);	\
760  c_register_pragma ("ghs", "starttda",  ghs_pragma_starttda);	\
761  c_register_pragma ("ghs", "startsda",  ghs_pragma_startsda);	\
762  c_register_pragma ("ghs", "startzda",  ghs_pragma_startzda);	\
763  c_register_pragma ("ghs", "endtda",    ghs_pragma_endtda);	\
764  c_register_pragma ("ghs", "endsda",    ghs_pragma_endsda);	\
765  c_register_pragma ("ghs", "endzda",    ghs_pragma_endzda);	\
766} while (0)
767
768/* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
769   can appear in the "ghs section" pragma.  These names are used to index
770   into the GHS_default_section_names[] and GHS_current_section_names[]
771   that are defined in v850.c, and so the ordering of each must remain
772   consistent.
773
774   These arrays give the default and current names for each kind of
775   section defined by the GHS pragmas.  The current names can be changed
776   by the "ghs section" pragma.  If the current names are null, use
777   the default names.  Note that the two arrays have different types.
778
779   For the *normal* section kinds (like .data, .text, etc.) we do not
780   want to explicitly force the name of these sections, but would rather
781   let the linker (or at least the back end) choose the name of the
782   section, UNLESS the user has forced a specific name for these section
783   kinds.  To accomplish this set the name in ghs_default_section_names
784   to null.  */
785
786enum GHS_section_kind
787{
788  GHS_SECTION_KIND_DEFAULT,
789
790  GHS_SECTION_KIND_TEXT,
791  GHS_SECTION_KIND_DATA,
792  GHS_SECTION_KIND_RODATA,
793  GHS_SECTION_KIND_BSS,
794  GHS_SECTION_KIND_SDATA,
795  GHS_SECTION_KIND_ROSDATA,
796  GHS_SECTION_KIND_TDATA,
797  GHS_SECTION_KIND_ZDATA,
798  GHS_SECTION_KIND_ROZDATA,
799
800  COUNT_OF_GHS_SECTION_KINDS  /* must be last */
801};
802
803/* The following code is for handling pragmas supported by the
804   v850 compiler produced by Green Hills Software.  This is at
805   the specific request of a customer.  */
806
807typedef struct data_area_stack_element
808{
809  struct data_area_stack_element * prev;
810  v850_data_area                   data_area; /* Current default data area.  */
811} data_area_stack_element;
812
813/* Track the current data area set by the
814   data area pragma (which can be nested).  */
815extern data_area_stack_element * data_area_stack;
816
817/* Names of the various data areas used on the v850.  */
818extern const char * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
819extern const char * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
820
821/* The assembler op to start the file.  */
822
823#define FILE_ASM_OP "\t.file\n"
824
825/* Implement ZDA, TDA, and SDA */
826
827#define EP_REGNUM 30	/* ep register number */
828
829#define SYMBOL_FLAG_ZDA		(SYMBOL_FLAG_MACH_DEP << 0)
830#define SYMBOL_FLAG_TDA		(SYMBOL_FLAG_MACH_DEP << 1)
831#define SYMBOL_FLAG_SDA		(SYMBOL_FLAG_MACH_DEP << 2)
832#define SYMBOL_REF_ZDA_P(X)	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
833#define SYMBOL_REF_TDA_P(X)	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
834#define SYMBOL_REF_SDA_P(X)	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
835
836#define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections
837
838#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
839  ((LENGTH) = v850_adjust_insn_length ((INSN), (LENGTH)))
840
841#endif /* ! GCC_V850_H */
842