1/* Definitions of target machine for GNU compiler.
2   Matsushita MN10300 series
3   Copyright (C) 1996-2020 Free Software Foundation, Inc.
4   Contributed by Jeff Law (law@cygnus.com).
5
6   This file is part of GCC.
7
8   GCC is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 3, or (at your option)
11   any later version.
12
13   GCC is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with GCC; see the file COPYING3.  If not see
20   <http://www.gnu.org/licenses/>.  */
21
22#undef ASM_SPEC
23#undef LIB_SPEC
24#undef ENDFILE_SPEC
25#undef  LINK_SPEC
26#define LINK_SPEC "%{mrelax:%{!r:--relax}}"
27#undef  STARTFILE_SPEC
28#define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
29
30/* Names to predefine in the preprocessor for this target machine.  */
31
32#define TARGET_CPU_CPP_BUILTINS()		\
33  do						\
34    {						\
35      builtin_define ("__mn10300__");		\
36      builtin_define ("__MN10300__");		\
37      builtin_assert ("cpu=mn10300");		\
38      builtin_assert ("machine=mn10300");	\
39						\
40      if (TARGET_AM34)				\
41        { 					\
42          builtin_define ("__AM33__=4");	\
43          builtin_define ("__AM34__");		\
44        }					\
45      else if (TARGET_AM33_2)			\
46        { 					\
47          builtin_define ("__AM33__=2");	\
48          builtin_define ("__AM33_2__");	\
49        }					\
50      else if (TARGET_AM33)			\
51        builtin_define ("__AM33__=1");		\
52						\
53      builtin_define (TARGET_ALLOW_LIW ?	\
54		      "__LIW__" : "__NO_LIW__");\
55						\
56      builtin_define (TARGET_ALLOW_SETLB  ?	\
57		      "__SETLB__" : "__NO_SETLB__");\
58    }						\
59  while (0)
60
61#ifndef MN10300_OPTS_H
62#include "config/mn10300/mn10300-opts.h"
63#endif
64
65extern enum processor_type mn10300_tune_cpu;
66
67#define TARGET_AM33	(mn10300_processor >= PROCESSOR_AM33)
68#define TARGET_AM33_2	(mn10300_processor >= PROCESSOR_AM33_2)
69#define TARGET_AM34	(mn10300_processor >= PROCESSOR_AM34)
70
71#ifndef PROCESSOR_DEFAULT
72#define PROCESSOR_DEFAULT PROCESSOR_MN10300
73#endif
74
75
76/* Target machine storage layout */
77
78/* Define this if most significant bit is lowest numbered
79   in instructions that operate on numbered bit-fields.
80   This is not true on the Matsushita MN1003.  */
81#define BITS_BIG_ENDIAN 0
82
83/* Define this if most significant byte of a word is the lowest numbered.  */
84/* This is not true on the Matsushita MN10300.  */
85#define BYTES_BIG_ENDIAN 0
86
87/* Define this if most significant word of a multiword number is lowest
88   numbered.
89   This is not true on the Matsushita MN10300.  */
90#define WORDS_BIG_ENDIAN 0
91
92/* Width of a word, in units (bytes).  */
93#define UNITS_PER_WORD		4
94
95/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
96#define PARM_BOUNDARY		32
97
98/* The stack goes in 32-bit lumps.  */
99#define STACK_BOUNDARY 		32
100
101/* Allocation boundary (in *bits*) for the code of a function.
102   8 is the minimum boundary; it's unclear if bigger alignments
103   would improve performance.  */
104#define FUNCTION_BOUNDARY 8
105
106/* No data type wants to be aligned rounder than this.  */
107#define BIGGEST_ALIGNMENT	32
108
109/* Alignment of field after `int : 0' in a structure.  */
110#define EMPTY_FIELD_BOUNDARY    32
111
112/* Define this if move instructions will actually fail to work
113   when given unaligned data.  */
114#define STRICT_ALIGNMENT 1
115
116/* Define this as 1 if `char' should by default be signed; else as 0.  */
117#define DEFAULT_SIGNED_CHAR 0
118
119#undef  SIZE_TYPE
120#define SIZE_TYPE "unsigned int"
121
122#undef  PTRDIFF_TYPE
123#define PTRDIFF_TYPE "int"
124
125#undef  WCHAR_TYPE
126#define WCHAR_TYPE "long int"
127
128#undef  WCHAR_TYPE_SIZE
129#define WCHAR_TYPE_SIZE BITS_PER_WORD
130
131/* Standard register usage.  */
132
133/* Number of actual hardware registers.
134   The hardware registers are assigned numbers for the compiler
135   from 0 to just below FIRST_PSEUDO_REGISTER.
136
137   All registers that the compiler knows about must be given numbers,
138   even those that are not normally considered general registers.  */
139
140#define FIRST_PSEUDO_REGISTER 52
141
142/* Specify machine-specific register numbers.  The commented out entries
143   are defined in mn10300.md.  */
144#define FIRST_DATA_REGNUM      0
145#define LAST_DATA_REGNUM       3
146#define FIRST_ADDRESS_REGNUM   4
147/* #define PIC_REG             6 */
148#define LAST_ADDRESS_REGNUM    8
149/* #define SP_REG              9 */
150#define FIRST_EXTENDED_REGNUM 10
151#define LAST_EXTENDED_REGNUM  17
152#define FIRST_FP_REGNUM       18
153#define LAST_FP_REGNUM        49
154/* #define MDR_REG            50 */
155/* #define CC_REG             51 */
156#define FIRST_ARGUMENT_REGNUM  0
157
158/* Specify the registers used for certain standard purposes.
159   The values of these macros are register numbers.  */
160
161/* Register to use for pushing function arguments.  */
162#define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
163
164/* Base register for access to local variables of the function.  */
165#define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
166
167/* Base register for access to arguments of the function.  This
168   is a fake register and will be eliminated into either the frame
169   pointer or stack pointer.  */
170#define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
171
172/* Register in which static-chain is passed to a function.  */
173#define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
174
175/* 1 for registers that have pervasive standard uses
176   and are not available for the register allocator.  */
177
178#define FIXED_REGISTERS \
179  { 0, 0, 0, 0,				/* data regs */		\
180    0, 0, 0, 0,				/* addr regs */		\
181    1,					/* arg reg */		\
182    1,					/* sp reg */		\
183    0, 0, 0, 0, 0, 0, 0, 0,		/* extended regs */	\
184    0, 0,				/* fp regs (18-19) */	\
185    0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (20-29) */	\
186    0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (30-39) */	\
187    0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (40-49) */	\
188    0,					/* mdr reg */		\
189    1					/* cc reg */		\
190  }
191
192/* 1 for registers not available across function calls.
193   These must include the FIXED_REGISTERS and also any
194   registers that can be used without being saved.
195   The latter must include the registers where values are returned
196   and the register where structure-value addresses are passed.
197   Aside from that, you can include as many other registers as you
198   like.  */
199
200#define CALL_REALLY_USED_REGISTERS \
201  { 1, 1, 0, 0,				/* data regs */		\
202    1, 1, 0, 0,				/* addr regs */		\
203    1,					/* arg reg */		\
204    1,					/* sp reg */		\
205    1, 1, 1, 1, 0, 0, 0, 0,		/* extended regs */	\
206    1, 1,				/* fp regs (18-19) */	\
207    1, 1, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (20-29) */	\
208    0, 0, 0, 0, 0, 0, 0, 0, 1, 1,	/* fp regs (30-39) */	\
209    1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* fp regs (40-49) */	\
210    1,					/* mdr reg */		\
211    1					/* cc reg */		\
212  }
213
214#define REG_ALLOC_ORDER \
215  { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
216  , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
217  , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50, 51 \
218  }
219
220/* 4 data, and effectively 3 address registers is small as far as I'm
221   concerned.  */
222#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
223
224/* Define the classes of registers for register constraints in the
225   machine description.  Also define ranges of constants.
226
227   One of the classes must always be named ALL_REGS and include all hard regs.
228   If there is more than one class, another class must be named NO_REGS
229   and contain no registers.
230
231   The name GENERAL_REGS must be the name of a class (or an alias for
232   another name such as ALL_REGS).  This is the class of registers
233   that is allowed by "g" or "r" in a register constraint.
234   Also, registers outside this class are allocated only when
235   instructions express preferences for them.
236
237   The classes must be numbered in nondecreasing order; that is,
238   a larger-numbered class must never be contained completely
239   in a smaller-numbered class.
240
241   For any two classes, it is very desirable that there be another
242   class that represents their union.  */
243
244enum reg_class
245{
246  NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, SP_OR_ADDRESS_REGS,
247  EXTENDED_REGS, FP_REGS, FP_ACC_REGS, CC_REGS, MDR_REGS,
248  GENERAL_REGS, SP_OR_GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
249};
250
251#define N_REG_CLASSES (int) LIM_REG_CLASSES
252
253/* Give names of register classes as strings for dump file.  */
254
255#define REG_CLASS_NAMES					   		\
256{ "NO_REGS", "DATA_REGS", "ADDRESS_REGS", "SP_REGS", "SP_OR_ADDRESS_REGS", \
257  "EXTENDED_REGS", "FP_REGS", "FP_ACC_REGS", "CC_REGS", "MDR_REGS",	\
258  "GENERAL_REGS", "SP_OR_GENERAL_REGS", "ALL_REGS", "LIM_REGS"		\
259}
260
261/* Define which registers fit in which classes.
262   This is an initializer for a vector of HARD_REG_SET
263   of length N_REG_CLASSES.  */
264
265#define REG_CLASS_CONTENTS					\
266{ { 0,	        0 },	  /* No regs */				\
267  { 0x0000000f, 0 },	  /* DATA_REGS */			\
268  { 0x000001f0, 0 },	  /* ADDRESS_REGS */			\
269  { 0x00000200, 0 },	  /* SP_REGS */				\
270  { 0x000003f0, 0 },	  /* SP_OR_ADDRESS_REGS */		\
271  { 0x0003fc00, 0 },	  /* EXTENDED_REGS */			\
272  { 0xfffc0000, 0x3ffff },/* FP_REGS */				\
273  { 0x03fc0000, 0 },	  /* FP_ACC_REGS */			\
274  { 0x00000000, 0x80000 },/* CC_REGS */				\
275  { 0x00000000, 0x40000 },/* MDR_REGS */			\
276  { 0x0003fdff, 0 }, 	  /* GENERAL_REGS */			\
277  { 0x0003ffff, 0 },      /* SP_OR_GENERAL_REGS */		\
278  { 0xffffffff, 0xfffff } /* ALL_REGS */			\
279}
280
281/* The same information, inverted:
282   Return the class number of the smallest class containing
283   reg number REGNO.  This could be a conditional expression
284   or could index an array.  */
285
286#define REGNO_REG_CLASS(REGNO)			     \
287  ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS :	     \
288   (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS :   \
289   (REGNO) == STACK_POINTER_REGNUM ? SP_REGS :	     \
290   (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
291   (REGNO) <= LAST_FP_REGNUM ? FP_REGS :	     \
292   (REGNO) == MDR_REG ? MDR_REGS :		     \
293   (REGNO) == CC_REG ? CC_REGS :		     \
294   NO_REGS)
295
296/* The class value for index registers, and the one for base regs.  */
297#define INDEX_REG_CLASS \
298  (TARGET_AM33 ? GENERAL_REGS : DATA_REGS)
299#define BASE_REG_CLASS \
300  (TARGET_AM33 ? SP_OR_GENERAL_REGS : SP_OR_ADDRESS_REGS)
301
302/* Macros to check register numbers against specific register classes.  */
303
304/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
305   and check its validity for a certain class.
306   We have two alternate definitions for each of them.
307   The usual definition accepts all pseudo regs; the other rejects
308   them unless they have been allocated suitable hard regs.
309   The symbol REG_OK_STRICT causes the latter definition to be used.
310
311   Most source files want to accept pseudo regs in the hope that
312   they will get allocated to the class that the insn wants them to be in.
313   Source files for reload pass need to be strict.
314   After reload, it makes no difference, since pseudo regs have
315   been eliminated by then.  */
316
317/* These assume that REGNO is a hard or pseudo reg number.
318   They give nonzero only if REGNO is a hard reg of the suitable class
319   or a pseudo reg currently allocated to a suitable hard reg.
320   Since they use reg_renumber, they are safe only once reg_renumber
321   has been allocated, which happens in reginfo.c during register
322   allocation.  */
323
324#ifndef REG_OK_STRICT
325# define REG_STRICT 0
326#else
327# define REG_STRICT 1
328#endif
329
330#define REGNO_DATA_P(regno, strict) \
331  mn10300_regno_in_class_p (regno, DATA_REGS, strict)
332#define REGNO_ADDRESS_P(regno, strict) \
333  mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
334#define REGNO_EXTENDED_P(regno, strict) \
335  mn10300_regno_in_class_p (regno, EXTENDED_REGS, strict)
336#define REGNO_GENERAL_P(regno, strict) \
337  mn10300_regno_in_class_p (regno, GENERAL_REGS, strict)
338
339#define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
340  mn10300_regno_in_class_p (regno, BASE_REG_CLASS, strict)
341#define REGNO_OK_FOR_BASE_P(regno) \
342  (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
343#define REG_OK_FOR_BASE_P(X) \
344  (REGNO_OK_FOR_BASE_P (REGNO (X)))
345
346#define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
347  mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
348#define REGNO_OK_FOR_BIT_BASE_P(regno) \
349  (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
350#define REG_OK_FOR_BIT_BASE_P(X) \
351  (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
352
353#define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
354  mn10300_regno_in_class_p (regno, INDEX_REG_CLASS, strict)
355#define REGNO_OK_FOR_INDEX_P(regno) \
356  (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
357#define REG_OK_FOR_INDEX_P(X) \
358  (REGNO_OK_FOR_INDEX_P (REGNO (X)))
359
360#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
361  (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
362
363/* A class that contains registers which the compiler must always
364   access in a mode that is the same size as the mode in which it
365   loaded the register.  */
366#define CLASS_CANNOT_CHANGE_SIZE FP_REGS
367
368/* Return 1 if VALUE is in the range specified.  */
369
370#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
371#define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
372
373
374/* Stack layout; function entry, exit and calling.  */
375
376/* Define this if pushing a word on the stack
377   makes the stack pointer a smaller address.  */
378
379#define STACK_GROWS_DOWNWARD 1
380
381/* Define this to nonzero if the nominal address of the stack frame
382   is at the high-address end of the local variables;
383   that is, each additional local variable allocated
384   goes at a more negative offset in the frame.  */
385
386#define FRAME_GROWS_DOWNWARD 1
387
388/* Offset of first parameter from the argument pointer register value.  */
389/* Is equal to the size of the saved fp + pc, even if an fp isn't
390   saved since the value is used before we know.  */
391
392#define FIRST_PARM_OFFSET(FNDECL) 4
393
394/* But the CFA is at the arg pointer directly, not at the first argument.  */
395#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
396
397#define ELIMINABLE_REGS				\
398{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
399 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
400 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
401
402#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
403  OFFSET = mn10300_initial_offset (FROM, TO)
404
405/* We use d0/d1 for passing parameters, so allocate 8 bytes of space
406   for a register flushback area.  */
407#define REG_PARM_STACK_SPACE(DECL) 8
408#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
409#define ACCUMULATE_OUTGOING_ARGS 1
410
411/* So we can allocate space for return pointers once for the function
412   instead of around every call.  */
413#define STACK_POINTER_OFFSET 4
414
415/* 1 if N is a possible register number for function argument passing.
416   On the MN10300, d0 and d1 are used in this way.  */
417
418#define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
419
420
421/* Define a data type for recording info about an argument list
422   during the scan of that argument list.  This data type should
423   hold all necessary information about the function itself
424   and about the args processed so far, enough to enable macros
425   such as FUNCTION_ARG to determine where the next arg should go.
426
427   On the MN10300, this is a single integer, which is a number of bytes
428   of arguments scanned so far.  */
429
430#define CUMULATIVE_ARGS struct cum_arg
431
432struct cum_arg
433{
434  int nbytes;
435};
436
437/* Initialize a variable CUM of type CUMULATIVE_ARGS
438   for a call to a function whose data type is FNTYPE.
439   For a library call, FNTYPE is 0.
440
441   On the MN10300, the offset starts at 0.  */
442
443#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
444 ((CUM).nbytes = 0)
445
446#define FUNCTION_VALUE_REGNO_P(N)  mn10300_function_value_regno_p (N)
447
448#define DEFAULT_PCC_STRUCT_RETURN 0
449
450/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
451   the stack pointer does not matter.  The value is tested only in
452   functions that have frame pointers.
453   No definition is equivalent to always zero.  */
454
455#define EXIT_IGNORE_STACK 1
456
457/* Output assembler code to FILE to increment profiler label # LABELNO
458   for profiling a function entry.  */
459
460#define FUNCTION_PROFILER(FILE, LABELNO) ;
461
462/* Length in units of the trampoline for entering a nested function.  */
463
464#define TRAMPOLINE_SIZE		16
465#define TRAMPOLINE_ALIGNMENT	32
466
467/* A C expression whose value is RTL representing the value of the return
468   address for the frame COUNT steps up from the current frame.
469
470   On the mn10300, the return address is not at a constant location
471   due to the frame layout.  Luckily, it is at a constant offset from
472   the argument pointer, so we define RETURN_ADDR_RTX to return a
473   MEM using arg_pointer_rtx.  Reload will replace arg_pointer_rtx
474   with a reference to the stack/frame pointer + an appropriate offset.  */
475
476#define RETURN_ADDR_RTX(COUNT, FRAME)   \
477  ((COUNT == 0)                         \
478   ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
479   : (rtx) 0)
480
481/* The return address is saved both in the stack and in MDR.  Using
482   the stack location is handiest for what unwinding needs.  */
483#define INCOMING_RETURN_ADDR_RTX \
484  gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM))
485
486/* Maximum number of registers that can appear in a valid memory address.  */
487
488#define MAX_REGS_PER_ADDRESS 2
489
490
491/* We have post-increments.  */
492#define HAVE_POST_INCREMENT	TARGET_AM33
493#define HAVE_POST_MODIFY_DISP	TARGET_AM33
494
495/* ... But we don't want to use them for block moves.  Small offsets are
496   just as effective, at least for inline block move sizes, and appears
497   to produce cleaner code.  */
498#define USE_LOAD_POST_INCREMENT(M)	0
499#define USE_STORE_POST_INCREMENT(M)	0
500
501/* Accept either REG or SUBREG where a register is valid.  */
502
503#define RTX_OK_FOR_BASE_P(X, strict)				\
504  ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X),		\
505 					     (strict))) 	\
506   || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X))		\
507       && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)),	\
508 				      (strict))))
509
510#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)		     \
511do {									     \
512  rtx new_x = mn10300_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
513  if (new_x)								     \
514    {									     \
515      X = new_x;							     \
516      goto WIN;								     \
517    }									     \
518} while (0)
519
520
521/* Zero if this needs fixing up to become PIC.  */
522
523#define LEGITIMATE_PIC_OPERAND_P(X) \
524  mn10300_legitimate_pic_operand_p (X)
525
526/* Register to hold the addressing base for
527   position independent code access to data items.  */
528#define PIC_OFFSET_TABLE_REGNUM	PIC_REG
529
530/* The name of the pseudo-symbol representing the Global Offset Table.  */
531#define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
532
533#define SYMBOLIC_CONST_P(X)	\
534((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF)	\
535  && ! LEGITIMATE_PIC_OPERAND_P (X))
536
537/* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled.  */
538#define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
539
540#define SELECT_CC_MODE(OP, X, Y)  mn10300_select_cc_mode (OP, X, Y)
541#define REVERSIBLE_CC_MODE(MODE)  0
542
543/* Nonzero if access to memory by bytes or half words is no faster
544   than accessing full words.  */
545#define SLOW_BYTE_ACCESS 1
546
547#define NO_FUNCTION_CSE 1
548
549/* According expr.c, a value of around 6 should minimize code size, and
550   for the MN10300 series, that's our primary concern.  */
551#define MOVE_RATIO(speed) 6
552
553#define TEXT_SECTION_ASM_OP "\t.section .text"
554#define DATA_SECTION_ASM_OP "\t.section .data"
555#define BSS_SECTION_ASM_OP  "\t.section .bss"
556
557#define ASM_COMMENT_START "#"
558
559/* Output to assembler file text saying following lines
560   may contain character constants, extra white space, comments, etc.  */
561
562#define ASM_APP_ON "#APP\n"
563
564/* Output to assembler file text saying following lines
565   no longer contain unusual constructs.  */
566
567#define ASM_APP_OFF "#NO_APP\n"
568
569#undef  USER_LABEL_PREFIX
570#define USER_LABEL_PREFIX "_"
571
572/* This says how to output the assembler to define a global
573   uninitialized but not common symbol.
574   Try to use asm_output_bss to implement this macro.  */
575
576#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
577  asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
578
579/* Globalizing directive for a label.  */
580#define GLOBAL_ASM_OP "\t.global "
581
582/* This is how to output a reference to a user-level label named NAME.
583   `assemble_name' uses this.  */
584
585#undef  ASM_OUTPUT_LABELREF
586#define ASM_OUTPUT_LABELREF(FILE, NAME) \
587  asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
588
589/* This is how we tell the assembler that two symbols have the same value.  */
590
591#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
592  do					 \
593    {					 \
594      assemble_name (FILE, NAME1);	 \
595      fputs (" = ", FILE);		 \
596      assemble_name (FILE, NAME2);	 \
597      fputc ('\n', FILE);		 \
598    }					 \
599  while (0)
600
601/* How to refer to registers in assembler output.
602   This sequence is indexed by compiler's hard-register-number (see above).  */
603
604#define REGISTER_NAMES							\
605{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp",		\
606  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7"			\
607, "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7"		\
608, "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15"		\
609, "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23"	\
610, "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"	\
611, "mdr", "EPSW"								\
612}
613
614#define ADDITIONAL_REGISTER_NAMES				\
615{ {"r8",  4}, {"r9",  5}, {"r10", 6}, {"r11", 7},		\
616  {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3},		\
617  {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13},		\
618  {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17}		\
619, {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24}		\
620, {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32}		\
621, {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40}	\
622, {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48}	\
623, {"cc", CC_REG}						\
624}
625
626/* Print an instruction operand X on file FILE.
627   look in mn10300.c for details */
628
629#define PRINT_OPERAND(FILE, X, CODE) \
630  mn10300_print_operand (FILE, X, CODE)
631
632/* Print a memory operand whose address is X, on file FILE.
633   This uses a function in output-vax.c.  */
634
635#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
636  mn10300_print_operand_address (FILE, ADDR)
637
638/* This is how to output an element of a case-vector that is absolute.  */
639
640#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
641  fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
642
643/* This is how to output an element of a case-vector that is relative.  */
644
645#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
646  fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
647
648#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
649  if ((LOG) != 0)			\
650    fprintf (FILE, "\t.align %d\n", (LOG))
651
652/* We don't have to worry about dbx compatibility for the mn10300.  */
653#define DEFAULT_GDB_EXTENSIONS 1
654
655/* Use dwarf2 debugging info by default.  */
656#undef  PREFERRED_DEBUGGING_TYPE
657#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
658#define DWARF2_DEBUGGING_INFO 1
659#define DWARF2_ASM_LINE_DEBUG_INFO 1
660
661/* Specify the machine mode that this machine uses
662   for the index in the tablejump instruction.  */
663#define CASE_VECTOR_MODE Pmode
664
665/* Define if operations between registers always perform the operation
666   on the full register even if a narrower mode is specified.  */
667#define WORD_REGISTER_OPERATIONS 1
668
669#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
670
671/* Max number of bytes we can move from memory to memory
672   in one reasonably fast instruction.  */
673#define MOVE_MAX	4
674
675/* Define if shifts truncate the shift count
676   which implies one can omit a sign-extension or zero-extension
677   of a shift count.  */
678#define SHIFT_COUNT_TRUNCATED 1
679
680/* Specify the machine mode that pointers have.
681   After generation of rtl, the compiler makes no further distinction
682   between pointers and any other objects of this machine mode.  */
683#define Pmode SImode
684
685/* A function address in a call instruction
686   is a byte address (for indexing purposes)
687   so give the MEM rtx a byte's mode.  */
688#define FUNCTION_MODE QImode
689
690/* The assembler op to get a word.  */
691
692#define FILE_ASM_OP "\t.file\n"
693
694