1/* Definitions of target machine for GNU compiler, Synopsys DesignWare ARC cpu.
2   Copyright (C) 1994-2020 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 3, or (at your option)
9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#ifndef GCC_ARC_H
21#define GCC_ARC_H
22
23#include <stdbool.h>
24
25/* Things to do:
26
27   - incscc, decscc?
28
29*/
30
31#define SYMBOL_FLAG_SHORT_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
32#define SYMBOL_FLAG_MEDIUM_CALL	(SYMBOL_FLAG_MACH_DEP << 1)
33#define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 2)
34#define SYMBOL_FLAG_CMEM	(SYMBOL_FLAG_MACH_DEP << 3)
35
36#ifndef TARGET_CPU_DEFAULT
37#define TARGET_CPU_DEFAULT	PROCESSOR_arc700
38#endif
39
40/* Check if this symbol has a long_call attribute in its declaration */
41#define SYMBOL_REF_LONG_CALL_P(X)	\
42	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
43
44/* Check if this symbol has a medium_call attribute in its declaration */
45#define SYMBOL_REF_MEDIUM_CALL_P(X)	\
46	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_MEDIUM_CALL) != 0)
47
48/* Check if this symbol has a short_call attribute in its declaration */
49#define SYMBOL_REF_SHORT_CALL_P(X)	\
50	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SHORT_CALL) != 0)
51
52/* Names to predefine in the preprocessor for this target machine.  */
53#define TARGET_CPU_CPP_BUILTINS() arc_cpu_cpp_builtins (pfile)
54
55/* Macros enabled by specific command line option.  FIXME: to be
56   deprecatd.  */
57#define CPP_SPEC "\
58%{msimd:-D__Xsimd} %{mno-mpy:-D__Xno_mpy} %{mswap:-D__Xswap} \
59%{mmin-max:-D__Xmin_max} %{mEA:-D__Xea} \
60%{mspfp*:-D__Xspfp} %{mdpfp*:-D__Xdpfp} \
61%{mmac-d16:-D__Xxmac_d16} %{mmac-24:-D__Xxmac_24} \
62%{mdsp-packa:-D__Xdsp_packa} %{mcrc:-D__Xcrc} %{mdvbf:-D__Xdvbf} \
63%{mtelephony:-D__Xtelephony} %{mxy:-D__Xxy} %{mmul64: -D__Xmult32} \
64%{mlock:-D__Xlock} %{mswape:-D__Xswape} %{mrtsc:-D__Xrtsc} \
65%(subtarget_cpp_spec)"
66
67#undef CC1_SPEC
68#define CC1_SPEC "%{EB:%{EL:%emay not use both -EB and -EL}}	\
69%{EB:-mbig-endian} %{EL:-mlittle-endian}			\
70%{G*}								\
71"
72extern const char *arc_cpu_to_as (int argc, const char **argv);
73
74#define EXTRA_SPEC_FUNCTIONS			\
75  { "cpu_to_as", arc_cpu_to_as },
76
77/* This macro defines names of additional specifications to put in the specs
78   that can be used in various specifications like CC1_SPEC.  Its definition
79   is an initializer with a subgrouping for each command option.
80
81   Each subgrouping contains a string constant, that defines the
82   specification name, and a string constant that used by the GCC driver
83   program.
84
85   Do not define this macro if it does not need to do anything.  */
86#define EXTRA_SPECS				      \
87  { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC }, \
88  SUBTARGET_EXTRA_SPECS
89
90#ifndef SUBTARGET_EXTRA_SPECS
91#define SUBTARGET_EXTRA_SPECS
92#endif
93
94#ifndef SUBTARGET_CPP_SPEC
95#define SUBTARGET_CPP_SPEC ""
96#endif
97
98#undef ASM_SPEC
99#define ASM_SPEC  "%{mbig-endian|EB:-EB} %{EL} "			\
100  "%:cpu_to_as(%{mcpu=*:%*}) %{mspfp*} %{mdpfp*} "                      \
101  "%{mfpu=fpuda*:-mfpuda} %{mcode-density}"
102
103#define OPTION_DEFAULT_SPECS						\
104  {"cpu", "%{!mcpu=*:%{!mARC*:%{!marc*:%{!mA7:%{!mA6:-mcpu=%(VALUE)}}}}}" }
105
106#ifndef DRIVER_ENDIAN_SELF_SPECS
107#define DRIVER_ENDIAN_SELF_SPECS ""
108#endif
109
110#define DRIVER_SELF_SPECS DRIVER_ENDIAN_SELF_SPECS		   \
111  "%{mARC600|mA6: -mcpu=arc600 %<mARC600 %<mA6 %<mARC600}"	   \
112  "%{mARC601: -mcpu=arc601 %<mARC601}"				   \
113  "%{mARC700|mA7: -mcpu=arc700 %<mARC700 %<mA7}"		   \
114  "%{mEA: -mea %<mEA}"
115
116/* Run-time compilation parameters selecting different hardware subsets.  */
117
118#define TARGET_MIXED_CODE (TARGET_MIXED_CODE_SET)
119
120#define TARGET_SPFP (TARGET_SPFP_FAST_SET || TARGET_SPFP_COMPACT_SET)
121#define TARGET_DPFP (TARGET_DPFP_FAST_SET || TARGET_DPFP_COMPACT_SET	\
122		     || TARGET_FP_DP_AX)
123
124#define SUBTARGET_SWITCHES
125
126/* Instruction set characteristics.
127   These are internal macros, set by the appropriate -m option.  */
128
129/* Non-zero means the cpu supports norm instruction.  This flag is set by
130   default for A7, and only for pre A7 cores when -mnorm is given.  */
131#define TARGET_NORM (TARGET_ARC700 || TARGET_NORM_SET || TARGET_HS)
132/* Indicate if an optimized floating point emulation library is available.  */
133#define TARGET_OPTFPE (TARGET_ARC700 || TARGET_FPX_QUARK)
134
135/* Non-zero means the cpu supports swap instruction.  This flag is set by
136   default for A7, and only for pre A7 cores when -mswap is given.  */
137#define TARGET_SWAP (TARGET_ARC700 || TARGET_SWAP_SET)
138
139/* Provide some macros for size / scheduling features of the ARC700, so
140   that we can pick & choose features if we get a new cpu family member.  */
141
142/* Should we try to unalign likely taken branches without a delay slot.  */
143#define TARGET_UNALIGN_BRANCH (TARGET_ARC700 && !optimize_size)
144
145/* Should we add padding before a return insn to avoid mispredict?  */
146#define TARGET_PAD_RETURN (TARGET_ARC700 && !optimize_size)
147
148/* For an anulled-true delay slot insn for a delayed branch, should we only
149   use conditional execution?  */
150#define TARGET_AT_DBR_CONDEXEC  (!TARGET_ARC700 && !TARGET_V2)
151
152#define TARGET_ARC600 ((arc_selected_cpu->arch_info->arch_id	\
153			== BASE_ARCH_6xx)			\
154		       && (TARGET_BARREL_SHIFTER))
155#define TARGET_ARC601 ((arc_selected_cpu->arch_info->arch_id	\
156			== BASE_ARCH_6xx)			\
157		       && (!TARGET_BARREL_SHIFTER))
158#define TARGET_ARC700 (arc_selected_cpu->arch_info->arch_id	\
159		       == BASE_ARCH_700)
160/* An NPS400 is a specialisation of ARC700, so it is correct for NPS400
161   TARGET_ARC700 is true, and TARGET_NPS400 is true.  */
162#define TARGET_NPS400 ((arc_selected_cpu->arch_info->arch_id	\
163			== BASE_ARCH_700)			\
164		       && (arc_selected_cpu->processor		\
165			   == PROCESSOR_nps400))
166#define TARGET_EM (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_em)
167#define TARGET_HS (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_hs)
168#define TARGET_V2 (TARGET_EM || TARGET_HS)
169
170#ifndef UNALIGNED_ACCESS_DEFAULT
171#define UNALIGNED_ACCESS_DEFAULT 0
172#endif
173
174#ifndef TARGET_NPS_BITOPS_DEFAULT
175#define TARGET_NPS_BITOPS_DEFAULT 0
176#endif
177
178#ifndef TARGET_NPS_CMEM_DEFAULT
179#define TARGET_NPS_CMEM_DEFAULT 0
180#endif
181
182/* Enable the RRQ instruction alternatives.  */
183
184#define TARGET_RRQ_CLASS TARGET_NPS_BITOPS
185
186/* Target machine storage layout.  */
187
188/* We want zero_extract to mean the same
189   no matter what the byte endianness is.  */
190#define BITS_BIG_ENDIAN 0
191
192/* Define this if most significant byte of a word is the lowest numbered.  */
193#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
194
195/* Define this if most significant word of a multiword number is the lowest
196   numbered.  */
197#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
198
199/* Width in bits of a "word", which is the contents of a machine register.
200   Note that this is not necessarily the width of data type `int';
201   if using 16-bit ints on a 68000, this would still be 32.
202   But on a machine with 16-bit registers, this would be 16.  */
203#define BITS_PER_WORD 32
204
205/* Width of a word, in units (bytes).  */
206#define UNITS_PER_WORD 4
207
208/* Define this macro if it is advisable to hold scalars in registers
209   in a wider mode than that declared by the program.  In such cases,
210   the value is constrained to be within the bounds of the declared
211   type, but kept valid in the wider mode.  The signedness of the
212   extension may differ from that of the type.  */
213#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
214if (GET_MODE_CLASS (MODE) == MODE_INT		\
215    && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
216{						\
217  (MODE) = SImode;				\
218}
219
220/* Width in bits of a pointer.
221   See also the macro `Pmode' defined below.  */
222#define POINTER_SIZE 32
223
224/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
225#define PARM_BOUNDARY 32
226
227/* Boundary (in *bits*) on which stack pointer should be aligned.  */
228/* TOCHECK: Changed from 64 to 32 */
229#define STACK_BOUNDARY 32
230
231/* ALIGN FRAMES on word boundaries.  */
232#define ARC_STACK_ALIGN(LOC) \
233  (((LOC) + STACK_BOUNDARY / BITS_PER_UNIT - 1) & -STACK_BOUNDARY/BITS_PER_UNIT)
234
235/* Allocation boundary (in *bits*) for the code of a function.  */
236#define FUNCTION_BOUNDARY 32
237
238/* Alignment of field after `int : 0' in a structure.  */
239#define EMPTY_FIELD_BOUNDARY 32
240
241/* Every structure's size must be a multiple of this.  */
242#define STRUCTURE_SIZE_BOUNDARY 8
243
244/* A bitfield declared as `int' forces `int' alignment for the struct.  */
245#define PCC_BITFIELD_TYPE_MATTERS 1
246
247/* An expression for the alignment of a structure field FIELD if the
248   alignment computed in the usual way (including applying of
249   `BIGGEST_ALIGNMENT' and `BIGGEST_FIELD_ALIGNMENT' to the
250   alignment) is COMPUTED.  It overrides alignment only if the field
251   alignment has not been set by the `__attribute__ ((aligned (N)))'
252   construct.
253*/
254
255#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
256(TYPE_MODE (strip_array_types (TYPE)) == DFmode \
257 ? MIN ((COMPUTED), 32) : (COMPUTED))
258
259
260
261/* No data type wants to be aligned rounder than this.  */
262/* This is bigger than currently necessary for the ARC.  If 8 byte floats are
263   ever added it's not clear whether they'll need such alignment or not.  For
264   now we assume they will.  We can always relax it if necessary but the
265   reverse isn't true.  */
266/* TOCHECK: Changed from 64 to 32 */
267#define BIGGEST_ALIGNMENT 32
268
269/* The best alignment to use in cases where we have a choice.  */
270#define FASTEST_ALIGNMENT 32
271
272/* Make arrays of chars word-aligned for the same reasons.  */
273#define LOCAL_ALIGNMENT(TYPE, ALIGN)             \
274  (TREE_CODE (TYPE) == ARRAY_TYPE               \
275   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
276   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
277
278#define DATA_ALIGNMENT(TYPE, ALIGN)		\
279  (TREE_CODE (TYPE) == ARRAY_TYPE		\
280   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
281   && arc_size_opt_level < 3			\
282   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
283
284/* Set this nonzero if move instructions will actually fail to work
285   when given unaligned data.  */
286/* On the ARC the lower address bits are masked to 0 as necessary.  The chip
287   won't croak when given an unaligned address, but the insn will still fail
288   to produce the correct result.  */
289#define STRICT_ALIGNMENT (!unaligned_access)
290
291/* Layout of source language data types.  */
292
293#define SHORT_TYPE_SIZE		16
294#define INT_TYPE_SIZE		32
295#define LONG_TYPE_SIZE		32
296#define LONG_LONG_TYPE_SIZE	64
297#define FLOAT_TYPE_SIZE		32
298#define DOUBLE_TYPE_SIZE	64
299#define LONG_DOUBLE_TYPE_SIZE	64
300
301/* Define this as 1 if `char' should by default be signed; else as 0.  */
302#define DEFAULT_SIGNED_CHAR 0
303
304#undef SIZE_TYPE
305#define SIZE_TYPE "unsigned int"
306
307#undef PTRDIFF_TYPE
308#define PTRDIFF_TYPE "int"
309
310#undef WCHAR_TYPE
311#define WCHAR_TYPE "int"
312
313#undef WCHAR_TYPE_SIZE
314#define WCHAR_TYPE_SIZE 32
315
316/* Standard register usage.  */
317
318/* Number of actual hardware registers.
319   The hardware registers are assigned numbers for the compiler
320   from 0 to just below FIRST_PSEUDO_REGISTER.
321   All registers that the compiler knows about must be given numbers,
322   even those that are not normally considered general registers.
323
324   Registers 61, 62, and 63 are not really registers and we needn't treat
325   them as such.  We still need a register for the condition code and
326   argument pointer.  */
327
328/* r63 is pc, r64-r127 = simd vregs, r128-r143 = simd dma config regs
329   r144, r145 = ARG_POINTER, FRAME_POINTER
330   and therefore the pseudo registers start from r146. */
331#define FIRST_PSEUDO_REGISTER 146
332
333/* 1 for registers that have pervasive standard uses
334   and are not available for the register allocator.
335
336   0-28  - general purpose registers
337   29    - ilink1 (interrupt link register)
338   30    - ilink2 (interrupt link register)
339   31    - blink (branch link register)
340   32-59 - reserved for extensions
341   60    - LP_COUNT
342   61    - condition code
343   62    - argument pointer
344   63    - program counter
345
346   FWIW, this is how the 61-63 encodings are used by the hardware:
347   61    - reserved
348   62    - long immediate data indicator
349   63    - PCL (program counter aligned to 32 bit, read-only)
350
351   The general purpose registers are further broken down into:
352
353   0-7   - arguments/results
354   8-12  - call used (r11 - static chain pointer)
355   13-25 - call saved
356   26    - global pointer
357   27    - frame pointer
358   28    - stack pointer
359   29    - ilink1
360   30    - ilink2
361   31    - return address register
362
363   By default, the extension registers are not available.  */
364/* Present implementations only have VR0-VR23 only.  */
365#define FIXED_REGISTERS \
366{ 0, 0, 0, 0, 0, 0, 0, 0,	\
367  0, 0, 0, 0, 0, 0, 0, 0,	\
368  0, 0, 0, 0, 0, 0, 0, 0,	\
369  0, 0, 1, 0, 1, 1, 1, 1,	\
370				\
371  1, 1, 1, 1, 1, 1, 1, 1,	\
372  0, 0, 0, 0, 1, 1, 1, 1,	\
373  1, 1, 1, 1, 1, 1, 1, 1,	\
374  1, 1, 1, 1, 1, 1, 1, 1,       \
375				\
376  0, 0, 0, 0, 0, 0, 0, 0,       \
377  0, 0, 0, 0, 0, 0, 0, 0,       \
378  0, 0, 0, 0, 0, 0, 0, 0,       \
379  1, 1, 1, 1, 1, 1, 1, 1,       \
380				\
381  1, 1, 1, 1, 1, 1, 1, 1,       \
382  1, 1, 1, 1, 1, 1, 1, 1,       \
383  1, 1, 1, 1, 1, 1, 1, 1,       \
384  1, 1, 1, 1, 1, 1, 1, 1,       \
385				\
386  0, 0, 0, 0, 0, 0, 0, 0,       \
387  0, 0, 0, 0, 0, 0, 0, 0,	\
388  1, 1}
389
390/* 1 for registers not available across function calls.
391   These must include the FIXED_REGISTERS and also any
392   registers that can be used without being saved.
393   The latter must include the registers where values are returned
394   and the register where structure-value addresses are passed.
395   Aside from that, you can include as many other registers as you like.  */
396#define CALL_USED_REGISTERS     \
397{                               \
398  1, 1, 1, 1, 1, 1, 1, 1,	\
399  1, 1, 1, 1, 1, 0, 0, 0,	\
400  0, 0, 0, 0, 0, 0, 0, 0,	\
401  0, 0, 1, 0, 1, 1, 1, 1,	\
402				\
403  1, 1, 1, 1, 1, 1, 1, 1,	\
404  1, 1, 1, 1, 1, 1, 1, 1,	\
405  1, 1, 1, 1, 1, 1, 1, 1,	\
406  1, 1, 1, 1, 1, 1, 1, 1,       \
407				\
408  0, 0, 0, 0, 0, 0, 0, 0,       \
409  0, 0, 0, 0, 0, 0, 0, 0,       \
410  0, 0, 0, 0, 0, 0, 0, 0,       \
411  1, 1, 1, 1, 1, 1, 1, 1,       \
412				\
413  1, 1, 1, 1, 1, 1, 1, 1,       \
414  1, 1, 1, 1, 1, 1, 1, 1,       \
415  1, 1, 1, 1, 1, 1, 1, 1,       \
416  1, 1, 1, 1, 1, 1, 1, 1,       \
417				\
418  0, 0, 0, 0, 0, 0, 0, 0,       \
419  0, 0, 0, 0, 0, 0, 0, 0,	\
420  1, 1}
421
422/* If defined, an initializer for a vector of integers, containing the
423   numbers of hard registers in the order in which GCC should
424   prefer to use them (from most preferred to least).  */
425#define REG_ALLOC_ORDER							\
426{									\
427  /* General registers.  */						\
428  2, 3, 12, 13, 14, 15, 1, 0, 4, 5, 6, 7, 8, 9, 10, 11,			\
429  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30,			\
430  /* Extension core registers.  */					\
431  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
432  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,			\
433  /* VR regs.  */							\
434  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,	\
435  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
436  96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,	\
437  110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, \
438  124, 125, 126, 127,							\
439  /* DMA registers.  */							\
440  128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, \
441  142, 143,								\
442  /* Register not used for general use.  */				\
443  62, FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,				\
444  SP_REG, ILINK1_REG, RETURN_ADDR_REGNUM, LP_COUNT, CC_REG, PCL_REG	\
445}
446
447/* Use different register alloc ordering for Thumb.  */
448#define ADJUST_REG_ALLOC_ORDER arc_adjust_reg_alloc_order ()
449
450/* Tell IRA to use the order we define rather than messing it up with its
451   own cost calculations.  */
452#define HONOR_REG_ALLOC_ORDER 1
453
454/* Internal macros to classify a register number as to whether it's a
455   general purpose register for compact insns (r0-r3,r12-r15), or
456   stack pointer (r28).  */
457
458#define COMPACT_GP_REG_P(REGNO) \
459   (((signed)(REGNO) >= 0 && (REGNO) <= 3) || ((REGNO) >= 12 && (REGNO) <= 15))
460#define SP_REG_P(REGNO)  ((REGNO) == 28)
461
462
463
464/* Register classes and constants.  */
465
466/* Define the classes of registers for register constraints in the
467   machine description.  Also define ranges of constants.
468
469   One of the classes must always be named ALL_REGS and include all hard regs.
470   If there is more than one class, another class must be named NO_REGS
471   and contain no registers.
472
473   The name GENERAL_REGS must be the name of a class (or an alias for
474   another name such as ALL_REGS).  This is the class of registers
475   that is allowed by "g" or "r" in a register constraint.
476   Also, registers outside this class are allocated only when
477   instructions express preferences for them.
478
479   The classes must be numbered in nondecreasing order; that is,
480   a larger-numbered class must never be contained completely
481   in a smaller-numbered class.
482
483   For any two classes, it is very desirable that there be another
484   class that represents their union.
485
486   It is important that any condition codes have class NO_REGS.
487   See `register_operand'.  */
488
489enum reg_class
490{
491   NO_REGS,
492   R0_REGS,			/* 'x' */
493   R0R1_CD_REGS,		/* 'Rsd' */
494   R0R3_CD_REGS,		/* 'Rcd' */
495   ARCOMPACT16_REGS,		/* 'q' */
496   SIBCALL_REGS,		/* "Rsc" */
497   AC16_H_REGS,			/* 'h' */
498   DOUBLE_REGS,			/* 'D' */
499   GENERAL_REGS,		/* 'r' */
500   SIMD_VR_REGS,		/* 'v' */
501   SIMD_DMA_CONFIG_REGS,	/* 'd' */
502   ALL_REGS,
503   LIM_REG_CLASSES
504};
505
506#define N_REG_CLASSES (int) LIM_REG_CLASSES
507
508/* Give names of register classes as strings for dump file.   */
509#define REG_CLASS_NAMES	  \
510{			  \
511  "NO_REGS",		  \
512  "R0_REGS",		  \
513  "R0R1_CD_REGS",	  \
514  "R0R3_CD_REGS",	  \
515  "ARCOMPACT16_REGS",	  \
516  "SIBCALL_REGS",	  \
517  "AC16_H_REGS",	  \
518  "DOUBLE_REGS",	  \
519  "GENERAL_REGS",	  \
520  "SIMD_VR_REGS",	  \
521  "SIMD_DMA_CONFIG_REGS", \
522  "ALL_REGS"		  \
523}
524
525/* Define which registers fit in which classes.
526   This is an initializer for a vector of HARD_REG_SET
527   of length N_REG_CLASSES.  */
528
529#define REG_CLASS_CONTENTS \
530{									\
531  {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* NO_REGS.  */\
532  {0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'x'.  */ \
533  {0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rsd'.  */ \
534  {0x0000000f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rcd'.  */ \
535  {0x0000f00f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'q'.  */ \
536  {0x00001fff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rsc'.  */ \
537  {0x9fffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'h'.  */ \
538  {0x00000000, 0x00000f00, 0x00000000, 0x00000000, 0x00000000}, /* 'D'.  */ \
539  {0xffffffff, 0x8fffffff, 0x00000000, 0x00000000, 0x00030000}, /* 'r'.  */ \
540  {0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000}, /* 'v'.  */ \
541  {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000ffff}, /* 'd'.  */ \
542  {0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff} /* ALL_REGS.  */\
543}
544
545/* Local macros to mark the first and last regs of different classes.  */
546#define ARC_FIRST_SIMD_VR_REG              64
547#define ARC_LAST_SIMD_VR_REG               127
548
549#define ARC_FIRST_SIMD_DMA_CONFIG_REG      128
550#define ARC_FIRST_SIMD_DMA_CONFIG_IN_REG   128
551#define ARC_FIRST_SIMD_DMA_CONFIG_OUT_REG  136
552#define ARC_LAST_SIMD_DMA_CONFIG_REG       143
553
554/* ARCv2 double-register accumulator.  */
555#define ACC_REG_FIRST 58
556#define ACC_REG_LAST  59
557#define ACCL_REGNO    (TARGET_BIG_ENDIAN ? ACC_REG_FIRST + 1 : ACC_REG_FIRST)
558#define ACCH_REGNO    (TARGET_BIG_ENDIAN ? ACC_REG_FIRST : ACC_REG_FIRST + 1)
559
560/* The same information, inverted:
561   Return the class number of the smallest class containing
562   reg number REGNO.  This could be a conditional expression
563   or could index an array.  */
564
565extern enum reg_class arc_regno_reg_class[];
566
567#define REGNO_REG_CLASS(REGNO) (arc_regno_reg_class[REGNO])
568
569/* The class value for valid index registers. An index register is
570   one used in an address where its value is either multiplied by
571   a scale factor or added to another register (as well as added to a
572   displacement).  */
573
574#define INDEX_REG_CLASS (TARGET_MIXED_CODE ? ARCOMPACT16_REGS : GENERAL_REGS)
575
576/* The class value for valid base registers. A base register is one used in
577   an address which is the register value plus a displacement.  */
578
579#define BASE_REG_CLASS GENERAL_REGS
580
581/* These assume that REGNO is a hard or pseudo reg number.
582   They give nonzero only if REGNO is a hard reg of the suitable class
583   or a pseudo reg currently allocated to a suitable hard reg.
584   Since they use reg_renumber, they are safe only once reg_renumber
585   has been allocated, which happens in local-alloc.c.  */
586#define REGNO_OK_FOR_BASE_P(REGNO)					\
587  ((REGNO) < 29								\
588   || ((REGNO) == ARG_POINTER_REGNUM)					\
589   || ((REGNO) == FRAME_POINTER_REGNUM)					\
590   || ((REGNO) == PCL_REG)						\
591   || ((unsigned) reg_renumber[REGNO] < 29)				\
592   || ((unsigned) (REGNO) == (unsigned) arc_tp_regno)			\
593   || (fixed_regs[REGNO] == 0 && IN_RANGE (REGNO, 32, 59))		\
594   || (fixed_regs[REGNO] == 0 && (REGNO) == R30_REG))
595
596#define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
597
598/* Given an rtx X being reloaded into a reg required to be
599   in class CLASS, return the class of reg to actually use.
600   In general this is just CLASS; but on some machines
601   in some cases it is preferable to use a more restrictive class.  */
602
603#define PREFERRED_RELOAD_CLASS(X, CLASS) \
604  arc_preferred_reload_class((X), (CLASS))
605
606  extern enum reg_class arc_preferred_reload_class (rtx, enum reg_class);
607
608/* Return the maximum number of consecutive registers
609   needed to represent mode MODE in a register of class CLASS.  */
610
611#define CLASS_MAX_NREGS(CLASS, MODE) \
612(( GET_MODE_SIZE (MODE) == 16 && CLASS == SIMD_VR_REGS) ? 1: \
613((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
614
615#define SMALL_INT(X) ((unsigned) ((X) + 0x100) < 0x200)
616#define SMALL_INT_RANGE(X, OFFSET, SHIFT) \
617  ((unsigned) (((X) >> (SHIFT)) + 0x100) \
618   < 0x200 - ((unsigned) (OFFSET) >> (SHIFT)))
619#define SIGNED_INT12(X) ((unsigned) ((X) + 0x800) < 0x1000)
620#define SIGNED_INT16(X) ((unsigned) ((X) + 0x8000) < 0x10000)
621#define LARGE_INT(X) \
622(((X) < 0) \
623 ? (X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \
624 : (unsigned HOST_WIDE_INT) (X) <= (unsigned HOST_WIDE_INT) 0xffffffff)
625#define UNSIGNED_INT3(X) ((unsigned) (X) < 0x8)
626#define UNSIGNED_INT5(X) ((unsigned) (X) < 0x20)
627#define UNSIGNED_INT6(X) ((unsigned) (X) < 0x40)
628#define UNSIGNED_INT7(X) ((unsigned) (X) < 0x80)
629#define UNSIGNED_INT8(X) ((unsigned) (X) < 0x100)
630#define UNSIGNED_INT12(X) ((unsigned) (X) < 0x800)
631#define UNSIGNED_INT16(X) ((unsigned) (X) < 0x10000)
632#define IS_ONE(X) ((X) == 1)
633#define IS_ZERO(X) ((X) == 0)
634
635/* Stack layout and stack pointer usage.  */
636
637/* Define this macro if pushing a word onto the stack moves the stack
638   pointer to a smaller address.  */
639#define STACK_GROWS_DOWNWARD 1
640
641/* Define this if the nominal address of the stack frame
642   is at the high-address end of the local variables;
643   that is, each additional local variable allocated
644   goes at a more negative offset in the frame.  */
645#define FRAME_GROWS_DOWNWARD 1
646
647/* Offset from the stack pointer register to the first location at which
648   outgoing arguments are placed.  */
649#define STACK_POINTER_OFFSET (0)
650
651/* Offset of first parameter from the argument pointer register value.  */
652#define FIRST_PARM_OFFSET(FNDECL) (0)
653
654/* A C expression whose value is RTL representing the address in a
655   stack frame where the pointer to the caller's frame is stored.
656   Assume that FRAMEADDR is an RTL expression for the address of the
657   stack frame itself.
658
659   If you don't define this macro, the default is to return the value
660   of FRAMEADDR--that is, the stack frame address is also the address
661   of the stack word that points to the previous frame.  */
662/* ??? unfinished */
663/*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
664
665/* A C expression whose value is RTL representing the value of the
666   return address for the frame COUNT steps up from the current frame.
667   FRAMEADDR is the frame pointer of the COUNT frame, or the frame
668   pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
669   is defined.  */
670/* The current return address is in r31.  The return address of anything
671   farther back is at [%fp,4].  */
672
673#define RETURN_ADDR_RTX(COUNT, FRAME) \
674arc_return_addr_rtx(COUNT,FRAME)
675
676/* Register to use for pushing function arguments.  */
677#define STACK_POINTER_REGNUM 28
678
679/* Base register for access to local variables of the function.  */
680#define FRAME_POINTER_REGNUM 145
681#define HARD_FRAME_POINTER_REGNUM 27
682
683/* Base register for access to arguments of the function. This register
684   will be eliminated into either fp or sp.  */
685#define ARG_POINTER_REGNUM 144
686
687#define RETURN_ADDR_REGNUM 31
688
689/* TODO - check usage of STATIC_CHAIN_REGNUM with a testcase */
690/* Register in which static-chain is passed to a function.  This must
691   not be a register used by the prologue.  */
692#define STATIC_CHAIN_REGNUM  11
693
694/* Function argument passing.  */
695
696/* If defined, the maximum amount of space required for outgoing
697   arguments will be computed and placed into the variable
698   `crtl->outgoing_args_size'.  No space will be pushed
699   onto the stack for each call; instead, the function prologue should
700   increase the stack frame size by this amount.  */
701#define ACCUMULATE_OUTGOING_ARGS 1
702
703/* Define a data type for recording info about an argument list
704   during the scan of that argument list.  This data type should
705   hold all necessary information about the function itself
706   and about the args processed so far, enough to enable macros
707   such as FUNCTION_ARG to determine where the next arg should go.  */
708#define CUMULATIVE_ARGS int
709
710/* Initialize a variable CUM of type CUMULATIVE_ARGS
711   for a call to a function whose data type is FNTYPE.
712   For a library call, FNTYPE is 0.  */
713#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT,N_NAMED_ARGS) \
714  ((CUM) = 0)
715
716/* The number of registers used for parameter passing.  Local to this file.  */
717#define MAX_ARC_PARM_REGS (TARGET_RF16 ? 4 : 8)
718
719/* 1 if N is a possible register number for function argument passing.  */
720#define FUNCTION_ARG_REGNO_P(N) \
721((unsigned) (N) < MAX_ARC_PARM_REGS)
722
723/* The ROUND_ADVANCE* macros are local to this file.  */
724/* Round SIZE up to a word boundary.  */
725#define ROUND_ADVANCE(SIZE) \
726(((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
727
728/* Round arg MODE/TYPE up to the next word boundary.  */
729#define ROUND_ADVANCE_ARG(MODE, TYPE) \
730((MODE) == BLKmode				\
731 ? ROUND_ADVANCE (int_size_in_bytes (TYPE))	\
732 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
733
734#define ARC_FUNCTION_ARG_BOUNDARY(MODE,TYPE) PARM_BOUNDARY
735/* Round CUM up to the necessary point for argument MODE/TYPE.  */
736/* N.B. Vectors have alignment exceeding BIGGEST_ALIGNMENT.
737   ARC_FUNCTION_ARG_BOUNDARY reduces this to no more than 32 bit.  */
738#define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
739  ((((CUM) - 1) | (ARC_FUNCTION_ARG_BOUNDARY ((MODE), (TYPE)) - 1)/BITS_PER_WORD)\
740   + 1)
741
742/* Return boolean indicating arg of type TYPE and mode MODE will be passed in
743   a reg.  This includes arguments that have to be passed by reference as the
744   pointer to them is passed in a reg if one is available (and that is what
745   we're given).
746   When passing arguments NAMED is always 1.  When receiving arguments NAMED
747   is 1 for each argument except the last in a stdarg/varargs function.  In
748   a stdarg function we want to treat the last named arg as named.  In a
749   varargs function we want to treat the last named arg (which is
750   `__builtin_va_alist') as unnamed.
751   This macro is only used in this file.  */
752#define PASS_IN_REG_P(CUM, MODE, TYPE) \
753((CUM) < MAX_ARC_PARM_REGS)
754
755
756/* Function results.  */
757
758/* Define how to find the value returned by a library function
759   assuming the value has mode MODE.  */
760#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
761
762/* 1 if N is a possible register number for a function value
763   as seen by the caller.  */
764/* ??? What about r1 in DI/DF values.  */
765#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
766
767/* Tell GCC to use RETURN_IN_MEMORY.  */
768#define DEFAULT_PCC_STRUCT_RETURN 0
769
770/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
771   the stack pointer does not matter.  The value is tested only in
772   functions that have frame pointers.
773   No definition is equivalent to always zero.  */
774#define EXIT_IGNORE_STACK 0
775
776#define EPILOGUE_USES(REGNO) arc_epilogue_uses ((REGNO))
777
778#define EH_USES(REGNO) arc_eh_uses((REGNO))
779
780/* Definitions for register eliminations.
781
782   This is an array of structures.  Each structure initializes one pair
783   of eliminable registers.  The "from" register number is given first,
784   followed by "to".  Eliminations of the same "from" register are listed
785   in order of preference.
786
787   We have two registers that can be eliminated on the ARC.  First, the
788   argument pointer register can always be eliminated in favor of the stack
789   pointer register or frame pointer register.  Secondly, the frame pointer
790   register can often be eliminated in favor of the stack pointer register.
791*/
792
793#define ELIMINABLE_REGS					\
794{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
795 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
796 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
797 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
798
799/* Define the offset between two registers, one to be eliminated, and the other
800   its replacement, at the start of a routine.  */
801extern int arc_initial_elimination_offset(int from, int to);
802#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
803  (OFFSET) = arc_initial_elimination_offset ((FROM), (TO))
804
805/* All the work done in PROFILE_HOOK, but still required.  */
806#undef FUNCTION_PROFILER
807#define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
808
809#define NO_PROFILE_COUNTERS  1
810
811/* Trampolines.  */
812
813/* Length in units of the trampoline for entering a nested function.  */
814#define TRAMPOLINE_SIZE 16
815
816/* Alignment required for a trampoline in bits .  */
817/* For actual data alignment we just need 32, no more than the stack;
818   however, to reduce cache coherency issues, we want to make sure that
819   trampoline instructions always appear the same in any given cache line.  */
820#define TRAMPOLINE_ALIGNMENT 256
821
822/* Library calls.  */
823
824/* Addressing modes, and classification of registers for them.  */
825
826/* Maximum number of registers that can appear in a valid memory address.  */
827/* The `ld' insn allows 2, but the `st' insn only allows 1.  */
828#define MAX_REGS_PER_ADDRESS 1
829
830/* We have pre inc/dec (load/store with update).  */
831#define HAVE_PRE_INCREMENT 1
832#define HAVE_PRE_DECREMENT 1
833#define HAVE_POST_INCREMENT 1
834#define HAVE_POST_DECREMENT 1
835#define HAVE_PRE_MODIFY_DISP 1
836#define HAVE_POST_MODIFY_DISP 1
837#define HAVE_PRE_MODIFY_REG 1
838#define HAVE_POST_MODIFY_REG 1
839/* ??? should also do PRE_MODIFY_REG / POST_MODIFY_REG, but that requires
840   a special predicate for the memory operand of stores, like for the SH.  */
841
842/* Recognize any constant value that is a valid address.  */
843#define CONSTANT_ADDRESS_P(X)					\
844  (flag_pic ? (arc_legitimate_pic_addr_p (X) || LABEL_P (X)):	\
845   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF	\
846    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST))
847
848/* Is the argument a const_int rtx, containing an exact power of 2 */
849#define  IS_POWEROF2_P(X) (! ( (X) & ((X) - 1)) && (X))
850#define  IS_POWEROF2_OR_0_P(X) (! ( (X) & ((X) - 1)))
851
852/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
853   and check its validity for a certain class.
854   We have two alternate definitions for each of them.
855   The *_NONSTRICT definition accepts all pseudo regs; the other rejects
856   them unless they have been allocated suitable hard regs.
857
858   Most source files want to accept pseudo regs in the hope that
859   they will get allocated to the class that the insn wants them to be in.
860   Source files for reload pass need to be strict.
861   After reload, it makes no difference, since pseudo regs have
862   been eliminated by then.  */
863
864/* Nonzero if X is a hard reg that can be used as an index
865   or if it is a pseudo reg.  */
866#define REG_OK_FOR_INDEX_P_NONSTRICT(X)			\
867  ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER	\
868   || REGNO_OK_FOR_BASE_P (REGNO (X)))
869
870/* Nonzero if X is a hard reg that can be used as a base reg
871   or if it is a pseudo reg.  */
872#define REG_OK_FOR_BASE_P_NONSTRICT(X)			\
873  ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER	\
874   || REGNO_OK_FOR_BASE_P (REGNO (X)))
875
876/* Nonzero if X is a hard reg that can be used as an index.  */
877#define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
878/* Nonzero if X is a hard reg that can be used as a base reg.  */
879#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
880
881/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
882   that is a valid memory address for an instruction.
883   The MODE argument is the machine mode for the MEM expression
884   that wants to use this address.  */
885/* The `ld' insn allows [reg],[reg+shimm],[reg+limm],[reg+reg],[limm]
886   but the `st' insn only allows [reg],[reg+shimm],[limm].
887   The only thing we can do is only allow the most strict case `st' and hope
888   other parts optimize out the restrictions for `ld'.  */
889
890#define RTX_OK_FOR_BASE_P(X, STRICT) \
891(REG_P (X) \
892 && ((STRICT) ? REG_OK_FOR_BASE_P_STRICT (X) : REG_OK_FOR_BASE_P_NONSTRICT (X)))
893
894#define RTX_OK_FOR_INDEX_P(X, STRICT) \
895(REG_P (X) \
896 && ((STRICT) ? REG_OK_FOR_INDEX_P_STRICT (X) : REG_OK_FOR_INDEX_P_NONSTRICT (X)))
897
898/* A C compound statement that attempts to replace X, which is an address
899   that needs reloading, with a valid memory address for an operand of
900   mode MODE.  WIN is a C statement label elsewhere in the code.
901
902   We try to get a normal form
903   of the address.  That will allow inheritance of the address reloads.  */
904
905#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	\
906  do {									\
907    if (arc_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE)))	\
908      goto WIN;								\
909  } while (0)
910
911/* Reading lp_count for anything but the lp instruction is very slow on the
912   ARC700.  */
913#define DONT_REALLOC(REGNO,MODE) \
914  (TARGET_ARC700 && (REGNO) == 60)
915
916
917/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
918   return the mode to be used for the comparison.  */
919/*extern machine_mode arc_select_cc_mode ();*/
920#define SELECT_CC_MODE(OP, X, Y) \
921arc_select_cc_mode (OP, X, Y)
922
923/* Return non-zero if SELECT_CC_MODE will never return MODE for a
924   floating point inequality comparison.  */
925#define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
926
927/* Costs.  */
928
929/* The cost of a branch insn.  */
930/* ??? What's the right value here?  Branches are certainly more
931   expensive than reg->reg moves.  */
932#define BRANCH_COST(speed_p, predictable_p) 2
933
934/* Scc sets the destination to 1 and then conditionally zeroes it.
935   Best case, ORed SCCs can be made into clear - condset - condset.
936   But it could also end up as five insns.  So say it costs four on
937   average.
938   These extra instructions - and the second comparison - will also be
939   an extra cost if the first comparison would have been decisive.
940   So get an average saving, with a probability of the first branch
941   beging decisive of p0, we want:
942   p0 * (branch_cost - 4) > (1 - p0) * 5
943   ??? We don't get to see that probability to evaluate, so we can
944   only wildly guess that it might be 50%.
945   ??? The compiler also lacks the notion of branch predictability.  */
946#define LOGICAL_OP_NON_SHORT_CIRCUIT \
947  (BRANCH_COST (optimize_function_for_speed_p (cfun), \
948		false) > 9)
949
950/* Nonzero if access to memory by bytes is slow and undesirable.
951   For RISC chips, it means that access to memory by bytes is no
952   better than access by words when possible, so grab a whole word
953   and maybe make use of that.  */
954#define SLOW_BYTE_ACCESS  0
955
956/* Define this macro if it is as good or better to call a constant
957   function address than to call an address kept in a register.  */
958/* On the ARC, calling through registers is slow.  */
959#define NO_FUNCTION_CSE 1
960
961/* Section selection.  */
962/* WARNING: These section names also appear in dwarfout.c.  */
963
964#define TEXT_SECTION_ASM_OP	"\t.section\t.text"
965#define DATA_SECTION_ASM_OP	"\t.section\t.data"
966
967#define BSS_SECTION_ASM_OP	"\t.section\t.bss"
968#define SDATA_SECTION_ASM_OP	"\t.section\t.sdata"
969#define SBSS_SECTION_ASM_OP	"\t.section\t.sbss"
970
971/* Expression whose value is a string, including spacing, containing the
972   assembler operation to identify the following data as initialization/termination
973   code. If not defined, GCC will assume such a section does not exist. */
974#define INIT_SECTION_ASM_OP "\t.section\t.init"
975#define FINI_SECTION_ASM_OP "\t.section\t.fini"
976
977/* Define this macro if jump tables (for tablejump insns) should be
978   output in the text section, along with the assembler instructions.
979   Otherwise, the readonly data section is used.
980   This macro is irrelevant if there is no separate readonly data section.  */
981#define JUMP_TABLES_IN_TEXT_SECTION  (flag_pic || CASE_VECTOR_PC_RELATIVE)
982
983/* For DWARF.  Marginally different than default so output is "prettier"
984   (and consistent with above).  */
985#define PUSHSECTION_FORMAT "\t%s %s\n"
986
987/* Tell crtstuff.c we're using ELF.  */
988#define OBJECT_FORMAT_ELF
989
990/* PIC */
991
992/* The register number of the register used to address a table of static
993   data addresses in memory.  In some cases this register is defined by a
994   processor's ``application binary interface'' (ABI).  When this macro
995   is defined, RTL is generated for this register once, as with the stack
996   pointer and frame pointer registers.  If this macro is not defined, it
997   is up to the machine-dependent files to allocate such a register (if
998   necessary).  */
999#define PIC_OFFSET_TABLE_REGNUM 26
1000
1001/* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
1002   clobbered by calls.  Do not define this macro if PIC_OFFSET_TABLE_REGNUM
1003   is not defined.  */
1004/* This register is call-saved on the ARC.  */
1005/*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
1006
1007/* A C expression that is nonzero if X is a legitimate immediate
1008   operand on the target machine when generating position independent code.
1009   You can assume that X satisfies CONSTANT_P, so you need not
1010   check this.  You can also assume `flag_pic' is true, so you need not
1011   check it either.  You need not define this macro if all constants
1012   (including SYMBOL_REF) can be immediate operands when generating
1013   position independent code.  */
1014#define LEGITIMATE_PIC_OPERAND_P(X)  \
1015  (!arc_raw_symbolic_reference_mentioned_p ((X), true))
1016
1017/* PIC and small data don't mix on ARC because they use the same register.  */
1018#define SDATA_BASE_REGNUM 26
1019
1020#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1021  (flag_pic \
1022   ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
1023   : DW_EH_PE_absptr)
1024
1025/* Control the assembler format that we output.  */
1026
1027/* A C string constant describing how to begin a comment in the target
1028   assembler language.  The compiler assumes that the comment will
1029   end at the end of the line.  */
1030/* Gas needs this to be "#" in order to recognize line directives.  */
1031#define ASM_COMMENT_START "#"
1032
1033/* Output to assembler file text saying following lines
1034   may contain character constants, extra white space, comments, etc.  */
1035#undef ASM_APP_ON
1036#define ASM_APP_ON ""
1037
1038/* Output to assembler file text saying following lines
1039   no longer contain unusual constructs.  */
1040#undef ASM_APP_OFF
1041#define ASM_APP_OFF ""
1042
1043/* Globalizing directive for a label.  */
1044#define GLOBAL_ASM_OP "\t.global\t"
1045
1046/* This is how to output an assembler line defining a `char' constant.  */
1047#define ASM_OUTPUT_CHAR(FILE, VALUE) \
1048( fprintf (FILE, "\t.byte\t"),			\
1049  output_addr_const (FILE, (VALUE)),		\
1050  fprintf (FILE, "\n"))
1051
1052/* This is how to output an assembler line defining a `short' constant.  */
1053#define ASM_OUTPUT_SHORT(FILE, VALUE) \
1054( fprintf (FILE, "\t.hword\t"),			\
1055  output_addr_const (FILE, (VALUE)),		\
1056  fprintf (FILE, "\n"))
1057
1058/* This is how to output an assembler line defining an `int' constant.
1059   We also handle symbol output here.  Code addresses must be right shifted
1060   by 2 because that's how the jump instruction wants them.  */
1061#define ASM_OUTPUT_INT(FILE, VALUE) \
1062do {									\
1063  fprintf (FILE, "\t.word\t");						\
1064  if (GET_CODE (VALUE) == LABEL_REF)					\
1065    {									\
1066      fprintf (FILE, "%%st(@");						\
1067      output_addr_const (FILE, (VALUE));				\
1068      fprintf (FILE, ")");						\
1069    }									\
1070  else									\
1071    output_addr_const (FILE, (VALUE));					\
1072  fprintf (FILE, "\n");					                \
1073} while (0)
1074
1075/* This is how to output an assembler line defining a `float' constant.  */
1076#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1077{							\
1078  long t;						\
1079  char str[30];						\
1080  REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t);		\
1081  REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str);	\
1082  fprintf (FILE, "\t.word\t0x%lx %s %s\n",		\
1083	   t, ASM_COMMENT_START, str);			\
1084}
1085
1086/* This is how to output an assembler line defining a `double' constant.  */
1087#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1088{							\
1089  long t[2];						\
1090  char str[30];						\
1091  REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t);		\
1092  REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str);	\
1093  fprintf (FILE, "\t.word\t0x%lx %s %s\n\t.word\t0x%lx\n", \
1094	   t[0], ASM_COMMENT_START, str, t[1]);		\
1095}
1096
1097/* This is how to output the definition of a user-level label named NAME,
1098   such as the label on a static function or variable NAME.  */
1099#define ASM_OUTPUT_LABEL(FILE, NAME) \
1100do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1101
1102#define ASM_NAME_P(NAME) ( NAME[0]=='*')
1103
1104/* This is how to output a reference to a user-level label named NAME.
1105   `assemble_name' uses this.  */
1106/* We work around a dwarfout.c deficiency by watching for labels from it and
1107   not adding the '_' prefix.  There is a comment in
1108   dwarfout.c that says it should be using ASM_OUTPUT_INTERNAL_LABEL.  */
1109#define ASM_OUTPUT_LABELREF(FILE, NAME1) \
1110do {							\
1111  const char *NAME;					\
1112  NAME = (*targetm.strip_name_encoding)(NAME1);		\
1113  if ((NAME)[0] == '.' && (NAME)[1] == 'L')		\
1114    fprintf (FILE, "%s", NAME);				\
1115  else							\
1116    {							\
1117      if (!ASM_NAME_P (NAME1))				\
1118	fprintf (FILE, "%s", user_label_prefix);	\
1119      fprintf (FILE, "%s", NAME);			\
1120    }							\
1121} while (0)
1122
1123/* This is how to output a reference to a symbol_ref / label_ref as
1124   (part of) an operand.  To disambiguate from register names like
1125   a1 / a2 / status etc, symbols are preceded by '@'.  */
1126#define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
1127  ASM_OUTPUT_LABEL_REF ((FILE), XSTR ((SYM), 0))
1128#define ASM_OUTPUT_LABEL_REF(FILE,STR)			\
1129  do							\
1130    {							\
1131      fputc ('@', file);				\
1132      assemble_name ((FILE), (STR));			\
1133    }							\
1134  while (0)
1135
1136/* Store in OUTPUT a string (made with alloca) containing
1137   an assembler-name for a local static variable named NAME.
1138   LABELNO is an integer which is different for each call.  */
1139#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)			\
1140  ((OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),			\
1141   sprintf ((OUTPUT), "%s.%u", (NAME), (unsigned int)(LABELNO)))
1142
1143/* The following macro defines the format used to output the second
1144   operand of the .type assembler directive.  Different svr4 assemblers
1145   expect various different forms for this operand.  The one given here
1146   is just a default.  You may need to override it in your machine-
1147   specific tm.h file (depending upon the particulars of your assembler).  */
1148
1149#undef  TYPE_OPERAND_FMT
1150#define TYPE_OPERAND_FMT	"@%s"
1151
1152/*  A C string containing the appropriate assembler directive to
1153    specify the size of a symbol, without any arguments.  On systems
1154    that use ELF, the default (in `config/elfos.h') is `"\t.size\t"';
1155    on other systems, the default is not to define this macro.  */
1156#undef SIZE_ASM_OP
1157#define SIZE_ASM_OP "\t.size\t"
1158
1159/* Assembler pseudo-op to equate one value with another.  */
1160/* ??? This is needed because dwarfout.c provides a default definition too
1161   late for defaults.h (which contains the default definition of ASM_OTPUT_DEF
1162   that we use).  */
1163#ifdef SET_ASM_OP
1164#undef SET_ASM_OP
1165#endif
1166#define SET_ASM_OP "\t.set\t"
1167
1168extern char rname29[], rname30[];
1169extern char rname56[], rname57[], rname58[], rname59[];
1170/* How to refer to registers in assembler output.
1171   This sequence is indexed by compiler's hard-register-number (see above).  */
1172#define REGISTER_NAMES								\
1173{  "r0",   "r1",   "r2",   "r3",       "r4",     "r5",     "r6",    "r7",	\
1174   "r8",   "r9",  "r10",  "r11",      "r12",    "r13",    "r14",   "r15",	\
1175  "r16",  "r17",  "r18",  "r19",      "r20",    "r21",    "r22",   "r23",	\
1176  "r24",  "r25",   "gp",   "fp",       "sp",  rname29,  rname30, "blink",	\
1177  "r32",  "r33",  "r34",  "r35",      "r36",    "r37",    "r38",   "r39",	\
1178   "d1",   "d1",   "d2",   "d2",      "r44",    "r45",    "r46",   "r47",	\
1179  "r48",  "r49",  "r50",  "r51",      "r52",    "r53",    "r54",   "r55",	\
1180  rname56,rname57,rname58,rname59,"lp_count",    "cc",   "limm",   "pcl",	\
1181  "vr0",  "vr1",  "vr2",  "vr3",      "vr4",    "vr5",    "vr6",   "vr7",       \
1182  "vr8",  "vr9", "vr10", "vr11",     "vr12",   "vr13",   "vr14",  "vr15",	\
1183 "vr16", "vr17", "vr18", "vr19",     "vr20",   "vr21",   "vr22",  "vr23",	\
1184 "vr24", "vr25", "vr26", "vr27",     "vr28",   "vr29",   "vr30",  "vr31",	\
1185 "vr32", "vr33", "vr34", "vr35",     "vr36",   "vr37",   "vr38",  "vr39",	\
1186 "vr40", "vr41", "vr42", "vr43",     "vr44",   "vr45",   "vr46",  "vr47",	\
1187 "vr48", "vr49", "vr50", "vr51",     "vr52",   "vr53",   "vr54",  "vr55",	\
1188 "vr56", "vr57", "vr58", "vr59",     "vr60",   "vr61",   "vr62",  "vr63",	\
1189  "dr0",  "dr1",  "dr2",  "dr3",      "dr4",    "dr5",    "dr6",   "dr7",	\
1190  "dr0",  "dr1",  "dr2",  "dr3",      "dr4",    "dr5",    "dr6",   "dr7",	\
1191  "arg", "frame" \
1192}
1193
1194#define ADDITIONAL_REGISTER_NAMES		\
1195{						\
1196  {"ilink",  29},				\
1197  {"r29",    29},				\
1198  {"r30",    30},				\
1199  {"r40",    40},				\
1200  {"r41",    41},				\
1201  {"r42",    42},				\
1202  {"r43",    43},				\
1203  {"r56",    56},				\
1204  {"r57",    57},				\
1205  {"r58",    58},				\
1206  {"r59",    59}				\
1207}
1208
1209/* Entry to the insn conditionalizer.  */
1210#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1211  arc_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1212
1213/* A C expression which evaluates to true if CODE is a valid
1214   punctuation character for use in the `PRINT_OPERAND' macro.  */
1215extern char arc_punct_chars[];
1216#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1217arc_punct_chars[(unsigned char) (CHAR)]
1218
1219/* Print operand X (an rtx) in assembler syntax to file FILE.
1220   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1221   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1222#define PRINT_OPERAND(FILE, X, CODE) \
1223arc_print_operand (FILE, X, CODE)
1224
1225/* A C compound statement to output to stdio stream STREAM the
1226   assembler syntax for an instruction operand that is a memory
1227   reference whose address is ADDR.  ADDR is an RTL expression.
1228
1229   On some machines, the syntax for a symbolic address depends on
1230   the section that the address refers to.  On these machines,
1231   define the macro `ENCODE_SECTION_INFO' to store the information
1232   into the `symbol_ref', and then check for it here.  */
1233#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1234arc_print_operand_address (FILE, ADDR)
1235
1236/* This is how to output an element of a case-vector that is absolute.  */
1237#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1238do {							\
1239  char label[30];					\
1240  ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);	\
1241  fprintf (FILE, "\t.word ");				\
1242  assemble_name (FILE, label);				\
1243  fprintf (FILE, "\n");					\
1244} while (0)
1245
1246/* This is how to output an element of a case-vector that is relative.  */
1247#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)	\
1248  do {								\
1249    char label[30];						\
1250    ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);		\
1251    if (!TARGET_BI_BIH)						\
1252      {								\
1253	switch (GET_MODE (BODY))				\
1254	  {							\
1255	  case E_QImode: fprintf (FILE, "\t.byte "); break;	\
1256	  case E_HImode: fprintf (FILE, "\t.hword "); break;	\
1257	  case E_SImode: fprintf (FILE, "\t.word "); break;	\
1258	  default: gcc_unreachable ();				\
1259	  }							\
1260	assemble_name (FILE, label);				\
1261	fprintf (FILE, "-");					\
1262	ASM_GENERATE_INTERNAL_LABEL (label, "L", REL);		\
1263	assemble_name (FILE, label);				\
1264	fprintf (FILE, "\n");					\
1265      }								\
1266    else							\
1267      {								\
1268      switch (GET_MODE (BODY))					\
1269	{							\
1270	case E_SImode: fprintf (FILE, "\tb\t@"); break;		\
1271	case E_HImode:						\
1272	case E_QImode: fprintf (FILE, "\tb_s\t@"); break;	\
1273	default: gcc_unreachable ();				\
1274	}							\
1275      assemble_name (FILE, label);				\
1276      fprintf(FILE, "\n");					\
1277    }								\
1278  } while (0)
1279
1280/* Defined to also emit an .align in elfos.h.  We don't want that.  */
1281#undef ASM_OUTPUT_CASE_LABEL
1282
1283/* ADDR_DIFF_VECs are in the text section and thus can affect the
1284   current alignment.  */
1285#define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE)       \
1286  do                                                    \
1287    {                                                   \
1288      if (GET_CODE (PATTERN (JUMPTABLE)) == ADDR_DIFF_VEC \
1289	  && ((GET_MODE_SIZE (as_a <scalar_int_mode>	\
1290			      (GET_MODE (PATTERN (JUMPTABLE)))) \
1291	       * XVECLEN (PATTERN (JUMPTABLE), 1) + 1)	\
1292	      & 2))					\
1293      arc_toggle_unalign ();				\
1294    }                                                   \
1295  while (0)
1296
1297#define JUMP_ALIGN(LABEL) (arc_size_opt_level < 2 ? 2 : 0)
1298#define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
1299  (JUMP_ALIGN(LABEL) \
1300   ? JUMP_ALIGN(LABEL) \
1301   : GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
1302   ? 1 : 0)
1303/* The desired alignment for the location counter at the beginning
1304   of a loop.  */
1305/* On the ARC, align loops to 4 byte boundaries unless doing all-out size
1306   optimization.  */
1307#define LOOP_ALIGN(X) 0
1308
1309#define LABEL_ALIGN(LABEL) (arc_label_align (LABEL))
1310
1311/* This is how to output an assembler line
1312   that says to advance the location counter
1313   to a multiple of 2**LOG bytes.  */
1314#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1315do { \
1316  if ((LOG) != 0) fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1317  if ((LOG)  > 1) \
1318    arc_clear_unalign (); \
1319} while (0)
1320
1321/*  ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT)
1322    Define this macro when you need to see the variable's decl in order to
1323    chose what to output.  */
1324#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGNMENT) \
1325  arc_asm_output_aligned_decl_local (STREAM, DECL, NAME, SIZE, ALIGNMENT, 0)
1326
1327/* Debugging information.  */
1328
1329/* Generate DBX and DWARF debugging information.  */
1330#ifdef DBX_DEBUGGING_INFO
1331#undef DBX_DEBUGGING_INFO
1332#endif
1333#define DBX_DEBUGGING_INFO
1334
1335#ifdef DWARF2_DEBUGGING_INFO
1336#undef DWARF2_DEBUGGING_INFO
1337#endif
1338#define DWARF2_DEBUGGING_INFO
1339
1340/* Prefer STABS (for now).  */
1341#undef PREFERRED_DEBUGGING_TYPE
1342#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1343
1344/* How to renumber registers for dbx and gdb.  */
1345#define DBX_REGISTER_NUMBER(REGNO)				\
1346  ((TARGET_MULMAC_32BY16_SET && (REGNO) >= 56 && (REGNO) <= 57) \
1347   ? ((REGNO) ^ !TARGET_BIG_ENDIAN)				\
1348   : (TARGET_MUL64_SET && (REGNO) >= 57 && (REGNO) <= 58)	\
1349   ? (((REGNO) == 57)						\
1350      ? 58 /* MMED */						\
1351      : 57 + !!TARGET_MULMAC_32BY16_SET) /* MLO */		\
1352   : (REGNO))
1353
1354/* Use gcc hard register numbering for eh_frame.  */
1355#define DWARF_FRAME_REGNUM(REG) (REG)
1356
1357/* Map register numbers held in the call frame info that gcc has
1358   collected using DWARF_FRAME_REGNUM to those that should be output
1359   in .debug_frame and .eh_frame.  */
1360#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH)			\
1361  ((TARGET_MULMAC_32BY16_SET && (REGNO) >= 56 && (REGNO) <= 57) \
1362   ? ((REGNO) ^ !TARGET_BIG_ENDIAN)				\
1363   : (TARGET_MUL64_SET && (REGNO) >= 57 && (REGNO) <= 58)	\
1364   ? (((REGNO) == 57)						\
1365      ? 58 /* MMED */						\
1366      : 57 + !!TARGET_MULMAC_32BY16_SET) /* MLO */		\
1367   : (REGNO))
1368
1369#define DWARF_FRAME_RETURN_COLUMN 	DWARF_FRAME_REGNUM (31)
1370
1371#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 31)
1372
1373/* Frame info.  */
1374
1375#define EH_RETURN_DATA_REGNO(N)  ((N) < 2 ? (N) : INVALID_REGNUM)
1376
1377#define EH_RETURN_STACKADJ_RTX   gen_rtx_REG (Pmode, 2)
1378
1379/* Turn off splitting of long stabs.  */
1380#define DBX_CONTIN_LENGTH 0
1381
1382/* Miscellaneous.  */
1383
1384/* Specify the machine mode that this machine uses
1385   for the index in the tablejump instruction.
1386   If we have pc relative case vectors, we start the case vector shortening
1387   with QImode.  */
1388#define CASE_VECTOR_MODE						\
1389  (TARGET_BI_BIH ? SImode						\
1390   : (optimize && (CASE_VECTOR_PC_RELATIVE || flag_pic)) ? QImode : Pmode)
1391
1392/* Define as C expression which evaluates to nonzero if the tablejump
1393   instruction expects the table to contain offsets from the address of the
1394   table.
1395   Do not define this if the table should contain absolute addresses.  */
1396#define CASE_VECTOR_PC_RELATIVE					\
1397  (TARGET_CASE_VECTOR_PC_RELATIVE || TARGET_BI_BIH)
1398
1399#define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY)		\
1400  (TARGET_BI_BIH ?						\
1401   ((MIN_OFFSET) >= -512 && (MAX_OFFSET) <= 508 ? HImode : SImode)	\
1402   : ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255				\
1403      ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode)	\
1404      : (MIN_OFFSET) >= -128 && (MAX_OFFSET) <= 127			\
1405      ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode)	\
1406      : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 65535			\
1407      ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, HImode)	\
1408      : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767			\
1409      ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, HImode)	\
1410      : SImode))
1411
1412#define ADDR_VEC_ALIGN(VEC_INSN)					\
1413  (TARGET_BI_BIH ? 0							\
1414   : exact_log2 (GET_MODE_SIZE (as_a <scalar_int_mode>			\
1415				(GET_MODE (PATTERN (VEC_INSN))))))
1416
1417#define INSN_LENGTH_ALIGNMENT(INSN)		  \
1418  ((JUMP_TABLE_DATA_P (INSN)			  \
1419    && GET_CODE (PATTERN (INSN)) == ADDR_DIFF_VEC \
1420    && GET_MODE (PATTERN (INSN)) == QImode)	  \
1421   ? 0 : length_unit_log)
1422
1423/* Define if operations between registers always perform the operation
1424   on the full register even if a narrower mode is specified.  */
1425#define WORD_REGISTER_OPERATIONS 1
1426
1427/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1428   will either zero-extend or sign-extend.  The value of this macro should
1429   be the code that says which one of the two operations is implicitly
1430   done, NIL if none.  */
1431#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1432
1433
1434/* Max number of bytes we can move from memory to memory
1435   in one reasonably fast instruction.  */
1436#define MOVE_MAX 4
1437
1438/* Undo the effects of the cpymem pattern presence on STORE_BY_PIECES_P .  */
1439#define MOVE_RATIO(SPEED) ((SPEED) ? 15 : 3)
1440
1441/* Define this to be nonzero if shift instructions ignore all but the
1442   low-order few bits.
1443*/
1444#define SHIFT_COUNT_TRUNCATED 1
1445
1446/* We assume that the store-condition-codes instructions store 0 for false
1447   and some other value for true.  This is the value stored for true.  */
1448#define STORE_FLAG_VALUE 1
1449
1450/* Specify the machine mode that pointers have.
1451   After generation of rtl, the compiler makes no further distinction
1452   between pointers and any other objects of this machine mode.  */
1453/* ARCompact has full 32-bit pointers.  */
1454#define Pmode SImode
1455
1456/* A function address in a call instruction.  */
1457#define FUNCTION_MODE SImode
1458
1459/* Define the information needed to generate branch and scc insns.  This is
1460   stored from the compare operation.  Note that we can't use "rtx" here
1461   since it hasn't been defined!  */
1462extern struct rtx_def *arc_compare_op0, *arc_compare_op1;
1463
1464/* ARC function types.   */
1465enum arc_function_type {
1466  /* No function should have the unknown type.  This value is used to
1467   indicate the that function type has not yet been computed.  */
1468  ARC_FUNCTION_UNKNOWN  = 0,
1469
1470  /* The normal function type indicates that the function has the
1471   standard prologue and epilogue.  */
1472  ARC_FUNCTION_NORMAL  = 1 << 0,
1473  /* These are interrupt handlers.  The name corresponds to the register
1474     name that contains the return address.  */
1475  ARC_FUNCTION_ILINK1  = 1 << 1,
1476  ARC_FUNCTION_ILINK2  = 1 << 2,
1477  /* Fast interrupt is only available on ARCv2 processors.  */
1478  ARC_FUNCTION_FIRQ    = 1 << 3,
1479  /* The naked function type indicates that the function does not have
1480   prologue or epilogue, and that no stack frame is available.  */
1481  ARC_FUNCTION_NAKED   = 1 << 4
1482};
1483
1484/* Check if a function is an interrupt function.  */
1485#define ARC_INTERRUPT_P(TYPE)					\
1486  (((TYPE) & (ARC_FUNCTION_ILINK1 | ARC_FUNCTION_ILINK2		\
1487	      | ARC_FUNCTION_FIRQ)) != 0)
1488
1489/* Check if a function is a fast interrupt function.  */
1490#define ARC_FAST_INTERRUPT_P(TYPE) (((TYPE) & ARC_FUNCTION_FIRQ) != 0)
1491
1492/* Check if a function is normal, that is, has standard prologue and
1493   epilogue.  */
1494#define ARC_NORMAL_P(TYPE) (((TYPE) & ARC_FUNCTION_NORMAL) != 0)
1495
1496/* Check if a function is naked.  */
1497#define ARC_NAKED_P(TYPE) (((TYPE) & ARC_FUNCTION_NAKED) != 0)
1498
1499/* Called by crtstuff.c to make calls to function FUNCTION that are defined in
1500   SECTION_OP, and then to switch back to text section.  */
1501#undef CRT_CALL_STATIC_FUNCTION
1502#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)		\
1503  asm (SECTION_OP "\n\t"					\
1504       "add r12,pcl,@" USER_LABEL_PREFIX #FUNC "@pcl\n\t"	\
1505       "jl  [r12]\n"						\
1506       TEXT_SECTION_ASM_OP);
1507
1508/* This macro expands to the name of the scratch register r12, used for
1509   temporary calculations according to the ABI.  */
1510#define ARC_TEMP_SCRATCH_REG "r12"
1511
1512/* The C++ compiler must use one bit to indicate whether the function
1513   that will be called through a pointer-to-member-function is
1514   virtual.  Normally, we assume that the low-order bit of a function
1515   pointer must always be zero.  Then, by ensuring that the
1516   vtable_index is odd, we can distinguish which variant of the union
1517   is in use.  But, on some platforms function pointers can be odd,
1518   and so this doesn't work.  In that case, we use the low-order bit
1519   of the `delta' field, and shift the remainder of the `delta' field
1520   to the left. We needed to do this for A4 because the address was always
1521   shifted and thus could be odd.  */
1522#define TARGET_PTRMEMFUNC_VBIT_LOCATION \
1523  (ptrmemfunc_vbit_in_pfn)
1524
1525#define INSN_SETS_ARE_DELAYED(X)		\
1526  (GET_CODE (X) == INSN				\
1527   && GET_CODE (PATTERN (X)) != SEQUENCE	\
1528   && GET_CODE (PATTERN (X)) != USE		\
1529   && GET_CODE (PATTERN (X)) != CLOBBER		\
1530   && (get_attr_type (X) == TYPE_CALL || get_attr_type (X) == TYPE_SFUNC))
1531
1532#define INSN_REFERENCES_ARE_DELAYED(insn)				\
1533  (INSN_SETS_ARE_DELAYED (insn))
1534
1535#define CALL_ATTR(X, NAME) \
1536  ((CALL_P (X) || NONJUMP_INSN_P (X)) \
1537   && GET_CODE (PATTERN (X)) != USE \
1538   && GET_CODE (PATTERN (X)) != CLOBBER \
1539   && get_attr_is_##NAME (X) == IS_##NAME##_YES) \
1540
1541#define REVERSE_CONDITION(CODE,MODE)				 \
1542  (((MODE) == CC_FP_GTmode || (MODE) == CC_FP_GEmode		 \
1543    || (MODE) == CC_FP_UNEQmode || (MODE) == CC_FP_ORDmode	 \
1544    || (MODE) == CC_FPXmode || (MODE) == CC_FPU_UNEQmode	 \
1545    || (MODE) == CC_FPUmode || (MODE) == CC_FPUEmode)		 \
1546   ? reverse_condition_maybe_unordered ((CODE))			 \
1547   : reverse_condition ((CODE)))
1548
1549#define ADJUST_INSN_LENGTH(X, LENGTH) \
1550  ((LENGTH) \
1551   = (GET_CODE (PATTERN (X)) == SEQUENCE \
1552      ? ((LENGTH) \
1553	 + arc_adjust_insn_length ( \
1554             as_a <rtx_sequence *> (PATTERN (X))->insn (0), \
1555	     get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)), \
1556	     true)							\
1557	 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)) \
1558	 + arc_adjust_insn_length ( \
1559	     as_a <rtx_sequence *> (PATTERN (X))->insn (1), \
1560	     get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1)), \
1561	     true)							\
1562	 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1))) \
1563      : arc_adjust_insn_length ((X), (LENGTH), false)))
1564
1565#define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) ((C) == '`')
1566
1567#define INIT_EXPANDERS arc_init_expanders ()
1568
1569enum
1570{
1571  ARC_LRA_PRIORITY_NONE, ARC_LRA_PRIORITY_NONCOMPACT, ARC_LRA_PRIORITY_COMPACT
1572};
1573
1574/* The define_cond_exec construct is rather crude, as we can't have
1575   different ones with different conditions apply to different sets
1576   of instructions.  We can't use an attribute test inside the condition,
1577   because that would lead to infinite recursion as the attribute test
1578   needs to recognize the insn.  So, instead we have a clause for
1579   the pattern condition of all sfunc patterns which is only relevant for
1580   the predicated varaint.  */
1581#define SFUNC_CHECK_PREDICABLE \
1582  (GET_CODE (PATTERN (insn)) != COND_EXEC || !flag_pic || !TARGET_MEDIUM_CALLS)
1583
1584/* MPYW feature macro.  Only valid for ARCHS and ARCEM cores.  */
1585#define TARGET_MPYW     ((arc_mpy_option > 0) && TARGET_V2)
1586/* Full ARCv2 multiplication feature macro.  */
1587#define TARGET_MULTI    ((arc_mpy_option > 1) && TARGET_V2)
1588/* General MPY feature macro.  */
1589#define TARGET_MPY      ((TARGET_ARC700 && (!TARGET_NOMPY_SET)) || TARGET_MULTI)
1590/* ARC700 MPY feature macro.  */
1591#define TARGET_ARC700_MPY (TARGET_ARC700 && (!TARGET_NOMPY_SET))
1592/* Any multiplication feature macro.  */
1593#define TARGET_ANY_MPY						\
1594  (TARGET_MPY || TARGET_MUL64_SET || TARGET_MULMAC_32BY16_SET)
1595/* PLUS_DMPY feature macro.  */
1596#define TARGET_PLUS_DMPY  ((arc_mpy_option > 6) && TARGET_HS)
1597/* PLUS_MACD feature macro.  */
1598#define TARGET_PLUS_MACD  ((arc_mpy_option > 7) && TARGET_HS)
1599/* PLUS_QMACW feature macro.  */
1600#define TARGET_PLUS_QMACW ((arc_mpy_option > 8) && TARGET_HS)
1601
1602/* ARC600 and ARC601 feature macro.  */
1603#define TARGET_ARC600_FAMILY (TARGET_ARC600 || TARGET_ARC601)
1604/* ARC600, ARC601 and ARC700 feature macro.  */
1605#define TARGET_ARCOMPACT_FAMILY				\
1606  (TARGET_ARC600 || TARGET_ARC601 || TARGET_ARC700)
1607/* Loop count register can be read in very next instruction after has
1608   been written to by an ordinary instruction.  */
1609#define TARGET_LP_WR_INTERLOCK (!TARGET_ARC600_FAMILY)
1610
1611/* FPU defines.  */
1612/* Any FPU support.  */
1613#define TARGET_HARD_FLOAT   ((arc_fpu_build & (FPU_SP | FPU_DP)) != 0)
1614/* Single precision floating point support.  */
1615#define TARGET_FP_SP_BASE   ((arc_fpu_build & FPU_SP) != 0)
1616/* Double precision floating point support.  */
1617#define TARGET_FP_DP_BASE   ((arc_fpu_build & FPU_DP) != 0)
1618/* Single precision floating point support with fused operation.  */
1619#define TARGET_FP_SP_FUSED  ((arc_fpu_build & FPU_SF) != 0)
1620/* Double precision floating point support with fused operation.  */
1621#define TARGET_FP_DP_FUSED  ((arc_fpu_build & FPU_DF) != 0)
1622/* Single precision floating point conversion instruction support.  */
1623#define TARGET_FP_SP_CONV   ((arc_fpu_build & FPU_SC) != 0)
1624/* Double precision floating point conversion instruction support.  */
1625#define TARGET_FP_DP_CONV   ((arc_fpu_build & FPU_DC) != 0)
1626/* Single precision floating point SQRT/DIV instruction support.  */
1627#define TARGET_FP_SP_SQRT   ((arc_fpu_build & FPU_SD) != 0)
1628/* Double precision floating point SQRT/DIV instruction support.  */
1629#define TARGET_FP_DP_SQRT   ((arc_fpu_build & FPU_DD) != 0)
1630/* Double precision floating point assist instruction support.  */
1631#define TARGET_FP_DP_AX     ((arc_fpu_build & FPX_DP) != 0)
1632/* Custom FP instructions used by QuarkSE EM cpu.  */
1633#define TARGET_FPX_QUARK    (TARGET_EM && TARGET_SPFP		\
1634			     && (arc_fpu_build == FPX_QK))
1635/* DBNZ support is available for ARCv2 core3 and newer cpus.  */
1636#define TARGET_DBNZ (TARGET_V2 && (arc_tune >= ARC_TUNE_CORE_3))
1637
1638/* BI/BIH feature macro.  */
1639#define TARGET_BI_BIH (TARGET_BRANCH_INDEX && TARGET_CODE_DENSITY)
1640
1641/* The default option for BI/BIH instructions.  */
1642#define DEFAULT_BRANCH_INDEX 0
1643
1644#ifndef TARGET_LRA
1645#define TARGET_LRA arc_lra_p()
1646#endif
1647
1648#endif /* GCC_ARC_H */
1649