1/* Alias analysis for GNU C
2   Copyright (C) 1997-2020 Free Software Foundation, Inc.
3   Contributed by John Carr (jfc@mit.edu).
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "backend.h"
25#include "target.h"
26#include "rtl.h"
27#include "tree.h"
28#include "gimple.h"
29#include "df.h"
30#include "memmodel.h"
31#include "tm_p.h"
32#include "gimple-ssa.h"
33#include "emit-rtl.h"
34#include "alias.h"
35#include "fold-const.h"
36#include "varasm.h"
37#include "cselib.h"
38#include "langhooks.h"
39#include "cfganal.h"
40#include "rtl-iter.h"
41#include "cgraph.h"
42#include "ipa-utils.h"
43
44/* The aliasing API provided here solves related but different problems:
45
46   Say there exists (in c)
47
48   struct X {
49     struct Y y1;
50     struct Z z2;
51   } x1, *px1,  *px2;
52
53   struct Y y2, *py;
54   struct Z z2, *pz;
55
56
57   py = &x1.y1;
58   px2 = &x1;
59
60   Consider the four questions:
61
62   Can a store to x1 interfere with px2->y1?
63   Can a store to x1 interfere with px2->z2?
64   Can a store to x1 change the value pointed to by with py?
65   Can a store to x1 change the value pointed to by with pz?
66
67   The answer to these questions can be yes, yes, yes, and maybe.
68
69   The first two questions can be answered with a simple examination
70   of the type system.  If structure X contains a field of type Y then
71   a store through a pointer to an X can overwrite any field that is
72   contained (recursively) in an X (unless we know that px1 != px2).
73
74   The last two questions can be solved in the same way as the first
75   two questions but this is too conservative.  The observation is
76   that in some cases we can know which (if any) fields are addressed
77   and if those addresses are used in bad ways.  This analysis may be
78   language specific.  In C, arbitrary operations may be applied to
79   pointers.  However, there is some indication that this may be too
80   conservative for some C++ types.
81
82   The pass ipa-type-escape does this analysis for the types whose
83   instances do not escape across the compilation boundary.
84
85   Historically in GCC, these two problems were combined and a single
86   data structure that was used to represent the solution to these
87   problems.  We now have two similar but different data structures,
88   The data structure to solve the last two questions is similar to
89   the first, but does not contain the fields whose address are never
90   taken.  For types that do escape the compilation unit, the data
91   structures will have identical information.
92*/
93
94/* The alias sets assigned to MEMs assist the back-end in determining
95   which MEMs can alias which other MEMs.  In general, two MEMs in
96   different alias sets cannot alias each other, with one important
97   exception.  Consider something like:
98
99     struct S { int i; double d; };
100
101   a store to an `S' can alias something of either type `int' or type
102   `double'.  (However, a store to an `int' cannot alias a `double'
103   and vice versa.)  We indicate this via a tree structure that looks
104   like:
105	   struct S
106	    /   \
107	   /     \
108	 |/_     _\|
109	 int    double
110
111   (The arrows are directed and point downwards.)
112    In this situation we say the alias set for `struct S' is the
113   `superset' and that those for `int' and `double' are `subsets'.
114
115   To see whether two alias sets can point to the same memory, we must
116   see if either alias set is a subset of the other. We need not trace
117   past immediate descendants, however, since we propagate all
118   grandchildren up one level.
119
120   Alias set zero is implicitly a superset of all other alias sets.
121   However, this is no actual entry for alias set zero.  It is an
122   error to attempt to explicitly construct a subset of zero.  */
123
124struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
125
126struct GTY(()) alias_set_entry {
127  /* The alias set number, as stored in MEM_ALIAS_SET.  */
128  alias_set_type alias_set;
129
130  /* Nonzero if would have a child of zero: this effectively makes this
131     alias set the same as alias set zero.  */
132  bool has_zero_child;
133  /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134     aggregate contaiing pointer.
135     This is used for a special case where we need an universal pointer type
136     compatible with all other pointer types.  */
137  bool is_pointer;
138  /* Nonzero if is_pointer or if one of childs have has_pointer set.  */
139  bool has_pointer;
140
141  /* The children of the alias set.  These are not just the immediate
142     children, but, in fact, all descendants.  So, if we have:
143
144       struct T { struct S s; float f; }
145
146     continuing our example above, the children here will be all of
147     `int', `double', `float', and `struct S'.  */
148  hash_map<alias_set_hash, int> *children;
149};
150
151static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152static void record_set (rtx, const_rtx, void *);
153static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154			     machine_mode);
155static rtx find_base_value (rtx);
156static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157static alias_set_entry *get_alias_set_entry (alias_set_type);
158static tree decl_for_component_ref (tree);
159static int write_dependence_p (const_rtx,
160			       const_rtx, machine_mode, rtx,
161			       bool, bool, bool);
162static int compare_base_symbol_refs (const_rtx, const_rtx);
163
164static void memory_modified_1 (rtx, const_rtx, void *);
165
166/* Query statistics for the different low-level disambiguators.
167   A high-level query may trigger multiple of them.  */
168
169static struct {
170  unsigned long long num_alias_zero;
171  unsigned long long num_same_alias_set;
172  unsigned long long num_same_objects;
173  unsigned long long num_volatile;
174  unsigned long long num_dag;
175  unsigned long long num_universal;
176  unsigned long long num_disambiguated;
177} alias_stats;
178
179
180/* Set up all info needed to perform alias analysis on memory references.  */
181
182/* Returns the size in bytes of the mode of X.  */
183#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184
185/* Cap the number of passes we make over the insns propagating alias
186   information through set chains.
187   ??? 10 is a completely arbitrary choice.  This should be based on the
188   maximum loop depth in the CFG, but we do not have this information
189   available (even if current_loops _is_ available).  */
190#define MAX_ALIAS_LOOP_PASSES 10
191
192/* reg_base_value[N] gives an address to which register N is related.
193   If all sets after the first add or subtract to the current value
194   or otherwise modify it so it does not point to a different top level
195   object, reg_base_value[N] is equal to the address part of the source
196   of the first set.
197
198   A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF.  ADDRESS
199   expressions represent three types of base:
200
201     1. incoming arguments.  There is just one ADDRESS to represent all
202	arguments, since we do not know at this level whether accesses
203	based on different arguments can alias.  The ADDRESS has id 0.
204
205     2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206	(if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207	Each of these rtxes has a separate ADDRESS associated with it,
208	each with a negative id.
209
210	GCC is (and is required to be) precise in which register it
211	chooses to access a particular region of stack.  We can therefore
212	assume that accesses based on one of these rtxes do not alias
213	accesses based on another of these rtxes.
214
215     3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216	Each such piece of memory has a separate ADDRESS associated
217	with it, each with an id greater than 0.
218
219   Accesses based on one ADDRESS do not alias accesses based on other
220   ADDRESSes.  Accesses based on ADDRESSes in groups (2) and (3) do not
221   alias globals either; the ADDRESSes have Pmode to indicate this.
222   The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223   indicate this.  */
224
225static GTY(()) vec<rtx, va_gc> *reg_base_value;
226static rtx *new_reg_base_value;
227
228/* The single VOIDmode ADDRESS that represents all argument bases.
229   It has id 0.  */
230static GTY(()) rtx arg_base_value;
231
232/* Used to allocate unique ids to each REG_NOALIAS ADDRESS.  */
233static int unique_id;
234
235/* We preserve the copy of old array around to avoid amount of garbage
236   produced.  About 8% of garbage produced were attributed to this
237   array.  */
238static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
239
240/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241   registers.  */
242#define UNIQUE_BASE_VALUE_SP	-1
243#define UNIQUE_BASE_VALUE_ARGP	-2
244#define UNIQUE_BASE_VALUE_FP	-3
245#define UNIQUE_BASE_VALUE_HFP	-4
246
247#define static_reg_base_value \
248  (this_target_rtl->x_static_reg_base_value)
249
250#define REG_BASE_VALUE(X)					\
251  (REGNO (X) < vec_safe_length (reg_base_value)			\
252   ? (*reg_base_value)[REGNO (X)] : 0)
253
254/* Vector indexed by N giving the initial (unchanging) value known for
255   pseudo-register N.  This vector is initialized in init_alias_analysis,
256   and does not change until end_alias_analysis is called.  */
257static GTY(()) vec<rtx, va_gc> *reg_known_value;
258
259/* Vector recording for each reg_known_value whether it is due to a
260   REG_EQUIV note.  Future passes (viz., reload) may replace the
261   pseudo with the equivalent expression and so we account for the
262   dependences that would be introduced if that happens.
263
264   The REG_EQUIV notes created in assign_parms may mention the arg
265   pointer, and there are explicit insns in the RTL that modify the
266   arg pointer.  Thus we must ensure that such insns don't get
267   scheduled across each other because that would invalidate the
268   REG_EQUIV notes.  One could argue that the REG_EQUIV notes are
269   wrong, but solving the problem in the scheduler will likely give
270   better code, so we do it here.  */
271static sbitmap reg_known_equiv_p;
272
273/* True when scanning insns from the start of the rtl to the
274   NOTE_INSN_FUNCTION_BEG note.  */
275static bool copying_arguments;
276
277
278/* The splay-tree used to store the various alias set entries.  */
279static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
280
281/* Build a decomposed reference object for querying the alias-oracle
282   from the MEM rtx and store it in *REF.
283   Returns false if MEM is not suitable for the alias-oracle.  */
284
285static bool
286ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287{
288  tree expr = MEM_EXPR (mem);
289  tree base;
290
291  if (!expr)
292    return false;
293
294  ao_ref_init (ref, expr);
295
296  /* Get the base of the reference and see if we have to reject or
297     adjust it.  */
298  base = ao_ref_base (ref);
299  if (base == NULL_TREE)
300    return false;
301
302  /* The tree oracle doesn't like bases that are neither decls
303     nor indirect references of SSA names.  */
304  if (!(DECL_P (base)
305	|| (TREE_CODE (base) == MEM_REF
306	    && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307	|| (TREE_CODE (base) == TARGET_MEM_REF
308	    && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
309    return false;
310
311  ref->ref_alias_set = MEM_ALIAS_SET (mem);
312
313  /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
314     is conservative, so trust it.  */
315  if (!MEM_OFFSET_KNOWN_P (mem)
316      || !MEM_SIZE_KNOWN_P (mem))
317    return true;
318
319  /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
320     drop ref->ref.  */
321  if (maybe_lt (MEM_OFFSET (mem), 0)
322      || (ref->max_size_known_p ()
323	  && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
324		       ref->max_size)))
325    ref->ref = NULL_TREE;
326
327  /* Refine size and offset we got from analyzing MEM_EXPR by using
328     MEM_SIZE and MEM_OFFSET.  */
329
330  ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
331  ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
332
333  /* The MEM may extend into adjacent fields, so adjust max_size if
334     necessary.  */
335  if (ref->max_size_known_p ())
336    ref->max_size = upper_bound (ref->max_size, ref->size);
337
338  /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
339     the MEM_EXPR punt.  This happens for STRICT_ALIGNMENT targets a lot.  */
340  if (MEM_EXPR (mem) != get_spill_slot_decl (false)
341      && (maybe_lt (ref->offset, 0)
342	  || (DECL_P (ref->base)
343	      && (DECL_SIZE (ref->base) == NULL_TREE
344		  || !poly_int_tree_p (DECL_SIZE (ref->base))
345		  || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
346			       ref->offset + ref->size)))))
347    return false;
348
349  return true;
350}
351
352/* Query the alias-oracle on whether the two memory rtx X and MEM may
353   alias.  If TBAA_P is set also apply TBAA.  Returns true if the
354   two rtxen may alias, false otherwise.  */
355
356static bool
357rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
358{
359  ao_ref ref1, ref2;
360
361  if (!ao_ref_from_mem (&ref1, x)
362      || !ao_ref_from_mem (&ref2, mem))
363    return true;
364
365  return refs_may_alias_p_1 (&ref1, &ref2,
366			     tbaa_p
367			     && MEM_ALIAS_SET (x) != 0
368			     && MEM_ALIAS_SET (mem) != 0);
369}
370
371/* Return true if the ref EARLIER behaves the same as LATER with respect
372   to TBAA for every memory reference that might follow LATER.  */
373
374bool
375refs_same_for_tbaa_p (tree earlier, tree later)
376{
377  ao_ref earlier_ref, later_ref;
378  ao_ref_init (&earlier_ref, earlier);
379  ao_ref_init (&later_ref, later);
380  alias_set_type earlier_set = ao_ref_alias_set (&earlier_ref);
381  alias_set_type later_set = ao_ref_alias_set (&later_ref);
382  if (!(earlier_set == later_set
383	|| alias_set_subset_of (later_set, earlier_set)))
384    return false;
385  alias_set_type later_base_set = ao_ref_base_alias_set (&later_ref);
386  alias_set_type earlier_base_set = ao_ref_base_alias_set (&earlier_ref);
387  return (earlier_base_set == later_base_set
388	  || alias_set_subset_of (later_base_set, earlier_base_set));
389}
390
391/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
392   such an entry, or NULL otherwise.  */
393
394static inline alias_set_entry *
395get_alias_set_entry (alias_set_type alias_set)
396{
397  return (*alias_sets)[alias_set];
398}
399
400/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
401   the two MEMs cannot alias each other.  */
402
403static inline int
404mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
405{
406  return (flag_strict_aliasing
407	  && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
408				      MEM_ALIAS_SET (mem2)));
409}
410
411/* Return true if the first alias set is a subset of the second.  */
412
413bool
414alias_set_subset_of (alias_set_type set1, alias_set_type set2)
415{
416  alias_set_entry *ase2;
417
418  /* Disable TBAA oracle with !flag_strict_aliasing.  */
419  if (!flag_strict_aliasing)
420    return true;
421
422  /* Everything is a subset of the "aliases everything" set.  */
423  if (set2 == 0)
424    return true;
425
426  /* Check if set1 is a subset of set2.  */
427  ase2 = get_alias_set_entry (set2);
428  if (ase2 != 0
429      && (ase2->has_zero_child
430	  || (ase2->children && ase2->children->get (set1))))
431    return true;
432
433  /* As a special case we consider alias set of "void *" to be both subset
434     and superset of every alias set of a pointer.  This extra symmetry does
435     not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
436     to return true on the following testcase:
437
438     void *ptr;
439     char **ptr2=(char **)&ptr;
440     *ptr2 = ...
441
442     Additionally if a set contains universal pointer, we consider every pointer
443     to be a subset of it, but we do not represent this explicitely - doing so
444     would require us to update transitive closure each time we introduce new
445     pointer type.  This makes aliasing_component_refs_p to return true
446     on the following testcase:
447
448     struct a {void *ptr;}
449     char **ptr = (char **)&a.ptr;
450     ptr = ...
451
452     This makes void * truly universal pointer type.  See pointer handling in
453     get_alias_set for more details.  */
454  if (ase2 && ase2->has_pointer)
455    {
456      alias_set_entry *ase1 = get_alias_set_entry (set1);
457
458      if (ase1 && ase1->is_pointer)
459	{
460          alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
461	  /* If one is ptr_type_node and other is pointer, then we consider
462 	     them subset of each other.  */
463	  if (set1 == voidptr_set || set2 == voidptr_set)
464	    return true;
465	  /* If SET2 contains universal pointer's alias set, then we consdier
466 	     every (non-universal) pointer.  */
467	  if (ase2->children && set1 != voidptr_set
468	      && ase2->children->get (voidptr_set))
469	    return true;
470	}
471    }
472  return false;
473}
474
475/* Return 1 if the two specified alias sets may conflict.  */
476
477int
478alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
479{
480  alias_set_entry *ase1;
481  alias_set_entry *ase2;
482
483  /* The easy case.  */
484  if (alias_sets_must_conflict_p (set1, set2))
485    return 1;
486
487  /* See if the first alias set is a subset of the second.  */
488  ase1 = get_alias_set_entry (set1);
489  if (ase1 != 0
490      && ase1->children && ase1->children->get (set2))
491    {
492      ++alias_stats.num_dag;
493      return 1;
494    }
495
496  /* Now do the same, but with the alias sets reversed.  */
497  ase2 = get_alias_set_entry (set2);
498  if (ase2 != 0
499      && ase2->children && ase2->children->get (set1))
500    {
501      ++alias_stats.num_dag;
502      return 1;
503    }
504
505  /* We want void * to be compatible with any other pointer without
506     really dropping it to alias set 0. Doing so would make it
507     compatible with all non-pointer types too.
508
509     This is not strictly necessary by the C/C++ language
510     standards, but avoids common type punning mistakes.  In
511     addition to that, we need the existence of such universal
512     pointer to implement Fortran's C_PTR type (which is defined as
513     type compatible with all C pointers).  */
514  if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
515    {
516      alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
517
518      /* If one of the sets corresponds to universal pointer,
519 	 we consider it to conflict with anything that is
520	 or contains pointer.  */
521      if (set1 == voidptr_set || set2 == voidptr_set)
522	{
523	  ++alias_stats.num_universal;
524	  return true;
525	}
526     /* If one of sets is (non-universal) pointer and the other
527 	contains universal pointer, we also get conflict.  */
528     if (ase1->is_pointer && set2 != voidptr_set
529	 && ase2->children && ase2->children->get (voidptr_set))
530	{
531	  ++alias_stats.num_universal;
532	  return true;
533	}
534     if (ase2->is_pointer && set1 != voidptr_set
535	 && ase1->children && ase1->children->get (voidptr_set))
536	{
537	  ++alias_stats.num_universal;
538	  return true;
539	}
540    }
541
542  ++alias_stats.num_disambiguated;
543
544  /* The two alias sets are distinct and neither one is the
545     child of the other.  Therefore, they cannot conflict.  */
546  return 0;
547}
548
549/* Return 1 if the two specified alias sets will always conflict.  */
550
551int
552alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
553{
554  /* Disable TBAA oracle with !flag_strict_aliasing.  */
555  if (!flag_strict_aliasing)
556    return 1;
557  if (set1 == 0 || set2 == 0)
558    {
559      ++alias_stats.num_alias_zero;
560      return 1;
561    }
562  if (set1 == set2)
563    {
564      ++alias_stats.num_same_alias_set;
565      return 1;
566    }
567
568  return 0;
569}
570
571/* Return 1 if any MEM object of type T1 will always conflict (using the
572   dependency routines in this file) with any MEM object of type T2.
573   This is used when allocating temporary storage.  If T1 and/or T2 are
574   NULL_TREE, it means we know nothing about the storage.  */
575
576int
577objects_must_conflict_p (tree t1, tree t2)
578{
579  alias_set_type set1, set2;
580
581  /* If neither has a type specified, we don't know if they'll conflict
582     because we may be using them to store objects of various types, for
583     example the argument and local variables areas of inlined functions.  */
584  if (t1 == 0 && t2 == 0)
585    return 0;
586
587  /* If they are the same type, they must conflict.  */
588  if (t1 == t2)
589    {
590      ++alias_stats.num_same_objects;
591      return 1;
592    }
593  /* Likewise if both are volatile.  */
594  if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
595    {
596      ++alias_stats.num_volatile;
597      return 1;
598    }
599
600  set1 = t1 ? get_alias_set (t1) : 0;
601  set2 = t2 ? get_alias_set (t2) : 0;
602
603  /* We can't use alias_sets_conflict_p because we must make sure
604     that every subtype of t1 will conflict with every subtype of
605     t2 for which a pair of subobjects of these respective subtypes
606     overlaps on the stack.  */
607  return alias_sets_must_conflict_p (set1, set2);
608}
609
610/* Return true if T is an end of the access path which can be used
611   by type based alias oracle.  */
612
613bool
614ends_tbaa_access_path_p (const_tree t)
615{
616  switch (TREE_CODE (t))
617    {
618    case COMPONENT_REF:
619      if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
620	return true;
621      /* Permit type-punning when accessing a union, provided the access
622	 is directly through the union.  For example, this code does not
623	 permit taking the address of a union member and then storing
624	 through it.  Even the type-punning allowed here is a GCC
625	 extension, albeit a common and useful one; the C standard says
626	 that such accesses have implementation-defined behavior.  */
627      else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
628	return true;
629      break;
630
631    case ARRAY_REF:
632    case ARRAY_RANGE_REF:
633      if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
634	return true;
635      break;
636
637    case REALPART_EXPR:
638    case IMAGPART_EXPR:
639      break;
640
641    case BIT_FIELD_REF:
642    case VIEW_CONVERT_EXPR:
643      /* Bitfields and casts are never addressable.  */
644      return true;
645      break;
646
647    default:
648      gcc_unreachable ();
649    }
650  return false;
651}
652
653/* Return the outermost parent of component present in the chain of
654   component references handled by get_inner_reference in T with the
655   following property:
656     - the component is non-addressable
657   or NULL_TREE if no such parent exists.  In the former cases, the alias
658   set of this parent is the alias set that must be used for T itself.  */
659
660tree
661component_uses_parent_alias_set_from (const_tree t)
662{
663  const_tree found = NULL_TREE;
664
665  while (handled_component_p (t))
666    {
667      if (ends_tbaa_access_path_p (t))
668	found = t;
669
670      t = TREE_OPERAND (t, 0);
671    }
672
673  if (found)
674    return TREE_OPERAND (found, 0);
675
676  return NULL_TREE;
677}
678
679
680/* Return whether the pointer-type T effective for aliasing may
681   access everything and thus the reference has to be assigned
682   alias-set zero.  */
683
684static bool
685ref_all_alias_ptr_type_p (const_tree t)
686{
687  return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
688	  || TYPE_REF_CAN_ALIAS_ALL (t));
689}
690
691/* Return the alias set for the memory pointed to by T, which may be
692   either a type or an expression.  Return -1 if there is nothing
693   special about dereferencing T.  */
694
695static alias_set_type
696get_deref_alias_set_1 (tree t)
697{
698  /* All we care about is the type.  */
699  if (! TYPE_P (t))
700    t = TREE_TYPE (t);
701
702  /* If we have an INDIRECT_REF via a void pointer, we don't
703     know anything about what that might alias.  Likewise if the
704     pointer is marked that way.  */
705  if (ref_all_alias_ptr_type_p (t))
706    return 0;
707
708  return -1;
709}
710
711/* Return the alias set for the memory pointed to by T, which may be
712   either a type or an expression.  */
713
714alias_set_type
715get_deref_alias_set (tree t)
716{
717  /* If we're not doing any alias analysis, just assume everything
718     aliases everything else.  */
719  if (!flag_strict_aliasing)
720    return 0;
721
722  alias_set_type set = get_deref_alias_set_1 (t);
723
724  /* Fall back to the alias-set of the pointed-to type.  */
725  if (set == -1)
726    {
727      if (! TYPE_P (t))
728	t = TREE_TYPE (t);
729      set = get_alias_set (TREE_TYPE (t));
730    }
731
732  return set;
733}
734
735/* Return the pointer-type relevant for TBAA purposes from the
736   memory reference tree *T or NULL_TREE in which case *T is
737   adjusted to point to the outermost component reference that
738   can be used for assigning an alias set.  */
739
740static tree
741reference_alias_ptr_type_1 (tree *t)
742{
743  tree inner;
744
745  /* Get the base object of the reference.  */
746  inner = *t;
747  while (handled_component_p (inner))
748    {
749      /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
750	 the type of any component references that wrap it to
751	 determine the alias-set.  */
752      if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
753	*t = TREE_OPERAND (inner, 0);
754      inner = TREE_OPERAND (inner, 0);
755    }
756
757  /* Handle pointer dereferences here, they can override the
758     alias-set.  */
759  if (INDIRECT_REF_P (inner)
760      && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
761    return TREE_TYPE (TREE_OPERAND (inner, 0));
762  else if (TREE_CODE (inner) == TARGET_MEM_REF)
763    return TREE_TYPE (TMR_OFFSET (inner));
764  else if (TREE_CODE (inner) == MEM_REF
765	   && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
766    return TREE_TYPE (TREE_OPERAND (inner, 1));
767
768  /* If the innermost reference is a MEM_REF that has a
769     conversion embedded treat it like a VIEW_CONVERT_EXPR above,
770     using the memory access type for determining the alias-set.  */
771  if (TREE_CODE (inner) == MEM_REF
772      && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
773	  != TYPE_MAIN_VARIANT
774	       (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
775    return TREE_TYPE (TREE_OPERAND (inner, 1));
776
777  /* Otherwise, pick up the outermost object that we could have
778     a pointer to.  */
779  tree tem = component_uses_parent_alias_set_from (*t);
780  if (tem)
781    *t = tem;
782
783  return NULL_TREE;
784}
785
786/* Return the pointer-type relevant for TBAA purposes from the
787   gimple memory reference tree T.  This is the type to be used for
788   the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
789   and guarantees that get_alias_set will return the same alias
790   set for T and the replacement.  */
791
792tree
793reference_alias_ptr_type (tree t)
794{
795  /* If the frontend assigns this alias-set zero, preserve that.  */
796  if (lang_hooks.get_alias_set (t) == 0)
797    return ptr_type_node;
798
799  tree ptype = reference_alias_ptr_type_1 (&t);
800  /* If there is a given pointer type for aliasing purposes, return it.  */
801  if (ptype != NULL_TREE)
802    return ptype;
803
804  /* Otherwise build one from the outermost component reference we
805     may use.  */
806  if (TREE_CODE (t) == MEM_REF
807      || TREE_CODE (t) == TARGET_MEM_REF)
808    return TREE_TYPE (TREE_OPERAND (t, 1));
809  else
810    return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
811}
812
813/* Return whether the pointer-types T1 and T2 used to determine
814   two alias sets of two references will yield the same answer
815   from get_deref_alias_set.  */
816
817bool
818alias_ptr_types_compatible_p (tree t1, tree t2)
819{
820  if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
821    return true;
822
823  if (ref_all_alias_ptr_type_p (t1)
824      || ref_all_alias_ptr_type_p (t2))
825    return false;
826
827    /* This function originally abstracts from simply comparing
828       get_deref_alias_set so that we are sure this still computes
829       the same result after LTO type merging is applied.
830       When in LTO type merging is done we can actually do this compare.
831    */
832  if (in_lto_p)
833    return get_deref_alias_set (t1) == get_deref_alias_set (t2);
834  else
835    return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
836	    == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
837}
838
839/* Create emptry alias set entry.  */
840
841alias_set_entry *
842init_alias_set_entry (alias_set_type set)
843{
844  alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
845  ase->alias_set = set;
846  ase->children = NULL;
847  ase->has_zero_child = false;
848  ase->is_pointer = false;
849  ase->has_pointer = false;
850  gcc_checking_assert (!get_alias_set_entry (set));
851  (*alias_sets)[set] = ase;
852  return ase;
853}
854
855/* Return the alias set for T, which may be either a type or an
856   expression.  Call language-specific routine for help, if needed.  */
857
858alias_set_type
859get_alias_set (tree t)
860{
861  alias_set_type set;
862
863  /* We cannot give up with -fno-strict-aliasing because we need to build
864     proper type representations for possible functions which are built with
865     -fstrict-aliasing.  */
866
867  /* return 0 if this or its type is an error.  */
868  if (t == error_mark_node
869      || (! TYPE_P (t)
870	  && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
871    return 0;
872
873  /* We can be passed either an expression or a type.  This and the
874     language-specific routine may make mutually-recursive calls to each other
875     to figure out what to do.  At each juncture, we see if this is a tree
876     that the language may need to handle specially.  First handle things that
877     aren't types.  */
878  if (! TYPE_P (t))
879    {
880      /* Give the language a chance to do something with this tree
881	 before we look at it.  */
882      STRIP_NOPS (t);
883      set = lang_hooks.get_alias_set (t);
884      if (set != -1)
885	return set;
886
887      /* Get the alias pointer-type to use or the outermost object
888         that we could have a pointer to.  */
889      tree ptype = reference_alias_ptr_type_1 (&t);
890      if (ptype != NULL)
891	return get_deref_alias_set (ptype);
892
893      /* If we've already determined the alias set for a decl, just return
894	 it.  This is necessary for C++ anonymous unions, whose component
895	 variables don't look like union members (boo!).  */
896      if (VAR_P (t)
897	  && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
898	return MEM_ALIAS_SET (DECL_RTL (t));
899
900      /* Now all we care about is the type.  */
901      t = TREE_TYPE (t);
902    }
903
904  /* Variant qualifiers don't affect the alias set, so get the main
905     variant.  */
906  t = TYPE_MAIN_VARIANT (t);
907
908  if (AGGREGATE_TYPE_P (t)
909      && TYPE_TYPELESS_STORAGE (t))
910    return 0;
911
912  /* Always use the canonical type as well.  If this is a type that
913     requires structural comparisons to identify compatible types
914     use alias set zero.  */
915  if (TYPE_STRUCTURAL_EQUALITY_P (t))
916    {
917      /* Allow the language to specify another alias set for this
918	 type.  */
919      set = lang_hooks.get_alias_set (t);
920      if (set != -1)
921	return set;
922      /* Handle structure type equality for pointer types, arrays and vectors.
923	 This is easy to do, because the code below ignores canonical types on
924	 these anyway.  This is important for LTO, where TYPE_CANONICAL for
925	 pointers cannot be meaningfully computed by the frontend.  */
926      if (canonical_type_used_p (t))
927	{
928	  /* In LTO we set canonical types for all types where it makes
929	     sense to do so.  Double check we did not miss some type.  */
930	  gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
931          return 0;
932	}
933    }
934  else
935    {
936      t = TYPE_CANONICAL (t);
937      gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
938    }
939
940  /* If this is a type with a known alias set, return it.  */
941  gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
942  if (TYPE_ALIAS_SET_KNOWN_P (t))
943    return TYPE_ALIAS_SET (t);
944
945  /* We don't want to set TYPE_ALIAS_SET for incomplete types.  */
946  if (!COMPLETE_TYPE_P (t))
947    {
948      /* For arrays with unknown size the conservative answer is the
949	 alias set of the element type.  */
950      if (TREE_CODE (t) == ARRAY_TYPE)
951	return get_alias_set (TREE_TYPE (t));
952
953      /* But return zero as a conservative answer for incomplete types.  */
954      return 0;
955    }
956
957  /* See if the language has special handling for this type.  */
958  set = lang_hooks.get_alias_set (t);
959  if (set != -1)
960    return set;
961
962  /* There are no objects of FUNCTION_TYPE, so there's no point in
963     using up an alias set for them.  (There are, of course, pointers
964     and references to functions, but that's different.)  */
965  else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
966    set = 0;
967
968  /* Unless the language specifies otherwise, let vector types alias
969     their components.  This avoids some nasty type punning issues in
970     normal usage.  And indeed lets vectors be treated more like an
971     array slice.  */
972  else if (TREE_CODE (t) == VECTOR_TYPE)
973    set = get_alias_set (TREE_TYPE (t));
974
975  /* Unless the language specifies otherwise, treat array types the
976     same as their components.  This avoids the asymmetry we get
977     through recording the components.  Consider accessing a
978     character(kind=1) through a reference to a character(kind=1)[1:1].
979     Or consider if we want to assign integer(kind=4)[0:D.1387] and
980     integer(kind=4)[4] the same alias set or not.
981     Just be pragmatic here and make sure the array and its element
982     type get the same alias set assigned.  */
983  else if (TREE_CODE (t) == ARRAY_TYPE
984	   && (!TYPE_NONALIASED_COMPONENT (t)
985	       || TYPE_STRUCTURAL_EQUALITY_P (t)))
986    set = get_alias_set (TREE_TYPE (t));
987
988  /* From the former common C and C++ langhook implementation:
989
990     Unfortunately, there is no canonical form of a pointer type.
991     In particular, if we have `typedef int I', then `int *', and
992     `I *' are different types.  So, we have to pick a canonical
993     representative.  We do this below.
994
995     Technically, this approach is actually more conservative that
996     it needs to be.  In particular, `const int *' and `int *'
997     should be in different alias sets, according to the C and C++
998     standard, since their types are not the same, and so,
999     technically, an `int **' and `const int **' cannot point at
1000     the same thing.
1001
1002     But, the standard is wrong.  In particular, this code is
1003     legal C++:
1004
1005     int *ip;
1006     int **ipp = &ip;
1007     const int* const* cipp = ipp;
1008     And, it doesn't make sense for that to be legal unless you
1009     can dereference IPP and CIPP.  So, we ignore cv-qualifiers on
1010     the pointed-to types.  This issue has been reported to the
1011     C++ committee.
1012
1013     For this reason go to canonical type of the unqalified pointer type.
1014     Until GCC 6 this code set all pointers sets to have alias set of
1015     ptr_type_node but that is a bad idea, because it prevents disabiguations
1016     in between pointers.  For Firefox this accounts about 20% of all
1017     disambiguations in the program.  */
1018  else if (POINTER_TYPE_P (t) && t != ptr_type_node)
1019    {
1020      tree p;
1021      auto_vec <bool, 8> reference;
1022
1023      /* Unnest all pointers and references.
1024	 We also want to make pointer to array/vector equivalent to pointer to
1025	 its element (see the reasoning above). Skip all those types, too.  */
1026      for (p = t; POINTER_TYPE_P (p)
1027	   || (TREE_CODE (p) == ARRAY_TYPE
1028	       && (!TYPE_NONALIASED_COMPONENT (p)
1029		   || !COMPLETE_TYPE_P (p)
1030		   || TYPE_STRUCTURAL_EQUALITY_P (p)))
1031	   || TREE_CODE (p) == VECTOR_TYPE;
1032	   p = TREE_TYPE (p))
1033	{
1034	  /* Ada supports recursive pointers.  Instead of doing recursion
1035	     check, just give up once the preallocated space of 8 elements
1036	     is up.  In this case just punt to void * alias set.  */
1037	  if (reference.length () == 8)
1038	    {
1039	      p = ptr_type_node;
1040	      break;
1041	    }
1042	  if (TREE_CODE (p) == REFERENCE_TYPE)
1043	    /* In LTO we want languages that use references to be compatible
1044 	       with languages that use pointers.  */
1045	    reference.safe_push (true && !in_lto_p);
1046	  if (TREE_CODE (p) == POINTER_TYPE)
1047	    reference.safe_push (false);
1048	}
1049      p = TYPE_MAIN_VARIANT (p);
1050
1051      /* In LTO for C++ programs we can turn incomplete types to complete
1052	 using ODR name lookup.  */
1053      if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1054	{
1055	  p = prevailing_odr_type (p);
1056	  gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1057	}
1058
1059      /* Make void * compatible with char * and also void **.
1060	 Programs are commonly violating TBAA by this.
1061
1062	 We also make void * to conflict with every pointer
1063	 (see record_component_aliases) and thus it is safe it to use it for
1064	 pointers to types with TYPE_STRUCTURAL_EQUALITY_P.  */
1065      if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1066	set = get_alias_set (ptr_type_node);
1067      else
1068	{
1069	  /* Rebuild pointer type starting from canonical types using
1070	     unqualified pointers and references only.  This way all such
1071	     pointers will have the same alias set and will conflict with
1072	     each other.
1073
1074	     Most of time we already have pointers or references of a given type.
1075	     If not we build new one just to be sure that if someone later
1076	     (probably only middle-end can, as we should assign all alias
1077	     classes only after finishing translation unit) builds the pointer
1078	     type, the canonical type will match.  */
1079	  p = TYPE_CANONICAL (p);
1080	  while (!reference.is_empty ())
1081	    {
1082	      if (reference.pop ())
1083		p = build_reference_type (p);
1084	      else
1085		p = build_pointer_type (p);
1086	      gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1087	      /* build_pointer_type should always return the canonical type.
1088		 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1089		 them.  Be sure that frontends do not glob canonical types of
1090		 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1091		 in all other cases.  */
1092	      gcc_checking_assert (!TYPE_CANONICAL (p)
1093				   || p == TYPE_CANONICAL (p));
1094	    }
1095
1096	  /* Assign the alias set to both p and t.
1097	     We cannot call get_alias_set (p) here as that would trigger
1098	     infinite recursion when p == t.  In other cases it would just
1099	     trigger unnecesary legwork of rebuilding the pointer again.  */
1100	  gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1101	  if (TYPE_ALIAS_SET_KNOWN_P (p))
1102	    set = TYPE_ALIAS_SET (p);
1103	  else
1104	    {
1105	      set = new_alias_set ();
1106	      TYPE_ALIAS_SET (p) = set;
1107	    }
1108	}
1109    }
1110  /* Alias set of ptr_type_node is special and serve as universal pointer which
1111     is TBAA compatible with every other pointer type.  Be sure we have the
1112     alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1113     of pointer types NULL.  */
1114  else if (t == ptr_type_node)
1115    set = new_alias_set ();
1116
1117  /* Otherwise make a new alias set for this type.  */
1118  else
1119    {
1120      /* Each canonical type gets its own alias set, so canonical types
1121	 shouldn't form a tree.  It doesn't really matter for types
1122	 we handle specially above, so only check it where it possibly
1123	 would result in a bogus alias set.  */
1124      gcc_checking_assert (TYPE_CANONICAL (t) == t);
1125
1126      set = new_alias_set ();
1127    }
1128
1129  TYPE_ALIAS_SET (t) = set;
1130
1131  /* If this is an aggregate type or a complex type, we must record any
1132     component aliasing information.  */
1133  if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1134    record_component_aliases (t);
1135
1136  /* We treat pointer types specially in alias_set_subset_of.  */
1137  if (POINTER_TYPE_P (t) && set)
1138    {
1139      alias_set_entry *ase = get_alias_set_entry (set);
1140      if (!ase)
1141	ase = init_alias_set_entry (set);
1142      ase->is_pointer = true;
1143      ase->has_pointer = true;
1144    }
1145
1146  return set;
1147}
1148
1149/* Return a brand-new alias set.  */
1150
1151alias_set_type
1152new_alias_set (void)
1153{
1154  if (alias_sets == 0)
1155    vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1156  vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1157  return alias_sets->length () - 1;
1158}
1159
1160/* Indicate that things in SUBSET can alias things in SUPERSET, but that
1161   not everything that aliases SUPERSET also aliases SUBSET.  For example,
1162   in C, a store to an `int' can alias a load of a structure containing an
1163   `int', and vice versa.  But it can't alias a load of a 'double' member
1164   of the same structure.  Here, the structure would be the SUPERSET and
1165   `int' the SUBSET.  This relationship is also described in the comment at
1166   the beginning of this file.
1167
1168   This function should be called only once per SUPERSET/SUBSET pair.
1169
1170   It is illegal for SUPERSET to be zero; everything is implicitly a
1171   subset of alias set zero.  */
1172
1173void
1174record_alias_subset (alias_set_type superset, alias_set_type subset)
1175{
1176  alias_set_entry *superset_entry;
1177  alias_set_entry *subset_entry;
1178
1179  /* It is possible in complex type situations for both sets to be the same,
1180     in which case we can ignore this operation.  */
1181  if (superset == subset)
1182    return;
1183
1184  gcc_assert (superset);
1185
1186  superset_entry = get_alias_set_entry (superset);
1187  if (superset_entry == 0)
1188    {
1189      /* Create an entry for the SUPERSET, so that we have a place to
1190	 attach the SUBSET.  */
1191      superset_entry = init_alias_set_entry (superset);
1192    }
1193
1194  if (subset == 0)
1195    superset_entry->has_zero_child = 1;
1196  else
1197    {
1198      if (!superset_entry->children)
1199	superset_entry->children
1200	  = hash_map<alias_set_hash, int>::create_ggc (64);
1201
1202      /* Enter the SUBSET itself as a child of the SUPERSET.  If it was
1203	 already there we're done.  */
1204      if (superset_entry->children->put (subset, 0))
1205	return;
1206
1207      subset_entry = get_alias_set_entry (subset);
1208      /* If there is an entry for the subset, enter all of its children
1209	 (if they are not already present) as children of the SUPERSET.  */
1210      if (subset_entry)
1211	{
1212	  if (subset_entry->has_zero_child)
1213	    superset_entry->has_zero_child = true;
1214          if (subset_entry->has_pointer)
1215	    superset_entry->has_pointer = true;
1216
1217	  if (subset_entry->children)
1218	    {
1219	      hash_map<alias_set_hash, int>::iterator iter
1220		= subset_entry->children->begin ();
1221	      for (; iter != subset_entry->children->end (); ++iter)
1222		superset_entry->children->put ((*iter).first, (*iter).second);
1223	    }
1224	}
1225    }
1226}
1227
1228/* Record that component types of TYPE, if any, are part of SUPERSET for
1229   aliasing purposes.  For record types, we only record component types
1230   for fields that are not marked non-addressable.  For array types, we
1231   only record the component type if it is not marked non-aliased.  */
1232
1233void
1234record_component_aliases (tree type, alias_set_type superset)
1235{
1236  tree field;
1237
1238  if (superset == 0)
1239    return;
1240
1241  switch (TREE_CODE (type))
1242    {
1243    case RECORD_TYPE:
1244    case UNION_TYPE:
1245    case QUAL_UNION_TYPE:
1246      {
1247	/* LTO non-ODR type merging does not make any difference between
1248	   component pointer types.  We may have
1249
1250	   struct foo {int *a;};
1251
1252	   as TYPE_CANONICAL of
1253
1254	   struct bar {float *a;};
1255
1256	   Because accesses to int * and float * do not alias, we would get
1257	   false negative when accessing the same memory location by
1258	   float ** and bar *. We thus record the canonical type as:
1259
1260	   struct {void *a;};
1261
1262	   void * is special cased and works as a universal pointer type.
1263	   Accesses to it conflicts with accesses to any other pointer
1264	   type.  */
1265	bool void_pointers = in_lto_p
1266			     && (!odr_type_p (type)
1267				 || !odr_based_tbaa_p (type));
1268	for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1269	  if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1270	    {
1271	      tree t = TREE_TYPE (field);
1272	      if (void_pointers)
1273		{
1274		  /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1275		     element type and that type has to be normalized to void *,
1276		     too, in the case it is a pointer. */
1277		  while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1278		    {
1279		      gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1280		      t = TREE_TYPE (t);
1281		    }
1282		  if (POINTER_TYPE_P (t))
1283		    t = ptr_type_node;
1284		  else if (flag_checking)
1285		    gcc_checking_assert (get_alias_set (t)
1286					 == get_alias_set (TREE_TYPE (field)));
1287		}
1288
1289	      alias_set_type set = get_alias_set (t);
1290	      record_alias_subset (superset, set);
1291	      /* If the field has alias-set zero make sure to still record
1292		 any componets of it.  This makes sure that for
1293		   struct A {
1294		     struct B {
1295		       int i;
1296		       char c[4];
1297		     } b;
1298		   };
1299		 in C++ even though 'B' has alias-set zero because
1300		 TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1301		 'int' as subset.  */
1302	      if (set == 0)
1303		record_component_aliases (t, superset);
1304	    }
1305      }
1306      break;
1307
1308    case COMPLEX_TYPE:
1309      record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1310      break;
1311
1312    /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1313       element type.  */
1314
1315    default:
1316      break;
1317    }
1318}
1319
1320/* Record that component types of TYPE, if any, are part of that type for
1321   aliasing purposes.  For record types, we only record component types
1322   for fields that are not marked non-addressable.  For array types, we
1323   only record the component type if it is not marked non-aliased.  */
1324
1325void
1326record_component_aliases (tree type)
1327{
1328  alias_set_type superset = get_alias_set (type);
1329  record_component_aliases (type, superset);
1330}
1331
1332
1333/* Allocate an alias set for use in storing and reading from the varargs
1334   spill area.  */
1335
1336static GTY(()) alias_set_type varargs_set = -1;
1337
1338alias_set_type
1339get_varargs_alias_set (void)
1340{
1341#if 1
1342  /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1343     varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1344     consistently use the varargs alias set for loads from the varargs
1345     area.  So don't use it anywhere.  */
1346  return 0;
1347#else
1348  if (varargs_set == -1)
1349    varargs_set = new_alias_set ();
1350
1351  return varargs_set;
1352#endif
1353}
1354
1355/* Likewise, but used for the fixed portions of the frame, e.g., register
1356   save areas.  */
1357
1358static GTY(()) alias_set_type frame_set = -1;
1359
1360alias_set_type
1361get_frame_alias_set (void)
1362{
1363  if (frame_set == -1)
1364    frame_set = new_alias_set ();
1365
1366  return frame_set;
1367}
1368
1369/* Create a new, unique base with id ID.  */
1370
1371static rtx
1372unique_base_value (HOST_WIDE_INT id)
1373{
1374  return gen_rtx_ADDRESS (Pmode, id);
1375}
1376
1377/* Return true if accesses based on any other base value cannot alias
1378   those based on X.  */
1379
1380static bool
1381unique_base_value_p (rtx x)
1382{
1383  return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1384}
1385
1386/* Return true if X is known to be a base value.  */
1387
1388static bool
1389known_base_value_p (rtx x)
1390{
1391  switch (GET_CODE (x))
1392    {
1393    case LABEL_REF:
1394    case SYMBOL_REF:
1395      return true;
1396
1397    case ADDRESS:
1398      /* Arguments may or may not be bases; we don't know for sure.  */
1399      return GET_MODE (x) != VOIDmode;
1400
1401    default:
1402      return false;
1403    }
1404}
1405
1406/* Inside SRC, the source of a SET, find a base address.  */
1407
1408static rtx
1409find_base_value (rtx src)
1410{
1411  unsigned int regno;
1412  scalar_int_mode int_mode;
1413
1414#if defined (FIND_BASE_TERM)
1415  /* Try machine-dependent ways to find the base term.  */
1416  src = FIND_BASE_TERM (src);
1417#endif
1418
1419  switch (GET_CODE (src))
1420    {
1421    case SYMBOL_REF:
1422    case LABEL_REF:
1423      return src;
1424
1425    case REG:
1426      regno = REGNO (src);
1427      /* At the start of a function, argument registers have known base
1428	 values which may be lost later.  Returning an ADDRESS
1429	 expression here allows optimization based on argument values
1430	 even when the argument registers are used for other purposes.  */
1431      if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1432	return new_reg_base_value[regno];
1433
1434      /* If a pseudo has a known base value, return it.  Do not do this
1435	 for non-fixed hard regs since it can result in a circular
1436	 dependency chain for registers which have values at function entry.
1437
1438	 The test above is not sufficient because the scheduler may move
1439	 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN.  */
1440      if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1441	  && regno < vec_safe_length (reg_base_value))
1442	{
1443	  /* If we're inside init_alias_analysis, use new_reg_base_value
1444	     to reduce the number of relaxation iterations.  */
1445	  if (new_reg_base_value && new_reg_base_value[regno]
1446	      && DF_REG_DEF_COUNT (regno) == 1)
1447	    return new_reg_base_value[regno];
1448
1449	  if ((*reg_base_value)[regno])
1450	    return (*reg_base_value)[regno];
1451	}
1452
1453      return 0;
1454
1455    case MEM:
1456      /* Check for an argument passed in memory.  Only record in the
1457	 copying-arguments block; it is too hard to track changes
1458	 otherwise.  */
1459      if (copying_arguments
1460	  && (XEXP (src, 0) == arg_pointer_rtx
1461	      || (GET_CODE (XEXP (src, 0)) == PLUS
1462		  && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1463	return arg_base_value;
1464      return 0;
1465
1466    case CONST:
1467      src = XEXP (src, 0);
1468      if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1469	break;
1470
1471      /* fall through */
1472
1473    case PLUS:
1474    case MINUS:
1475      {
1476	rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1477
1478	/* If either operand is a REG that is a known pointer, then it
1479	   is the base.  */
1480	if (REG_P (src_0) && REG_POINTER (src_0))
1481	  return find_base_value (src_0);
1482	if (REG_P (src_1) && REG_POINTER (src_1))
1483	  return find_base_value (src_1);
1484
1485	/* If either operand is a REG, then see if we already have
1486	   a known value for it.  */
1487	if (REG_P (src_0))
1488	  {
1489	    temp = find_base_value (src_0);
1490	    if (temp != 0)
1491	      src_0 = temp;
1492	  }
1493
1494	if (REG_P (src_1))
1495	  {
1496	    temp = find_base_value (src_1);
1497	    if (temp!= 0)
1498	      src_1 = temp;
1499	  }
1500
1501	/* If either base is named object or a special address
1502	   (like an argument or stack reference), then use it for the
1503	   base term.  */
1504	if (src_0 != 0 && known_base_value_p (src_0))
1505	  return src_0;
1506
1507	if (src_1 != 0 && known_base_value_p (src_1))
1508	  return src_1;
1509
1510	/* Guess which operand is the base address:
1511	   If either operand is a symbol, then it is the base.  If
1512	   either operand is a CONST_INT, then the other is the base.  */
1513	if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1514	  return find_base_value (src_0);
1515	else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1516	  return find_base_value (src_1);
1517
1518	return 0;
1519      }
1520
1521    case LO_SUM:
1522      /* The standard form is (lo_sum reg sym) so look only at the
1523	 second operand.  */
1524      return find_base_value (XEXP (src, 1));
1525
1526    case AND:
1527      /* Look through aligning ANDs.  And AND with zero or one with
1528         the LSB set isn't one (see for example PR92462).  */
1529      if (CONST_INT_P (XEXP (src, 1))
1530	  && INTVAL (XEXP (src, 1)) != 0
1531	  && (INTVAL (XEXP (src, 1)) & 1) == 0)
1532	return find_base_value (XEXP (src, 0));
1533      return 0;
1534
1535    case TRUNCATE:
1536      /* As we do not know which address space the pointer is referring to, we can
1537	 handle this only if the target does not support different pointer or
1538	 address modes depending on the address space.  */
1539      if (!target_default_pointer_address_modes_p ())
1540	break;
1541      if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1542	  || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1543	break;
1544      /* Fall through.  */
1545    case HIGH:
1546    case PRE_INC:
1547    case PRE_DEC:
1548    case POST_INC:
1549    case POST_DEC:
1550    case PRE_MODIFY:
1551    case POST_MODIFY:
1552      return find_base_value (XEXP (src, 0));
1553
1554    case ZERO_EXTEND:
1555    case SIGN_EXTEND:	/* used for NT/Alpha pointers */
1556      /* As we do not know which address space the pointer is referring to, we can
1557	 handle this only if the target does not support different pointer or
1558	 address modes depending on the address space.  */
1559      if (!target_default_pointer_address_modes_p ())
1560	break;
1561
1562      {
1563	rtx temp = find_base_value (XEXP (src, 0));
1564
1565	if (temp != 0 && CONSTANT_P (temp))
1566	  temp = convert_memory_address (Pmode, temp);
1567
1568	return temp;
1569      }
1570
1571    default:
1572      break;
1573    }
1574
1575  return 0;
1576}
1577
1578/* Called from init_alias_analysis indirectly through note_stores,
1579   or directly if DEST is a register with a REG_NOALIAS note attached.
1580   SET is null in the latter case.  */
1581
1582/* While scanning insns to find base values, reg_seen[N] is nonzero if
1583   register N has been set in this function.  */
1584static sbitmap reg_seen;
1585
1586static void
1587record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1588{
1589  unsigned regno;
1590  rtx src;
1591  int n;
1592
1593  if (!REG_P (dest))
1594    return;
1595
1596  regno = REGNO (dest);
1597
1598  gcc_checking_assert (regno < reg_base_value->length ());
1599
1600  n = REG_NREGS (dest);
1601  if (n != 1)
1602    {
1603      while (--n >= 0)
1604	{
1605	  bitmap_set_bit (reg_seen, regno + n);
1606	  new_reg_base_value[regno + n] = 0;
1607	}
1608      return;
1609    }
1610
1611  if (set)
1612    {
1613      /* A CLOBBER wipes out any old value but does not prevent a previously
1614	 unset register from acquiring a base address (i.e. reg_seen is not
1615	 set).  */
1616      if (GET_CODE (set) == CLOBBER)
1617	{
1618	  new_reg_base_value[regno] = 0;
1619	  return;
1620	}
1621
1622      src = SET_SRC (set);
1623    }
1624  else
1625    {
1626      /* There's a REG_NOALIAS note against DEST.  */
1627      if (bitmap_bit_p (reg_seen, regno))
1628	{
1629	  new_reg_base_value[regno] = 0;
1630	  return;
1631	}
1632      bitmap_set_bit (reg_seen, regno);
1633      new_reg_base_value[regno] = unique_base_value (unique_id++);
1634      return;
1635    }
1636
1637  /* If this is not the first set of REGNO, see whether the new value
1638     is related to the old one.  There are two cases of interest:
1639
1640	(1) The register might be assigned an entirely new value
1641	    that has the same base term as the original set.
1642
1643	(2) The set might be a simple self-modification that
1644	    cannot change REGNO's base value.
1645
1646     If neither case holds, reject the original base value as invalid.
1647     Note that the following situation is not detected:
1648
1649	 extern int x, y;  int *p = &x; p += (&y-&x);
1650
1651     ANSI C does not allow computing the difference of addresses
1652     of distinct top level objects.  */
1653  if (new_reg_base_value[regno] != 0
1654      && find_base_value (src) != new_reg_base_value[regno])
1655    switch (GET_CODE (src))
1656      {
1657      case LO_SUM:
1658      case MINUS:
1659	if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1660	  new_reg_base_value[regno] = 0;
1661	break;
1662      case PLUS:
1663	/* If the value we add in the PLUS is also a valid base value,
1664	   this might be the actual base value, and the original value
1665	   an index.  */
1666	{
1667	  rtx other = NULL_RTX;
1668
1669	  if (XEXP (src, 0) == dest)
1670	    other = XEXP (src, 1);
1671	  else if (XEXP (src, 1) == dest)
1672	    other = XEXP (src, 0);
1673
1674	  if (! other || find_base_value (other))
1675	    new_reg_base_value[regno] = 0;
1676	  break;
1677	}
1678      case AND:
1679	if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1680	  new_reg_base_value[regno] = 0;
1681	break;
1682      default:
1683	new_reg_base_value[regno] = 0;
1684	break;
1685      }
1686  /* If this is the first set of a register, record the value.  */
1687  else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1688	   && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1689    new_reg_base_value[regno] = find_base_value (src);
1690
1691  bitmap_set_bit (reg_seen, regno);
1692}
1693
1694/* Return REG_BASE_VALUE for REGNO.  Selective scheduler uses this to avoid
1695   using hard registers with non-null REG_BASE_VALUE for renaming.  */
1696rtx
1697get_reg_base_value (unsigned int regno)
1698{
1699  return (*reg_base_value)[regno];
1700}
1701
1702/* If a value is known for REGNO, return it.  */
1703
1704rtx
1705get_reg_known_value (unsigned int regno)
1706{
1707  if (regno >= FIRST_PSEUDO_REGISTER)
1708    {
1709      regno -= FIRST_PSEUDO_REGISTER;
1710      if (regno < vec_safe_length (reg_known_value))
1711	return (*reg_known_value)[regno];
1712    }
1713  return NULL;
1714}
1715
1716/* Set it.  */
1717
1718static void
1719set_reg_known_value (unsigned int regno, rtx val)
1720{
1721  if (regno >= FIRST_PSEUDO_REGISTER)
1722    {
1723      regno -= FIRST_PSEUDO_REGISTER;
1724      if (regno < vec_safe_length (reg_known_value))
1725	(*reg_known_value)[regno] = val;
1726    }
1727}
1728
1729/* Similarly for reg_known_equiv_p.  */
1730
1731bool
1732get_reg_known_equiv_p (unsigned int regno)
1733{
1734  if (regno >= FIRST_PSEUDO_REGISTER)
1735    {
1736      regno -= FIRST_PSEUDO_REGISTER;
1737      if (regno < vec_safe_length (reg_known_value))
1738	return bitmap_bit_p (reg_known_equiv_p, regno);
1739    }
1740  return false;
1741}
1742
1743static void
1744set_reg_known_equiv_p (unsigned int regno, bool val)
1745{
1746  if (regno >= FIRST_PSEUDO_REGISTER)
1747    {
1748      regno -= FIRST_PSEUDO_REGISTER;
1749      if (regno < vec_safe_length (reg_known_value))
1750	{
1751	  if (val)
1752	    bitmap_set_bit (reg_known_equiv_p, regno);
1753	  else
1754	    bitmap_clear_bit (reg_known_equiv_p, regno);
1755	}
1756    }
1757}
1758
1759
1760/* Returns a canonical version of X, from the point of view alias
1761   analysis.  (For example, if X is a MEM whose address is a register,
1762   and the register has a known value (say a SYMBOL_REF), then a MEM
1763   whose address is the SYMBOL_REF is returned.)  */
1764
1765rtx
1766canon_rtx (rtx x)
1767{
1768  /* Recursively look for equivalences.  */
1769  if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1770    {
1771      rtx t = get_reg_known_value (REGNO (x));
1772      if (t == x)
1773	return x;
1774      if (t)
1775	return canon_rtx (t);
1776    }
1777
1778  if (GET_CODE (x) == PLUS)
1779    {
1780      rtx x0 = canon_rtx (XEXP (x, 0));
1781      rtx x1 = canon_rtx (XEXP (x, 1));
1782
1783      if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1784	return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1785    }
1786
1787  /* This gives us much better alias analysis when called from
1788     the loop optimizer.   Note we want to leave the original
1789     MEM alone, but need to return the canonicalized MEM with
1790     all the flags with their original values.  */
1791  else if (MEM_P (x))
1792    x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1793
1794  return x;
1795}
1796
1797/* Return 1 if X and Y are identical-looking rtx's.
1798   Expect that X and Y has been already canonicalized.
1799
1800   We use the data in reg_known_value above to see if two registers with
1801   different numbers are, in fact, equivalent.  */
1802
1803static int
1804rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1805{
1806  int i;
1807  int j;
1808  enum rtx_code code;
1809  const char *fmt;
1810
1811  if (x == 0 && y == 0)
1812    return 1;
1813  if (x == 0 || y == 0)
1814    return 0;
1815
1816  if (x == y)
1817    return 1;
1818
1819  code = GET_CODE (x);
1820  /* Rtx's of different codes cannot be equal.  */
1821  if (code != GET_CODE (y))
1822    return 0;
1823
1824  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1825     (REG:SI x) and (REG:HI x) are NOT equivalent.  */
1826
1827  if (GET_MODE (x) != GET_MODE (y))
1828    return 0;
1829
1830  /* Some RTL can be compared without a recursive examination.  */
1831  switch (code)
1832    {
1833    case REG:
1834      return REGNO (x) == REGNO (y);
1835
1836    case LABEL_REF:
1837      return label_ref_label (x) == label_ref_label (y);
1838
1839    case SYMBOL_REF:
1840      return compare_base_symbol_refs (x, y) == 1;
1841
1842    case ENTRY_VALUE:
1843      /* This is magic, don't go through canonicalization et al.  */
1844      return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1845
1846    case VALUE:
1847    CASE_CONST_UNIQUE:
1848      /* Pointer equality guarantees equality for these nodes.  */
1849      return 0;
1850
1851    default:
1852      break;
1853    }
1854
1855  /* canon_rtx knows how to handle plus.  No need to canonicalize.  */
1856  if (code == PLUS)
1857    return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1858	     && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1859	    || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1860		&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1861  /* For commutative operations, the RTX match if the operand match in any
1862     order.  Also handle the simple binary and unary cases without a loop.  */
1863  if (COMMUTATIVE_P (x))
1864    {
1865      rtx xop0 = canon_rtx (XEXP (x, 0));
1866      rtx yop0 = canon_rtx (XEXP (y, 0));
1867      rtx yop1 = canon_rtx (XEXP (y, 1));
1868
1869      return ((rtx_equal_for_memref_p (xop0, yop0)
1870	       && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1871	      || (rtx_equal_for_memref_p (xop0, yop1)
1872		  && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1873    }
1874  else if (NON_COMMUTATIVE_P (x))
1875    {
1876      return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1877				      canon_rtx (XEXP (y, 0)))
1878	      && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1879					 canon_rtx (XEXP (y, 1))));
1880    }
1881  else if (UNARY_P (x))
1882    return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1883				   canon_rtx (XEXP (y, 0)));
1884
1885  /* Compare the elements.  If any pair of corresponding elements
1886     fail to match, return 0 for the whole things.
1887
1888     Limit cases to types which actually appear in addresses.  */
1889
1890  fmt = GET_RTX_FORMAT (code);
1891  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1892    {
1893      switch (fmt[i])
1894	{
1895	case 'i':
1896	  if (XINT (x, i) != XINT (y, i))
1897	    return 0;
1898	  break;
1899
1900	case 'p':
1901	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1902	    return 0;
1903	  break;
1904
1905	case 'E':
1906	  /* Two vectors must have the same length.  */
1907	  if (XVECLEN (x, i) != XVECLEN (y, i))
1908	    return 0;
1909
1910	  /* And the corresponding elements must match.  */
1911	  for (j = 0; j < XVECLEN (x, i); j++)
1912	    if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1913					canon_rtx (XVECEXP (y, i, j))) == 0)
1914	      return 0;
1915	  break;
1916
1917	case 'e':
1918	  if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1919				      canon_rtx (XEXP (y, i))) == 0)
1920	    return 0;
1921	  break;
1922
1923	  /* This can happen for asm operands.  */
1924	case 's':
1925	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1926	    return 0;
1927	  break;
1928
1929	/* This can happen for an asm which clobbers memory.  */
1930	case '0':
1931	  break;
1932
1933	  /* It is believed that rtx's at this level will never
1934	     contain anything but integers and other rtx's,
1935	     except for within LABEL_REFs and SYMBOL_REFs.  */
1936	default:
1937	  gcc_unreachable ();
1938	}
1939    }
1940  return 1;
1941}
1942
1943static rtx
1944find_base_term (rtx x, vec<std::pair<cselib_val *,
1945				     struct elt_loc_list *> > &visited_vals)
1946{
1947  cselib_val *val;
1948  struct elt_loc_list *l, *f;
1949  rtx ret;
1950  scalar_int_mode int_mode;
1951
1952#if defined (FIND_BASE_TERM)
1953  /* Try machine-dependent ways to find the base term.  */
1954  x = FIND_BASE_TERM (x);
1955#endif
1956
1957  switch (GET_CODE (x))
1958    {
1959    case REG:
1960      return REG_BASE_VALUE (x);
1961
1962    case TRUNCATE:
1963      /* As we do not know which address space the pointer is referring to, we can
1964	 handle this only if the target does not support different pointer or
1965	 address modes depending on the address space.  */
1966      if (!target_default_pointer_address_modes_p ())
1967	return 0;
1968      if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1969	  || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1970	return 0;
1971      /* Fall through.  */
1972    case HIGH:
1973    case PRE_INC:
1974    case PRE_DEC:
1975    case POST_INC:
1976    case POST_DEC:
1977    case PRE_MODIFY:
1978    case POST_MODIFY:
1979      return find_base_term (XEXP (x, 0), visited_vals);
1980
1981    case ZERO_EXTEND:
1982    case SIGN_EXTEND:	/* Used for Alpha/NT pointers */
1983      /* As we do not know which address space the pointer is referring to, we can
1984	 handle this only if the target does not support different pointer or
1985	 address modes depending on the address space.  */
1986      if (!target_default_pointer_address_modes_p ())
1987	return 0;
1988
1989      {
1990	rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1991
1992	if (temp != 0 && CONSTANT_P (temp))
1993	  temp = convert_memory_address (Pmode, temp);
1994
1995	return temp;
1996      }
1997
1998    case VALUE:
1999      val = CSELIB_VAL_PTR (x);
2000      ret = NULL_RTX;
2001
2002      if (!val)
2003	return ret;
2004
2005      if (cselib_sp_based_value_p (val))
2006	return static_reg_base_value[STACK_POINTER_REGNUM];
2007
2008      if (visited_vals.length () > (unsigned) param_max_find_base_term_values)
2009	return ret;
2010
2011      f = val->locs;
2012      /* Reset val->locs to avoid infinite recursion.  */
2013      if (f)
2014	visited_vals.safe_push (std::make_pair (val, f));
2015      val->locs = NULL;
2016
2017      for (l = f; l; l = l->next)
2018	if (GET_CODE (l->loc) == VALUE
2019	    && CSELIB_VAL_PTR (l->loc)->locs
2020	    && !CSELIB_VAL_PTR (l->loc)->locs->next
2021	    && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
2022	  continue;
2023	else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
2024	  break;
2025
2026      return ret;
2027
2028    case LO_SUM:
2029      /* The standard form is (lo_sum reg sym) so look only at the
2030         second operand.  */
2031      return find_base_term (XEXP (x, 1), visited_vals);
2032
2033    case CONST:
2034      x = XEXP (x, 0);
2035      if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
2036	return 0;
2037      /* Fall through.  */
2038    case PLUS:
2039    case MINUS:
2040      {
2041	rtx tmp1 = XEXP (x, 0);
2042	rtx tmp2 = XEXP (x, 1);
2043
2044	/* This is a little bit tricky since we have to determine which of
2045	   the two operands represents the real base address.  Otherwise this
2046	   routine may return the index register instead of the base register.
2047
2048	   That may cause us to believe no aliasing was possible, when in
2049	   fact aliasing is possible.
2050
2051	   We use a few simple tests to guess the base register.  Additional
2052	   tests can certainly be added.  For example, if one of the operands
2053	   is a shift or multiply, then it must be the index register and the
2054	   other operand is the base register.  */
2055
2056	if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
2057	  return find_base_term (tmp2, visited_vals);
2058
2059	/* If either operand is known to be a pointer, then prefer it
2060	   to determine the base term.  */
2061	if (REG_P (tmp1) && REG_POINTER (tmp1))
2062	  ;
2063	else if (REG_P (tmp2) && REG_POINTER (tmp2))
2064	  std::swap (tmp1, tmp2);
2065	/* If second argument is constant which has base term, prefer it
2066	   over variable tmp1.  See PR64025.  */
2067	else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2068	  std::swap (tmp1, tmp2);
2069
2070	/* Go ahead and find the base term for both operands.  If either base
2071	   term is from a pointer or is a named object or a special address
2072	   (like an argument or stack reference), then use it for the
2073	   base term.  */
2074	rtx base = find_base_term (tmp1, visited_vals);
2075	if (base != NULL_RTX
2076	    && ((REG_P (tmp1) && REG_POINTER (tmp1))
2077		 || known_base_value_p (base)))
2078	  return base;
2079	base = find_base_term (tmp2, visited_vals);
2080	if (base != NULL_RTX
2081	    && ((REG_P (tmp2) && REG_POINTER (tmp2))
2082		 || known_base_value_p (base)))
2083	  return base;
2084
2085	/* We could not determine which of the two operands was the
2086	   base register and which was the index.  So we can determine
2087	   nothing from the base alias check.  */
2088	return 0;
2089      }
2090
2091    case AND:
2092      /* Look through aligning ANDs.  And AND with zero or one with
2093         the LSB set isn't one (see for example PR92462).  */
2094      if (CONST_INT_P (XEXP (x, 1))
2095	  && INTVAL (XEXP (x, 1)) != 0
2096	  && (INTVAL (XEXP (x, 1)) & 1) == 0)
2097	return find_base_term (XEXP (x, 0), visited_vals);
2098      return 0;
2099
2100    case SYMBOL_REF:
2101    case LABEL_REF:
2102      return x;
2103
2104    default:
2105      return 0;
2106    }
2107}
2108
2109/* Wrapper around the worker above which removes locs from visited VALUEs
2110   to avoid visiting them multiple times.  We unwind that changes here.  */
2111
2112static rtx
2113find_base_term (rtx x)
2114{
2115  auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2116  rtx res = find_base_term (x, visited_vals);
2117  for (unsigned i = 0; i < visited_vals.length (); ++i)
2118    visited_vals[i].first->locs = visited_vals[i].second;
2119  return res;
2120}
2121
2122/* Return true if accesses to address X may alias accesses based
2123   on the stack pointer.  */
2124
2125bool
2126may_be_sp_based_p (rtx x)
2127{
2128  rtx base = find_base_term (x);
2129  return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2130}
2131
2132/* BASE1 and BASE2 are decls.  Return 1 if they refer to same object, 0
2133   if they refer to different objects and -1 if we cannot decide.  */
2134
2135int
2136compare_base_decls (tree base1, tree base2)
2137{
2138  int ret;
2139  gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2140  if (base1 == base2)
2141    return 1;
2142
2143  /* If we have two register decls with register specification we
2144     cannot decide unless their assembler names are the same.  */
2145  if (DECL_REGISTER (base1)
2146      && DECL_REGISTER (base2)
2147      && HAS_DECL_ASSEMBLER_NAME_P (base1)
2148      && HAS_DECL_ASSEMBLER_NAME_P (base2)
2149      && DECL_ASSEMBLER_NAME_SET_P (base1)
2150      && DECL_ASSEMBLER_NAME_SET_P (base2))
2151    {
2152      if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2153	return 1;
2154      return -1;
2155    }
2156
2157  /* Declarations of non-automatic variables may have aliases.  All other
2158     decls are unique.  */
2159  if (!decl_in_symtab_p (base1)
2160      || !decl_in_symtab_p (base2))
2161    return 0;
2162
2163  /* Don't cause symbols to be inserted by the act of checking.  */
2164  symtab_node *node1 = symtab_node::get (base1);
2165  if (!node1)
2166    return 0;
2167  symtab_node *node2 = symtab_node::get (base2);
2168  if (!node2)
2169    return 0;
2170
2171  ret = node1->equal_address_to (node2, true);
2172  return ret;
2173}
2174
2175/* Same as compare_base_decls but for SYMBOL_REF.  */
2176
2177static int
2178compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2179{
2180  tree x_decl = SYMBOL_REF_DECL (x_base);
2181  tree y_decl = SYMBOL_REF_DECL (y_base);
2182  bool binds_def = true;
2183
2184  if (XSTR (x_base, 0) == XSTR (y_base, 0))
2185    return 1;
2186  if (x_decl && y_decl)
2187    return compare_base_decls (x_decl, y_decl);
2188  if (x_decl || y_decl)
2189    {
2190      if (!x_decl)
2191	{
2192	  std::swap (x_decl, y_decl);
2193	  std::swap (x_base, y_base);
2194	}
2195      /* We handle specially only section anchors and assume that other
2196 	 labels may overlap with user variables in an arbitrary way.  */
2197      if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2198        return -1;
2199      /* Anchors contains static VAR_DECLs and CONST_DECLs.  We are safe
2200	 to ignore CONST_DECLs because they are readonly.  */
2201      if (!VAR_P (x_decl)
2202	  || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2203	return 0;
2204
2205      symtab_node *x_node = symtab_node::get_create (x_decl)
2206			    ->ultimate_alias_target ();
2207      /* External variable cannot be in section anchor.  */
2208      if (!x_node->definition)
2209	return 0;
2210      x_base = XEXP (DECL_RTL (x_node->decl), 0);
2211      /* If not in anchor, we can disambiguate.  */
2212      if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2213	return 0;
2214
2215      /* We have an alias of anchored variable.  If it can be interposed;
2216 	 we must assume it may or may not alias its anchor.  */
2217      binds_def = decl_binds_to_current_def_p (x_decl);
2218    }
2219  /* If we have variable in section anchor, we can compare by offset.  */
2220  if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2221      && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2222    {
2223      if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2224	return 0;
2225      if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2226	return binds_def ? 1 : -1;
2227      if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2228	return -1;
2229      return 0;
2230    }
2231  /* In general we assume that memory locations pointed to by different labels
2232     may overlap in undefined ways.  */
2233  return -1;
2234}
2235
2236/* Return 0 if the addresses X and Y are known to point to different
2237   objects, 1 if they might be pointers to the same object.  */
2238
2239static int
2240base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2241		  machine_mode x_mode, machine_mode y_mode)
2242{
2243  /* If the address itself has no known base see if a known equivalent
2244     value has one.  If either address still has no known base, nothing
2245     is known about aliasing.  */
2246  if (x_base == 0)
2247    {
2248      rtx x_c;
2249
2250      if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2251	return 1;
2252
2253      x_base = find_base_term (x_c);
2254      if (x_base == 0)
2255	return 1;
2256    }
2257
2258  if (y_base == 0)
2259    {
2260      rtx y_c;
2261      if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2262	return 1;
2263
2264      y_base = find_base_term (y_c);
2265      if (y_base == 0)
2266	return 1;
2267    }
2268
2269  /* If the base addresses are equal nothing is known about aliasing.  */
2270  if (rtx_equal_p (x_base, y_base))
2271    return 1;
2272
2273  /* The base addresses are different expressions.  If they are not accessed
2274     via AND, there is no conflict.  We can bring knowledge of object
2275     alignment into play here.  For example, on alpha, "char a, b;" can
2276     alias one another, though "char a; long b;" cannot.  AND addresses may
2277     implicitly alias surrounding objects; i.e. unaligned access in DImode
2278     via AND address can alias all surrounding object types except those
2279     with aligment 8 or higher.  */
2280  if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2281    return 1;
2282  if (GET_CODE (x) == AND
2283      && (!CONST_INT_P (XEXP (x, 1))
2284	  || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2285    return 1;
2286  if (GET_CODE (y) == AND
2287      && (!CONST_INT_P (XEXP (y, 1))
2288	  || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2289    return 1;
2290
2291  /* Differing symbols not accessed via AND never alias.  */
2292  if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2293    return compare_base_symbol_refs (x_base, y_base) != 0;
2294
2295  if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2296    return 0;
2297
2298  if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2299    return 0;
2300
2301  return 1;
2302}
2303
2304/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2305   (or equal to) that of V.  */
2306
2307static bool
2308refs_newer_value_p (const_rtx expr, rtx v)
2309{
2310  int minuid = CSELIB_VAL_PTR (v)->uid;
2311  subrtx_iterator::array_type array;
2312  FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2313    if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2314      return true;
2315  return false;
2316}
2317
2318/* Convert the address X into something we can use.  This is done by returning
2319   it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2320   we call cselib to get a more useful rtx.  */
2321
2322rtx
2323get_addr (rtx x)
2324{
2325  cselib_val *v;
2326  struct elt_loc_list *l;
2327
2328  if (GET_CODE (x) != VALUE)
2329    {
2330      if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2331	  && GET_CODE (XEXP (x, 0)) == VALUE
2332	  && CONST_SCALAR_INT_P (XEXP (x, 1)))
2333	{
2334	  rtx op0 = get_addr (XEXP (x, 0));
2335	  if (op0 != XEXP (x, 0))
2336	    {
2337	      poly_int64 c;
2338	      if (GET_CODE (x) == PLUS
2339		  && poly_int_rtx_p (XEXP (x, 1), &c))
2340		return plus_constant (GET_MODE (x), op0, c);
2341	      return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2342					  op0, XEXP (x, 1));
2343	    }
2344	}
2345      return x;
2346    }
2347  v = CSELIB_VAL_PTR (x);
2348  if (v)
2349    {
2350      bool have_equivs = cselib_have_permanent_equivalences ();
2351      if (have_equivs)
2352	v = canonical_cselib_val (v);
2353      for (l = v->locs; l; l = l->next)
2354	if (CONSTANT_P (l->loc))
2355	  return l->loc;
2356      for (l = v->locs; l; l = l->next)
2357	if (!REG_P (l->loc) && !MEM_P (l->loc)
2358	    /* Avoid infinite recursion when potentially dealing with
2359	       var-tracking artificial equivalences, by skipping the
2360	       equivalences themselves, and not choosing expressions
2361	       that refer to newer VALUEs.  */
2362	    && (!have_equivs
2363		|| (GET_CODE (l->loc) != VALUE
2364		    && !refs_newer_value_p (l->loc, x))))
2365	  return l->loc;
2366      if (have_equivs)
2367	{
2368	  for (l = v->locs; l; l = l->next)
2369	    if (REG_P (l->loc)
2370		|| (GET_CODE (l->loc) != VALUE
2371		    && !refs_newer_value_p (l->loc, x)))
2372	      return l->loc;
2373	  /* Return the canonical value.  */
2374	  return v->val_rtx;
2375	}
2376      if (v->locs)
2377	return v->locs->loc;
2378    }
2379  return x;
2380}
2381
2382/*  Return the address of the (N_REFS + 1)th memory reference to ADDR
2383    where SIZE is the size in bytes of the memory reference.  If ADDR
2384    is not modified by the memory reference then ADDR is returned.  */
2385
2386static rtx
2387addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2388{
2389  poly_int64 offset = 0;
2390
2391  switch (GET_CODE (addr))
2392    {
2393    case PRE_INC:
2394      offset = (n_refs + 1) * size;
2395      break;
2396    case PRE_DEC:
2397      offset = -(n_refs + 1) * size;
2398      break;
2399    case POST_INC:
2400      offset = n_refs * size;
2401      break;
2402    case POST_DEC:
2403      offset = -n_refs * size;
2404      break;
2405
2406    default:
2407      return addr;
2408    }
2409
2410  addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2411  addr = canon_rtx (addr);
2412
2413  return addr;
2414}
2415
2416/* Return TRUE if an object X sized at XSIZE bytes and another object
2417   Y sized at YSIZE bytes, starting C bytes after X, may overlap.  If
2418   any of the sizes is zero, assume an overlap, otherwise use the
2419   absolute value of the sizes as the actual sizes.  */
2420
2421static inline bool
2422offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2423{
2424  if (known_eq (xsize, 0) || known_eq (ysize, 0))
2425    return true;
2426
2427  if (maybe_ge (c, 0))
2428    return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2429  else
2430    return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2431}
2432
2433/* Return one if X and Y (memory addresses) reference the
2434   same location in memory or if the references overlap.
2435   Return zero if they do not overlap, else return
2436   minus one in which case they still might reference the same location.
2437
2438   C is an offset accumulator.  When
2439   C is nonzero, we are testing aliases between X and Y + C.
2440   XSIZE is the size in bytes of the X reference,
2441   similarly YSIZE is the size in bytes for Y.
2442   Expect that canon_rtx has been already called for X and Y.
2443
2444   If XSIZE or YSIZE is zero, we do not know the amount of memory being
2445   referenced (the reference was BLKmode), so make the most pessimistic
2446   assumptions.
2447
2448   If XSIZE or YSIZE is negative, we may access memory outside the object
2449   being referenced as a side effect.  This can happen when using AND to
2450   align memory references, as is done on the Alpha.
2451
2452   Nice to notice that varying addresses cannot conflict with fp if no
2453   local variables had their addresses taken, but that's too hard now.
2454
2455   ???  Contrary to the tree alias oracle this does not return
2456   one for X + non-constant and Y + non-constant when X and Y are equal.
2457   If that is fixed the TBAA hack for union type-punning can be removed.  */
2458
2459static int
2460memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2461		    poly_int64 c)
2462{
2463  if (GET_CODE (x) == VALUE)
2464    {
2465      if (REG_P (y))
2466	{
2467	  struct elt_loc_list *l = NULL;
2468	  if (CSELIB_VAL_PTR (x))
2469	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2470		 l; l = l->next)
2471	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2472		break;
2473	  if (l)
2474	    x = y;
2475	  else
2476	    x = get_addr (x);
2477	}
2478      /* Don't call get_addr if y is the same VALUE.  */
2479      else if (x != y)
2480	x = get_addr (x);
2481    }
2482  if (GET_CODE (y) == VALUE)
2483    {
2484      if (REG_P (x))
2485	{
2486	  struct elt_loc_list *l = NULL;
2487	  if (CSELIB_VAL_PTR (y))
2488	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2489		 l; l = l->next)
2490	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2491		break;
2492	  if (l)
2493	    y = x;
2494	  else
2495	    y = get_addr (y);
2496	}
2497      /* Don't call get_addr if x is the same VALUE.  */
2498      else if (y != x)
2499	y = get_addr (y);
2500    }
2501  if (GET_CODE (x) == HIGH)
2502    x = XEXP (x, 0);
2503  else if (GET_CODE (x) == LO_SUM)
2504    x = XEXP (x, 1);
2505  else
2506    x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2507  if (GET_CODE (y) == HIGH)
2508    y = XEXP (y, 0);
2509  else if (GET_CODE (y) == LO_SUM)
2510    y = XEXP (y, 1);
2511  else
2512    y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2513
2514  if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2515    {
2516      int cmp = compare_base_symbol_refs (x,y);
2517
2518      /* If both decls are the same, decide by offsets.  */
2519      if (cmp == 1)
2520        return offset_overlap_p (c, xsize, ysize);
2521      /* Assume a potential overlap for symbolic addresses that went
2522	 through alignment adjustments (i.e., that have negative
2523	 sizes), because we can't know how far they are from each
2524	 other.  */
2525      if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2526	return -1;
2527      /* If decls are different or we know by offsets that there is no overlap,
2528	 we win.  */
2529      if (!cmp || !offset_overlap_p (c, xsize, ysize))
2530	return 0;
2531      /* Decls may or may not be different and offsets overlap....*/
2532      return -1;
2533    }
2534  else if (rtx_equal_for_memref_p (x, y))
2535    {
2536      return offset_overlap_p (c, xsize, ysize);
2537    }
2538
2539  /* This code used to check for conflicts involving stack references and
2540     globals but the base address alias code now handles these cases.  */
2541
2542  if (GET_CODE (x) == PLUS)
2543    {
2544      /* The fact that X is canonicalized means that this
2545	 PLUS rtx is canonicalized.  */
2546      rtx x0 = XEXP (x, 0);
2547      rtx x1 = XEXP (x, 1);
2548
2549      /* However, VALUEs might end up in different positions even in
2550	 canonical PLUSes.  Comparing their addresses is enough.  */
2551      if (x0 == y)
2552	return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2553      else if (x1 == y)
2554	return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2555
2556      poly_int64 cx1, cy1;
2557      if (GET_CODE (y) == PLUS)
2558	{
2559	  /* The fact that Y is canonicalized means that this
2560	     PLUS rtx is canonicalized.  */
2561	  rtx y0 = XEXP (y, 0);
2562	  rtx y1 = XEXP (y, 1);
2563
2564	  if (x0 == y1)
2565	    return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2566	  if (x1 == y0)
2567	    return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2568
2569	  if (rtx_equal_for_memref_p (x1, y1))
2570	    return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2571	  if (rtx_equal_for_memref_p (x0, y0))
2572	    return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2573	  if (poly_int_rtx_p (x1, &cx1))
2574	    {
2575	      if (poly_int_rtx_p (y1, &cy1))
2576		return memrefs_conflict_p (xsize, x0, ysize, y0,
2577					   c - cx1 + cy1);
2578	      else
2579		return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2580	    }
2581	  else if (poly_int_rtx_p (y1, &cy1))
2582	    return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2583
2584	  return -1;
2585	}
2586      else if (poly_int_rtx_p (x1, &cx1))
2587	return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2588    }
2589  else if (GET_CODE (y) == PLUS)
2590    {
2591      /* The fact that Y is canonicalized means that this
2592	 PLUS rtx is canonicalized.  */
2593      rtx y0 = XEXP (y, 0);
2594      rtx y1 = XEXP (y, 1);
2595
2596      if (x == y0)
2597	return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2598      if (x == y1)
2599	return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2600
2601      poly_int64 cy1;
2602      if (poly_int_rtx_p (y1, &cy1))
2603	return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2604      else
2605	return -1;
2606    }
2607
2608  if (GET_CODE (x) == GET_CODE (y))
2609    switch (GET_CODE (x))
2610      {
2611      case MULT:
2612	{
2613	  /* Handle cases where we expect the second operands to be the
2614	     same, and check only whether the first operand would conflict
2615	     or not.  */
2616	  rtx x0, y0;
2617	  rtx x1 = canon_rtx (XEXP (x, 1));
2618	  rtx y1 = canon_rtx (XEXP (y, 1));
2619	  if (! rtx_equal_for_memref_p (x1, y1))
2620	    return -1;
2621	  x0 = canon_rtx (XEXP (x, 0));
2622	  y0 = canon_rtx (XEXP (y, 0));
2623	  if (rtx_equal_for_memref_p (x0, y0))
2624	    return offset_overlap_p (c, xsize, ysize);
2625
2626	  /* Can't properly adjust our sizes.  */
2627	  poly_int64 c1;
2628	  if (!poly_int_rtx_p (x1, &c1)
2629	      || !can_div_trunc_p (xsize, c1, &xsize)
2630	      || !can_div_trunc_p (ysize, c1, &ysize)
2631	      || !can_div_trunc_p (c, c1, &c))
2632	    return -1;
2633	  return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2634	}
2635
2636      default:
2637	break;
2638      }
2639
2640  /* Deal with alignment ANDs by adjusting offset and size so as to
2641     cover the maximum range, without taking any previously known
2642     alignment into account.  Make a size negative after such an
2643     adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2644     assume a potential overlap, because they may end up in contiguous
2645     memory locations and the stricter-alignment access may span over
2646     part of both.  */
2647  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2648    {
2649      HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2650      unsigned HOST_WIDE_INT uc = sc;
2651      if (sc < 0 && pow2_or_zerop (-uc))
2652	{
2653	  if (maybe_gt (xsize, 0))
2654	    xsize = -xsize;
2655	  if (maybe_ne (xsize, 0))
2656	    xsize += sc + 1;
2657	  c -= sc + 1;
2658	  return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2659				     ysize, y, c);
2660	}
2661    }
2662  if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2663    {
2664      HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2665      unsigned HOST_WIDE_INT uc = sc;
2666      if (sc < 0 && pow2_or_zerop (-uc))
2667	{
2668	  if (maybe_gt (ysize, 0))
2669	    ysize = -ysize;
2670	  if (maybe_ne (ysize, 0))
2671	    ysize += sc + 1;
2672	  c += sc + 1;
2673	  return memrefs_conflict_p (xsize, x,
2674				     ysize, canon_rtx (XEXP (y, 0)), c);
2675	}
2676    }
2677
2678  if (CONSTANT_P (x))
2679    {
2680      poly_int64 cx, cy;
2681      if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2682	{
2683	  c += cy - cx;
2684	  return offset_overlap_p (c, xsize, ysize);
2685	}
2686
2687      if (GET_CODE (x) == CONST)
2688	{
2689	  if (GET_CODE (y) == CONST)
2690	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2691				       ysize, canon_rtx (XEXP (y, 0)), c);
2692	  else
2693	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2694				       ysize, y, c);
2695	}
2696      if (GET_CODE (y) == CONST)
2697	return memrefs_conflict_p (xsize, x, ysize,
2698				   canon_rtx (XEXP (y, 0)), c);
2699
2700      /* Assume a potential overlap for symbolic addresses that went
2701	 through alignment adjustments (i.e., that have negative
2702	 sizes), because we can't know how far they are from each
2703	 other.  */
2704      if (CONSTANT_P (y))
2705	return (maybe_lt (xsize, 0)
2706		|| maybe_lt (ysize, 0)
2707		|| offset_overlap_p (c, xsize, ysize));
2708
2709      return -1;
2710    }
2711
2712  return -1;
2713}
2714
2715/* Functions to compute memory dependencies.
2716
2717   Since we process the insns in execution order, we can build tables
2718   to keep track of what registers are fixed (and not aliased), what registers
2719   are varying in known ways, and what registers are varying in unknown
2720   ways.
2721
2722   If both memory references are volatile, then there must always be a
2723   dependence between the two references, since their order cannot be
2724   changed.  A volatile and non-volatile reference can be interchanged
2725   though.
2726
2727   We also must allow AND addresses, because they may generate accesses
2728   outside the object being referenced.  This is used to generate aligned
2729   addresses from unaligned addresses, for instance, the alpha
2730   storeqi_unaligned pattern.  */
2731
2732/* Read dependence: X is read after read in MEM takes place.  There can
2733   only be a dependence here if both reads are volatile, or if either is
2734   an explicit barrier.  */
2735
2736int
2737read_dependence (const_rtx mem, const_rtx x)
2738{
2739  if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2740    return true;
2741  if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2742      || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2743    return true;
2744  return false;
2745}
2746
2747/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it.  */
2748
2749static tree
2750decl_for_component_ref (tree x)
2751{
2752  do
2753    {
2754      x = TREE_OPERAND (x, 0);
2755    }
2756  while (x && TREE_CODE (x) == COMPONENT_REF);
2757
2758  return x && DECL_P (x) ? x : NULL_TREE;
2759}
2760
2761/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2762   for the offset of the field reference.  *KNOWN_P says whether the
2763   offset is known.  */
2764
2765static void
2766adjust_offset_for_component_ref (tree x, bool *known_p,
2767				 poly_int64 *offset)
2768{
2769  if (!*known_p)
2770    return;
2771  do
2772    {
2773      tree xoffset = component_ref_field_offset (x);
2774      tree field = TREE_OPERAND (x, 1);
2775      if (!poly_int_tree_p (xoffset))
2776	{
2777	  *known_p = false;
2778	  return;
2779	}
2780
2781      poly_offset_int woffset
2782	= (wi::to_poly_offset (xoffset)
2783	   + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2784	      >> LOG2_BITS_PER_UNIT)
2785	   + *offset);
2786      if (!woffset.to_shwi (offset))
2787	{
2788	  *known_p = false;
2789	  return;
2790	}
2791
2792      x = TREE_OPERAND (x, 0);
2793    }
2794  while (x && TREE_CODE (x) == COMPONENT_REF);
2795}
2796
2797/* Return nonzero if we can determine the exprs corresponding to memrefs
2798   X and Y and they do not overlap.
2799   If LOOP_VARIANT is set, skip offset-based disambiguation */
2800
2801int
2802nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2803{
2804  tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2805  rtx rtlx, rtly;
2806  rtx basex, basey;
2807  bool moffsetx_known_p, moffsety_known_p;
2808  poly_int64 moffsetx = 0, moffsety = 0;
2809  poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2810
2811  /* Unless both have exprs, we can't tell anything.  */
2812  if (exprx == 0 || expry == 0)
2813    return 0;
2814
2815  /* For spill-slot accesses make sure we have valid offsets.  */
2816  if ((exprx == get_spill_slot_decl (false)
2817       && ! MEM_OFFSET_KNOWN_P (x))
2818      || (expry == get_spill_slot_decl (false)
2819	  && ! MEM_OFFSET_KNOWN_P (y)))
2820    return 0;
2821
2822  /* If the field reference test failed, look at the DECLs involved.  */
2823  moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2824  if (moffsetx_known_p)
2825    moffsetx = MEM_OFFSET (x);
2826  if (TREE_CODE (exprx) == COMPONENT_REF)
2827    {
2828      tree t = decl_for_component_ref (exprx);
2829      if (! t)
2830	return 0;
2831      adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2832      exprx = t;
2833    }
2834
2835  moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2836  if (moffsety_known_p)
2837    moffsety = MEM_OFFSET (y);
2838  if (TREE_CODE (expry) == COMPONENT_REF)
2839    {
2840      tree t = decl_for_component_ref (expry);
2841      if (! t)
2842	return 0;
2843      adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2844      expry = t;
2845    }
2846
2847  if (! DECL_P (exprx) || ! DECL_P (expry))
2848    return 0;
2849
2850  /* If we refer to different gimple registers, or one gimple register
2851     and one non-gimple-register, we know they can't overlap.  First,
2852     gimple registers don't have their addresses taken.  Now, there
2853     could be more than one stack slot for (different versions of) the
2854     same gimple register, but we can presumably tell they don't
2855     overlap based on offsets from stack base addresses elsewhere.
2856     It's important that we don't proceed to DECL_RTL, because gimple
2857     registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2858     able to do anything about them since no SSA information will have
2859     remained to guide it.  */
2860  if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2861    return exprx != expry
2862      || (moffsetx_known_p && moffsety_known_p
2863	  && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2864	  && !offset_overlap_p (moffsety - moffsetx,
2865				MEM_SIZE (x), MEM_SIZE (y)));
2866
2867  /* With invalid code we can end up storing into the constant pool.
2868     Bail out to avoid ICEing when creating RTL for this.
2869     See gfortran.dg/lto/20091028-2_0.f90.  */
2870  if (TREE_CODE (exprx) == CONST_DECL
2871      || TREE_CODE (expry) == CONST_DECL)
2872    return 1;
2873
2874  /* If one decl is known to be a function or label in a function and
2875     the other is some kind of data, they can't overlap.  */
2876  if ((TREE_CODE (exprx) == FUNCTION_DECL
2877       || TREE_CODE (exprx) == LABEL_DECL)
2878      != (TREE_CODE (expry) == FUNCTION_DECL
2879	  || TREE_CODE (expry) == LABEL_DECL))
2880    return 1;
2881
2882  /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2883     living in multiple places), we can't tell anything.  Exception
2884     are FUNCTION_DECLs for which we can create DECL_RTL on demand.  */
2885  if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2886      || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2887    return 0;
2888
2889  rtlx = DECL_RTL (exprx);
2890  rtly = DECL_RTL (expry);
2891
2892  /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2893     can't overlap unless they are the same because we never reuse that part
2894     of the stack frame used for locals for spilled pseudos.  */
2895  if ((!MEM_P (rtlx) || !MEM_P (rtly))
2896      && ! rtx_equal_p (rtlx, rtly))
2897    return 1;
2898
2899  /* If we have MEMs referring to different address spaces (which can
2900     potentially overlap), we cannot easily tell from the addresses
2901     whether the references overlap.  */
2902  if (MEM_P (rtlx) && MEM_P (rtly)
2903      && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2904    return 0;
2905
2906  /* Get the base and offsets of both decls.  If either is a register, we
2907     know both are and are the same, so use that as the base.  The only
2908     we can avoid overlap is if we can deduce that they are nonoverlapping
2909     pieces of that decl, which is very rare.  */
2910  basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2911  basex = strip_offset_and_add (basex, &offsetx);
2912
2913  basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2914  basey = strip_offset_and_add (basey, &offsety);
2915
2916  /* If the bases are different, we know they do not overlap if both
2917     are constants or if one is a constant and the other a pointer into the
2918     stack frame.  Otherwise a different base means we can't tell if they
2919     overlap or not.  */
2920  if (compare_base_decls (exprx, expry) == 0)
2921    return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2922	    || (CONSTANT_P (basex) && REG_P (basey)
2923		&& REGNO_PTR_FRAME_P (REGNO (basey)))
2924	    || (CONSTANT_P (basey) && REG_P (basex)
2925		&& REGNO_PTR_FRAME_P (REGNO (basex))));
2926
2927  /* Offset based disambiguation not appropriate for loop invariant */
2928  if (loop_invariant)
2929    return 0;
2930
2931  /* Offset based disambiguation is OK even if we do not know that the
2932     declarations are necessarily different
2933    (i.e. compare_base_decls (exprx, expry) == -1)  */
2934
2935  sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2936	   : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2937	   : -1);
2938  sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2939	   : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2940	   : -1);
2941
2942  /* If we have an offset for either memref, it can update the values computed
2943     above.  */
2944  if (moffsetx_known_p)
2945    offsetx += moffsetx, sizex -= moffsetx;
2946  if (moffsety_known_p)
2947    offsety += moffsety, sizey -= moffsety;
2948
2949  /* If a memref has both a size and an offset, we can use the smaller size.
2950     We can't do this if the offset isn't known because we must view this
2951     memref as being anywhere inside the DECL's MEM.  */
2952  if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2953    sizex = MEM_SIZE (x);
2954  if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2955    sizey = MEM_SIZE (y);
2956
2957  return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2958}
2959
2960/* Helper for true_dependence and canon_true_dependence.
2961   Checks for true dependence: X is read after store in MEM takes place.
2962
2963   If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2964   NULL_RTX, and the canonical addresses of MEM and X are both computed
2965   here.  If MEM_CANONICALIZED, then MEM must be already canonicalized.
2966
2967   If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2968
2969   Returns 1 if there is a true dependence, 0 otherwise.  */
2970
2971static int
2972true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2973		   const_rtx x, rtx x_addr, bool mem_canonicalized)
2974{
2975  rtx true_mem_addr;
2976  rtx base;
2977  int ret;
2978
2979  gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2980		       : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2981
2982  if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2983    return 1;
2984
2985  /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2986     This is used in epilogue deallocation functions, and in cselib.  */
2987  if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2988    return 1;
2989  if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2990    return 1;
2991  if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2992      || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2993    return 1;
2994
2995  if (! x_addr)
2996    x_addr = XEXP (x, 0);
2997  x_addr = get_addr (x_addr);
2998
2999  if (! mem_addr)
3000    {
3001      mem_addr = XEXP (mem, 0);
3002      if (mem_mode == VOIDmode)
3003	mem_mode = GET_MODE (mem);
3004    }
3005  true_mem_addr = get_addr (mem_addr);
3006
3007  /* Read-only memory is by definition never modified, and therefore can't
3008     conflict with anything.  However, don't assume anything when AND
3009     addresses are involved and leave to the code below to determine
3010     dependence.  We don't expect to find read-only set on MEM, but
3011     stupid user tricks can produce them, so don't die.  */
3012  if (MEM_READONLY_P (x)
3013      && GET_CODE (x_addr) != AND
3014      && GET_CODE (true_mem_addr) != AND)
3015    return 0;
3016
3017  /* If we have MEMs referring to different address spaces (which can
3018     potentially overlap), we cannot easily tell from the addresses
3019     whether the references overlap.  */
3020  if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3021    return 1;
3022
3023  base = find_base_term (x_addr);
3024  if (base && (GET_CODE (base) == LABEL_REF
3025	       || (GET_CODE (base) == SYMBOL_REF
3026		   && CONSTANT_POOL_ADDRESS_P (base))))
3027    return 0;
3028
3029  rtx mem_base = find_base_term (true_mem_addr);
3030  if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
3031			  GET_MODE (x), mem_mode))
3032    return 0;
3033
3034  x_addr = canon_rtx (x_addr);
3035  if (!mem_canonicalized)
3036    mem_addr = canon_rtx (true_mem_addr);
3037
3038  if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
3039				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
3040    return ret;
3041
3042  if (mems_in_disjoint_alias_sets_p (x, mem))
3043    return 0;
3044
3045  if (nonoverlapping_memrefs_p (mem, x, false))
3046    return 0;
3047
3048  return rtx_refs_may_alias_p (x, mem, true);
3049}
3050
3051/* True dependence: X is read after store in MEM takes place.  */
3052
3053int
3054true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
3055{
3056  return true_dependence_1 (mem, mem_mode, NULL_RTX,
3057			    x, NULL_RTX, /*mem_canonicalized=*/false);
3058}
3059
3060/* Canonical true dependence: X is read after store in MEM takes place.
3061   Variant of true_dependence which assumes MEM has already been
3062   canonicalized (hence we no longer do that here).
3063   The mem_addr argument has been added, since true_dependence_1 computed
3064   this value prior to canonicalizing.  */
3065
3066int
3067canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3068		       const_rtx x, rtx x_addr)
3069{
3070  return true_dependence_1 (mem, mem_mode, mem_addr,
3071			    x, x_addr, /*mem_canonicalized=*/true);
3072}
3073
3074/* Returns nonzero if a write to X might alias a previous read from
3075   (or, if WRITEP is true, a write to) MEM.
3076   If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3077   and X_MODE the mode for that access.
3078   If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3079
3080static int
3081write_dependence_p (const_rtx mem,
3082		    const_rtx x, machine_mode x_mode, rtx x_addr,
3083		    bool mem_canonicalized, bool x_canonicalized, bool writep)
3084{
3085  rtx mem_addr;
3086  rtx true_mem_addr, true_x_addr;
3087  rtx base;
3088  int ret;
3089
3090  gcc_checking_assert (x_canonicalized
3091		       ? (x_addr != NULL_RTX
3092			  && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3093		       : (x_addr == NULL_RTX && x_mode == VOIDmode));
3094
3095  if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3096    return 1;
3097
3098  /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3099     This is used in epilogue deallocation functions.  */
3100  if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3101    return 1;
3102  if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3103    return 1;
3104  if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3105      || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3106    return 1;
3107
3108  if (!x_addr)
3109    x_addr = XEXP (x, 0);
3110  true_x_addr = get_addr (x_addr);
3111
3112  mem_addr = XEXP (mem, 0);
3113  true_mem_addr = get_addr (mem_addr);
3114
3115  /* A read from read-only memory can't conflict with read-write memory.
3116     Don't assume anything when AND addresses are involved and leave to
3117     the code below to determine dependence.  */
3118  if (!writep
3119      && MEM_READONLY_P (mem)
3120      && GET_CODE (true_x_addr) != AND
3121      && GET_CODE (true_mem_addr) != AND)
3122    return 0;
3123
3124  /* If we have MEMs referring to different address spaces (which can
3125     potentially overlap), we cannot easily tell from the addresses
3126     whether the references overlap.  */
3127  if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3128    return 1;
3129
3130  base = find_base_term (true_mem_addr);
3131  if (! writep
3132      && base
3133      && (GET_CODE (base) == LABEL_REF
3134	  || (GET_CODE (base) == SYMBOL_REF
3135	      && CONSTANT_POOL_ADDRESS_P (base))))
3136    return 0;
3137
3138  rtx x_base = find_base_term (true_x_addr);
3139  if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3140			  GET_MODE (x), GET_MODE (mem)))
3141    return 0;
3142
3143  if (!x_canonicalized)
3144    {
3145      x_addr = canon_rtx (true_x_addr);
3146      x_mode = GET_MODE (x);
3147    }
3148  if (!mem_canonicalized)
3149    mem_addr = canon_rtx (true_mem_addr);
3150
3151  if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3152				 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3153    return ret;
3154
3155  if (nonoverlapping_memrefs_p (x, mem, false))
3156    return 0;
3157
3158  return rtx_refs_may_alias_p (x, mem, false);
3159}
3160
3161/* Anti dependence: X is written after read in MEM takes place.  */
3162
3163int
3164anti_dependence (const_rtx mem, const_rtx x)
3165{
3166  return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3167			     /*mem_canonicalized=*/false,
3168			     /*x_canonicalized*/false, /*writep=*/false);
3169}
3170
3171/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3172   Also, consider X in X_MODE (which might be from an enclosing
3173   STRICT_LOW_PART / ZERO_EXTRACT).
3174   If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3175
3176int
3177canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3178		       const_rtx x, machine_mode x_mode, rtx x_addr)
3179{
3180  return write_dependence_p (mem, x, x_mode, x_addr,
3181			     mem_canonicalized, /*x_canonicalized=*/true,
3182			     /*writep=*/false);
3183}
3184
3185/* Output dependence: X is written after store in MEM takes place.  */
3186
3187int
3188output_dependence (const_rtx mem, const_rtx x)
3189{
3190  return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3191			     /*mem_canonicalized=*/false,
3192			     /*x_canonicalized*/false, /*writep=*/true);
3193}
3194
3195/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3196   Also, consider X in X_MODE (which might be from an enclosing
3197   STRICT_LOW_PART / ZERO_EXTRACT).
3198   If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3199
3200int
3201canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3202			 const_rtx x, machine_mode x_mode, rtx x_addr)
3203{
3204  return write_dependence_p (mem, x, x_mode, x_addr,
3205			     mem_canonicalized, /*x_canonicalized=*/true,
3206			     /*writep=*/true);
3207}
3208
3209
3210
3211/* Check whether X may be aliased with MEM.  Don't do offset-based
3212  memory disambiguation & TBAA.  */
3213int
3214may_alias_p (const_rtx mem, const_rtx x)
3215{
3216  rtx x_addr, mem_addr;
3217
3218  if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3219    return 1;
3220
3221  /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3222     This is used in epilogue deallocation functions.  */
3223  if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3224    return 1;
3225  if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3226    return 1;
3227  if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3228      || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3229    return 1;
3230
3231  x_addr = XEXP (x, 0);
3232  x_addr = get_addr (x_addr);
3233
3234  mem_addr = XEXP (mem, 0);
3235  mem_addr = get_addr (mem_addr);
3236
3237  /* Read-only memory is by definition never modified, and therefore can't
3238     conflict with anything.  However, don't assume anything when AND
3239     addresses are involved and leave to the code below to determine
3240     dependence.  We don't expect to find read-only set on MEM, but
3241     stupid user tricks can produce them, so don't die.  */
3242  if (MEM_READONLY_P (x)
3243      && GET_CODE (x_addr) != AND
3244      && GET_CODE (mem_addr) != AND)
3245    return 0;
3246
3247  /* If we have MEMs referring to different address spaces (which can
3248     potentially overlap), we cannot easily tell from the addresses
3249     whether the references overlap.  */
3250  if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3251    return 1;
3252
3253  rtx x_base = find_base_term (x_addr);
3254  rtx mem_base = find_base_term (mem_addr);
3255  if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3256			  GET_MODE (x), GET_MODE (mem_addr)))
3257    return 0;
3258
3259  if (nonoverlapping_memrefs_p (mem, x, true))
3260    return 0;
3261
3262  /* TBAA not valid for loop_invarint */
3263  return rtx_refs_may_alias_p (x, mem, false);
3264}
3265
3266void
3267init_alias_target (void)
3268{
3269  int i;
3270
3271  if (!arg_base_value)
3272    arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3273
3274  memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3275
3276  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3277    /* Check whether this register can hold an incoming pointer
3278       argument.  FUNCTION_ARG_REGNO_P tests outgoing register
3279       numbers, so translate if necessary due to register windows.  */
3280    if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3281	&& targetm.hard_regno_mode_ok (i, Pmode))
3282      static_reg_base_value[i] = arg_base_value;
3283
3284  /* RTL code is required to be consistent about whether it uses the
3285     stack pointer, the frame pointer or the argument pointer to
3286     access a given area of the frame.  We can therefore use the
3287     base address to distinguish between the different areas.  */
3288  static_reg_base_value[STACK_POINTER_REGNUM]
3289    = unique_base_value (UNIQUE_BASE_VALUE_SP);
3290  static_reg_base_value[ARG_POINTER_REGNUM]
3291    = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3292  static_reg_base_value[FRAME_POINTER_REGNUM]
3293    = unique_base_value (UNIQUE_BASE_VALUE_FP);
3294
3295  /* The above rules extend post-reload, with eliminations applying
3296     consistently to each of the three pointers.  Cope with cases in
3297     which the frame pointer is eliminated to the hard frame pointer
3298     rather than the stack pointer.  */
3299  if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3300    static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3301      = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3302}
3303
3304/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3305   to be memory reference.  */
3306static bool memory_modified;
3307static void
3308memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3309{
3310  if (MEM_P (x))
3311    {
3312      if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3313	memory_modified = true;
3314    }
3315}
3316
3317
3318/* Return true when INSN possibly modify memory contents of MEM
3319   (i.e. address can be modified).  */
3320bool
3321memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3322{
3323  if (!INSN_P (insn))
3324    return false;
3325  /* Conservatively assume all non-readonly MEMs might be modified in
3326     calls.  */
3327  if (CALL_P (insn))
3328    return true;
3329  memory_modified = false;
3330  note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3331	       CONST_CAST_RTX(mem));
3332  return memory_modified;
3333}
3334
3335/* Initialize the aliasing machinery.  Initialize the REG_KNOWN_VALUE
3336   array.  */
3337
3338void
3339init_alias_analysis (void)
3340{
3341  unsigned int maxreg = max_reg_num ();
3342  int changed, pass;
3343  int i;
3344  unsigned int ui;
3345  rtx_insn *insn;
3346  rtx val;
3347  int rpo_cnt;
3348  int *rpo;
3349
3350  timevar_push (TV_ALIAS_ANALYSIS);
3351
3352  vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3353  reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3354  bitmap_clear (reg_known_equiv_p);
3355
3356  /* If we have memory allocated from the previous run, use it.  */
3357  if (old_reg_base_value)
3358    reg_base_value = old_reg_base_value;
3359
3360  if (reg_base_value)
3361    reg_base_value->truncate (0);
3362
3363  vec_safe_grow_cleared (reg_base_value, maxreg);
3364
3365  new_reg_base_value = XNEWVEC (rtx, maxreg);
3366  reg_seen = sbitmap_alloc (maxreg);
3367
3368  /* The basic idea is that each pass through this loop will use the
3369     "constant" information from the previous pass to propagate alias
3370     information through another level of assignments.
3371
3372     The propagation is done on the CFG in reverse post-order, to propagate
3373     things forward as far as possible in each iteration.
3374
3375     This could get expensive if the assignment chains are long.  Maybe
3376     we should throttle the number of iterations, possibly based on
3377     the optimization level or flag_expensive_optimizations.
3378
3379     We could propagate more information in the first pass by making use
3380     of DF_REG_DEF_COUNT to determine immediately that the alias information
3381     for a pseudo is "constant".
3382
3383     A program with an uninitialized variable can cause an infinite loop
3384     here.  Instead of doing a full dataflow analysis to detect such problems
3385     we just cap the number of iterations for the loop.
3386
3387     The state of the arrays for the set chain in question does not matter
3388     since the program has undefined behavior.  */
3389
3390  rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3391  rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3392
3393  /* The prologue/epilogue insns are not threaded onto the
3394     insn chain until after reload has completed.  Thus,
3395     there is no sense wasting time checking if INSN is in
3396     the prologue/epilogue until after reload has completed.  */
3397  bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3398				      || targetm.have_epilogue ())
3399				     && reload_completed);
3400
3401  pass = 0;
3402  do
3403    {
3404      /* Assume nothing will change this iteration of the loop.  */
3405      changed = 0;
3406
3407      /* We want to assign the same IDs each iteration of this loop, so
3408	 start counting from one each iteration of the loop.  */
3409      unique_id = 1;
3410
3411      /* We're at the start of the function each iteration through the
3412	 loop, so we're copying arguments.  */
3413      copying_arguments = true;
3414
3415      /* Wipe the potential alias information clean for this pass.  */
3416      memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3417
3418      /* Wipe the reg_seen array clean.  */
3419      bitmap_clear (reg_seen);
3420
3421      /* Initialize the alias information for this pass.  */
3422      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3423	if (static_reg_base_value[i]
3424	    /* Don't treat the hard frame pointer as special if we
3425	       eliminated the frame pointer to the stack pointer instead.  */
3426	    && !(i == HARD_FRAME_POINTER_REGNUM
3427		 && reload_completed
3428		 && !frame_pointer_needed
3429		 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3430					   STACK_POINTER_REGNUM)))
3431	  {
3432	    new_reg_base_value[i] = static_reg_base_value[i];
3433	    bitmap_set_bit (reg_seen, i);
3434	  }
3435
3436      /* Walk the insns adding values to the new_reg_base_value array.  */
3437      for (i = 0; i < rpo_cnt; i++)
3438	{
3439	  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3440	  FOR_BB_INSNS (bb, insn)
3441	    {
3442	      if (NONDEBUG_INSN_P (insn))
3443		{
3444		  rtx note, set;
3445
3446		  if (could_be_prologue_epilogue
3447		      && prologue_epilogue_contains (insn))
3448		    continue;
3449
3450		  /* If this insn has a noalias note, process it,  Otherwise,
3451		     scan for sets.  A simple set will have no side effects
3452		     which could change the base value of any other register.  */
3453
3454		  if (GET_CODE (PATTERN (insn)) == SET
3455		      && REG_NOTES (insn) != 0
3456		      && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3457		    record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3458		  else
3459		    note_stores (insn, record_set, NULL);
3460
3461		  set = single_set (insn);
3462
3463		  if (set != 0
3464		      && REG_P (SET_DEST (set))
3465		      && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3466		    {
3467		      unsigned int regno = REGNO (SET_DEST (set));
3468		      rtx src = SET_SRC (set);
3469		      rtx t;
3470
3471		      note = find_reg_equal_equiv_note (insn);
3472		      if (note && REG_NOTE_KIND (note) == REG_EQUAL
3473			  && DF_REG_DEF_COUNT (regno) != 1)
3474			note = NULL_RTX;
3475
3476		      poly_int64 offset;
3477		      if (note != NULL_RTX
3478			  && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3479			  && ! rtx_varies_p (XEXP (note, 0), 1)
3480			  && ! reg_overlap_mentioned_p (SET_DEST (set),
3481							XEXP (note, 0)))
3482			{
3483			  set_reg_known_value (regno, XEXP (note, 0));
3484			  set_reg_known_equiv_p (regno,
3485						 REG_NOTE_KIND (note) == REG_EQUIV);
3486			}
3487		      else if (DF_REG_DEF_COUNT (regno) == 1
3488			       && GET_CODE (src) == PLUS
3489			       && REG_P (XEXP (src, 0))
3490			       && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3491			       && poly_int_rtx_p (XEXP (src, 1), &offset))
3492			{
3493			  t = plus_constant (GET_MODE (src), t, offset);
3494			  set_reg_known_value (regno, t);
3495			  set_reg_known_equiv_p (regno, false);
3496			}
3497		      else if (DF_REG_DEF_COUNT (regno) == 1
3498			       && ! rtx_varies_p (src, 1))
3499			{
3500			  set_reg_known_value (regno, src);
3501			  set_reg_known_equiv_p (regno, false);
3502			}
3503		    }
3504		}
3505	      else if (NOTE_P (insn)
3506		       && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3507		copying_arguments = false;
3508	    }
3509	}
3510
3511      /* Now propagate values from new_reg_base_value to reg_base_value.  */
3512      gcc_assert (maxreg == (unsigned int) max_reg_num ());
3513
3514      for (ui = 0; ui < maxreg; ui++)
3515	{
3516	  if (new_reg_base_value[ui]
3517	      && new_reg_base_value[ui] != (*reg_base_value)[ui]
3518	      && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3519	    {
3520	      (*reg_base_value)[ui] = new_reg_base_value[ui];
3521	      changed = 1;
3522	    }
3523	}
3524    }
3525  while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3526  XDELETEVEC (rpo);
3527
3528  /* Fill in the remaining entries.  */
3529  FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3530    {
3531      int regno = i + FIRST_PSEUDO_REGISTER;
3532      if (! val)
3533	set_reg_known_value (regno, regno_reg_rtx[regno]);
3534    }
3535
3536  /* Clean up.  */
3537  free (new_reg_base_value);
3538  new_reg_base_value = 0;
3539  sbitmap_free (reg_seen);
3540  reg_seen = 0;
3541  timevar_pop (TV_ALIAS_ANALYSIS);
3542}
3543
3544/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3545   Special API for var-tracking pass purposes.  */
3546
3547void
3548vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3549{
3550  (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3551}
3552
3553void
3554end_alias_analysis (void)
3555{
3556  old_reg_base_value = reg_base_value;
3557  vec_free (reg_known_value);
3558  sbitmap_free (reg_known_equiv_p);
3559}
3560
3561void
3562dump_alias_stats_in_alias_c (FILE *s)
3563{
3564  fprintf (s, "  TBAA oracle: %llu disambiguations %llu queries\n"
3565	      "               %llu are in alias set 0\n"
3566	      "               %llu queries asked about the same object\n"
3567	      "               %llu queries asked about the same alias set\n"
3568	      "               %llu access volatile\n"
3569	      "               %llu are dependent in the DAG\n"
3570	      "               %llu are aritificially in conflict with void *\n",
3571	   alias_stats.num_disambiguated,
3572	   alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3573	   + alias_stats.num_same_objects + alias_stats.num_volatile
3574	   + alias_stats.num_dag + alias_stats.num_disambiguated
3575	   + alias_stats.num_universal,
3576	   alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3577	   alias_stats.num_same_objects, alias_stats.num_volatile,
3578	   alias_stats.num_dag, alias_stats.num_universal);
3579}
3580#include "gt-alias.h"
3581