1/* Extended regular expression matching and search library,
2   version 0.12.
3   (Implements POSIX draft P1003.2/D11.2, except for some of the
4   internationalization features.)
5
6   Copyright (C) 1993-2020 Free Software Foundation, Inc.
7   This file is part of the GNU C Library.
8
9   The GNU C Library is free software; you can redistribute it and/or
10   modify it under the terms of the GNU Lesser General Public
11   License as published by the Free Software Foundation; either
12   version 2.1 of the License, or (at your option) any later version.
13
14   The GNU C Library is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17   Lesser General Public License for more details.
18
19   You should have received a copy of the GNU Lesser General Public
20   License along with the GNU C Library; if not, write to the Free
21   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22   02110-1301 USA.  */
23
24/* This file has been modified for usage in libiberty.  It includes "xregex.h"
25   instead of <regex.h>.  The "xregex.h" header file renames all external
26   routines with an "x" prefix so they do not collide with the native regex
27   routines or with other components regex routines. */
28/* AIX requires this to be the first thing in the file. */
29#if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
30  #pragma alloca
31#endif
32
33#undef	_GNU_SOURCE
34#define _GNU_SOURCE
35
36#ifndef INSIDE_RECURSION
37# ifdef HAVE_CONFIG_H
38#  include <config.h>
39# endif
40#endif
41
42#include <ansidecl.h>
43
44#ifndef INSIDE_RECURSION
45
46# if defined STDC_HEADERS && !defined emacs
47#  include <stddef.h>
48#  define PTR_INT_TYPE ptrdiff_t
49# else
50/* We need this for `regex.h', and perhaps for the Emacs include files.  */
51#  include <sys/types.h>
52#  define PTR_INT_TYPE long
53# endif
54
55# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
56
57/* For platform which support the ISO C amendement 1 functionality we
58   support user defined character classes.  */
59# if defined _LIBC || WIDE_CHAR_SUPPORT
60/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
61#  include <wchar.h>
62#  include <wctype.h>
63# endif
64
65# ifdef _LIBC
66/* We have to keep the namespace clean.  */
67#  define regfree(preg) __regfree (preg)
68#  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69#  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70#  define regerror(errcode, preg, errbuf, errbuf_size) \
71	__regerror(errcode, preg, errbuf, errbuf_size)
72#  define re_set_registers(bu, re, nu, st, en) \
73	__re_set_registers (bu, re, nu, st, en)
74#  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76#  define re_match(bufp, string, size, pos, regs) \
77	__re_match (bufp, string, size, pos, regs)
78#  define re_search(bufp, string, size, startpos, range, regs) \
79	__re_search (bufp, string, size, startpos, range, regs)
80#  define re_compile_pattern(pattern, length, bufp) \
81	__re_compile_pattern (pattern, length, bufp)
82#  define re_set_syntax(syntax) __re_set_syntax (syntax)
83#  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85#  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86
87#  define btowc __btowc
88
89/* We are also using some library internals.  */
90#  include <locale/localeinfo.h>
91#  include <locale/elem-hash.h>
92#  include <langinfo.h>
93#  include <locale/coll-lookup.h>
94# endif
95
96/* This is for other GNU distributions with internationalized messages.  */
97# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
98#  include <libintl.h>
99#  ifdef _LIBC
100#   undef gettext
101#   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
102#  endif
103# else
104#  define gettext(msgid) (msgid)
105# endif
106
107# ifndef gettext_noop
108/* This define is so xgettext can find the internationalizable
109   strings.  */
110#  define gettext_noop(String) String
111# endif
112
113/* The `emacs' switch turns on certain matching commands
114   that make sense only in Emacs. */
115# ifdef emacs
116
117#  include "lisp.h"
118#  include "buffer.h"
119#  include "syntax.h"
120
121# else  /* not emacs */
122
123/* If we are not linking with Emacs proper,
124   we can't use the relocating allocator
125   even if config.h says that we can.  */
126#  undef REL_ALLOC
127
128#  if defined STDC_HEADERS || defined _LIBC
129#   include <stdlib.h>
130#  else
131char *malloc ();
132char *realloc ();
133#  endif
134
135/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
136   If nothing else has been done, use the method below.  */
137#  ifdef INHIBIT_STRING_HEADER
138#   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
139#    if !defined bzero && !defined bcopy
140#     undef INHIBIT_STRING_HEADER
141#    endif
142#   endif
143#  endif
144
145/* This is the normal way of making sure we have a bcopy and a bzero.
146   This is used in most programs--a few other programs avoid this
147   by defining INHIBIT_STRING_HEADER.  */
148#  ifndef INHIBIT_STRING_HEADER
149#   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
150#    include <string.h>
151#    ifndef bzero
152#     ifndef _LIBC
153#      define bzero(s, n)	((void) memset (s, '\0', n))
154#     else
155#      define bzero(s, n)	__bzero (s, n)
156#     endif
157#    endif
158#   else
159#    include <strings.h>
160#    ifndef memcmp
161#     define memcmp(s1, s2, n)	bcmp (s1, s2, n)
162#    endif
163#    ifndef memcpy
164#     define memcpy(d, s, n)	(bcopy (s, d, n), (d))
165#    endif
166#   endif
167#  endif
168
169/* Define the syntax stuff for \<, \>, etc.  */
170
171/* This must be nonzero for the wordchar and notwordchar pattern
172   commands in re_match_2.  */
173#  ifndef Sword
174#   define Sword 1
175#  endif
176
177#  ifdef SWITCH_ENUM_BUG
178#   define SWITCH_ENUM_CAST(x) ((int)(x))
179#  else
180#   define SWITCH_ENUM_CAST(x) (x)
181#  endif
182
183# endif /* not emacs */
184
185# if defined _LIBC || HAVE_LIMITS_H
186#  include <limits.h>
187# endif
188
189# ifndef MB_LEN_MAX
190#  define MB_LEN_MAX 1
191# endif
192
193/* Get the interface, including the syntax bits.  */
194# include "xregex.h"  /* change for libiberty */
195
196/* isalpha etc. are used for the character classes.  */
197# include <ctype.h>
198
199/* Jim Meyering writes:
200
201   "... Some ctype macros are valid only for character codes that
202   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
203   using /bin/cc or gcc but without giving an ansi option).  So, all
204   ctype uses should be through macros like ISPRINT...  If
205   STDC_HEADERS is defined, then autoconf has verified that the ctype
206   macros don't need to be guarded with references to isascii. ...
207   Defining isascii to 1 should let any compiler worth its salt
208   eliminate the && through constant folding."
209   Solaris defines some of these symbols so we must undefine them first.  */
210
211# undef ISASCII
212# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
213#  define ISASCII(c) 1
214# else
215#  define ISASCII(c) isascii(c)
216# endif
217
218# ifdef isblank
219#  define ISBLANK(c) (ISASCII (c) && isblank (c))
220# else
221#  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
222# endif
223# ifdef isgraph
224#  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
225# else
226#  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
227# endif
228
229# undef ISPRINT
230# define ISPRINT(c) (ISASCII (c) && isprint (c))
231# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
232# define ISALNUM(c) (ISASCII (c) && isalnum (c))
233# define ISALPHA(c) (ISASCII (c) && isalpha (c))
234# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
235# define ISLOWER(c) (ISASCII (c) && islower (c))
236# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
237# define ISSPACE(c) (ISASCII (c) && isspace (c))
238# define ISUPPER(c) (ISASCII (c) && isupper (c))
239# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
240
241# ifdef _tolower
242#  define TOLOWER(c) _tolower(c)
243# else
244#  define TOLOWER(c) tolower(c)
245# endif
246
247# ifndef NULL
248#  define NULL (void *)0
249# endif
250
251/* We remove any previous definition of `SIGN_EXTEND_CHAR',
252   since ours (we hope) works properly with all combinations of
253   machines, compilers, `char' and `unsigned char' argument types.
254   (Per Bothner suggested the basic approach.)  */
255# undef SIGN_EXTEND_CHAR
256# if __STDC__
257#  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
258# else  /* not __STDC__ */
259/* As in Harbison and Steele.  */
260#  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
261# endif
262
263# ifndef emacs
264/* How many characters in the character set.  */
265#  define CHAR_SET_SIZE 256
266
267#  ifdef SYNTAX_TABLE
268
269extern char *re_syntax_table;
270
271#  else /* not SYNTAX_TABLE */
272
273static char re_syntax_table[CHAR_SET_SIZE];
274
275static void init_syntax_once (void);
276
277static void
278init_syntax_once (void)
279{
280   register int c;
281   static int done = 0;
282
283   if (done)
284     return;
285   bzero (re_syntax_table, sizeof re_syntax_table);
286
287   for (c = 0; c < CHAR_SET_SIZE; ++c)
288     if (ISALNUM (c))
289	re_syntax_table[c] = Sword;
290
291   re_syntax_table['_'] = Sword;
292
293   done = 1;
294}
295
296#  endif /* not SYNTAX_TABLE */
297
298#  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
299
300# endif /* emacs */
301
302/* Integer type for pointers.  */
303# if !defined _LIBC && !defined HAVE_UINTPTR_T
304typedef unsigned long int uintptr_t;
305# endif
306
307/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
308   use `alloca' instead of `malloc'.  This is because using malloc in
309   re_search* or re_match* could cause memory leaks when C-g is used in
310   Emacs; also, malloc is slower and causes storage fragmentation.  On
311   the other hand, malloc is more portable, and easier to debug.
312
313   Because we sometimes use alloca, some routines have to be macros,
314   not functions -- `alloca'-allocated space disappears at the end of the
315   function it is called in.  */
316
317# ifdef REGEX_MALLOC
318
319#  define REGEX_ALLOCATE malloc
320#  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
321#  define REGEX_FREE free
322
323# else /* not REGEX_MALLOC  */
324
325/* Emacs already defines alloca, sometimes.  */
326#  ifndef alloca
327
328/* Make alloca work the best possible way.  */
329#   ifdef __GNUC__
330#    define alloca __builtin_alloca
331#   else /* not __GNUC__ */
332#    if HAVE_ALLOCA_H
333#     include <alloca.h>
334#    endif /* HAVE_ALLOCA_H */
335#   endif /* not __GNUC__ */
336
337#  endif /* not alloca */
338
339#  define REGEX_ALLOCATE alloca
340
341/* Assumes a `char *destination' variable.  */
342#  define REGEX_REALLOCATE(source, osize, nsize)			\
343  (destination = (char *) alloca (nsize),				\
344   memcpy (destination, source, osize))
345
346/* No need to do anything to free, after alloca.  */
347#  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
348
349# endif /* not REGEX_MALLOC */
350
351/* Define how to allocate the failure stack.  */
352
353# if defined REL_ALLOC && defined REGEX_MALLOC
354
355#  define REGEX_ALLOCATE_STACK(size)				\
356  r_alloc (&failure_stack_ptr, (size))
357#  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
358  r_re_alloc (&failure_stack_ptr, (nsize))
359#  define REGEX_FREE_STACK(ptr)					\
360  r_alloc_free (&failure_stack_ptr)
361
362# else /* not using relocating allocator */
363
364#  ifdef REGEX_MALLOC
365
366#   define REGEX_ALLOCATE_STACK malloc
367#   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
368#   define REGEX_FREE_STACK free
369
370#  else /* not REGEX_MALLOC */
371
372#   define REGEX_ALLOCATE_STACK alloca
373
374#   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
375   REGEX_REALLOCATE (source, osize, nsize)
376/* No need to explicitly free anything.  */
377#   define REGEX_FREE_STACK(arg)
378
379#  endif /* not REGEX_MALLOC */
380# endif /* not using relocating allocator */
381
382
383/* True if `size1' is non-NULL and PTR is pointing anywhere inside
384   `string1' or just past its end.  This works if PTR is NULL, which is
385   a good thing.  */
386# define FIRST_STRING_P(ptr) 					\
387  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
388
389/* (Re)Allocate N items of type T using malloc, or fail.  */
390# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
391# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
392# define RETALLOC_IF(addr, n, t) \
393  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
394# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
395
396# define BYTEWIDTH 8 /* In bits.  */
397
398# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
399
400# undef MAX
401# undef MIN
402# define MAX(a, b) ((a) > (b) ? (a) : (b))
403# define MIN(a, b) ((a) < (b) ? (a) : (b))
404
405typedef char boolean;
406# define false 0
407# define true 1
408
409static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
410                                         reg_syntax_t syntax,
411                                         struct re_pattern_buffer *bufp);
412
413static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
414                                     const char *string1, int size1,
415                                     const char *string2, int size2,
416                                     int pos,
417                                     struct re_registers *regs,
418                                     int stop);
419static int byte_re_search_2 (struct re_pattern_buffer *bufp,
420                             const char *string1, int size1,
421                             const char *string2, int size2,
422                             int startpos, int range,
423                             struct re_registers *regs, int stop);
424static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
425
426#ifdef MBS_SUPPORT
427static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
428                                        reg_syntax_t syntax,
429                                        struct re_pattern_buffer *bufp);
430
431
432static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
433                                    const char *cstring1, int csize1,
434                                    const char *cstring2, int csize2,
435                                    int pos,
436                                    struct re_registers *regs,
437                                    int stop,
438                                    wchar_t *string1, int size1,
439                                    wchar_t *string2, int size2,
440                                    int *mbs_offset1, int *mbs_offset2);
441static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
442                            const char *string1, int size1,
443                            const char *string2, int size2,
444                            int startpos, int range,
445                            struct re_registers *regs, int stop);
446static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
447#endif
448
449/* These are the command codes that appear in compiled regular
450   expressions.  Some opcodes are followed by argument bytes.  A
451   command code can specify any interpretation whatsoever for its
452   arguments.  Zero bytes may appear in the compiled regular expression.  */
453
454typedef enum
455{
456  no_op = 0,
457
458  /* Succeed right away--no more backtracking.  */
459  succeed,
460
461        /* Followed by one byte giving n, then by n literal bytes.  */
462  exactn,
463
464# ifdef MBS_SUPPORT
465	/* Same as exactn, but contains binary data.  */
466  exactn_bin,
467# endif
468
469        /* Matches any (more or less) character.  */
470  anychar,
471
472        /* Matches any one char belonging to specified set.  First
473           following byte is number of bitmap bytes.  Then come bytes
474           for a bitmap saying which chars are in.  Bits in each byte
475           are ordered low-bit-first.  A character is in the set if its
476           bit is 1.  A character too large to have a bit in the map is
477           automatically not in the set.  */
478        /* ifdef MBS_SUPPORT, following element is length of character
479	   classes, length of collating symbols, length of equivalence
480	   classes, length of character ranges, and length of characters.
481	   Next, character class element, collating symbols elements,
482	   equivalence class elements, range elements, and character
483	   elements follow.
484	   See regex_compile function.  */
485  charset,
486
487        /* Same parameters as charset, but match any character that is
488           not one of those specified.  */
489  charset_not,
490
491        /* Start remembering the text that is matched, for storing in a
492           register.  Followed by one byte with the register number, in
493           the range 0 to one less than the pattern buffer's re_nsub
494           field.  Then followed by one byte with the number of groups
495           inner to this one.  (This last has to be part of the
496           start_memory only because we need it in the on_failure_jump
497           of re_match_2.)  */
498  start_memory,
499
500        /* Stop remembering the text that is matched and store it in a
501           memory register.  Followed by one byte with the register
502           number, in the range 0 to one less than `re_nsub' in the
503           pattern buffer, and one byte with the number of inner groups,
504           just like `start_memory'.  (We need the number of inner
505           groups here because we don't have any easy way of finding the
506           corresponding start_memory when we're at a stop_memory.)  */
507  stop_memory,
508
509        /* Match a duplicate of something remembered. Followed by one
510           byte containing the register number.  */
511  duplicate,
512
513        /* Fail unless at beginning of line.  */
514  begline,
515
516        /* Fail unless at end of line.  */
517  endline,
518
519        /* Succeeds if at beginning of buffer (if emacs) or at beginning
520           of string to be matched (if not).  */
521  begbuf,
522
523        /* Analogously, for end of buffer/string.  */
524  endbuf,
525
526        /* Followed by two byte relative address to which to jump.  */
527  jump,
528
529	/* Same as jump, but marks the end of an alternative.  */
530  jump_past_alt,
531
532        /* Followed by two-byte relative address of place to resume at
533           in case of failure.  */
534        /* ifdef MBS_SUPPORT, the size of address is 1.  */
535  on_failure_jump,
536
537        /* Like on_failure_jump, but pushes a placeholder instead of the
538           current string position when executed.  */
539  on_failure_keep_string_jump,
540
541        /* Throw away latest failure point and then jump to following
542           two-byte relative address.  */
543        /* ifdef MBS_SUPPORT, the size of address is 1.  */
544  pop_failure_jump,
545
546        /* Change to pop_failure_jump if know won't have to backtrack to
547           match; otherwise change to jump.  This is used to jump
548           back to the beginning of a repeat.  If what follows this jump
549           clearly won't match what the repeat does, such that we can be
550           sure that there is no use backtracking out of repetitions
551           already matched, then we change it to a pop_failure_jump.
552           Followed by two-byte address.  */
553        /* ifdef MBS_SUPPORT, the size of address is 1.  */
554  maybe_pop_jump,
555
556        /* Jump to following two-byte address, and push a dummy failure
557           point. This failure point will be thrown away if an attempt
558           is made to use it for a failure.  A `+' construct makes this
559           before the first repeat.  Also used as an intermediary kind
560           of jump when compiling an alternative.  */
561        /* ifdef MBS_SUPPORT, the size of address is 1.  */
562  dummy_failure_jump,
563
564	/* Push a dummy failure point and continue.  Used at the end of
565	   alternatives.  */
566  push_dummy_failure,
567
568        /* Followed by two-byte relative address and two-byte number n.
569           After matching N times, jump to the address upon failure.  */
570        /* ifdef MBS_SUPPORT, the size of address is 1.  */
571  succeed_n,
572
573        /* Followed by two-byte relative address, and two-byte number n.
574           Jump to the address N times, then fail.  */
575        /* ifdef MBS_SUPPORT, the size of address is 1.  */
576  jump_n,
577
578        /* Set the following two-byte relative address to the
579           subsequent two-byte number.  The address *includes* the two
580           bytes of number.  */
581        /* ifdef MBS_SUPPORT, the size of address is 1.  */
582  set_number_at,
583
584  wordchar,	/* Matches any word-constituent character.  */
585  notwordchar,	/* Matches any char that is not a word-constituent.  */
586
587  wordbeg,	/* Succeeds if at word beginning.  */
588  wordend,	/* Succeeds if at word end.  */
589
590  wordbound,	/* Succeeds if at a word boundary.  */
591  notwordbound	/* Succeeds if not at a word boundary.  */
592
593# ifdef emacs
594  ,before_dot,	/* Succeeds if before point.  */
595  at_dot,	/* Succeeds if at point.  */
596  after_dot,	/* Succeeds if after point.  */
597
598	/* Matches any character whose syntax is specified.  Followed by
599           a byte which contains a syntax code, e.g., Sword.  */
600  syntaxspec,
601
602	/* Matches any character whose syntax is not that specified.  */
603  notsyntaxspec
604# endif /* emacs */
605} re_opcode_t;
606#endif /* not INSIDE_RECURSION */
607
608
609#ifdef BYTE
610# define CHAR_T char
611# define UCHAR_T unsigned char
612# define COMPILED_BUFFER_VAR bufp->buffer
613# define OFFSET_ADDRESS_SIZE 2
614# define PREFIX(name) byte_##name
615# define ARG_PREFIX(name) name
616# define PUT_CHAR(c) putchar (c)
617#else
618# ifdef WCHAR
619#  define CHAR_T wchar_t
620#  define UCHAR_T wchar_t
621#  define COMPILED_BUFFER_VAR wc_buffer
622#  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
623#  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
624#  define PREFIX(name) wcs_##name
625#  define ARG_PREFIX(name) c##name
626/* Should we use wide stream??  */
627#  define PUT_CHAR(c) printf ("%C", c);
628#  define TRUE 1
629#  define FALSE 0
630# else
631#  ifdef MBS_SUPPORT
632#   define WCHAR
633#   define INSIDE_RECURSION
634#   include "regex.c"
635#   undef INSIDE_RECURSION
636#  endif
637#  define BYTE
638#  define INSIDE_RECURSION
639#  include "regex.c"
640#  undef INSIDE_RECURSION
641# endif
642#endif
643
644#ifdef INSIDE_RECURSION
645/* Common operations on the compiled pattern.  */
646
647/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
648/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
649
650# ifdef WCHAR
651#  define STORE_NUMBER(destination, number)				\
652  do {									\
653    *(destination) = (UCHAR_T)(number);				\
654  } while (0)
655# else /* BYTE */
656#  define STORE_NUMBER(destination, number)				\
657  do {									\
658    (destination)[0] = (number) & 0377;					\
659    (destination)[1] = (number) >> 8;					\
660  } while (0)
661# endif /* WCHAR */
662
663/* Same as STORE_NUMBER, except increment DESTINATION to
664   the byte after where the number is stored.  Therefore, DESTINATION
665   must be an lvalue.  */
666/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
667
668# define STORE_NUMBER_AND_INCR(destination, number)			\
669  do {									\
670    STORE_NUMBER (destination, number);					\
671    (destination) += OFFSET_ADDRESS_SIZE;				\
672  } while (0)
673
674/* Put into DESTINATION a number stored in two contiguous bytes starting
675   at SOURCE.  */
676/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
677
678# ifdef WCHAR
679#  define EXTRACT_NUMBER(destination, source)				\
680  do {									\
681    (destination) = *(source);						\
682  } while (0)
683# else /* BYTE */
684#  define EXTRACT_NUMBER(destination, source)				\
685  do {									\
686    (destination) = *(source) & 0377;					\
687    (destination) += ((unsigned) SIGN_EXTEND_CHAR (*((source) + 1))) << 8; \
688  } while (0)
689# endif
690
691# ifdef DEBUG
692static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
693static void
694PREFIX(extract_number) (int *dest, UCHAR_T *source)
695{
696#  ifdef WCHAR
697  *dest = *source;
698#  else /* BYTE */
699  int temp = SIGN_EXTEND_CHAR (*(source + 1));
700  *dest = *source & 0377;
701  *dest += temp << 8;
702#  endif
703}
704
705#  ifndef EXTRACT_MACROS /* To debug the macros.  */
706#   undef EXTRACT_NUMBER
707#   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
708#  endif /* not EXTRACT_MACROS */
709
710# endif /* DEBUG */
711
712/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
713   SOURCE must be an lvalue.  */
714
715# define EXTRACT_NUMBER_AND_INCR(destination, source)			\
716  do {									\
717    EXTRACT_NUMBER (destination, source);				\
718    (source) += OFFSET_ADDRESS_SIZE; 					\
719  } while (0)
720
721# ifdef DEBUG
722static void PREFIX(extract_number_and_incr) (int *destination,
723                                             UCHAR_T **source);
724static void
725PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
726{
727  PREFIX(extract_number) (destination, *source);
728  *source += OFFSET_ADDRESS_SIZE;
729}
730
731#  ifndef EXTRACT_MACROS
732#   undef EXTRACT_NUMBER_AND_INCR
733#   define EXTRACT_NUMBER_AND_INCR(dest, src) \
734  PREFIX(extract_number_and_incr) (&dest, &src)
735#  endif /* not EXTRACT_MACROS */
736
737# endif /* DEBUG */
738
739
740
741/* If DEBUG is defined, Regex prints many voluminous messages about what
742   it is doing (if the variable `debug' is nonzero).  If linked with the
743   main program in `iregex.c', you can enter patterns and strings
744   interactively.  And if linked with the main program in `main.c' and
745   the other test files, you can run the already-written tests.  */
746
747# ifdef DEBUG
748
749#  ifndef DEFINED_ONCE
750
751/* We use standard I/O for debugging.  */
752#   include <stdio.h>
753
754/* It is useful to test things that ``must'' be true when debugging.  */
755#   include <assert.h>
756
757static int debug;
758
759#   define DEBUG_STATEMENT(e) e
760#   define DEBUG_PRINT1(x) if (debug) printf (x)
761#   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
762#   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
763#   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
764#  endif /* not DEFINED_ONCE */
765
766#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\
767  if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
768#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\
769  if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
770
771
772/* Print the fastmap in human-readable form.  */
773
774#  ifndef DEFINED_ONCE
775void
776print_fastmap (char *fastmap)
777{
778  unsigned was_a_range = 0;
779  unsigned i = 0;
780
781  while (i < (1 << BYTEWIDTH))
782    {
783      if (fastmap[i++])
784	{
785	  was_a_range = 0;
786          putchar (i - 1);
787          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
788            {
789              was_a_range = 1;
790              i++;
791            }
792	  if (was_a_range)
793            {
794              printf ("-");
795              putchar (i - 1);
796            }
797        }
798    }
799  putchar ('\n');
800}
801#  endif /* not DEFINED_ONCE */
802
803
804/* Print a compiled pattern string in human-readable form, starting at
805   the START pointer into it and ending just before the pointer END.  */
806
807void
808PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
809{
810  int mcnt, mcnt2;
811  UCHAR_T *p1;
812  UCHAR_T *p = start;
813  UCHAR_T *pend = end;
814
815  if (start == NULL)
816    {
817      printf ("(null)\n");
818      return;
819    }
820
821  /* Loop over pattern commands.  */
822  while (p < pend)
823    {
824#  ifdef _LIBC
825      printf ("%td:\t", p - start);
826#  else
827      printf ("%ld:\t", (long int) (p - start));
828#  endif
829
830      switch ((re_opcode_t) *p++)
831	{
832        case no_op:
833          printf ("/no_op");
834          break;
835
836	case exactn:
837	  mcnt = *p++;
838          printf ("/exactn/%d", mcnt);
839          do
840	    {
841              putchar ('/');
842	      PUT_CHAR (*p++);
843            }
844          while (--mcnt);
845          break;
846
847#  ifdef MBS_SUPPORT
848	case exactn_bin:
849	  mcnt = *p++;
850	  printf ("/exactn_bin/%d", mcnt);
851          do
852	    {
853	      printf("/%lx", (long int) *p++);
854            }
855          while (--mcnt);
856          break;
857#  endif /* MBS_SUPPORT */
858
859	case start_memory:
860          mcnt = *p++;
861          printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
862          break;
863
864	case stop_memory:
865          mcnt = *p++;
866	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
867          break;
868
869	case duplicate:
870	  printf ("/duplicate/%ld", (long int) *p++);
871	  break;
872
873	case anychar:
874	  printf ("/anychar");
875	  break;
876
877	case charset:
878        case charset_not:
879          {
880#  ifdef WCHAR
881	    int i, length;
882	    wchar_t *workp = p;
883	    printf ("/charset [%s",
884	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
885	    p += 5;
886	    length = *workp++; /* the length of char_classes */
887	    for (i=0 ; i<length ; i++)
888	      printf("[:%lx:]", (long int) *p++);
889	    length = *workp++; /* the length of collating_symbol */
890	    for (i=0 ; i<length ;)
891	      {
892		printf("[.");
893		while(*p != 0)
894		  PUT_CHAR((i++,*p++));
895		i++,p++;
896		printf(".]");
897	      }
898	    length = *workp++; /* the length of equivalence_class */
899	    for (i=0 ; i<length ;)
900	      {
901		printf("[=");
902		while(*p != 0)
903		  PUT_CHAR((i++,*p++));
904		i++,p++;
905		printf("=]");
906	      }
907	    length = *workp++; /* the length of char_range */
908	    for (i=0 ; i<length ; i++)
909	      {
910		wchar_t range_start = *p++;
911		wchar_t range_end = *p++;
912		printf("%C-%C", range_start, range_end);
913	      }
914	    length = *workp++; /* the length of char */
915	    for (i=0 ; i<length ; i++)
916	      printf("%C", *p++);
917	    putchar (']');
918#  else
919            register int c, last = -100;
920	    register int in_range = 0;
921
922	    printf ("/charset [%s",
923	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
924
925            assert (p + *p < pend);
926
927            for (c = 0; c < 256; c++)
928	      if (c / 8 < *p
929		  && (p[1 + (c/8)] & (1 << (c % 8))))
930		{
931		  /* Are we starting a range?  */
932		  if (last + 1 == c && ! in_range)
933		    {
934		      putchar ('-');
935		      in_range = 1;
936		    }
937		  /* Have we broken a range?  */
938		  else if (last + 1 != c && in_range)
939              {
940		      putchar (last);
941		      in_range = 0;
942		    }
943
944		  if (! in_range)
945		    putchar (c);
946
947		  last = c;
948              }
949
950	    if (in_range)
951	      putchar (last);
952
953	    putchar (']');
954
955	    p += 1 + *p;
956#  endif /* WCHAR */
957	  }
958	  break;
959
960	case begline:
961	  printf ("/begline");
962          break;
963
964	case endline:
965          printf ("/endline");
966          break;
967
968	case on_failure_jump:
969          PREFIX(extract_number_and_incr) (&mcnt, &p);
970#  ifdef _LIBC
971  	  printf ("/on_failure_jump to %td", p + mcnt - start);
972#  else
973  	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
974#  endif
975          break;
976
977	case on_failure_keep_string_jump:
978          PREFIX(extract_number_and_incr) (&mcnt, &p);
979#  ifdef _LIBC
980  	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
981#  else
982  	  printf ("/on_failure_keep_string_jump to %ld",
983		  (long int) (p + mcnt - start));
984#  endif
985          break;
986
987	case dummy_failure_jump:
988          PREFIX(extract_number_and_incr) (&mcnt, &p);
989#  ifdef _LIBC
990  	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
991#  else
992  	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
993#  endif
994          break;
995
996	case push_dummy_failure:
997          printf ("/push_dummy_failure");
998          break;
999
1000        case maybe_pop_jump:
1001          PREFIX(extract_number_and_incr) (&mcnt, &p);
1002#  ifdef _LIBC
1003  	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
1004#  else
1005  	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1006#  endif
1007	  break;
1008
1009        case pop_failure_jump:
1010	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1011#  ifdef _LIBC
1012  	  printf ("/pop_failure_jump to %td", p + mcnt - start);
1013#  else
1014  	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1015#  endif
1016	  break;
1017
1018        case jump_past_alt:
1019	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1020#  ifdef _LIBC
1021  	  printf ("/jump_past_alt to %td", p + mcnt - start);
1022#  else
1023  	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1024#  endif
1025	  break;
1026
1027        case jump:
1028	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1029#  ifdef _LIBC
1030  	  printf ("/jump to %td", p + mcnt - start);
1031#  else
1032  	  printf ("/jump to %ld", (long int) (p + mcnt - start));
1033#  endif
1034	  break;
1035
1036        case succeed_n:
1037          PREFIX(extract_number_and_incr) (&mcnt, &p);
1038	  p1 = p + mcnt;
1039          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1040#  ifdef _LIBC
1041	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1042#  else
1043	  printf ("/succeed_n to %ld, %d times",
1044		  (long int) (p1 - start), mcnt2);
1045#  endif
1046          break;
1047
1048        case jump_n:
1049          PREFIX(extract_number_and_incr) (&mcnt, &p);
1050	  p1 = p + mcnt;
1051          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1052	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1053          break;
1054
1055        case set_number_at:
1056          PREFIX(extract_number_and_incr) (&mcnt, &p);
1057	  p1 = p + mcnt;
1058          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1059#  ifdef _LIBC
1060	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1061#  else
1062	  printf ("/set_number_at location %ld to %d",
1063		  (long int) (p1 - start), mcnt2);
1064#  endif
1065          break;
1066
1067        case wordbound:
1068	  printf ("/wordbound");
1069	  break;
1070
1071	case notwordbound:
1072	  printf ("/notwordbound");
1073          break;
1074
1075	case wordbeg:
1076	  printf ("/wordbeg");
1077	  break;
1078
1079	case wordend:
1080	  printf ("/wordend");
1081	  break;
1082
1083#  ifdef emacs
1084	case before_dot:
1085	  printf ("/before_dot");
1086          break;
1087
1088	case at_dot:
1089	  printf ("/at_dot");
1090          break;
1091
1092	case after_dot:
1093	  printf ("/after_dot");
1094          break;
1095
1096	case syntaxspec:
1097          printf ("/syntaxspec");
1098	  mcnt = *p++;
1099	  printf ("/%d", mcnt);
1100          break;
1101
1102	case notsyntaxspec:
1103          printf ("/notsyntaxspec");
1104	  mcnt = *p++;
1105	  printf ("/%d", mcnt);
1106	  break;
1107#  endif /* emacs */
1108
1109	case wordchar:
1110	  printf ("/wordchar");
1111          break;
1112
1113	case notwordchar:
1114	  printf ("/notwordchar");
1115          break;
1116
1117	case begbuf:
1118	  printf ("/begbuf");
1119          break;
1120
1121	case endbuf:
1122	  printf ("/endbuf");
1123          break;
1124
1125        default:
1126          printf ("?%ld", (long int) *(p-1));
1127	}
1128
1129      putchar ('\n');
1130    }
1131
1132#  ifdef _LIBC
1133  printf ("%td:\tend of pattern.\n", p - start);
1134#  else
1135  printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1136#  endif
1137}
1138
1139
1140void
1141PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1142{
1143  UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1144
1145  PREFIX(print_partial_compiled_pattern) (buffer, buffer
1146				  + bufp->used / sizeof(UCHAR_T));
1147  printf ("%ld bytes used/%ld bytes allocated.\n",
1148	  bufp->used, bufp->allocated);
1149
1150  if (bufp->fastmap_accurate && bufp->fastmap)
1151    {
1152      printf ("fastmap: ");
1153      print_fastmap (bufp->fastmap);
1154    }
1155
1156#  ifdef _LIBC
1157  printf ("re_nsub: %Zd\t", bufp->re_nsub);
1158#  else
1159  printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1160#  endif
1161  printf ("regs_alloc: %d\t", bufp->regs_allocated);
1162  printf ("can_be_null: %d\t", bufp->can_be_null);
1163  printf ("newline_anchor: %d\n", bufp->newline_anchor);
1164  printf ("no_sub: %d\t", bufp->no_sub);
1165  printf ("not_bol: %d\t", bufp->not_bol);
1166  printf ("not_eol: %d\t", bufp->not_eol);
1167  printf ("syntax: %lx\n", bufp->syntax);
1168  /* Perhaps we should print the translate table?  */
1169}
1170
1171
1172void
1173PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1174                             int size1, const CHAR_T *string2, int size2)
1175{
1176  int this_char;
1177
1178  if (where == NULL)
1179    printf ("(null)");
1180  else
1181    {
1182      int cnt;
1183
1184      if (FIRST_STRING_P (where))
1185        {
1186          for (this_char = where - string1; this_char < size1; this_char++)
1187	    PUT_CHAR (string1[this_char]);
1188
1189          where = string2;
1190        }
1191
1192      cnt = 0;
1193      for (this_char = where - string2; this_char < size2; this_char++)
1194	{
1195	  PUT_CHAR (string2[this_char]);
1196	  if (++cnt > 100)
1197	    {
1198	      fputs ("...", stdout);
1199	      break;
1200	    }
1201	}
1202    }
1203}
1204
1205#  ifndef DEFINED_ONCE
1206void
1207printchar (int c)
1208{
1209  putc (c, stderr);
1210}
1211#  endif
1212
1213# else /* not DEBUG */
1214
1215#  ifndef DEFINED_ONCE
1216#   undef assert
1217#   define assert(e)
1218
1219#   define DEBUG_STATEMENT(e)
1220#   define DEBUG_PRINT1(x)
1221#   define DEBUG_PRINT2(x1, x2)
1222#   define DEBUG_PRINT3(x1, x2, x3)
1223#   define DEBUG_PRINT4(x1, x2, x3, x4)
1224#  endif /* not DEFINED_ONCE */
1225#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1226#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1227
1228# endif /* not DEBUG */
1229
1230
1231
1232# ifdef WCHAR
1233/* This  convert a multibyte string to a wide character string.
1234   And write their correspondances to offset_buffer(see below)
1235   and write whether each wchar_t is binary data to is_binary.
1236   This assume invalid multibyte sequences as binary data.
1237   We assume offset_buffer and is_binary is already allocated
1238   enough space.  */
1239
1240static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1241				  size_t len, int *offset_buffer,
1242				  char *is_binary);
1243static size_t
1244convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1245                    int *offset_buffer, char *is_binary)
1246     /* It hold correspondances between src(char string) and
1247	dest(wchar_t string) for optimization.
1248	e.g. src  = "xxxyzz"
1249             dest = {'X', 'Y', 'Z'}
1250	      (each "xxx", "y" and "zz" represent one multibyte character
1251	       corresponding to 'X', 'Y' and 'Z'.)
1252	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1253	  	        = {0, 3, 4, 6}
1254     */
1255{
1256  wchar_t *pdest = dest;
1257  const unsigned char *psrc = src;
1258  size_t wc_count = 0;
1259
1260  mbstate_t mbs;
1261  int i, consumed;
1262  size_t mb_remain = len;
1263  size_t mb_count = 0;
1264
1265  /* Initialize the conversion state.  */
1266  memset (&mbs, 0, sizeof (mbstate_t));
1267
1268  offset_buffer[0] = 0;
1269  for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1270	 psrc += consumed)
1271    {
1272#ifdef _LIBC
1273      consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1274#else
1275      consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1276#endif
1277
1278      if (consumed <= 0)
1279	/* failed to convert. maybe src contains binary data.
1280	   So we consume 1 byte manualy.  */
1281	{
1282	  *pdest = *psrc;
1283	  consumed = 1;
1284	  is_binary[wc_count] = TRUE;
1285	}
1286      else
1287	is_binary[wc_count] = FALSE;
1288      /* In sjis encoding, we use yen sign as escape character in
1289	 place of reverse solidus. So we convert 0x5c(yen sign in
1290	 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1291	 solidus in UCS2).  */
1292      if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1293	*pdest = (wchar_t) *psrc;
1294
1295      offset_buffer[wc_count + 1] = mb_count += consumed;
1296    }
1297
1298  /* Fill remain of the buffer with sentinel.  */
1299  for (i = wc_count + 1 ; i <= len ; i++)
1300    offset_buffer[i] = mb_count + 1;
1301
1302  return wc_count;
1303}
1304
1305# endif /* WCHAR */
1306
1307#else /* not INSIDE_RECURSION */
1308
1309/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1310   also be assigned to arbitrarily: each pattern buffer stores its own
1311   syntax, so it can be changed between regex compilations.  */
1312/* This has no initializer because initialized variables in Emacs
1313   become read-only after dumping.  */
1314reg_syntax_t re_syntax_options;
1315
1316
1317/* Specify the precise syntax of regexps for compilation.  This provides
1318   for compatibility for various utilities which historically have
1319   different, incompatible syntaxes.
1320
1321   The argument SYNTAX is a bit mask comprised of the various bits
1322   defined in regex.h.  We return the old syntax.  */
1323
1324reg_syntax_t
1325re_set_syntax (reg_syntax_t syntax)
1326{
1327  reg_syntax_t ret = re_syntax_options;
1328
1329  re_syntax_options = syntax;
1330# ifdef DEBUG
1331  if (syntax & RE_DEBUG)
1332    debug = 1;
1333  else if (debug) /* was on but now is not */
1334    debug = 0;
1335# endif /* DEBUG */
1336  return ret;
1337}
1338# ifdef _LIBC
1339weak_alias (__re_set_syntax, re_set_syntax)
1340# endif
1341
1342/* This table gives an error message for each of the error codes listed
1343   in regex.h.  Obviously the order here has to be same as there.
1344   POSIX doesn't require that we do anything for REG_NOERROR,
1345   but why not be nice?  */
1346
1347static const char *re_error_msgid[] =
1348  {
1349    gettext_noop ("Success"),	/* REG_NOERROR */
1350    gettext_noop ("No match"),	/* REG_NOMATCH */
1351    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1352    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1353    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1354    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1355    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1356    gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1357    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1358    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1359    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1360    gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1361    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1362    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1363    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1364    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1365    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1366  };
1367
1368#endif /* INSIDE_RECURSION */
1369
1370#ifndef DEFINED_ONCE
1371/* Avoiding alloca during matching, to placate r_alloc.  */
1372
1373/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1374   searching and matching functions should not call alloca.  On some
1375   systems, alloca is implemented in terms of malloc, and if we're
1376   using the relocating allocator routines, then malloc could cause a
1377   relocation, which might (if the strings being searched are in the
1378   ralloc heap) shift the data out from underneath the regexp
1379   routines.
1380
1381   Here's another reason to avoid allocation: Emacs
1382   processes input from X in a signal handler; processing X input may
1383   call malloc; if input arrives while a matching routine is calling
1384   malloc, then we're scrod.  But Emacs can't just block input while
1385   calling matching routines; then we don't notice interrupts when
1386   they come in.  So, Emacs blocks input around all regexp calls
1387   except the matching calls, which it leaves unprotected, in the
1388   faith that they will not malloc.  */
1389
1390/* Normally, this is fine.  */
1391# define MATCH_MAY_ALLOCATE
1392
1393/* When using GNU C, we are not REALLY using the C alloca, no matter
1394   what config.h may say.  So don't take precautions for it.  */
1395# ifdef __GNUC__
1396#  undef C_ALLOCA
1397# endif
1398
1399/* The match routines may not allocate if (1) they would do it with malloc
1400   and (2) it's not safe for them to use malloc.
1401   Note that if REL_ALLOC is defined, matching would not use malloc for the
1402   failure stack, but we would still use it for the register vectors;
1403   so REL_ALLOC should not affect this.  */
1404# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1405#  undef MATCH_MAY_ALLOCATE
1406# endif
1407#endif /* not DEFINED_ONCE */
1408
1409#ifdef INSIDE_RECURSION
1410/* Failure stack declarations and macros; both re_compile_fastmap and
1411   re_match_2 use a failure stack.  These have to be macros because of
1412   REGEX_ALLOCATE_STACK.  */
1413
1414
1415/* Number of failure points for which to initially allocate space
1416   when matching.  If this number is exceeded, we allocate more
1417   space, so it is not a hard limit.  */
1418# ifndef INIT_FAILURE_ALLOC
1419#  define INIT_FAILURE_ALLOC 5
1420# endif
1421
1422/* Roughly the maximum number of failure points on the stack.  Would be
1423   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1424   This is a variable only so users of regex can assign to it; we never
1425   change it ourselves.  */
1426
1427# ifdef INT_IS_16BIT
1428
1429#  ifndef DEFINED_ONCE
1430#   if defined MATCH_MAY_ALLOCATE
1431/* 4400 was enough to cause a crash on Alpha OSF/1,
1432   whose default stack limit is 2mb.  */
1433long int re_max_failures = 4000;
1434#   else
1435long int re_max_failures = 2000;
1436#   endif
1437#  endif
1438
1439union PREFIX(fail_stack_elt)
1440{
1441  UCHAR_T *pointer;
1442  long int integer;
1443};
1444
1445typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1446
1447typedef struct
1448{
1449  PREFIX(fail_stack_elt_t) *stack;
1450  unsigned long int size;
1451  unsigned long int avail;		/* Offset of next open position.  */
1452} PREFIX(fail_stack_type);
1453
1454# else /* not INT_IS_16BIT */
1455
1456#  ifndef DEFINED_ONCE
1457#   if defined MATCH_MAY_ALLOCATE
1458/* 4400 was enough to cause a crash on Alpha OSF/1,
1459   whose default stack limit is 2mb.  */
1460int re_max_failures = 4000;
1461#   else
1462int re_max_failures = 2000;
1463#   endif
1464#  endif
1465
1466union PREFIX(fail_stack_elt)
1467{
1468  UCHAR_T *pointer;
1469  int integer;
1470};
1471
1472typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1473
1474typedef struct
1475{
1476  PREFIX(fail_stack_elt_t) *stack;
1477  unsigned size;
1478  unsigned avail;			/* Offset of next open position.  */
1479} PREFIX(fail_stack_type);
1480
1481# endif /* INT_IS_16BIT */
1482
1483# ifndef DEFINED_ONCE
1484#  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1485#  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1486#  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1487# endif
1488
1489
1490/* Define macros to initialize and free the failure stack.
1491   Do `return -2' if the alloc fails.  */
1492
1493# ifdef MATCH_MAY_ALLOCATE
1494#  define INIT_FAIL_STACK()						\
1495  do {									\
1496    fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\
1497      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1498									\
1499    if (fail_stack.stack == NULL)				\
1500      return -2;							\
1501									\
1502    fail_stack.size = INIT_FAILURE_ALLOC;			\
1503    fail_stack.avail = 0;					\
1504  } while (0)
1505
1506#  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1507# else
1508#  define INIT_FAIL_STACK()						\
1509  do {									\
1510    fail_stack.avail = 0;					\
1511  } while (0)
1512
1513#  define RESET_FAIL_STACK()
1514# endif
1515
1516
1517/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1518
1519   Return 1 if succeeds, and 0 if either ran out of memory
1520   allocating space for it or it was already too large.
1521
1522   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1523
1524# define DOUBLE_FAIL_STACK(fail_stack)					\
1525  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1526   ? 0									\
1527   : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\
1528        REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1529          (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\
1530          ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1531									\
1532      (fail_stack).stack == NULL					\
1533      ? 0								\
1534      : ((fail_stack).size <<= 1, 					\
1535         1)))
1536
1537
1538/* Push pointer POINTER on FAIL_STACK.
1539   Return 1 if was able to do so and 0 if ran out of memory allocating
1540   space to do so.  */
1541# define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1542  ((FAIL_STACK_FULL ()							\
1543    && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1544   ? 0									\
1545   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1546      1))
1547
1548/* Push a pointer value onto the failure stack.
1549   Assumes the variable `fail_stack'.  Probably should only
1550   be called from within `PUSH_FAILURE_POINT'.  */
1551# define PUSH_FAILURE_POINTER(item)					\
1552  fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1553
1554/* This pushes an integer-valued item onto the failure stack.
1555   Assumes the variable `fail_stack'.  Probably should only
1556   be called from within `PUSH_FAILURE_POINT'.  */
1557# define PUSH_FAILURE_INT(item)					\
1558  fail_stack.stack[fail_stack.avail++].integer = (item)
1559
1560/* Push a fail_stack_elt_t value onto the failure stack.
1561   Assumes the variable `fail_stack'.  Probably should only
1562   be called from within `PUSH_FAILURE_POINT'.  */
1563# define PUSH_FAILURE_ELT(item)					\
1564  fail_stack.stack[fail_stack.avail++] =  (item)
1565
1566/* These three POP... operations complement the three PUSH... operations.
1567   All assume that `fail_stack' is nonempty.  */
1568# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1569# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1570# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1571
1572/* Used to omit pushing failure point id's when we're not debugging.  */
1573# ifdef DEBUG
1574#  define DEBUG_PUSH PUSH_FAILURE_INT
1575#  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1576# else
1577#  define DEBUG_PUSH(item)
1578#  define DEBUG_POP(item_addr)
1579# endif
1580
1581
1582/* Push the information about the state we will need
1583   if we ever fail back to it.
1584
1585   Requires variables fail_stack, regstart, regend, reg_info, and
1586   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1587   be declared.
1588
1589   Does `return FAILURE_CODE' if runs out of memory.  */
1590
1591# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1592  do {									\
1593    char *destination;							\
1594    /* Must be int, so when we don't save any registers, the arithmetic	\
1595       of 0 + -1 isn't done as unsigned.  */				\
1596    /* Can't be int, since there is not a shred of a guarantee that int	\
1597       is wide enough to hold a value of something to which pointer can	\
1598       be assigned */							\
1599    active_reg_t this_reg;						\
1600    									\
1601    DEBUG_STATEMENT (failure_id++);					\
1602    DEBUG_STATEMENT (nfailure_points_pushed++);				\
1603    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1604    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1605    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1606									\
1607    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1608    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1609									\
1610    /* Ensure we have enough space allocated for what we will push.  */	\
1611    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1612      {									\
1613        if (!DOUBLE_FAIL_STACK (fail_stack))				\
1614          return failure_code;						\
1615									\
1616        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1617		       (fail_stack).size);				\
1618        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1619      }									\
1620									\
1621    /* Push the info, starting with the registers.  */			\
1622    DEBUG_PRINT1 ("\n");						\
1623									\
1624    if (1)								\
1625      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1626	   this_reg++)							\
1627	{								\
1628	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1629	  DEBUG_STATEMENT (num_regs_pushed++);				\
1630									\
1631	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1632	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1633									\
1634	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1635	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1636									\
1637	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1638			reg_info[this_reg].word.pointer);		\
1639	  DEBUG_PRINT2 (" match_null=%d",				\
1640			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1641	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1642	  DEBUG_PRINT2 (" matched_something=%d",			\
1643			MATCHED_SOMETHING (reg_info[this_reg]));	\
1644	  DEBUG_PRINT2 (" ever_matched=%d",				\
1645			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1646	  DEBUG_PRINT1 ("\n");						\
1647	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1648	}								\
1649									\
1650    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1651    PUSH_FAILURE_INT (lowest_active_reg);				\
1652									\
1653    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1654    PUSH_FAILURE_INT (highest_active_reg);				\
1655									\
1656    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1657    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1658    PUSH_FAILURE_POINTER (pattern_place);				\
1659									\
1660    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1661    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1662				 size2);				\
1663    DEBUG_PRINT1 ("'\n");						\
1664    PUSH_FAILURE_POINTER (string_place);				\
1665									\
1666    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1667    DEBUG_PUSH (failure_id);						\
1668  } while (0)
1669
1670# ifndef DEFINED_ONCE
1671/* This is the number of items that are pushed and popped on the stack
1672   for each register.  */
1673#  define NUM_REG_ITEMS  3
1674
1675/* Individual items aside from the registers.  */
1676#  ifdef DEBUG
1677#   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1678#  else
1679#   define NUM_NONREG_ITEMS 4
1680#  endif
1681
1682/* We push at most this many items on the stack.  */
1683/* We used to use (num_regs - 1), which is the number of registers
1684   this regexp will save; but that was changed to 5
1685   to avoid stack overflow for a regexp with lots of parens.  */
1686#  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1687
1688/* We actually push this many items.  */
1689#  define NUM_FAILURE_ITEMS				\
1690  (((0							\
1691     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1692    * NUM_REG_ITEMS)					\
1693   + NUM_NONREG_ITEMS)
1694
1695/* How many items can still be added to the stack without overflowing it.  */
1696#  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1697# endif /* not DEFINED_ONCE */
1698
1699
1700/* Pops what PUSH_FAIL_STACK pushes.
1701
1702   We restore into the parameters, all of which should be lvalues:
1703     STR -- the saved data position.
1704     PAT -- the saved pattern position.
1705     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1706     REGSTART, REGEND -- arrays of string positions.
1707     REG_INFO -- array of information about each subexpression.
1708
1709   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1710   `pend', `string1', `size1', `string2', and `size2'.  */
1711# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1712{									\
1713  DEBUG_STATEMENT (unsigned failure_id;)				\
1714  active_reg_t this_reg;						\
1715  const UCHAR_T *string_temp;						\
1716									\
1717  assert (!FAIL_STACK_EMPTY ());					\
1718									\
1719  /* Remove failure points and point to how many regs pushed.  */	\
1720  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1721  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1722  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1723									\
1724  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1725									\
1726  DEBUG_POP (&failure_id);						\
1727  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1728									\
1729  /* If the saved string location is NULL, it came from an		\
1730     on_failure_keep_string_jump opcode, and we want to throw away the	\
1731     saved NULL, thus retaining our current position in the string.  */	\
1732  string_temp = POP_FAILURE_POINTER ();					\
1733  if (string_temp != NULL)						\
1734    str = (const CHAR_T *) string_temp;					\
1735									\
1736  DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1737  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1738  DEBUG_PRINT1 ("'\n");							\
1739									\
1740  pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\
1741  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1742  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1743									\
1744  /* Restore register info.  */						\
1745  high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1746  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1747									\
1748  low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1749  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1750									\
1751  if (1)								\
1752    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1753      {									\
1754	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1755									\
1756	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1757	DEBUG_PRINT2 ("      info: %p\n",				\
1758		      reg_info[this_reg].word.pointer);			\
1759									\
1760	regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1761	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1762									\
1763	regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1764	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1765      }									\
1766  else									\
1767    {									\
1768      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1769	{								\
1770	  reg_info[this_reg].word.integer = 0;				\
1771	  regend[this_reg] = 0;						\
1772	  regstart[this_reg] = 0;					\
1773	}								\
1774      highest_active_reg = high_reg;					\
1775    }									\
1776									\
1777  set_regs_matched_done = 0;						\
1778  DEBUG_STATEMENT (nfailure_points_popped++);				\
1779} /* POP_FAILURE_POINT */
1780
1781/* Structure for per-register (a.k.a. per-group) information.
1782   Other register information, such as the
1783   starting and ending positions (which are addresses), and the list of
1784   inner groups (which is a bits list) are maintained in separate
1785   variables.
1786
1787   We are making a (strictly speaking) nonportable assumption here: that
1788   the compiler will pack our bit fields into something that fits into
1789   the type of `word', i.e., is something that fits into one item on the
1790   failure stack.  */
1791
1792
1793/* Declarations and macros for re_match_2.  */
1794
1795typedef union
1796{
1797  PREFIX(fail_stack_elt_t) word;
1798  struct
1799  {
1800      /* This field is one if this group can match the empty string,
1801         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1802# define MATCH_NULL_UNSET_VALUE 3
1803    unsigned match_null_string_p : 2;
1804    unsigned is_active : 1;
1805    unsigned matched_something : 1;
1806    unsigned ever_matched_something : 1;
1807  } bits;
1808} PREFIX(register_info_type);
1809
1810# ifndef DEFINED_ONCE
1811#  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1812#  define IS_ACTIVE(R)  ((R).bits.is_active)
1813#  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1814#  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1815
1816
1817/* Call this when have matched a real character; it sets `matched' flags
1818   for the subexpressions which we are currently inside.  Also records
1819   that those subexprs have matched.  */
1820#  define SET_REGS_MATCHED()						\
1821  do									\
1822    {									\
1823      if (!set_regs_matched_done)					\
1824	{								\
1825	  active_reg_t r;						\
1826	  set_regs_matched_done = 1;					\
1827	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1828	    {								\
1829	      MATCHED_SOMETHING (reg_info[r])				\
1830		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1831		= 1;							\
1832	    }								\
1833	}								\
1834    }									\
1835  while (0)
1836# endif /* not DEFINED_ONCE */
1837
1838/* Registers are set to a sentinel when they haven't yet matched.  */
1839static CHAR_T PREFIX(reg_unset_dummy);
1840# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1841# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1842
1843/* Subroutine declarations and macros for regex_compile.  */
1844static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1845static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1846                               int arg1, int arg2);
1847static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1848                                int arg, UCHAR_T *end);
1849static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1850                                int arg1, int arg2, UCHAR_T *end);
1851static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1852                                         const CHAR_T *p,
1853                                         reg_syntax_t syntax);
1854static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1855                                         const CHAR_T *pend,
1856                                         reg_syntax_t syntax);
1857# ifdef WCHAR
1858static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1859                                        const CHAR_T **p_ptr,
1860                                        const CHAR_T *pend,
1861                                        char *translate,
1862                                        reg_syntax_t syntax,
1863                                        UCHAR_T *b,
1864                                        CHAR_T *char_set);
1865static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1866# else /* BYTE */
1867static reg_errcode_t byte_compile_range (unsigned int range_start,
1868                                         const char **p_ptr,
1869                                         const char *pend,
1870                                         char *translate,
1871                                         reg_syntax_t syntax,
1872                                         unsigned char *b);
1873# endif /* WCHAR */
1874
1875/* Fetch the next character in the uncompiled pattern---translating it
1876   if necessary.  Also cast from a signed character in the constant
1877   string passed to us by the user to an unsigned char that we can use
1878   as an array index (in, e.g., `translate').  */
1879/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1880   because it is impossible to allocate 4GB array for some encodings
1881   which have 4 byte character_set like UCS4.  */
1882# ifndef PATFETCH
1883#  ifdef WCHAR
1884#   define PATFETCH(c)							\
1885  do {if (p == pend) return REG_EEND;					\
1886    c = (UCHAR_T) *p++;							\
1887    if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\
1888  } while (0)
1889#  else /* BYTE */
1890#   define PATFETCH(c)							\
1891  do {if (p == pend) return REG_EEND;					\
1892    c = (unsigned char) *p++;						\
1893    if (translate) c = (unsigned char) translate[c];			\
1894  } while (0)
1895#  endif /* WCHAR */
1896# endif
1897
1898/* Fetch the next character in the uncompiled pattern, with no
1899   translation.  */
1900# define PATFETCH_RAW(c)						\
1901  do {if (p == pend) return REG_EEND;					\
1902    c = (UCHAR_T) *p++; 	       					\
1903  } while (0)
1904
1905/* Go backwards one character in the pattern.  */
1906# define PATUNFETCH p--
1907
1908
1909/* If `translate' is non-null, return translate[D], else just D.  We
1910   cast the subscript to translate because some data is declared as
1911   `char *', to avoid warnings when a string constant is passed.  But
1912   when we use a character as a subscript we must make it unsigned.  */
1913/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1914   because it is impossible to allocate 4GB array for some encodings
1915   which have 4 byte character_set like UCS4.  */
1916
1917# ifndef TRANSLATE
1918#  ifdef WCHAR
1919#   define TRANSLATE(d) \
1920  ((translate && ((UCHAR_T) (d)) <= 0xff) \
1921   ? (char) translate[(unsigned char) (d)] : (d))
1922# else /* BYTE */
1923#   define TRANSLATE(d) \
1924  (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1925#  endif /* WCHAR */
1926# endif
1927
1928
1929/* Macros for outputting the compiled pattern into `buffer'.  */
1930
1931/* If the buffer isn't allocated when it comes in, use this.  */
1932# define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1933
1934/* Make sure we have at least N more bytes of space in buffer.  */
1935# ifdef WCHAR
1936#  define GET_BUFFER_SPACE(n)						\
1937    while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1938            + (n)*sizeof(CHAR_T)) > bufp->allocated)			\
1939      EXTEND_BUFFER ()
1940# else /* BYTE */
1941#  define GET_BUFFER_SPACE(n)						\
1942    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1943      EXTEND_BUFFER ()
1944# endif /* WCHAR */
1945
1946/* Make sure we have one more byte of buffer space and then add C to it.  */
1947# define BUF_PUSH(c)							\
1948  do {									\
1949    GET_BUFFER_SPACE (1);						\
1950    *b++ = (UCHAR_T) (c);						\
1951  } while (0)
1952
1953
1954/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1955# define BUF_PUSH_2(c1, c2)						\
1956  do {									\
1957    GET_BUFFER_SPACE (2);						\
1958    *b++ = (UCHAR_T) (c1);						\
1959    *b++ = (UCHAR_T) (c2);						\
1960  } while (0)
1961
1962
1963/* As with BUF_PUSH_2, except for three bytes.  */
1964# define BUF_PUSH_3(c1, c2, c3)						\
1965  do {									\
1966    GET_BUFFER_SPACE (3);						\
1967    *b++ = (UCHAR_T) (c1);						\
1968    *b++ = (UCHAR_T) (c2);						\
1969    *b++ = (UCHAR_T) (c3);						\
1970  } while (0)
1971
1972/* Store a jump with opcode OP at LOC to location TO.  We store a
1973   relative address offset by the three bytes the jump itself occupies.  */
1974# define STORE_JUMP(op, loc, to) \
1975 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1976
1977/* Likewise, for a two-argument jump.  */
1978# define STORE_JUMP2(op, loc, to, arg) \
1979  PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1980
1981/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1982# define INSERT_JUMP(op, loc, to) \
1983  PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1984
1985/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1986# define INSERT_JUMP2(op, loc, to, arg) \
1987  PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1988	      arg, b)
1989
1990/* This is not an arbitrary limit: the arguments which represent offsets
1991   into the pattern are two bytes long.  So if 2^16 bytes turns out to
1992   be too small, many things would have to change.  */
1993/* Any other compiler which, like MSC, has allocation limit below 2^16
1994   bytes will have to use approach similar to what was done below for
1995   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1996   reallocating to 0 bytes.  Such thing is not going to work too well.
1997   You have been warned!!  */
1998# ifndef DEFINED_ONCE
1999#  if defined _MSC_VER  && !defined WIN32
2000/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2001   The REALLOC define eliminates a flurry of conversion warnings,
2002   but is not required. */
2003#   define MAX_BUF_SIZE  65500L
2004#   define REALLOC(p,s) realloc ((p), (size_t) (s))
2005#  else
2006#   define MAX_BUF_SIZE (1L << 16)
2007#   define REALLOC(p,s) realloc ((p), (s))
2008#  endif
2009
2010/* Extend the buffer by twice its current size via realloc and
2011   reset the pointers that pointed into the old block to point to the
2012   correct places in the new one.  If extending the buffer results in it
2013   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2014#  if __BOUNDED_POINTERS__
2015#   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2016#   define MOVE_BUFFER_POINTER(P) \
2017  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2018#   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\
2019  else						\
2020    {						\
2021      SET_HIGH_BOUND (b);			\
2022      SET_HIGH_BOUND (begalt);			\
2023      if (fixup_alt_jump)			\
2024	SET_HIGH_BOUND (fixup_alt_jump);	\
2025      if (laststart)				\
2026	SET_HIGH_BOUND (laststart);		\
2027      if (pending_exact)			\
2028	SET_HIGH_BOUND (pending_exact);		\
2029    }
2030#  else
2031#   define MOVE_BUFFER_POINTER(P) (P) += incr
2032#   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2033#  endif
2034# endif /* not DEFINED_ONCE */
2035
2036# ifdef WCHAR
2037#  define EXTEND_BUFFER()						\
2038  do {									\
2039    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2040    int wchar_count;							\
2041    if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\
2042      return REG_ESIZE;							\
2043    bufp->allocated <<= 1;						\
2044    if (bufp->allocated > MAX_BUF_SIZE)					\
2045      bufp->allocated = MAX_BUF_SIZE;					\
2046    /* How many characters the new buffer can have?  */			\
2047    wchar_count = bufp->allocated / sizeof(UCHAR_T);			\
2048    if (wchar_count == 0) wchar_count = 1;				\
2049    /* Truncate the buffer to CHAR_T align.  */				\
2050    bufp->allocated = wchar_count * sizeof(UCHAR_T);			\
2051    RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\
2052    bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2053    if (COMPILED_BUFFER_VAR == NULL)					\
2054      return REG_ESPACE;						\
2055    /* If the buffer moved, move all the pointers into it.  */		\
2056    if (old_buffer != COMPILED_BUFFER_VAR)				\
2057      {									\
2058	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2059	MOVE_BUFFER_POINTER (b);					\
2060	MOVE_BUFFER_POINTER (begalt);					\
2061	if (fixup_alt_jump)						\
2062	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2063	if (laststart)							\
2064	  MOVE_BUFFER_POINTER (laststart);				\
2065	if (pending_exact)						\
2066	  MOVE_BUFFER_POINTER (pending_exact);				\
2067      }									\
2068    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2069  } while (0)
2070# else /* BYTE */
2071#  define EXTEND_BUFFER()						\
2072  do {									\
2073    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2074    if (bufp->allocated == MAX_BUF_SIZE)				\
2075      return REG_ESIZE;							\
2076    bufp->allocated <<= 1;						\
2077    if (bufp->allocated > MAX_BUF_SIZE)					\
2078      bufp->allocated = MAX_BUF_SIZE;					\
2079    bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,		\
2080						bufp->allocated);	\
2081    if (COMPILED_BUFFER_VAR == NULL)					\
2082      return REG_ESPACE;						\
2083    /* If the buffer moved, move all the pointers into it.  */		\
2084    if (old_buffer != COMPILED_BUFFER_VAR)				\
2085      {									\
2086	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2087	MOVE_BUFFER_POINTER (b);					\
2088	MOVE_BUFFER_POINTER (begalt);					\
2089	if (fixup_alt_jump)						\
2090	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2091	if (laststart)							\
2092	  MOVE_BUFFER_POINTER (laststart);				\
2093	if (pending_exact)						\
2094	  MOVE_BUFFER_POINTER (pending_exact);				\
2095      }									\
2096    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2097  } while (0)
2098# endif /* WCHAR */
2099
2100# ifndef DEFINED_ONCE
2101/* Since we have one byte reserved for the register number argument to
2102   {start,stop}_memory, the maximum number of groups we can report
2103   things about is what fits in that byte.  */
2104#  define MAX_REGNUM 255
2105
2106/* But patterns can have more than `MAX_REGNUM' registers.  We just
2107   ignore the excess.  */
2108typedef unsigned regnum_t;
2109
2110
2111/* Macros for the compile stack.  */
2112
2113/* Since offsets can go either forwards or backwards, this type needs to
2114   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2115/* int may be not enough when sizeof(int) == 2.  */
2116typedef long pattern_offset_t;
2117
2118typedef struct
2119{
2120  pattern_offset_t begalt_offset;
2121  pattern_offset_t fixup_alt_jump;
2122  pattern_offset_t inner_group_offset;
2123  pattern_offset_t laststart_offset;
2124  regnum_t regnum;
2125} compile_stack_elt_t;
2126
2127
2128typedef struct
2129{
2130  compile_stack_elt_t *stack;
2131  unsigned size;
2132  unsigned avail;			/* Offset of next open position.  */
2133} compile_stack_type;
2134
2135
2136#  define INIT_COMPILE_STACK_SIZE 32
2137
2138#  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2139#  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2140
2141/* The next available element.  */
2142#  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2143
2144# endif /* not DEFINED_ONCE */
2145
2146/* Set the bit for character C in a list.  */
2147# ifndef DEFINED_ONCE
2148#  define SET_LIST_BIT(c)                               \
2149  (b[((unsigned char) (c)) / BYTEWIDTH]               \
2150   |= 1 << (((unsigned char) c) % BYTEWIDTH))
2151# endif /* DEFINED_ONCE */
2152
2153/* Get the next unsigned number in the uncompiled pattern.  */
2154# define GET_UNSIGNED_NUMBER(num) \
2155  {									\
2156    while (p != pend)							\
2157      {									\
2158	PATFETCH (c);							\
2159	if (c < '0' || c > '9')						\
2160	  break;							\
2161	if (num <= RE_DUP_MAX)						\
2162	  {								\
2163	    if (num < 0)						\
2164	      num = 0;							\
2165	    num = num * 10 + c - '0';					\
2166	  }								\
2167      }									\
2168  }
2169
2170# ifndef DEFINED_ONCE
2171#  if defined _LIBC || WIDE_CHAR_SUPPORT
2172/* The GNU C library provides support for user-defined character classes
2173   and the functions from ISO C amendement 1.  */
2174#   ifdef CHARCLASS_NAME_MAX
2175#    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2176#   else
2177/* This shouldn't happen but some implementation might still have this
2178   problem.  Use a reasonable default value.  */
2179#    define CHAR_CLASS_MAX_LENGTH 256
2180#   endif
2181
2182#   ifdef _LIBC
2183#    define IS_CHAR_CLASS(string) __wctype (string)
2184#   else
2185#    define IS_CHAR_CLASS(string) wctype (string)
2186#   endif
2187#  else
2188#   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2189
2190#   define IS_CHAR_CLASS(string)					\
2191   (STREQ (string, "alpha") || STREQ (string, "upper")			\
2192    || STREQ (string, "lower") || STREQ (string, "digit")		\
2193    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2194    || STREQ (string, "space") || STREQ (string, "print")		\
2195    || STREQ (string, "punct") || STREQ (string, "graph")		\
2196    || STREQ (string, "cntrl") || STREQ (string, "blank"))
2197#  endif
2198# endif /* DEFINED_ONCE */
2199
2200# ifndef MATCH_MAY_ALLOCATE
2201
2202/* If we cannot allocate large objects within re_match_2_internal,
2203   we make the fail stack and register vectors global.
2204   The fail stack, we grow to the maximum size when a regexp
2205   is compiled.
2206   The register vectors, we adjust in size each time we
2207   compile a regexp, according to the number of registers it needs.  */
2208
2209static PREFIX(fail_stack_type) fail_stack;
2210
2211/* Size with which the following vectors are currently allocated.
2212   That is so we can make them bigger as needed,
2213   but never make them smaller.  */
2214#  ifdef DEFINED_ONCE
2215static int regs_allocated_size;
2216
2217static const char **     regstart, **     regend;
2218static const char ** old_regstart, ** old_regend;
2219static const char **best_regstart, **best_regend;
2220static const char **reg_dummy;
2221#  endif /* DEFINED_ONCE */
2222
2223static PREFIX(register_info_type) *PREFIX(reg_info);
2224static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2225
2226/* Make the register vectors big enough for NUM_REGS registers,
2227   but don't make them smaller.  */
2228
2229static void
2230PREFIX(regex_grow_registers) (int num_regs)
2231{
2232  if (num_regs > regs_allocated_size)
2233    {
2234      RETALLOC_IF (regstart,	 num_regs, const char *);
2235      RETALLOC_IF (regend,	 num_regs, const char *);
2236      RETALLOC_IF (old_regstart, num_regs, const char *);
2237      RETALLOC_IF (old_regend,	 num_regs, const char *);
2238      RETALLOC_IF (best_regstart, num_regs, const char *);
2239      RETALLOC_IF (best_regend,	 num_regs, const char *);
2240      RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2241      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2242      RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2243
2244      regs_allocated_size = num_regs;
2245    }
2246}
2247
2248# endif /* not MATCH_MAY_ALLOCATE */
2249
2250# ifndef DEFINED_ONCE
2251static boolean group_in_compile_stack (compile_stack_type compile_stack,
2252                                       regnum_t regnum);
2253# endif /* not DEFINED_ONCE */
2254
2255/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2256   Returns one of error codes defined in `regex.h', or zero for success.
2257
2258   Assumes the `allocated' (and perhaps `buffer') and `translate'
2259   fields are set in BUFP on entry.
2260
2261   If it succeeds, results are put in BUFP (if it returns an error, the
2262   contents of BUFP are undefined):
2263     `buffer' is the compiled pattern;
2264     `syntax' is set to SYNTAX;
2265     `used' is set to the length of the compiled pattern;
2266     `fastmap_accurate' is zero;
2267     `re_nsub' is the number of subexpressions in PATTERN;
2268     `not_bol' and `not_eol' are zero;
2269
2270   The `fastmap' and `newline_anchor' fields are neither
2271   examined nor set.  */
2272
2273/* Return, freeing storage we allocated.  */
2274# ifdef WCHAR
2275#  define FREE_STACK_RETURN(value)		\
2276  return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2277# else
2278#  define FREE_STACK_RETURN(value)		\
2279  return (free (compile_stack.stack), value)
2280# endif /* WCHAR */
2281
2282static reg_errcode_t
2283PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2284                       size_t ARG_PREFIX(size), reg_syntax_t syntax,
2285                       struct re_pattern_buffer *bufp)
2286{
2287  /* We fetch characters from PATTERN here.  Even though PATTERN is
2288     `char *' (i.e., signed), we declare these variables as unsigned, so
2289     they can be reliably used as array indices.  */
2290  register UCHAR_T c, c1;
2291
2292#ifdef WCHAR
2293  /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2294  CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2295  size_t size;
2296  /* offset buffer for optimization. See convert_mbs_to_wc.  */
2297  int *mbs_offset = NULL;
2298  /* It hold whether each wchar_t is binary data or not.  */
2299  char *is_binary = NULL;
2300  /* A flag whether exactn is handling binary data or not.  */
2301  char is_exactn_bin = FALSE;
2302#endif /* WCHAR */
2303
2304  /* A random temporary spot in PATTERN.  */
2305  const CHAR_T *p1;
2306
2307  /* Points to the end of the buffer, where we should append.  */
2308  register UCHAR_T *b;
2309
2310  /* Keeps track of unclosed groups.  */
2311  compile_stack_type compile_stack;
2312
2313  /* Points to the current (ending) position in the pattern.  */
2314#ifdef WCHAR
2315  const CHAR_T *p;
2316  const CHAR_T *pend;
2317#else /* BYTE */
2318  const CHAR_T *p = pattern;
2319  const CHAR_T *pend = pattern + size;
2320#endif /* WCHAR */
2321
2322  /* How to translate the characters in the pattern.  */
2323  RE_TRANSLATE_TYPE translate = bufp->translate;
2324
2325  /* Address of the count-byte of the most recently inserted `exactn'
2326     command.  This makes it possible to tell if a new exact-match
2327     character can be added to that command or if the character requires
2328     a new `exactn' command.  */
2329  UCHAR_T *pending_exact = 0;
2330
2331  /* Address of start of the most recently finished expression.
2332     This tells, e.g., postfix * where to find the start of its
2333     operand.  Reset at the beginning of groups and alternatives.  */
2334  UCHAR_T *laststart = 0;
2335
2336  /* Address of beginning of regexp, or inside of last group.  */
2337  UCHAR_T *begalt;
2338
2339  /* Address of the place where a forward jump should go to the end of
2340     the containing expression.  Each alternative of an `or' -- except the
2341     last -- ends with a forward jump of this sort.  */
2342  UCHAR_T *fixup_alt_jump = 0;
2343
2344  /* Counts open-groups as they are encountered.  Remembered for the
2345     matching close-group on the compile stack, so the same register
2346     number is put in the stop_memory as the start_memory.  */
2347  regnum_t regnum = 0;
2348
2349#ifdef WCHAR
2350  /* Initialize the wchar_t PATTERN and offset_buffer.  */
2351  p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2352  mbs_offset = TALLOC(csize + 1, int);
2353  is_binary = TALLOC(csize + 1, char);
2354  if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2355    {
2356      free(pattern);
2357      free(mbs_offset);
2358      free(is_binary);
2359      return REG_ESPACE;
2360    }
2361  pattern[csize] = L'\0';	/* sentinel */
2362  size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2363  pend = p + size;
2364  if (size < 0)
2365    {
2366      free(pattern);
2367      free(mbs_offset);
2368      free(is_binary);
2369      return REG_BADPAT;
2370    }
2371#endif
2372
2373#ifdef DEBUG
2374  DEBUG_PRINT1 ("\nCompiling pattern: ");
2375  if (debug)
2376    {
2377      unsigned debug_count;
2378
2379      for (debug_count = 0; debug_count < size; debug_count++)
2380        PUT_CHAR (pattern[debug_count]);
2381      putchar ('\n');
2382    }
2383#endif /* DEBUG */
2384
2385  /* Initialize the compile stack.  */
2386  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2387  if (compile_stack.stack == NULL)
2388    {
2389#ifdef WCHAR
2390      free(pattern);
2391      free(mbs_offset);
2392      free(is_binary);
2393#endif
2394      return REG_ESPACE;
2395    }
2396
2397  compile_stack.size = INIT_COMPILE_STACK_SIZE;
2398  compile_stack.avail = 0;
2399
2400  /* Initialize the pattern buffer.  */
2401  bufp->syntax = syntax;
2402  bufp->fastmap_accurate = 0;
2403  bufp->not_bol = bufp->not_eol = 0;
2404
2405  /* Set `used' to zero, so that if we return an error, the pattern
2406     printer (for debugging) will think there's no pattern.  We reset it
2407     at the end.  */
2408  bufp->used = 0;
2409
2410  /* Always count groups, whether or not bufp->no_sub is set.  */
2411  bufp->re_nsub = 0;
2412
2413#if !defined emacs && !defined SYNTAX_TABLE
2414  /* Initialize the syntax table.  */
2415   init_syntax_once ();
2416#endif
2417
2418  if (bufp->allocated == 0)
2419    {
2420      if (bufp->buffer)
2421	{ /* If zero allocated, but buffer is non-null, try to realloc
2422             enough space.  This loses if buffer's address is bogus, but
2423             that is the user's responsibility.  */
2424#ifdef WCHAR
2425	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2426	     buffer.  */
2427          free(bufp->buffer);
2428          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2429					UCHAR_T);
2430#else
2431          RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2432#endif /* WCHAR */
2433        }
2434      else
2435        { /* Caller did not allocate a buffer.  Do it for them.  */
2436          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2437					UCHAR_T);
2438        }
2439
2440      if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2441#ifdef WCHAR
2442      bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2443#endif /* WCHAR */
2444      bufp->allocated = INIT_BUF_SIZE;
2445    }
2446#ifdef WCHAR
2447  else
2448    COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2449#endif
2450
2451  begalt = b = COMPILED_BUFFER_VAR;
2452
2453  /* Loop through the uncompiled pattern until we're at the end.  */
2454  while (p != pend)
2455    {
2456      PATFETCH (c);
2457
2458      switch (c)
2459        {
2460        case '^':
2461          {
2462            if (   /* If at start of pattern, it's an operator.  */
2463                   p == pattern + 1
2464                   /* If context independent, it's an operator.  */
2465                || syntax & RE_CONTEXT_INDEP_ANCHORS
2466                   /* Otherwise, depends on what's come before.  */
2467                || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2468              BUF_PUSH (begline);
2469            else
2470              goto normal_char;
2471          }
2472          break;
2473
2474
2475        case '$':
2476          {
2477            if (   /* If at end of pattern, it's an operator.  */
2478                   p == pend
2479                   /* If context independent, it's an operator.  */
2480                || syntax & RE_CONTEXT_INDEP_ANCHORS
2481                   /* Otherwise, depends on what's next.  */
2482                || PREFIX(at_endline_loc_p) (p, pend, syntax))
2483               BUF_PUSH (endline);
2484             else
2485               goto normal_char;
2486           }
2487           break;
2488
2489
2490	case '+':
2491        case '?':
2492          if ((syntax & RE_BK_PLUS_QM)
2493              || (syntax & RE_LIMITED_OPS))
2494            goto normal_char;
2495	  /* Fall through.  */
2496        handle_plus:
2497        case '*':
2498          /* If there is no previous pattern... */
2499          if (!laststart)
2500            {
2501              if (syntax & RE_CONTEXT_INVALID_OPS)
2502                FREE_STACK_RETURN (REG_BADRPT);
2503              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2504                goto normal_char;
2505            }
2506
2507          {
2508            /* Are we optimizing this jump?  */
2509            boolean keep_string_p = false;
2510
2511            /* 1 means zero (many) matches is allowed.  */
2512            char zero_times_ok = 0, many_times_ok = 0;
2513
2514            /* If there is a sequence of repetition chars, collapse it
2515               down to just one (the right one).  We can't combine
2516               interval operators with these because of, e.g., `a{2}*',
2517               which should only match an even number of `a's.  */
2518
2519            for (;;)
2520              {
2521                zero_times_ok |= c != '+';
2522                many_times_ok |= c != '?';
2523
2524                if (p == pend)
2525                  break;
2526
2527                PATFETCH (c);
2528
2529                if (c == '*'
2530                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2531                  ;
2532
2533                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2534                  {
2535                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2536
2537                    PATFETCH (c1);
2538                    if (!(c1 == '+' || c1 == '?'))
2539                      {
2540                        PATUNFETCH;
2541                        PATUNFETCH;
2542                        break;
2543                      }
2544
2545                    c = c1;
2546                  }
2547                else
2548                  {
2549                    PATUNFETCH;
2550                    break;
2551                  }
2552
2553                /* If we get here, we found another repeat character.  */
2554               }
2555
2556            /* Star, etc. applied to an empty pattern is equivalent
2557               to an empty pattern.  */
2558            if (!laststart)
2559              break;
2560
2561            /* Now we know whether or not zero matches is allowed
2562               and also whether or not two or more matches is allowed.  */
2563            if (many_times_ok)
2564              { /* More than one repetition is allowed, so put in at the
2565                   end a backward relative jump from `b' to before the next
2566                   jump we're going to put in below (which jumps from
2567                   laststart to after this jump).
2568
2569                   But if we are at the `*' in the exact sequence `.*\n',
2570                   insert an unconditional jump backwards to the .,
2571                   instead of the beginning of the loop.  This way we only
2572                   push a failure point once, instead of every time
2573                   through the loop.  */
2574                assert (p - 1 > pattern);
2575
2576                /* Allocate the space for the jump.  */
2577                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2578
2579                /* We know we are not at the first character of the pattern,
2580                   because laststart was nonzero.  And we've already
2581                   incremented `p', by the way, to be the character after
2582                   the `*'.  Do we have to do something analogous here
2583                   for null bytes, because of RE_DOT_NOT_NULL?  */
2584                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2585		    && zero_times_ok
2586                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2587                    && !(syntax & RE_DOT_NEWLINE))
2588                  { /* We have .*\n.  */
2589                    STORE_JUMP (jump, b, laststart);
2590                    keep_string_p = true;
2591                  }
2592                else
2593                  /* Anything else.  */
2594                  STORE_JUMP (maybe_pop_jump, b, laststart -
2595			      (1 + OFFSET_ADDRESS_SIZE));
2596
2597                /* We've added more stuff to the buffer.  */
2598                b += 1 + OFFSET_ADDRESS_SIZE;
2599              }
2600
2601            /* On failure, jump from laststart to b + 3, which will be the
2602               end of the buffer after this jump is inserted.  */
2603	    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2604	       'b + 3'.  */
2605            GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2606            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2607                                       : on_failure_jump,
2608                         laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2609            pending_exact = 0;
2610            b += 1 + OFFSET_ADDRESS_SIZE;
2611
2612            if (!zero_times_ok)
2613              {
2614                /* At least one repetition is required, so insert a
2615                   `dummy_failure_jump' before the initial
2616                   `on_failure_jump' instruction of the loop. This
2617                   effects a skip over that instruction the first time
2618                   we hit that loop.  */
2619                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2620                INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2621			     2 + 2 * OFFSET_ADDRESS_SIZE);
2622                b += 1 + OFFSET_ADDRESS_SIZE;
2623              }
2624            }
2625	  break;
2626
2627
2628	case '.':
2629          laststart = b;
2630          BUF_PUSH (anychar);
2631          break;
2632
2633
2634        case '[':
2635          {
2636            boolean had_char_class = false;
2637#ifdef WCHAR
2638	    CHAR_T range_start = 0xffffffff;
2639#else
2640	    unsigned int range_start = 0xffffffff;
2641#endif
2642            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2643
2644#ifdef WCHAR
2645	    /* We assume a charset(_not) structure as a wchar_t array.
2646	       charset[0] = (re_opcode_t) charset(_not)
2647               charset[1] = l (= length of char_classes)
2648               charset[2] = m (= length of collating_symbols)
2649               charset[3] = n (= length of equivalence_classes)
2650	       charset[4] = o (= length of char_ranges)
2651	       charset[5] = p (= length of chars)
2652
2653               charset[6] = char_class (wctype_t)
2654               charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2655                         ...
2656               charset[l+5]  = char_class (wctype_t)
2657
2658               charset[l+6]  = collating_symbol (wchar_t)
2659                            ...
2660               charset[l+m+5]  = collating_symbol (wchar_t)
2661					ifdef _LIBC we use the index if
2662					_NL_COLLATE_SYMB_EXTRAMB instead of
2663					wchar_t string.
2664
2665               charset[l+m+6]  = equivalence_classes (wchar_t)
2666                              ...
2667               charset[l+m+n+5]  = equivalence_classes (wchar_t)
2668					ifdef _LIBC we use the index in
2669					_NL_COLLATE_WEIGHT instead of
2670					wchar_t string.
2671
2672	       charset[l+m+n+6] = range_start
2673	       charset[l+m+n+7] = range_end
2674	                       ...
2675	       charset[l+m+n+2o+4] = range_start
2676	       charset[l+m+n+2o+5] = range_end
2677					ifdef _LIBC we use the value looked up
2678					in _NL_COLLATE_COLLSEQ instead of
2679					wchar_t character.
2680
2681	       charset[l+m+n+2o+6] = char
2682	                          ...
2683	       charset[l+m+n+2o+p+5] = char
2684
2685	     */
2686
2687	    /* We need at least 6 spaces: the opcode, the length of
2688               char_classes, the length of collating_symbols, the length of
2689               equivalence_classes, the length of char_ranges, the length of
2690               chars.  */
2691	    GET_BUFFER_SPACE (6);
2692
2693	    /* Save b as laststart. And We use laststart as the pointer
2694	       to the first element of the charset here.
2695	       In other words, laststart[i] indicates charset[i].  */
2696            laststart = b;
2697
2698            /* We test `*p == '^' twice, instead of using an if
2699               statement, so we only need one BUF_PUSH.  */
2700            BUF_PUSH (*p == '^' ? charset_not : charset);
2701            if (*p == '^')
2702              p++;
2703
2704            /* Push the length of char_classes, the length of
2705               collating_symbols, the length of equivalence_classes, the
2706               length of char_ranges and the length of chars.  */
2707            BUF_PUSH_3 (0, 0, 0);
2708            BUF_PUSH_2 (0, 0);
2709
2710            /* Remember the first position in the bracket expression.  */
2711            p1 = p;
2712
2713            /* charset_not matches newline according to a syntax bit.  */
2714            if ((re_opcode_t) b[-6] == charset_not
2715                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2716	      {
2717		BUF_PUSH('\n');
2718		laststart[5]++; /* Update the length of characters  */
2719	      }
2720
2721            /* Read in characters and ranges, setting map bits.  */
2722            for (;;)
2723              {
2724                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2725
2726                PATFETCH (c);
2727
2728                /* \ might escape characters inside [...] and [^...].  */
2729                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2730                  {
2731                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2732
2733                    PATFETCH (c1);
2734		    BUF_PUSH(c1);
2735		    laststart[5]++; /* Update the length of chars  */
2736		    range_start = c1;
2737                    continue;
2738                  }
2739
2740                /* Could be the end of the bracket expression.  If it's
2741                   not (i.e., when the bracket expression is `[]' so
2742                   far), the ']' character bit gets set way below.  */
2743                if (c == ']' && p != p1 + 1)
2744                  break;
2745
2746                /* Look ahead to see if it's a range when the last thing
2747                   was a character class.  */
2748                if (had_char_class && c == '-' && *p != ']')
2749                  FREE_STACK_RETURN (REG_ERANGE);
2750
2751                /* Look ahead to see if it's a range when the last thing
2752                   was a character: if this is a hyphen not at the
2753                   beginning or the end of a list, then it's the range
2754                   operator.  */
2755                if (c == '-'
2756                    && !(p - 2 >= pattern && p[-2] == '[')
2757                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2758                    && *p != ']')
2759                  {
2760                    reg_errcode_t ret;
2761		    /* Allocate the space for range_start and range_end.  */
2762		    GET_BUFFER_SPACE (2);
2763		    /* Update the pointer to indicate end of buffer.  */
2764                    b += 2;
2765                    ret = wcs_compile_range (range_start, &p, pend, translate,
2766                                         syntax, b, laststart);
2767                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2768                    range_start = 0xffffffff;
2769                  }
2770                else if (p[0] == '-' && p[1] != ']')
2771                  { /* This handles ranges made up of characters only.  */
2772                    reg_errcode_t ret;
2773
2774		    /* Move past the `-'.  */
2775                    PATFETCH (c1);
2776		    /* Allocate the space for range_start and range_end.  */
2777		    GET_BUFFER_SPACE (2);
2778		    /* Update the pointer to indicate end of buffer.  */
2779                    b += 2;
2780                    ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2781                                         laststart);
2782                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2783		    range_start = 0xffffffff;
2784                  }
2785
2786                /* See if we're at the beginning of a possible character
2787                   class.  */
2788                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2789                  { /* Leave room for the null.  */
2790                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2791
2792                    PATFETCH (c);
2793                    c1 = 0;
2794
2795                    /* If pattern is `[[:'.  */
2796                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2797
2798                    for (;;)
2799                      {
2800                        PATFETCH (c);
2801                        if ((c == ':' && *p == ']') || p == pend)
2802                          break;
2803			if (c1 < CHAR_CLASS_MAX_LENGTH)
2804			  str[c1++] = c;
2805			else
2806			  /* This is in any case an invalid class name.  */
2807			  str[0] = '\0';
2808                      }
2809                    str[c1] = '\0';
2810
2811                    /* If isn't a word bracketed by `[:' and `:]':
2812                       undo the ending character, the letters, and leave
2813                       the leading `:' and `[' (but store them as character).  */
2814                    if (c == ':' && *p == ']')
2815                      {
2816			wctype_t wt;
2817			uintptr_t alignedp;
2818
2819			/* Query the character class as wctype_t.  */
2820			wt = IS_CHAR_CLASS (str);
2821			if (wt == 0)
2822			  FREE_STACK_RETURN (REG_ECTYPE);
2823
2824                        /* Throw away the ] at the end of the character
2825                           class.  */
2826                        PATFETCH (c);
2827
2828                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2829
2830			/* Allocate the space for character class.  */
2831                        GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2832			/* Update the pointer to indicate end of buffer.  */
2833                        b += CHAR_CLASS_SIZE;
2834			/* Move data which follow character classes
2835			    not to violate the data.  */
2836                        insert_space(CHAR_CLASS_SIZE,
2837				     laststart + 6 + laststart[1],
2838				     b - 1);
2839			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2840				    + __alignof__(wctype_t) - 1)
2841			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2842			/* Store the character class.  */
2843                        *((wctype_t*)alignedp) = wt;
2844                        /* Update length of char_classes */
2845                        laststart[1] += CHAR_CLASS_SIZE;
2846
2847                        had_char_class = true;
2848                      }
2849                    else
2850                      {
2851                        c1++;
2852                        while (c1--)
2853                          PATUNFETCH;
2854                        BUF_PUSH ('[');
2855                        BUF_PUSH (':');
2856                        laststart[5] += 2; /* Update the length of characters  */
2857			range_start = ':';
2858                        had_char_class = false;
2859                      }
2860                  }
2861                else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2862							  || *p == '.'))
2863		  {
2864		    CHAR_T str[128];	/* Should be large enough.  */
2865		    CHAR_T delim = *p; /* '=' or '.'  */
2866# ifdef _LIBC
2867		    uint32_t nrules =
2868		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2869# endif
2870		    PATFETCH (c);
2871		    c1 = 0;
2872
2873		    /* If pattern is `[[=' or '[[.'.  */
2874		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2875
2876		    for (;;)
2877		      {
2878			PATFETCH (c);
2879			if ((c == delim && *p == ']') || p == pend)
2880			  break;
2881			if (c1 < sizeof (str) - 1)
2882			  str[c1++] = c;
2883			else
2884			  /* This is in any case an invalid class name.  */
2885			  str[0] = '\0';
2886                      }
2887		    str[c1] = '\0';
2888
2889		    if (c == delim && *p == ']' && str[0] != '\0')
2890		      {
2891                        unsigned int i, offset;
2892			/* If we have no collation data we use the default
2893			   collation in which each character is in a class
2894			   by itself.  It also means that ASCII is the
2895			   character set and therefore we cannot have character
2896			   with more than one byte in the multibyte
2897			   representation.  */
2898
2899                        /* If not defined _LIBC, we push the name and
2900			   `\0' for the sake of matching performance.  */
2901			int datasize = c1 + 1;
2902
2903# ifdef _LIBC
2904			int32_t idx = 0;
2905			if (nrules == 0)
2906# endif
2907			  {
2908			    if (c1 != 1)
2909			      FREE_STACK_RETURN (REG_ECOLLATE);
2910			  }
2911# ifdef _LIBC
2912			else
2913			  {
2914			    const int32_t *table;
2915			    const int32_t *weights;
2916			    const int32_t *extra;
2917			    const int32_t *indirect;
2918			    wint_t *cp;
2919
2920			    /* This #include defines a local function!  */
2921#  include <locale/weightwc.h>
2922
2923			    if(delim == '=')
2924			      {
2925				/* We push the index for equivalence class.  */
2926				cp = (wint_t*)str;
2927
2928				table = (const int32_t *)
2929				  _NL_CURRENT (LC_COLLATE,
2930					       _NL_COLLATE_TABLEWC);
2931				weights = (const int32_t *)
2932				  _NL_CURRENT (LC_COLLATE,
2933					       _NL_COLLATE_WEIGHTWC);
2934				extra = (const int32_t *)
2935				  _NL_CURRENT (LC_COLLATE,
2936					       _NL_COLLATE_EXTRAWC);
2937				indirect = (const int32_t *)
2938				  _NL_CURRENT (LC_COLLATE,
2939					       _NL_COLLATE_INDIRECTWC);
2940
2941				idx = findidx ((const wint_t**)&cp);
2942				if (idx == 0 || cp < (wint_t*) str + c1)
2943				  /* This is no valid character.  */
2944				  FREE_STACK_RETURN (REG_ECOLLATE);
2945
2946				str[0] = (wchar_t)idx;
2947			      }
2948			    else /* delim == '.' */
2949			      {
2950				/* We push collation sequence value
2951				   for collating symbol.  */
2952				int32_t table_size;
2953				const int32_t *symb_table;
2954				const unsigned char *extra;
2955				int32_t idx;
2956				int32_t elem;
2957				int32_t second;
2958				int32_t hash;
2959				char char_str[c1];
2960
2961				/* We have to convert the name to a single-byte
2962				   string.  This is possible since the names
2963				   consist of ASCII characters and the internal
2964				   representation is UCS4.  */
2965				for (i = 0; i < c1; ++i)
2966				  char_str[i] = str[i];
2967
2968				table_size =
2969				  _NL_CURRENT_WORD (LC_COLLATE,
2970						    _NL_COLLATE_SYMB_HASH_SIZEMB);
2971				symb_table = (const int32_t *)
2972				  _NL_CURRENT (LC_COLLATE,
2973					       _NL_COLLATE_SYMB_TABLEMB);
2974				extra = (const unsigned char *)
2975				  _NL_CURRENT (LC_COLLATE,
2976					       _NL_COLLATE_SYMB_EXTRAMB);
2977
2978				/* Locate the character in the hashing table.  */
2979				hash = elem_hash (char_str, c1);
2980
2981				idx = 0;
2982				elem = hash % table_size;
2983				second = hash % (table_size - 2);
2984				while (symb_table[2 * elem] != 0)
2985				  {
2986				    /* First compare the hashing value.  */
2987				    if (symb_table[2 * elem] == hash
2988					&& c1 == extra[symb_table[2 * elem + 1]]
2989					&& memcmp (char_str,
2990						   &extra[symb_table[2 * elem + 1]
2991							 + 1], c1) == 0)
2992				      {
2993					/* Yep, this is the entry.  */
2994					idx = symb_table[2 * elem + 1];
2995					idx += 1 + extra[idx];
2996					break;
2997				      }
2998
2999				    /* Next entry.  */
3000				    elem += second;
3001				  }
3002
3003				if (symb_table[2 * elem] != 0)
3004				  {
3005				    /* Compute the index of the byte sequence
3006				       in the table.  */
3007				    idx += 1 + extra[idx];
3008				    /* Adjust for the alignment.  */
3009				    idx = (idx + 3) & ~3;
3010
3011				    str[0] = (wchar_t) idx + 4;
3012				  }
3013				else if (symb_table[2 * elem] == 0 && c1 == 1)
3014				  {
3015				    /* No valid character.  Match it as a
3016				       single byte character.  */
3017				    had_char_class = false;
3018				    BUF_PUSH(str[0]);
3019				    /* Update the length of characters  */
3020				    laststart[5]++;
3021				    range_start = str[0];
3022
3023				    /* Throw away the ] at the end of the
3024				       collating symbol.  */
3025				    PATFETCH (c);
3026				    /* exit from the switch block.  */
3027				    continue;
3028				  }
3029				else
3030				  FREE_STACK_RETURN (REG_ECOLLATE);
3031			      }
3032			    datasize = 1;
3033			  }
3034# endif
3035                        /* Throw away the ] at the end of the equivalence
3036                           class (or collating symbol).  */
3037                        PATFETCH (c);
3038
3039			/* Allocate the space for the equivalence class
3040			   (or collating symbol) (and '\0' if needed).  */
3041                        GET_BUFFER_SPACE(datasize);
3042			/* Update the pointer to indicate end of buffer.  */
3043                        b += datasize;
3044
3045			if (delim == '=')
3046			  { /* equivalence class  */
3047			    /* Calculate the offset of char_ranges,
3048			       which is next to equivalence_classes.  */
3049			    offset = laststart[1] + laststart[2]
3050			      + laststart[3] +6;
3051			    /* Insert space.  */
3052			    insert_space(datasize, laststart + offset, b - 1);
3053
3054			    /* Write the equivalence_class and \0.  */
3055			    for (i = 0 ; i < datasize ; i++)
3056			      laststart[offset + i] = str[i];
3057
3058			    /* Update the length of equivalence_classes.  */
3059			    laststart[3] += datasize;
3060			    had_char_class = true;
3061			  }
3062			else /* delim == '.' */
3063			  { /* collating symbol  */
3064			    /* Calculate the offset of the equivalence_classes,
3065			       which is next to collating_symbols.  */
3066			    offset = laststart[1] + laststart[2] + 6;
3067			    /* Insert space and write the collationg_symbol
3068			       and \0.  */
3069			    insert_space(datasize, laststart + offset, b-1);
3070			    for (i = 0 ; i < datasize ; i++)
3071			      laststart[offset + i] = str[i];
3072
3073			    /* In re_match_2_internal if range_start < -1, we
3074			       assume -range_start is the offset of the
3075			       collating symbol which is specified as
3076			       the character of the range start.  So we assign
3077			       -(laststart[1] + laststart[2] + 6) to
3078			       range_start.  */
3079			    range_start = -(laststart[1] + laststart[2] + 6);
3080			    /* Update the length of collating_symbol.  */
3081			    laststart[2] += datasize;
3082			    had_char_class = false;
3083			  }
3084		      }
3085                    else
3086                      {
3087                        c1++;
3088                        while (c1--)
3089                          PATUNFETCH;
3090                        BUF_PUSH ('[');
3091                        BUF_PUSH (delim);
3092                        laststart[5] += 2; /* Update the length of characters  */
3093			range_start = delim;
3094                        had_char_class = false;
3095                      }
3096		  }
3097                else
3098                  {
3099                    had_char_class = false;
3100		    BUF_PUSH(c);
3101		    laststart[5]++;  /* Update the length of characters  */
3102		    range_start = c;
3103                  }
3104	      }
3105
3106#else /* BYTE */
3107            /* Ensure that we have enough space to push a charset: the
3108               opcode, the length count, and the bitset; 34 bytes in all.  */
3109	    GET_BUFFER_SPACE (34);
3110
3111            laststart = b;
3112
3113            /* We test `*p == '^' twice, instead of using an if
3114               statement, so we only need one BUF_PUSH.  */
3115            BUF_PUSH (*p == '^' ? charset_not : charset);
3116            if (*p == '^')
3117              p++;
3118
3119            /* Remember the first position in the bracket expression.  */
3120            p1 = p;
3121
3122            /* Push the number of bytes in the bitmap.  */
3123            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3124
3125            /* Clear the whole map.  */
3126            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3127
3128            /* charset_not matches newline according to a syntax bit.  */
3129            if ((re_opcode_t) b[-2] == charset_not
3130                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3131              SET_LIST_BIT ('\n');
3132
3133            /* Read in characters and ranges, setting map bits.  */
3134            for (;;)
3135              {
3136                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3137
3138                PATFETCH (c);
3139
3140                /* \ might escape characters inside [...] and [^...].  */
3141                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3142                  {
3143                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3144
3145                    PATFETCH (c1);
3146                    SET_LIST_BIT (c1);
3147		    range_start = c1;
3148                    continue;
3149                  }
3150
3151                /* Could be the end of the bracket expression.  If it's
3152                   not (i.e., when the bracket expression is `[]' so
3153                   far), the ']' character bit gets set way below.  */
3154                if (c == ']' && p != p1 + 1)
3155                  break;
3156
3157                /* Look ahead to see if it's a range when the last thing
3158                   was a character class.  */
3159                if (had_char_class && c == '-' && *p != ']')
3160                  FREE_STACK_RETURN (REG_ERANGE);
3161
3162                /* Look ahead to see if it's a range when the last thing
3163                   was a character: if this is a hyphen not at the
3164                   beginning or the end of a list, then it's the range
3165                   operator.  */
3166                if (c == '-'
3167                    && !(p - 2 >= pattern && p[-2] == '[')
3168                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3169                    && *p != ']')
3170                  {
3171                    reg_errcode_t ret
3172                      = byte_compile_range (range_start, &p, pend, translate,
3173					    syntax, b);
3174                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3175		    range_start = 0xffffffff;
3176                  }
3177
3178                else if (p[0] == '-' && p[1] != ']')
3179                  { /* This handles ranges made up of characters only.  */
3180                    reg_errcode_t ret;
3181
3182		    /* Move past the `-'.  */
3183                    PATFETCH (c1);
3184
3185                    ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3186                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3187		    range_start = 0xffffffff;
3188                  }
3189
3190                /* See if we're at the beginning of a possible character
3191                   class.  */
3192
3193                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3194                  { /* Leave room for the null.  */
3195                    char str[CHAR_CLASS_MAX_LENGTH + 1];
3196
3197                    PATFETCH (c);
3198                    c1 = 0;
3199
3200                    /* If pattern is `[[:'.  */
3201                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3202
3203                    for (;;)
3204                      {
3205                        PATFETCH (c);
3206                        if ((c == ':' && *p == ']') || p == pend)
3207                          break;
3208			if (c1 < CHAR_CLASS_MAX_LENGTH)
3209			  str[c1++] = c;
3210			else
3211			  /* This is in any case an invalid class name.  */
3212			  str[0] = '\0';
3213                      }
3214                    str[c1] = '\0';
3215
3216                    /* If isn't a word bracketed by `[:' and `:]':
3217                       undo the ending character, the letters, and leave
3218                       the leading `:' and `[' (but set bits for them).  */
3219                    if (c == ':' && *p == ']')
3220                      {
3221# if defined _LIBC || WIDE_CHAR_SUPPORT
3222                        boolean is_lower = STREQ (str, "lower");
3223                        boolean is_upper = STREQ (str, "upper");
3224			wctype_t wt;
3225                        int ch;
3226
3227			wt = IS_CHAR_CLASS (str);
3228			if (wt == 0)
3229			  FREE_STACK_RETURN (REG_ECTYPE);
3230
3231                        /* Throw away the ] at the end of the character
3232                           class.  */
3233                        PATFETCH (c);
3234
3235                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3236
3237                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3238			  {
3239#  ifdef _LIBC
3240			    if (__iswctype (__btowc (ch), wt))
3241			      SET_LIST_BIT (ch);
3242#  else
3243			    if (iswctype (btowc (ch), wt))
3244			      SET_LIST_BIT (ch);
3245#  endif
3246
3247			    if (translate && (is_upper || is_lower)
3248				&& (ISUPPER (ch) || ISLOWER (ch)))
3249			      SET_LIST_BIT (ch);
3250			  }
3251
3252                        had_char_class = true;
3253# else
3254                        int ch;
3255                        boolean is_alnum = STREQ (str, "alnum");
3256                        boolean is_alpha = STREQ (str, "alpha");
3257                        boolean is_blank = STREQ (str, "blank");
3258                        boolean is_cntrl = STREQ (str, "cntrl");
3259                        boolean is_digit = STREQ (str, "digit");
3260                        boolean is_graph = STREQ (str, "graph");
3261                        boolean is_lower = STREQ (str, "lower");
3262                        boolean is_print = STREQ (str, "print");
3263                        boolean is_punct = STREQ (str, "punct");
3264                        boolean is_space = STREQ (str, "space");
3265                        boolean is_upper = STREQ (str, "upper");
3266                        boolean is_xdigit = STREQ (str, "xdigit");
3267
3268                        if (!IS_CHAR_CLASS (str))
3269			  FREE_STACK_RETURN (REG_ECTYPE);
3270
3271                        /* Throw away the ] at the end of the character
3272                           class.  */
3273                        PATFETCH (c);
3274
3275                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3276
3277                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3278                          {
3279			    /* This was split into 3 if's to
3280			       avoid an arbitrary limit in some compiler.  */
3281                            if (   (is_alnum  && ISALNUM (ch))
3282                                || (is_alpha  && ISALPHA (ch))
3283                                || (is_blank  && ISBLANK (ch))
3284                                || (is_cntrl  && ISCNTRL (ch)))
3285			      SET_LIST_BIT (ch);
3286			    if (   (is_digit  && ISDIGIT (ch))
3287                                || (is_graph  && ISGRAPH (ch))
3288                                || (is_lower  && ISLOWER (ch))
3289                                || (is_print  && ISPRINT (ch)))
3290			      SET_LIST_BIT (ch);
3291			    if (   (is_punct  && ISPUNCT (ch))
3292                                || (is_space  && ISSPACE (ch))
3293                                || (is_upper  && ISUPPER (ch))
3294                                || (is_xdigit && ISXDIGIT (ch)))
3295			      SET_LIST_BIT (ch);
3296			    if (   translate && (is_upper || is_lower)
3297				&& (ISUPPER (ch) || ISLOWER (ch)))
3298			      SET_LIST_BIT (ch);
3299                          }
3300                        had_char_class = true;
3301# endif	/* libc || wctype.h */
3302                      }
3303                    else
3304                      {
3305                        c1++;
3306                        while (c1--)
3307                          PATUNFETCH;
3308                        SET_LIST_BIT ('[');
3309                        SET_LIST_BIT (':');
3310			range_start = ':';
3311                        had_char_class = false;
3312                      }
3313                  }
3314                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3315		  {
3316		    unsigned char str[MB_LEN_MAX + 1];
3317# ifdef _LIBC
3318		    uint32_t nrules =
3319		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3320# endif
3321
3322		    PATFETCH (c);
3323		    c1 = 0;
3324
3325		    /* If pattern is `[[='.  */
3326		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3327
3328		    for (;;)
3329		      {
3330			PATFETCH (c);
3331			if ((c == '=' && *p == ']') || p == pend)
3332			  break;
3333			if (c1 < MB_LEN_MAX)
3334			  str[c1++] = c;
3335			else
3336			  /* This is in any case an invalid class name.  */
3337			  str[0] = '\0';
3338                      }
3339		    str[c1] = '\0';
3340
3341		    if (c == '=' && *p == ']' && str[0] != '\0')
3342		      {
3343			/* If we have no collation data we use the default
3344			   collation in which each character is in a class
3345			   by itself.  It also means that ASCII is the
3346			   character set and therefore we cannot have character
3347			   with more than one byte in the multibyte
3348			   representation.  */
3349# ifdef _LIBC
3350			if (nrules == 0)
3351# endif
3352			  {
3353			    if (c1 != 1)
3354			      FREE_STACK_RETURN (REG_ECOLLATE);
3355
3356			    /* Throw away the ] at the end of the equivalence
3357			       class.  */
3358			    PATFETCH (c);
3359
3360			    /* Set the bit for the character.  */
3361			    SET_LIST_BIT (str[0]);
3362			  }
3363# ifdef _LIBC
3364			else
3365			  {
3366			    /* Try to match the byte sequence in `str' against
3367			       those known to the collate implementation.
3368			       First find out whether the bytes in `str' are
3369			       actually from exactly one character.  */
3370			    const int32_t *table;
3371			    const unsigned char *weights;
3372			    const unsigned char *extra;
3373			    const int32_t *indirect;
3374			    int32_t idx;
3375			    const unsigned char *cp = str;
3376			    int ch;
3377
3378			    /* This #include defines a local function!  */
3379#  include <locale/weight.h>
3380
3381			    table = (const int32_t *)
3382			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3383			    weights = (const unsigned char *)
3384			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3385			    extra = (const unsigned char *)
3386			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3387			    indirect = (const int32_t *)
3388			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3389
3390			    idx = findidx (&cp);
3391			    if (idx == 0 || cp < str + c1)
3392			      /* This is no valid character.  */
3393			      FREE_STACK_RETURN (REG_ECOLLATE);
3394
3395			    /* Throw away the ] at the end of the equivalence
3396			       class.  */
3397			    PATFETCH (c);
3398
3399			    /* Now we have to go through the whole table
3400			       and find all characters which have the same
3401			       first level weight.
3402
3403			       XXX Note that this is not entirely correct.
3404			       we would have to match multibyte sequences
3405			       but this is not possible with the current
3406			       implementation.  */
3407			    for (ch = 1; ch < 256; ++ch)
3408			      /* XXX This test would have to be changed if we
3409				 would allow matching multibyte sequences.  */
3410			      if (table[ch] > 0)
3411				{
3412				  int32_t idx2 = table[ch];
3413				  size_t len = weights[idx2];
3414
3415				  /* Test whether the lenghts match.  */
3416				  if (weights[idx] == len)
3417				    {
3418				      /* They do.  New compare the bytes of
3419					 the weight.  */
3420				      size_t cnt = 0;
3421
3422				      while (cnt < len
3423					     && (weights[idx + 1 + cnt]
3424						 == weights[idx2 + 1 + cnt]))
3425					++cnt;
3426
3427				      if (cnt == len)
3428					/* They match.  Mark the character as
3429					   acceptable.  */
3430					SET_LIST_BIT (ch);
3431				    }
3432				}
3433			  }
3434# endif
3435			had_char_class = true;
3436		      }
3437                    else
3438                      {
3439                        c1++;
3440                        while (c1--)
3441                          PATUNFETCH;
3442                        SET_LIST_BIT ('[');
3443                        SET_LIST_BIT ('=');
3444			range_start = '=';
3445                        had_char_class = false;
3446                      }
3447		  }
3448                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3449		  {
3450		    unsigned char str[128];	/* Should be large enough.  */
3451# ifdef _LIBC
3452		    uint32_t nrules =
3453		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3454# endif
3455
3456		    PATFETCH (c);
3457		    c1 = 0;
3458
3459		    /* If pattern is `[[.'.  */
3460		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3461
3462		    for (;;)
3463		      {
3464			PATFETCH (c);
3465			if ((c == '.' && *p == ']') || p == pend)
3466			  break;
3467			if (c1 < sizeof (str))
3468			  str[c1++] = c;
3469			else
3470			  /* This is in any case an invalid class name.  */
3471			  str[0] = '\0';
3472                      }
3473		    str[c1] = '\0';
3474
3475		    if (c == '.' && *p == ']' && str[0] != '\0')
3476		      {
3477			/* If we have no collation data we use the default
3478			   collation in which each character is the name
3479			   for its own class which contains only the one
3480			   character.  It also means that ASCII is the
3481			   character set and therefore we cannot have character
3482			   with more than one byte in the multibyte
3483			   representation.  */
3484# ifdef _LIBC
3485			if (nrules == 0)
3486# endif
3487			  {
3488			    if (c1 != 1)
3489			      FREE_STACK_RETURN (REG_ECOLLATE);
3490
3491			    /* Throw away the ] at the end of the equivalence
3492			       class.  */
3493			    PATFETCH (c);
3494
3495			    /* Set the bit for the character.  */
3496			    SET_LIST_BIT (str[0]);
3497			    range_start = ((const unsigned char *) str)[0];
3498			  }
3499# ifdef _LIBC
3500			else
3501			  {
3502			    /* Try to match the byte sequence in `str' against
3503			       those known to the collate implementation.
3504			       First find out whether the bytes in `str' are
3505			       actually from exactly one character.  */
3506			    int32_t table_size;
3507			    const int32_t *symb_table;
3508			    const unsigned char *extra;
3509			    int32_t idx;
3510			    int32_t elem;
3511			    int32_t second;
3512			    int32_t hash;
3513
3514			    table_size =
3515			      _NL_CURRENT_WORD (LC_COLLATE,
3516						_NL_COLLATE_SYMB_HASH_SIZEMB);
3517			    symb_table = (const int32_t *)
3518			      _NL_CURRENT (LC_COLLATE,
3519					   _NL_COLLATE_SYMB_TABLEMB);
3520			    extra = (const unsigned char *)
3521			      _NL_CURRENT (LC_COLLATE,
3522					   _NL_COLLATE_SYMB_EXTRAMB);
3523
3524			    /* Locate the character in the hashing table.  */
3525			    hash = elem_hash (str, c1);
3526
3527			    idx = 0;
3528			    elem = hash % table_size;
3529			    second = hash % (table_size - 2);
3530			    while (symb_table[2 * elem] != 0)
3531			      {
3532				/* First compare the hashing value.  */
3533				if (symb_table[2 * elem] == hash
3534				    && c1 == extra[symb_table[2 * elem + 1]]
3535				    && memcmp (str,
3536					       &extra[symb_table[2 * elem + 1]
3537						     + 1],
3538					       c1) == 0)
3539				  {
3540				    /* Yep, this is the entry.  */
3541				    idx = symb_table[2 * elem + 1];
3542				    idx += 1 + extra[idx];
3543				    break;
3544				  }
3545
3546				/* Next entry.  */
3547				elem += second;
3548			      }
3549
3550			    if (symb_table[2 * elem] == 0)
3551			      /* This is no valid character.  */
3552			      FREE_STACK_RETURN (REG_ECOLLATE);
3553
3554			    /* Throw away the ] at the end of the equivalence
3555			       class.  */
3556			    PATFETCH (c);
3557
3558			    /* Now add the multibyte character(s) we found
3559			       to the accept list.
3560
3561			       XXX Note that this is not entirely correct.
3562			       we would have to match multibyte sequences
3563			       but this is not possible with the current
3564			       implementation.  Also, we have to match
3565			       collating symbols, which expand to more than
3566			       one file, as a whole and not allow the
3567			       individual bytes.  */
3568			    c1 = extra[idx++];
3569			    if (c1 == 1)
3570			      range_start = extra[idx];
3571			    while (c1-- > 0)
3572			      {
3573				SET_LIST_BIT (extra[idx]);
3574				++idx;
3575			      }
3576			  }
3577# endif
3578			had_char_class = false;
3579		      }
3580                    else
3581                      {
3582                        c1++;
3583                        while (c1--)
3584                          PATUNFETCH;
3585                        SET_LIST_BIT ('[');
3586                        SET_LIST_BIT ('.');
3587			range_start = '.';
3588                        had_char_class = false;
3589                      }
3590		  }
3591                else
3592                  {
3593                    had_char_class = false;
3594                    SET_LIST_BIT (c);
3595		    range_start = c;
3596                  }
3597              }
3598
3599            /* Discard any (non)matching list bytes that are all 0 at the
3600               end of the map.  Decrease the map-length byte too.  */
3601            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3602              b[-1]--;
3603            b += b[-1];
3604#endif /* WCHAR */
3605          }
3606          break;
3607
3608
3609	case '(':
3610          if (syntax & RE_NO_BK_PARENS)
3611            goto handle_open;
3612          else
3613            goto normal_char;
3614
3615
3616        case ')':
3617          if (syntax & RE_NO_BK_PARENS)
3618            goto handle_close;
3619          else
3620            goto normal_char;
3621
3622
3623        case '\n':
3624          if (syntax & RE_NEWLINE_ALT)
3625            goto handle_alt;
3626          else
3627            goto normal_char;
3628
3629
3630	case '|':
3631          if (syntax & RE_NO_BK_VBAR)
3632            goto handle_alt;
3633          else
3634            goto normal_char;
3635
3636
3637        case '{':
3638           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3639             goto handle_interval;
3640           else
3641             goto normal_char;
3642
3643
3644        case '\\':
3645          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3646
3647          /* Do not translate the character after the \, so that we can
3648             distinguish, e.g., \B from \b, even if we normally would
3649             translate, e.g., B to b.  */
3650          PATFETCH_RAW (c);
3651
3652          switch (c)
3653            {
3654            case '(':
3655              if (syntax & RE_NO_BK_PARENS)
3656                goto normal_backslash;
3657
3658            handle_open:
3659              bufp->re_nsub++;
3660              regnum++;
3661
3662              if (COMPILE_STACK_FULL)
3663                {
3664                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
3665                            compile_stack_elt_t);
3666                  if (compile_stack.stack == NULL) return REG_ESPACE;
3667
3668                  compile_stack.size <<= 1;
3669                }
3670
3671              /* These are the values to restore when we hit end of this
3672                 group.  They are all relative offsets, so that if the
3673                 whole pattern moves because of realloc, they will still
3674                 be valid.  */
3675              COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3676              COMPILE_STACK_TOP.fixup_alt_jump
3677                = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3678              COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3679              COMPILE_STACK_TOP.regnum = regnum;
3680
3681              /* We will eventually replace the 0 with the number of
3682                 groups inner to this one.  But do not push a
3683                 start_memory for groups beyond the last one we can
3684                 represent in the compiled pattern.  */
3685              if (regnum <= MAX_REGNUM)
3686                {
3687                  COMPILE_STACK_TOP.inner_group_offset = b
3688		    - COMPILED_BUFFER_VAR + 2;
3689                  BUF_PUSH_3 (start_memory, regnum, 0);
3690                }
3691
3692              compile_stack.avail++;
3693
3694              fixup_alt_jump = 0;
3695              laststart = 0;
3696              begalt = b;
3697	      /* If we've reached MAX_REGNUM groups, then this open
3698		 won't actually generate any code, so we'll have to
3699		 clear pending_exact explicitly.  */
3700	      pending_exact = 0;
3701              break;
3702
3703
3704            case ')':
3705              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3706
3707              if (COMPILE_STACK_EMPTY)
3708		{
3709		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3710		    goto normal_backslash;
3711		  else
3712		    FREE_STACK_RETURN (REG_ERPAREN);
3713		}
3714
3715            handle_close:
3716              if (fixup_alt_jump)
3717                { /* Push a dummy failure point at the end of the
3718                     alternative for a possible future
3719                     `pop_failure_jump' to pop.  See comments at
3720                     `push_dummy_failure' in `re_match_2'.  */
3721                  BUF_PUSH (push_dummy_failure);
3722
3723                  /* We allocated space for this jump when we assigned
3724                     to `fixup_alt_jump', in the `handle_alt' case below.  */
3725                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3726                }
3727
3728              /* See similar code for backslashed left paren above.  */
3729              if (COMPILE_STACK_EMPTY)
3730		{
3731		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3732		    goto normal_char;
3733		  else
3734		    FREE_STACK_RETURN (REG_ERPAREN);
3735		}
3736
3737              /* Since we just checked for an empty stack above, this
3738                 ``can't happen''.  */
3739              assert (compile_stack.avail != 0);
3740              {
3741                /* We don't just want to restore into `regnum', because
3742                   later groups should continue to be numbered higher,
3743                   as in `(ab)c(de)' -- the second group is #2.  */
3744                regnum_t this_group_regnum;
3745
3746                compile_stack.avail--;
3747                begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3748                fixup_alt_jump
3749                  = COMPILE_STACK_TOP.fixup_alt_jump
3750                    ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3751                    : 0;
3752                laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3753                this_group_regnum = COMPILE_STACK_TOP.regnum;
3754		/* If we've reached MAX_REGNUM groups, then this open
3755		   won't actually generate any code, so we'll have to
3756		   clear pending_exact explicitly.  */
3757		pending_exact = 0;
3758
3759                /* We're at the end of the group, so now we know how many
3760                   groups were inside this one.  */
3761                if (this_group_regnum <= MAX_REGNUM)
3762                  {
3763		    UCHAR_T *inner_group_loc
3764                      = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3765
3766                    *inner_group_loc = regnum - this_group_regnum;
3767                    BUF_PUSH_3 (stop_memory, this_group_regnum,
3768                                regnum - this_group_regnum);
3769                  }
3770              }
3771              break;
3772
3773
3774            case '|':					/* `\|'.  */
3775              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3776                goto normal_backslash;
3777            handle_alt:
3778              if (syntax & RE_LIMITED_OPS)
3779                goto normal_char;
3780
3781              /* Insert before the previous alternative a jump which
3782                 jumps to this alternative if the former fails.  */
3783              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3784              INSERT_JUMP (on_failure_jump, begalt,
3785			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3786              pending_exact = 0;
3787              b += 1 + OFFSET_ADDRESS_SIZE;
3788
3789              /* The alternative before this one has a jump after it
3790                 which gets executed if it gets matched.  Adjust that
3791                 jump so it will jump to this alternative's analogous
3792                 jump (put in below, which in turn will jump to the next
3793                 (if any) alternative's such jump, etc.).  The last such
3794                 jump jumps to the correct final destination.  A picture:
3795                          _____ _____
3796                          |   | |   |
3797                          |   v |   v
3798                         a | b   | c
3799
3800                 If we are at `b', then fixup_alt_jump right now points to a
3801                 three-byte space after `a'.  We'll put in the jump, set
3802                 fixup_alt_jump to right after `b', and leave behind three
3803                 bytes which we'll fill in when we get to after `c'.  */
3804
3805              if (fixup_alt_jump)
3806                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3807
3808              /* Mark and leave space for a jump after this alternative,
3809                 to be filled in later either by next alternative or
3810                 when know we're at the end of a series of alternatives.  */
3811              fixup_alt_jump = b;
3812              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3813              b += 1 + OFFSET_ADDRESS_SIZE;
3814
3815              laststart = 0;
3816              begalt = b;
3817              break;
3818
3819
3820            case '{':
3821              /* If \{ is a literal.  */
3822              if (!(syntax & RE_INTERVALS)
3823                     /* If we're at `\{' and it's not the open-interval
3824                        operator.  */
3825		  || (syntax & RE_NO_BK_BRACES))
3826                goto normal_backslash;
3827
3828            handle_interval:
3829              {
3830                /* If got here, then the syntax allows intervals.  */
3831
3832                /* At least (most) this many matches must be made.  */
3833                int lower_bound = -1, upper_bound = -1;
3834
3835		/* Place in the uncompiled pattern (i.e., just after
3836		   the '{') to go back to if the interval is invalid.  */
3837		const CHAR_T *beg_interval = p;
3838
3839                if (p == pend)
3840		  goto invalid_interval;
3841
3842                GET_UNSIGNED_NUMBER (lower_bound);
3843
3844                if (c == ',')
3845                  {
3846                    GET_UNSIGNED_NUMBER (upper_bound);
3847		    if (upper_bound < 0)
3848		      upper_bound = RE_DUP_MAX;
3849                  }
3850                else
3851                  /* Interval such as `{1}' => match exactly once. */
3852                  upper_bound = lower_bound;
3853
3854                if (! (0 <= lower_bound && lower_bound <= upper_bound))
3855		  goto invalid_interval;
3856
3857                if (!(syntax & RE_NO_BK_BRACES))
3858                  {
3859		    if (c != '\\' || p == pend)
3860		      goto invalid_interval;
3861                    PATFETCH (c);
3862                  }
3863
3864                if (c != '}')
3865		  goto invalid_interval;
3866
3867                /* If it's invalid to have no preceding re.  */
3868                if (!laststart)
3869                  {
3870		    if (syntax & RE_CONTEXT_INVALID_OPS
3871			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3872                      FREE_STACK_RETURN (REG_BADRPT);
3873                    else if (syntax & RE_CONTEXT_INDEP_OPS)
3874                      laststart = b;
3875                    else
3876                      goto unfetch_interval;
3877                  }
3878
3879                /* We just parsed a valid interval.  */
3880
3881                if (RE_DUP_MAX < upper_bound)
3882		  FREE_STACK_RETURN (REG_BADBR);
3883
3884                /* If the upper bound is zero, don't want to succeed at
3885                   all; jump from `laststart' to `b + 3', which will be
3886		   the end of the buffer after we insert the jump.  */
3887		/* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3888		   instead of 'b + 3'.  */
3889                 if (upper_bound == 0)
3890                   {
3891                     GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3892                     INSERT_JUMP (jump, laststart, b + 1
3893				  + OFFSET_ADDRESS_SIZE);
3894                     b += 1 + OFFSET_ADDRESS_SIZE;
3895                   }
3896
3897                 /* Otherwise, we have a nontrivial interval.  When
3898                    we're all done, the pattern will look like:
3899                      set_number_at <jump count> <upper bound>
3900                      set_number_at <succeed_n count> <lower bound>
3901                      succeed_n <after jump addr> <succeed_n count>
3902                      <body of loop>
3903                      jump_n <succeed_n addr> <jump count>
3904                    (The upper bound and `jump_n' are omitted if
3905                    `upper_bound' is 1, though.)  */
3906                 else
3907                   { /* If the upper bound is > 1, we need to insert
3908                        more at the end of the loop.  */
3909                     unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3910		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3911
3912                     GET_BUFFER_SPACE (nbytes);
3913
3914                     /* Initialize lower bound of the `succeed_n', even
3915                        though it will be set during matching by its
3916                        attendant `set_number_at' (inserted next),
3917                        because `re_compile_fastmap' needs to know.
3918                        Jump to the `jump_n' we might insert below.  */
3919                     INSERT_JUMP2 (succeed_n, laststart,
3920                                   b + 1 + 2 * OFFSET_ADDRESS_SIZE
3921				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3922				   , lower_bound);
3923                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3924
3925                     /* Code to initialize the lower bound.  Insert
3926                        before the `succeed_n'.  The `5' is the last two
3927                        bytes of this `set_number_at', plus 3 bytes of
3928                        the following `succeed_n'.  */
3929		     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3930			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3931			of the following `succeed_n'.  */
3932                     PREFIX(insert_op2) (set_number_at, laststart, 1
3933				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3934                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3935
3936                     if (upper_bound > 1)
3937                       { /* More than one repetition is allowed, so
3938                            append a backward jump to the `succeed_n'
3939                            that starts this interval.
3940
3941                            When we've reached this during matching,
3942                            we'll have matched the interval once, so
3943                            jump back only `upper_bound - 1' times.  */
3944                         STORE_JUMP2 (jump_n, b, laststart
3945				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3946                                      upper_bound - 1);
3947                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3948
3949                         /* The location we want to set is the second
3950                            parameter of the `jump_n'; that is `b-2' as
3951                            an absolute address.  `laststart' will be
3952                            the `set_number_at' we're about to insert;
3953                            `laststart+3' the number to set, the source
3954                            for the relative address.  But we are
3955                            inserting into the middle of the pattern --
3956                            so everything is getting moved up by 5.
3957                            Conclusion: (b - 2) - (laststart + 3) + 5,
3958                            i.e., b - laststart.
3959
3960                            We insert this at the beginning of the loop
3961                            so that if we fail during matching, we'll
3962                            reinitialize the bounds.  */
3963                         PREFIX(insert_op2) (set_number_at, laststart,
3964					     b - laststart,
3965					     upper_bound - 1, b);
3966                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3967                       }
3968                   }
3969                pending_exact = 0;
3970		break;
3971
3972	      invalid_interval:
3973		if (!(syntax & RE_INVALID_INTERVAL_ORD))
3974		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3975	      unfetch_interval:
3976		/* Match the characters as literals.  */
3977		p = beg_interval;
3978		c = '{';
3979		if (syntax & RE_NO_BK_BRACES)
3980		  goto normal_char;
3981		else
3982		  goto normal_backslash;
3983	      }
3984
3985#ifdef emacs
3986            /* There is no way to specify the before_dot and after_dot
3987               operators.  rms says this is ok.  --karl  */
3988            case '=':
3989              BUF_PUSH (at_dot);
3990              break;
3991
3992            case 's':
3993              laststart = b;
3994              PATFETCH (c);
3995              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3996              break;
3997
3998            case 'S':
3999              laststart = b;
4000              PATFETCH (c);
4001              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4002              break;
4003#endif /* emacs */
4004
4005
4006            case 'w':
4007	      if (syntax & RE_NO_GNU_OPS)
4008		goto normal_char;
4009              laststart = b;
4010              BUF_PUSH (wordchar);
4011              break;
4012
4013
4014            case 'W':
4015	      if (syntax & RE_NO_GNU_OPS)
4016		goto normal_char;
4017              laststart = b;
4018              BUF_PUSH (notwordchar);
4019              break;
4020
4021
4022            case '<':
4023	      if (syntax & RE_NO_GNU_OPS)
4024		goto normal_char;
4025              BUF_PUSH (wordbeg);
4026              break;
4027
4028            case '>':
4029	      if (syntax & RE_NO_GNU_OPS)
4030		goto normal_char;
4031              BUF_PUSH (wordend);
4032              break;
4033
4034            case 'b':
4035	      if (syntax & RE_NO_GNU_OPS)
4036		goto normal_char;
4037              BUF_PUSH (wordbound);
4038              break;
4039
4040            case 'B':
4041	      if (syntax & RE_NO_GNU_OPS)
4042		goto normal_char;
4043              BUF_PUSH (notwordbound);
4044              break;
4045
4046            case '`':
4047	      if (syntax & RE_NO_GNU_OPS)
4048		goto normal_char;
4049              BUF_PUSH (begbuf);
4050              break;
4051
4052            case '\'':
4053	      if (syntax & RE_NO_GNU_OPS)
4054		goto normal_char;
4055              BUF_PUSH (endbuf);
4056              break;
4057
4058            case '1': case '2': case '3': case '4': case '5':
4059            case '6': case '7': case '8': case '9':
4060              if (syntax & RE_NO_BK_REFS)
4061                goto normal_char;
4062
4063              c1 = c - '0';
4064
4065              if (c1 > regnum)
4066                FREE_STACK_RETURN (REG_ESUBREG);
4067
4068              /* Can't back reference to a subexpression if inside of it.  */
4069              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4070                goto normal_char;
4071
4072              laststart = b;
4073              BUF_PUSH_2 (duplicate, c1);
4074              break;
4075
4076
4077            case '+':
4078            case '?':
4079              if (syntax & RE_BK_PLUS_QM)
4080                goto handle_plus;
4081              else
4082                goto normal_backslash;
4083
4084            default:
4085            normal_backslash:
4086              /* You might think it would be useful for \ to mean
4087                 not to translate; but if we don't translate it
4088                 it will never match anything.  */
4089              c = TRANSLATE (c);
4090              goto normal_char;
4091            }
4092          break;
4093
4094
4095	default:
4096        /* Expects the character in `c'.  */
4097	normal_char:
4098	      /* If no exactn currently being built.  */
4099          if (!pending_exact
4100#ifdef WCHAR
4101	      /* If last exactn handle binary(or character) and
4102		 new exactn handle character(or binary).  */
4103	      || is_exactn_bin != is_binary[p - 1 - pattern]
4104#endif /* WCHAR */
4105
4106              /* If last exactn not at current position.  */
4107              || pending_exact + *pending_exact + 1 != b
4108
4109              /* We have only one byte following the exactn for the count.  */
4110	      || *pending_exact == (1 << BYTEWIDTH) - 1
4111
4112              /* If followed by a repetition operator.  */
4113              || *p == '*' || *p == '^'
4114	      || ((syntax & RE_BK_PLUS_QM)
4115		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4116		  : (*p == '+' || *p == '?'))
4117	      || ((syntax & RE_INTERVALS)
4118                  && ((syntax & RE_NO_BK_BRACES)
4119		      ? *p == '{'
4120                      : (p[0] == '\\' && p[1] == '{'))))
4121	    {
4122	      /* Start building a new exactn.  */
4123
4124              laststart = b;
4125
4126#ifdef WCHAR
4127	      /* Is this exactn binary data or character? */
4128	      is_exactn_bin = is_binary[p - 1 - pattern];
4129	      if (is_exactn_bin)
4130		  BUF_PUSH_2 (exactn_bin, 0);
4131	      else
4132		  BUF_PUSH_2 (exactn, 0);
4133#else
4134	      BUF_PUSH_2 (exactn, 0);
4135#endif /* WCHAR */
4136	      pending_exact = b - 1;
4137            }
4138
4139	  BUF_PUSH (c);
4140          (*pending_exact)++;
4141	  break;
4142        } /* switch (c) */
4143    } /* while p != pend */
4144
4145
4146  /* Through the pattern now.  */
4147
4148  if (fixup_alt_jump)
4149    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4150
4151  if (!COMPILE_STACK_EMPTY)
4152    FREE_STACK_RETURN (REG_EPAREN);
4153
4154  /* If we don't want backtracking, force success
4155     the first time we reach the end of the compiled pattern.  */
4156  if (syntax & RE_NO_POSIX_BACKTRACKING)
4157    BUF_PUSH (succeed);
4158
4159#ifdef WCHAR
4160  free (pattern);
4161  free (mbs_offset);
4162  free (is_binary);
4163#endif
4164  free (compile_stack.stack);
4165
4166  /* We have succeeded; set the length of the buffer.  */
4167#ifdef WCHAR
4168  bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4169#else
4170  bufp->used = b - bufp->buffer;
4171#endif
4172
4173#ifdef DEBUG
4174  if (debug)
4175    {
4176      DEBUG_PRINT1 ("\nCompiled pattern: \n");
4177      PREFIX(print_compiled_pattern) (bufp);
4178    }
4179#endif /* DEBUG */
4180
4181#ifndef MATCH_MAY_ALLOCATE
4182  /* Initialize the failure stack to the largest possible stack.  This
4183     isn't necessary unless we're trying to avoid calling alloca in
4184     the search and match routines.  */
4185  {
4186    int num_regs = bufp->re_nsub + 1;
4187
4188    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4189       is strictly greater than re_max_failures, the largest possible stack
4190       is 2 * re_max_failures failure points.  */
4191    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4192      {
4193	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4194
4195# ifdef emacs
4196	if (! fail_stack.stack)
4197	  fail_stack.stack
4198	    = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4199				    * sizeof (PREFIX(fail_stack_elt_t)));
4200	else
4201	  fail_stack.stack
4202	    = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4203				     (fail_stack.size
4204				      * sizeof (PREFIX(fail_stack_elt_t))));
4205# else /* not emacs */
4206	if (! fail_stack.stack)
4207	  fail_stack.stack
4208	    = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4209				   * sizeof (PREFIX(fail_stack_elt_t)));
4210	else
4211	  fail_stack.stack
4212	    = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4213					    (fail_stack.size
4214				     * sizeof (PREFIX(fail_stack_elt_t))));
4215# endif /* not emacs */
4216      }
4217
4218   PREFIX(regex_grow_registers) (num_regs);
4219  }
4220#endif /* not MATCH_MAY_ALLOCATE */
4221
4222  return REG_NOERROR;
4223} /* regex_compile */
4224
4225/* Subroutines for `regex_compile'.  */
4226
4227/* Store OP at LOC followed by two-byte integer parameter ARG.  */
4228/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4229
4230static void
4231PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4232{
4233  *loc = (UCHAR_T) op;
4234  STORE_NUMBER (loc + 1, arg);
4235}
4236
4237
4238/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4239/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4240
4241static void
4242PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4243{
4244  *loc = (UCHAR_T) op;
4245  STORE_NUMBER (loc + 1, arg1);
4246  STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4247}
4248
4249
4250/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4251   for OP followed by two-byte integer parameter ARG.  */
4252/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4253
4254static void
4255PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4256{
4257  register UCHAR_T *pfrom = end;
4258  register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4259
4260  while (pfrom != loc)
4261    *--pto = *--pfrom;
4262
4263  PREFIX(store_op1) (op, loc, arg);
4264}
4265
4266
4267/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4268/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4269
4270static void
4271PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4272                    int arg2, UCHAR_T *end)
4273{
4274  register UCHAR_T *pfrom = end;
4275  register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4276
4277  while (pfrom != loc)
4278    *--pto = *--pfrom;
4279
4280  PREFIX(store_op2) (op, loc, arg1, arg2);
4281}
4282
4283
4284/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4285   after an alternative or a begin-subexpression.  We assume there is at
4286   least one character before the ^.  */
4287
4288static boolean
4289PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4290                          reg_syntax_t syntax)
4291{
4292  const CHAR_T *prev = p - 2;
4293  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4294
4295  return
4296       /* After a subexpression?  */
4297       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4298       /* After an alternative?  */
4299    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4300}
4301
4302
4303/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4304   at least one character after the $, i.e., `P < PEND'.  */
4305
4306static boolean
4307PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4308                          reg_syntax_t syntax)
4309{
4310  const CHAR_T *next = p;
4311  boolean next_backslash = *next == '\\';
4312  const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4313
4314  return
4315       /* Before a subexpression?  */
4316       (syntax & RE_NO_BK_PARENS ? *next == ')'
4317        : next_backslash && next_next && *next_next == ')')
4318       /* Before an alternative?  */
4319    || (syntax & RE_NO_BK_VBAR ? *next == '|'
4320        : next_backslash && next_next && *next_next == '|');
4321}
4322
4323#else /* not INSIDE_RECURSION */
4324
4325/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4326   false if it's not.  */
4327
4328static boolean
4329group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4330{
4331  int this_element;
4332
4333  for (this_element = compile_stack.avail - 1;
4334       this_element >= 0;
4335       this_element--)
4336    if (compile_stack.stack[this_element].regnum == regnum)
4337      return true;
4338
4339  return false;
4340}
4341#endif /* not INSIDE_RECURSION */
4342
4343#ifdef INSIDE_RECURSION
4344
4345#ifdef WCHAR
4346/* This insert space, which size is "num", into the pattern at "loc".
4347   "end" must point the end of the allocated buffer.  */
4348static void
4349insert_space (int num, CHAR_T *loc, CHAR_T *end)
4350{
4351  register CHAR_T *pto = end;
4352  register CHAR_T *pfrom = end - num;
4353
4354  while (pfrom >= loc)
4355    *pto-- = *pfrom--;
4356}
4357#endif /* WCHAR */
4358
4359#ifdef WCHAR
4360static reg_errcode_t
4361wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4362                   const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
4363                   reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4364{
4365  const CHAR_T *p = *p_ptr;
4366  CHAR_T range_start, range_end;
4367  reg_errcode_t ret;
4368# ifdef _LIBC
4369  uint32_t nrules;
4370  uint32_t start_val, end_val;
4371# endif
4372  if (p == pend)
4373    return REG_ERANGE;
4374
4375# ifdef _LIBC
4376  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4377  if (nrules != 0)
4378    {
4379      const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4380						       _NL_COLLATE_COLLSEQWC);
4381      const unsigned char *extra = (const unsigned char *)
4382	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4383
4384      if (range_start_char < -1)
4385	{
4386	  /* range_start is a collating symbol.  */
4387	  int32_t *wextra;
4388	  /* Retreive the index and get collation sequence value.  */
4389	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4390	  start_val = wextra[1 + *wextra];
4391	}
4392      else
4393	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4394
4395      end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4396
4397      /* Report an error if the range is empty and the syntax prohibits
4398	 this.  */
4399      ret = ((syntax & RE_NO_EMPTY_RANGES)
4400	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4401
4402      /* Insert space to the end of the char_ranges.  */
4403      insert_space(2, b - char_set[5] - 2, b - 1);
4404      *(b - char_set[5] - 2) = (wchar_t)start_val;
4405      *(b - char_set[5] - 1) = (wchar_t)end_val;
4406      char_set[4]++; /* ranges_index */
4407    }
4408  else
4409# endif
4410    {
4411      range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4412	range_start_char;
4413      range_end = TRANSLATE (p[0]);
4414      /* Report an error if the range is empty and the syntax prohibits
4415	 this.  */
4416      ret = ((syntax & RE_NO_EMPTY_RANGES)
4417	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4418
4419      /* Insert space to the end of the char_ranges.  */
4420      insert_space(2, b - char_set[5] - 2, b - 1);
4421      *(b - char_set[5] - 2) = range_start;
4422      *(b - char_set[5] - 1) = range_end;
4423      char_set[4]++; /* ranges_index */
4424    }
4425  /* Have to increment the pointer into the pattern string, so the
4426     caller isn't still at the ending character.  */
4427  (*p_ptr)++;
4428
4429  return ret;
4430}
4431#else /* BYTE */
4432/* Read the ending character of a range (in a bracket expression) from the
4433   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4434   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4435   Then we set the translation of all bits between the starting and
4436   ending characters (inclusive) in the compiled pattern B.
4437
4438   Return an error code.
4439
4440   We use these short variable names so we can use the same macros as
4441   `regex_compile' itself.  */
4442
4443static reg_errcode_t
4444byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4445                    const char *pend, RE_TRANSLATE_TYPE translate,
4446                    reg_syntax_t syntax, unsigned char *b)
4447{
4448  unsigned this_char;
4449  const char *p = *p_ptr;
4450  reg_errcode_t ret;
4451# if _LIBC
4452  const unsigned char *collseq;
4453  unsigned int start_colseq;
4454  unsigned int end_colseq;
4455# else
4456  unsigned end_char;
4457# endif
4458
4459  if (p == pend)
4460    return REG_ERANGE;
4461
4462  /* Have to increment the pointer into the pattern string, so the
4463     caller isn't still at the ending character.  */
4464  (*p_ptr)++;
4465
4466  /* Report an error if the range is empty and the syntax prohibits this.  */
4467  ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4468
4469# if _LIBC
4470  collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4471						 _NL_COLLATE_COLLSEQMB);
4472
4473  start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4474  end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4475  for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4476    {
4477      unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4478
4479      if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4480	{
4481	  SET_LIST_BIT (TRANSLATE (this_char));
4482	  ret = REG_NOERROR;
4483	}
4484    }
4485# else
4486  /* Here we see why `this_char' has to be larger than an `unsigned
4487     char' -- we would otherwise go into an infinite loop, since all
4488     characters <= 0xff.  */
4489  range_start_char = TRANSLATE (range_start_char);
4490  /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4491     and some compilers cast it to int implicitly, so following for_loop
4492     may fall to (almost) infinite loop.
4493     e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4494     To avoid this, we cast p[0] to unsigned int and truncate it.  */
4495  end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4496
4497  for (this_char = range_start_char; this_char <= end_char; ++this_char)
4498    {
4499      SET_LIST_BIT (TRANSLATE (this_char));
4500      ret = REG_NOERROR;
4501    }
4502# endif
4503
4504  return ret;
4505}
4506#endif /* WCHAR */
4507
4508/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4509   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4510   characters can start a string that matches the pattern.  This fastmap
4511   is used by re_search to skip quickly over impossible starting points.
4512
4513   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4514   area as BUFP->fastmap.
4515
4516   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4517   the pattern buffer.
4518
4519   Returns 0 if we succeed, -2 if an internal error.   */
4520
4521#ifdef WCHAR
4522/* local function for re_compile_fastmap.
4523   truncate wchar_t character to char.  */
4524static unsigned char truncate_wchar (CHAR_T c);
4525
4526static unsigned char
4527truncate_wchar (CHAR_T c)
4528{
4529  unsigned char buf[MB_CUR_MAX];
4530  mbstate_t state;
4531  int retval;
4532  memset (&state, '\0', sizeof (state));
4533# ifdef _LIBC
4534  retval = __wcrtomb (buf, c, &state);
4535# else
4536  retval = wcrtomb (buf, c, &state);
4537# endif
4538  return retval > 0 ? buf[0] : (unsigned char) c;
4539}
4540#endif /* WCHAR */
4541
4542static int
4543PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4544{
4545  int j, k;
4546#ifdef MATCH_MAY_ALLOCATE
4547  PREFIX(fail_stack_type) fail_stack;
4548#endif
4549#ifndef REGEX_MALLOC
4550  char *destination;
4551#endif
4552
4553  register char *fastmap = bufp->fastmap;
4554
4555#ifdef WCHAR
4556  /* We need to cast pattern to (wchar_t*), because we casted this compiled
4557     pattern to (char*) in regex_compile.  */
4558  UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4559  register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4560#else /* BYTE */
4561  UCHAR_T *pattern = bufp->buffer;
4562  register UCHAR_T *pend = pattern + bufp->used;
4563#endif /* WCHAR */
4564  UCHAR_T *p = pattern;
4565
4566#ifdef REL_ALLOC
4567  /* This holds the pointer to the failure stack, when
4568     it is allocated relocatably.  */
4569  fail_stack_elt_t *failure_stack_ptr;
4570#endif
4571
4572  /* Assume that each path through the pattern can be null until
4573     proven otherwise.  We set this false at the bottom of switch
4574     statement, to which we get only if a particular path doesn't
4575     match the empty string.  */
4576  boolean path_can_be_null = true;
4577
4578  /* We aren't doing a `succeed_n' to begin with.  */
4579  boolean succeed_n_p = false;
4580
4581  assert (fastmap != NULL && p != NULL);
4582
4583  INIT_FAIL_STACK ();
4584  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4585  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4586  bufp->can_be_null = 0;
4587
4588  while (1)
4589    {
4590      if (p == pend || *p == (UCHAR_T) succeed)
4591	{
4592	  /* We have reached the (effective) end of pattern.  */
4593	  if (!FAIL_STACK_EMPTY ())
4594	    {
4595	      bufp->can_be_null |= path_can_be_null;
4596
4597	      /* Reset for next path.  */
4598	      path_can_be_null = true;
4599
4600	      p = fail_stack.stack[--fail_stack.avail].pointer;
4601
4602	      continue;
4603	    }
4604	  else
4605	    break;
4606	}
4607
4608      /* We should never be about to go beyond the end of the pattern.  */
4609      assert (p < pend);
4610
4611      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4612	{
4613
4614        /* I guess the idea here is to simply not bother with a fastmap
4615           if a backreference is used, since it's too hard to figure out
4616           the fastmap for the corresponding group.  Setting
4617           `can_be_null' stops `re_search_2' from using the fastmap, so
4618           that is all we do.  */
4619	case duplicate:
4620	  bufp->can_be_null = 1;
4621          goto done;
4622
4623
4624      /* Following are the cases which match a character.  These end
4625         with `break'.  */
4626
4627#ifdef WCHAR
4628	case exactn:
4629          fastmap[truncate_wchar(p[1])] = 1;
4630	  break;
4631#else /* BYTE */
4632	case exactn:
4633          fastmap[p[1]] = 1;
4634	  break;
4635#endif /* WCHAR */
4636#ifdef MBS_SUPPORT
4637	case exactn_bin:
4638	  fastmap[p[1]] = 1;
4639	  break;
4640#endif
4641
4642#ifdef WCHAR
4643        /* It is hard to distinguish fastmap from (multi byte) characters
4644           which depends on current locale.  */
4645        case charset:
4646	case charset_not:
4647	case wordchar:
4648	case notwordchar:
4649          bufp->can_be_null = 1;
4650          goto done;
4651#else /* BYTE */
4652        case charset:
4653          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4654	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4655              fastmap[j] = 1;
4656	  break;
4657
4658
4659	case charset_not:
4660	  /* Chars beyond end of map must be allowed.  */
4661	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4662            fastmap[j] = 1;
4663
4664	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4665	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4666              fastmap[j] = 1;
4667          break;
4668
4669
4670	case wordchar:
4671	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4672	    if (SYNTAX (j) == Sword)
4673	      fastmap[j] = 1;
4674	  break;
4675
4676
4677	case notwordchar:
4678	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4679	    if (SYNTAX (j) != Sword)
4680	      fastmap[j] = 1;
4681	  break;
4682#endif /* WCHAR */
4683
4684        case anychar:
4685	  {
4686	    int fastmap_newline = fastmap['\n'];
4687
4688	    /* `.' matches anything ...  */
4689	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4690	      fastmap[j] = 1;
4691
4692	    /* ... except perhaps newline.  */
4693	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4694	      fastmap['\n'] = fastmap_newline;
4695
4696	    /* Return if we have already set `can_be_null'; if we have,
4697	       then the fastmap is irrelevant.  Something's wrong here.  */
4698	    else if (bufp->can_be_null)
4699	      goto done;
4700
4701	    /* Otherwise, have to check alternative paths.  */
4702	    break;
4703	  }
4704
4705#ifdef emacs
4706        case syntaxspec:
4707	  k = *p++;
4708	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4709	    if (SYNTAX (j) == (enum syntaxcode) k)
4710	      fastmap[j] = 1;
4711	  break;
4712
4713
4714	case notsyntaxspec:
4715	  k = *p++;
4716	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4717	    if (SYNTAX (j) != (enum syntaxcode) k)
4718	      fastmap[j] = 1;
4719	  break;
4720
4721
4722      /* All cases after this match the empty string.  These end with
4723         `continue'.  */
4724
4725
4726	case before_dot:
4727	case at_dot:
4728	case after_dot:
4729          continue;
4730#endif /* emacs */
4731
4732
4733        case no_op:
4734        case begline:
4735        case endline:
4736	case begbuf:
4737	case endbuf:
4738	case wordbound:
4739	case notwordbound:
4740	case wordbeg:
4741	case wordend:
4742        case push_dummy_failure:
4743          continue;
4744
4745
4746	case jump_n:
4747        case pop_failure_jump:
4748	case maybe_pop_jump:
4749	case jump:
4750        case jump_past_alt:
4751	case dummy_failure_jump:
4752          EXTRACT_NUMBER_AND_INCR (j, p);
4753	  p += j;
4754	  if (j > 0)
4755	    continue;
4756
4757          /* Jump backward implies we just went through the body of a
4758             loop and matched nothing.  Opcode jumped to should be
4759             `on_failure_jump' or `succeed_n'.  Just treat it like an
4760             ordinary jump.  For a * loop, it has pushed its failure
4761             point already; if so, discard that as redundant.  */
4762          if ((re_opcode_t) *p != on_failure_jump
4763	      && (re_opcode_t) *p != succeed_n)
4764	    continue;
4765
4766          p++;
4767          EXTRACT_NUMBER_AND_INCR (j, p);
4768          p += j;
4769
4770          /* If what's on the stack is where we are now, pop it.  */
4771          if (!FAIL_STACK_EMPTY ()
4772	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4773            fail_stack.avail--;
4774
4775          continue;
4776
4777
4778        case on_failure_jump:
4779        case on_failure_keep_string_jump:
4780	handle_on_failure_jump:
4781          EXTRACT_NUMBER_AND_INCR (j, p);
4782
4783          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4784             end of the pattern.  We don't want to push such a point,
4785             since when we restore it above, entering the switch will
4786             increment `p' past the end of the pattern.  We don't need
4787             to push such a point since we obviously won't find any more
4788             fastmap entries beyond `pend'.  Such a pattern can match
4789             the null string, though.  */
4790          if (p + j < pend)
4791            {
4792              if (!PUSH_PATTERN_OP (p + j, fail_stack))
4793		{
4794		  RESET_FAIL_STACK ();
4795		  return -2;
4796		}
4797            }
4798          else
4799            bufp->can_be_null = 1;
4800
4801          if (succeed_n_p)
4802            {
4803              EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4804              succeed_n_p = false;
4805	    }
4806
4807          continue;
4808
4809
4810	case succeed_n:
4811          /* Get to the number of times to succeed.  */
4812          p += OFFSET_ADDRESS_SIZE;
4813
4814          /* Increment p past the n for when k != 0.  */
4815          EXTRACT_NUMBER_AND_INCR (k, p);
4816          if (k == 0)
4817	    {
4818              p -= 2 * OFFSET_ADDRESS_SIZE;
4819  	      succeed_n_p = true;  /* Spaghetti code alert.  */
4820              goto handle_on_failure_jump;
4821            }
4822          continue;
4823
4824
4825	case set_number_at:
4826          p += 2 * OFFSET_ADDRESS_SIZE;
4827          continue;
4828
4829
4830	case start_memory:
4831        case stop_memory:
4832	  p += 2;
4833	  continue;
4834
4835
4836	default:
4837          abort (); /* We have listed all the cases.  */
4838        } /* switch *p++ */
4839
4840      /* Getting here means we have found the possible starting
4841         characters for one path of the pattern -- and that the empty
4842         string does not match.  We need not follow this path further.
4843         Instead, look at the next alternative (remembered on the
4844         stack), or quit if no more.  The test at the top of the loop
4845         does these things.  */
4846      path_can_be_null = false;
4847      p = pend;
4848    } /* while p */
4849
4850  /* Set `can_be_null' for the last path (also the first path, if the
4851     pattern is empty).  */
4852  bufp->can_be_null |= path_can_be_null;
4853
4854 done:
4855  RESET_FAIL_STACK ();
4856  return 0;
4857}
4858
4859#else /* not INSIDE_RECURSION */
4860
4861int
4862re_compile_fastmap (struct re_pattern_buffer *bufp)
4863{
4864# ifdef MBS_SUPPORT
4865  if (MB_CUR_MAX != 1)
4866    return wcs_re_compile_fastmap(bufp);
4867  else
4868# endif
4869    return byte_re_compile_fastmap(bufp);
4870} /* re_compile_fastmap */
4871#ifdef _LIBC
4872weak_alias (__re_compile_fastmap, re_compile_fastmap)
4873#endif
4874
4875
4876/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4877   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4878   this memory for recording register information.  STARTS and ENDS
4879   must be allocated using the malloc library routine, and must each
4880   be at least NUM_REGS * sizeof (regoff_t) bytes long.
4881
4882   If NUM_REGS == 0, then subsequent matches should allocate their own
4883   register data.
4884
4885   Unless this function is called, the first search or match using
4886   PATTERN_BUFFER will allocate its own register data, without
4887   freeing the old data.  */
4888
4889void
4890re_set_registers (struct re_pattern_buffer *bufp,
4891                  struct re_registers *regs, unsigned num_regs,
4892                  regoff_t *starts, regoff_t *ends)
4893{
4894  if (num_regs)
4895    {
4896      bufp->regs_allocated = REGS_REALLOCATE;
4897      regs->num_regs = num_regs;
4898      regs->start = starts;
4899      regs->end = ends;
4900    }
4901  else
4902    {
4903      bufp->regs_allocated = REGS_UNALLOCATED;
4904      regs->num_regs = 0;
4905      regs->start = regs->end = (regoff_t *) 0;
4906    }
4907}
4908#ifdef _LIBC
4909weak_alias (__re_set_registers, re_set_registers)
4910#endif
4911
4912/* Searching routines.  */
4913
4914/* Like re_search_2, below, but only one string is specified, and
4915   doesn't let you say where to stop matching.  */
4916
4917int
4918re_search (struct re_pattern_buffer *bufp, const char *string, int size,
4919           int startpos, int range, struct re_registers *regs)
4920{
4921  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4922		      regs, size);
4923}
4924#ifdef _LIBC
4925weak_alias (__re_search, re_search)
4926#endif
4927
4928
4929/* Using the compiled pattern in BUFP->buffer, first tries to match the
4930   virtual concatenation of STRING1 and STRING2, starting first at index
4931   STARTPOS, then at STARTPOS + 1, and so on.
4932
4933   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4934
4935   RANGE is how far to scan while trying to match.  RANGE = 0 means try
4936   only at STARTPOS; in general, the last start tried is STARTPOS +
4937   RANGE.
4938
4939   In REGS, return the indices of the virtual concatenation of STRING1
4940   and STRING2 that matched the entire BUFP->buffer and its contained
4941   subexpressions.
4942
4943   Do not consider matching one past the index STOP in the virtual
4944   concatenation of STRING1 and STRING2.
4945
4946   We return either the position in the strings at which the match was
4947   found, -1 if no match, or -2 if error (such as failure
4948   stack overflow).  */
4949
4950int
4951re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4952             const char *string2, int size2, int startpos, int range,
4953             struct re_registers *regs, int stop)
4954{
4955# ifdef MBS_SUPPORT
4956  if (MB_CUR_MAX != 1)
4957    return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4958			    range, regs, stop);
4959  else
4960# endif
4961    return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4962			     range, regs, stop);
4963} /* re_search_2 */
4964#ifdef _LIBC
4965weak_alias (__re_search_2, re_search_2)
4966#endif
4967
4968#endif /* not INSIDE_RECURSION */
4969
4970#ifdef INSIDE_RECURSION
4971
4972#ifdef MATCH_MAY_ALLOCATE
4973# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4974#else
4975# define FREE_VAR(var) free (var); var = NULL
4976#endif
4977
4978#ifdef WCHAR
4979# define MAX_ALLOCA_SIZE	2000
4980
4981# define FREE_WCS_BUFFERS() \
4982  do {									      \
4983    if (size1 > MAX_ALLOCA_SIZE)					      \
4984      {									      \
4985	free (wcs_string1);						      \
4986	free (mbs_offset1);						      \
4987      }									      \
4988    else								      \
4989      {									      \
4990	FREE_VAR (wcs_string1);						      \
4991	FREE_VAR (mbs_offset1);						      \
4992      }									      \
4993    if (size2 > MAX_ALLOCA_SIZE) 					      \
4994      {									      \
4995	free (wcs_string2);						      \
4996	free (mbs_offset2);						      \
4997      }									      \
4998    else								      \
4999      {									      \
5000	FREE_VAR (wcs_string2);						      \
5001	FREE_VAR (mbs_offset2);						      \
5002      }									      \
5003  } while (0)
5004
5005#endif
5006
5007
5008static int
5009PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5010                     int size1, const char *string2, int size2,
5011                     int startpos, int range,
5012                     struct re_registers *regs, int stop)
5013{
5014  int val;
5015  register char *fastmap = bufp->fastmap;
5016  register RE_TRANSLATE_TYPE translate = bufp->translate;
5017  int total_size = size1 + size2;
5018  int endpos = startpos + range;
5019#ifdef WCHAR
5020  /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5021  wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5022  /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5023  int wcs_size1 = 0, wcs_size2 = 0;
5024  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5025  int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5026  /* They hold whether each wchar_t is binary data or not.  */
5027  char *is_binary = NULL;
5028#endif /* WCHAR */
5029
5030  /* Check for out-of-range STARTPOS.  */
5031  if (startpos < 0 || startpos > total_size)
5032    return -1;
5033
5034  /* Fix up RANGE if it might eventually take us outside
5035     the virtual concatenation of STRING1 and STRING2.
5036     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5037  if (endpos < 0)
5038    range = 0 - startpos;
5039  else if (endpos > total_size)
5040    range = total_size - startpos;
5041
5042  /* If the search isn't to be a backwards one, don't waste time in a
5043     search for a pattern that must be anchored.  */
5044  if (bufp->used > 0 && range > 0
5045      && ((re_opcode_t) bufp->buffer[0] == begbuf
5046	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
5047	  || ((re_opcode_t) bufp->buffer[0] == begline
5048	      && !bufp->newline_anchor)))
5049    {
5050      if (startpos > 0)
5051	return -1;
5052      else
5053	range = 1;
5054    }
5055
5056#ifdef emacs
5057  /* In a forward search for something that starts with \=.
5058     don't keep searching past point.  */
5059  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5060    {
5061      range = PT - startpos;
5062      if (range <= 0)
5063	return -1;
5064    }
5065#endif /* emacs */
5066
5067  /* Update the fastmap now if not correct already.  */
5068  if (fastmap && !bufp->fastmap_accurate)
5069    if (re_compile_fastmap (bufp) == -2)
5070      return -2;
5071
5072#ifdef WCHAR
5073  /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5074     fill them with converted string.  */
5075  if (size1 != 0)
5076    {
5077      if (size1 > MAX_ALLOCA_SIZE)
5078	{
5079	  wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5080	  mbs_offset1 = TALLOC (size1 + 1, int);
5081	  is_binary = TALLOC (size1 + 1, char);
5082	}
5083      else
5084	{
5085	  wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5086	  mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5087	  is_binary = REGEX_TALLOC (size1 + 1, char);
5088	}
5089      if (!wcs_string1 || !mbs_offset1 || !is_binary)
5090	{
5091	  if (size1 > MAX_ALLOCA_SIZE)
5092	    {
5093	      free (wcs_string1);
5094	      free (mbs_offset1);
5095	      free (is_binary);
5096	    }
5097	  else
5098	    {
5099	      FREE_VAR (wcs_string1);
5100	      FREE_VAR (mbs_offset1);
5101	      FREE_VAR (is_binary);
5102	    }
5103	  return -2;
5104	}
5105      wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5106				     mbs_offset1, is_binary);
5107      wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5108      if (size1 > MAX_ALLOCA_SIZE)
5109	free (is_binary);
5110      else
5111	FREE_VAR (is_binary);
5112    }
5113  if (size2 != 0)
5114    {
5115      if (size2 > MAX_ALLOCA_SIZE)
5116	{
5117	  wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5118	  mbs_offset2 = TALLOC (size2 + 1, int);
5119	  is_binary = TALLOC (size2 + 1, char);
5120	}
5121      else
5122	{
5123	  wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5124	  mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5125	  is_binary = REGEX_TALLOC (size2 + 1, char);
5126	}
5127      if (!wcs_string2 || !mbs_offset2 || !is_binary)
5128	{
5129	  FREE_WCS_BUFFERS ();
5130	  if (size2 > MAX_ALLOCA_SIZE)
5131	    free (is_binary);
5132	  else
5133	    FREE_VAR (is_binary);
5134	  return -2;
5135	}
5136      wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5137				     mbs_offset2, is_binary);
5138      wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5139      if (size2 > MAX_ALLOCA_SIZE)
5140	free (is_binary);
5141      else
5142	FREE_VAR (is_binary);
5143    }
5144#endif /* WCHAR */
5145
5146
5147  /* Loop through the string, looking for a place to start matching.  */
5148  for (;;)
5149    {
5150      /* If a fastmap is supplied, skip quickly over characters that
5151         cannot be the start of a match.  If the pattern can match the
5152         null string, however, we don't need to skip characters; we want
5153         the first null string.  */
5154      if (fastmap && startpos < total_size && !bufp->can_be_null)
5155	{
5156	  if (range > 0)	/* Searching forwards.  */
5157	    {
5158	      register const char *d;
5159	      register int lim = 0;
5160	      int irange = range;
5161
5162              if (startpos < size1 && startpos + range >= size1)
5163                lim = range - (size1 - startpos);
5164
5165	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5166
5167              /* Written out as an if-else to avoid testing `translate'
5168                 inside the loop.  */
5169	      if (translate)
5170                while (range > lim
5171                       && !fastmap[(unsigned char)
5172				   translate[(unsigned char) *d++]])
5173                  range--;
5174	      else
5175                while (range > lim && !fastmap[(unsigned char) *d++])
5176                  range--;
5177
5178	      startpos += irange - range;
5179	    }
5180	  else				/* Searching backwards.  */
5181	    {
5182	      register CHAR_T c = (size1 == 0 || startpos >= size1
5183				      ? string2[startpos - size1]
5184				      : string1[startpos]);
5185
5186	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5187		goto advance;
5188	    }
5189	}
5190
5191      /* If can't match the null string, and that's all we have left, fail.  */
5192      if (range >= 0 && startpos == total_size && fastmap
5193          && !bufp->can_be_null)
5194       {
5195#ifdef WCHAR
5196         FREE_WCS_BUFFERS ();
5197#endif
5198         return -1;
5199       }
5200
5201#ifdef WCHAR
5202      val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5203				     size2, startpos, regs, stop,
5204				     wcs_string1, wcs_size1,
5205				     wcs_string2, wcs_size2,
5206				     mbs_offset1, mbs_offset2);
5207#else /* BYTE */
5208      val = byte_re_match_2_internal (bufp, string1, size1, string2,
5209				      size2, startpos, regs, stop);
5210#endif /* BYTE */
5211
5212#ifndef REGEX_MALLOC
5213# ifdef C_ALLOCA
5214      alloca (0);
5215# endif
5216#endif
5217
5218      if (val >= 0)
5219	{
5220#ifdef WCHAR
5221	  FREE_WCS_BUFFERS ();
5222#endif
5223	  return startpos;
5224	}
5225
5226      if (val == -2)
5227	{
5228#ifdef WCHAR
5229	  FREE_WCS_BUFFERS ();
5230#endif
5231	  return -2;
5232	}
5233
5234    advance:
5235      if (!range)
5236        break;
5237      else if (range > 0)
5238        {
5239          range--;
5240          startpos++;
5241        }
5242      else
5243        {
5244          range++;
5245          startpos--;
5246        }
5247    }
5248#ifdef WCHAR
5249  FREE_WCS_BUFFERS ();
5250#endif
5251  return -1;
5252}
5253
5254#ifdef WCHAR
5255/* This converts PTR, a pointer into one of the search wchar_t strings
5256   `string1' and `string2' into an multibyte string offset from the
5257   beginning of that string. We use mbs_offset to optimize.
5258   See convert_mbs_to_wcs.  */
5259# define POINTER_TO_OFFSET(ptr)						\
5260  (FIRST_STRING_P (ptr)							\
5261   ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5262   : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5263		 + csize1)))
5264#else /* BYTE */
5265/* This converts PTR, a pointer into one of the search strings `string1'
5266   and `string2' into an offset from the beginning of that string.  */
5267# define POINTER_TO_OFFSET(ptr)			\
5268  (FIRST_STRING_P (ptr)				\
5269   ? ((regoff_t) ((ptr) - string1))		\
5270   : ((regoff_t) ((ptr) - string2 + size1)))
5271#endif /* WCHAR */
5272
5273/* Macros for dealing with the split strings in re_match_2.  */
5274
5275#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5276
5277/* Call before fetching a character with *d.  This switches over to
5278   string2 if necessary.  */
5279#define PREFETCH()							\
5280  while (d == dend)						    	\
5281    {									\
5282      /* End of string2 => fail.  */					\
5283      if (dend == end_match_2) 						\
5284        goto fail;							\
5285      /* End of string1 => advance to string2.  */ 			\
5286      d = string2;						        \
5287      dend = end_match_2;						\
5288    }
5289
5290/* Test if at very beginning or at very end of the virtual concatenation
5291   of `string1' and `string2'.  If only one string, it's `string2'.  */
5292#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5293#define AT_STRINGS_END(d) ((d) == end2)
5294
5295
5296/* Test if D points to a character which is word-constituent.  We have
5297   two special cases to check for: if past the end of string1, look at
5298   the first character in string2; and if before the beginning of
5299   string2, look at the last character in string1.  */
5300#ifdef WCHAR
5301/* Use internationalized API instead of SYNTAX.  */
5302# define WORDCHAR_P(d)							\
5303  (iswalnum ((wint_t)((d) == end1 ? *string2				\
5304           : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\
5305   || ((d) == end1 ? *string2						\
5306       : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5307#else /* BYTE */
5308# define WORDCHAR_P(d)							\
5309  (SYNTAX ((d) == end1 ? *string2					\
5310           : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5311   == Sword)
5312#endif /* WCHAR */
5313
5314/* Disabled due to a compiler bug -- see comment at case wordbound */
5315#if 0
5316/* Test if the character before D and the one at D differ with respect
5317   to being word-constituent.  */
5318#define AT_WORD_BOUNDARY(d)						\
5319  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5320   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5321#endif
5322
5323/* Free everything we malloc.  */
5324#ifdef MATCH_MAY_ALLOCATE
5325# ifdef WCHAR
5326#  define FREE_VARIABLES()						\
5327  do {									\
5328    REGEX_FREE_STACK (fail_stack.stack);				\
5329    FREE_VAR (regstart);						\
5330    FREE_VAR (regend);							\
5331    FREE_VAR (old_regstart);						\
5332    FREE_VAR (old_regend);						\
5333    FREE_VAR (best_regstart);						\
5334    FREE_VAR (best_regend);						\
5335    FREE_VAR (reg_info);						\
5336    FREE_VAR (reg_dummy);						\
5337    FREE_VAR (reg_info_dummy);						\
5338    if (!cant_free_wcs_buf)						\
5339      {									\
5340        FREE_VAR (string1);						\
5341        FREE_VAR (string2);						\
5342        FREE_VAR (mbs_offset1);						\
5343        FREE_VAR (mbs_offset2);						\
5344      }									\
5345  } while (0)
5346# else /* BYTE */
5347#  define FREE_VARIABLES()						\
5348  do {									\
5349    REGEX_FREE_STACK (fail_stack.stack);				\
5350    FREE_VAR (regstart);						\
5351    FREE_VAR (regend);							\
5352    FREE_VAR (old_regstart);						\
5353    FREE_VAR (old_regend);						\
5354    FREE_VAR (best_regstart);						\
5355    FREE_VAR (best_regend);						\
5356    FREE_VAR (reg_info);						\
5357    FREE_VAR (reg_dummy);						\
5358    FREE_VAR (reg_info_dummy);						\
5359  } while (0)
5360# endif /* WCHAR */
5361#else
5362# ifdef WCHAR
5363#  define FREE_VARIABLES()						\
5364  do {									\
5365    if (!cant_free_wcs_buf)						\
5366      {									\
5367        FREE_VAR (string1);						\
5368        FREE_VAR (string2);						\
5369        FREE_VAR (mbs_offset1);						\
5370        FREE_VAR (mbs_offset2);						\
5371      }									\
5372  } while (0)
5373# else /* BYTE */
5374#  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5375# endif /* WCHAR */
5376#endif /* not MATCH_MAY_ALLOCATE */
5377
5378/* These values must meet several constraints.  They must not be valid
5379   register values; since we have a limit of 255 registers (because
5380   we use only one byte in the pattern for the register number), we can
5381   use numbers larger than 255.  They must differ by 1, because of
5382   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5383   be larger than the value for the highest register, so we do not try
5384   to actually save any registers when none are active.  */
5385#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5386#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5387
5388#else /* not INSIDE_RECURSION */
5389/* Matching routines.  */
5390
5391#ifndef emacs   /* Emacs never uses this.  */
5392/* re_match is like re_match_2 except it takes only a single string.  */
5393
5394int
5395re_match (struct re_pattern_buffer *bufp, const char *string,
5396          int size, int pos, struct re_registers *regs)
5397{
5398  int result;
5399# ifdef MBS_SUPPORT
5400  if (MB_CUR_MAX != 1)
5401    result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5402				      pos, regs, size,
5403				      NULL, 0, NULL, 0, NULL, NULL);
5404  else
5405# endif
5406    result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5407				  pos, regs, size);
5408# ifndef REGEX_MALLOC
5409#  ifdef C_ALLOCA
5410  alloca (0);
5411#  endif
5412# endif
5413  return result;
5414}
5415# ifdef _LIBC
5416weak_alias (__re_match, re_match)
5417# endif
5418#endif /* not emacs */
5419
5420#endif /* not INSIDE_RECURSION */
5421
5422#ifdef INSIDE_RECURSION
5423static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5424                                                  UCHAR_T *end,
5425					PREFIX(register_info_type) *reg_info);
5426static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5427                                                UCHAR_T *end,
5428					PREFIX(register_info_type) *reg_info);
5429static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5430                                                      UCHAR_T *end,
5431					PREFIX(register_info_type) *reg_info);
5432static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5433                                   int len, char *translate);
5434#else /* not INSIDE_RECURSION */
5435
5436/* re_match_2 matches the compiled pattern in BUFP against the
5437   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5438   and SIZE2, respectively).  We start matching at POS, and stop
5439   matching at STOP.
5440
5441   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5442   store offsets for the substring each group matched in REGS.  See the
5443   documentation for exactly how many groups we fill.
5444
5445   We return -1 if no match, -2 if an internal error (such as the
5446   failure stack overflowing).  Otherwise, we return the length of the
5447   matched substring.  */
5448
5449int
5450re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5451            const char *string2, int size2, int pos,
5452            struct re_registers *regs, int stop)
5453{
5454  int result;
5455# ifdef MBS_SUPPORT
5456  if (MB_CUR_MAX != 1)
5457    result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5458				      pos, regs, stop,
5459				      NULL, 0, NULL, 0, NULL, NULL);
5460  else
5461# endif
5462    result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5463				  pos, regs, stop);
5464
5465#ifndef REGEX_MALLOC
5466# ifdef C_ALLOCA
5467  alloca (0);
5468# endif
5469#endif
5470  return result;
5471}
5472#ifdef _LIBC
5473weak_alias (__re_match_2, re_match_2)
5474#endif
5475
5476#endif /* not INSIDE_RECURSION */
5477
5478#ifdef INSIDE_RECURSION
5479
5480#ifdef WCHAR
5481static int count_mbs_length (int *, int);
5482
5483/* This check the substring (from 0, to length) of the multibyte string,
5484   to which offset_buffer correspond. And count how many wchar_t_characters
5485   the substring occupy. We use offset_buffer to optimization.
5486   See convert_mbs_to_wcs.  */
5487
5488static int
5489count_mbs_length(int *offset_buffer, int length)
5490{
5491  int upper, lower;
5492
5493  /* Check whether the size is valid.  */
5494  if (length < 0)
5495    return -1;
5496
5497  if (offset_buffer == NULL)
5498    return 0;
5499
5500  /* If there are no multibyte character, offset_buffer[i] == i.
5501   Optmize for this case.  */
5502  if (offset_buffer[length] == length)
5503    return length;
5504
5505  /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5506  upper = length;
5507  lower = 0;
5508
5509  while (true)
5510    {
5511      int middle = (lower + upper) / 2;
5512      if (middle == lower || middle == upper)
5513	break;
5514      if (offset_buffer[middle] > length)
5515	upper = middle;
5516      else if (offset_buffer[middle] < length)
5517	lower = middle;
5518      else
5519	return middle;
5520    }
5521
5522  return -1;
5523}
5524#endif /* WCHAR */
5525
5526/* This is a separate function so that we can force an alloca cleanup
5527   afterwards.  */
5528#ifdef WCHAR
5529static int
5530wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5531                         const char *cstring1, int csize1,
5532                         const char *cstring2, int csize2,
5533                         int pos,
5534			 struct re_registers *regs,
5535                         int stop,
5536     /* string1 == string2 == NULL means string1/2, size1/2 and
5537	mbs_offset1/2 need seting up in this function.  */
5538     /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5539                         wchar_t *string1, int size1,
5540                         wchar_t *string2, int size2,
5541     /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5542			 int *mbs_offset1, int *mbs_offset2)
5543#else /* BYTE */
5544static int
5545byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5546                          const char *string1, int size1,
5547                          const char *string2, int size2,
5548                          int pos,
5549			  struct re_registers *regs, int stop)
5550#endif /* BYTE */
5551{
5552  /* General temporaries.  */
5553  int mcnt;
5554  UCHAR_T *p1;
5555#ifdef WCHAR
5556  /* They hold whether each wchar_t is binary data or not.  */
5557  char *is_binary = NULL;
5558  /* If true, we can't free string1/2, mbs_offset1/2.  */
5559  int cant_free_wcs_buf = 1;
5560#endif /* WCHAR */
5561
5562  /* Just past the end of the corresponding string.  */
5563  const CHAR_T *end1, *end2;
5564
5565  /* Pointers into string1 and string2, just past the last characters in
5566     each to consider matching.  */
5567  const CHAR_T *end_match_1, *end_match_2;
5568
5569  /* Where we are in the data, and the end of the current string.  */
5570  const CHAR_T *d, *dend;
5571
5572  /* Where we are in the pattern, and the end of the pattern.  */
5573#ifdef WCHAR
5574  UCHAR_T *pattern, *p;
5575  register UCHAR_T *pend;
5576#else /* BYTE */
5577  UCHAR_T *p = bufp->buffer;
5578  register UCHAR_T *pend = p + bufp->used;
5579#endif /* WCHAR */
5580
5581  /* Mark the opcode just after a start_memory, so we can test for an
5582     empty subpattern when we get to the stop_memory.  */
5583  UCHAR_T *just_past_start_mem = 0;
5584
5585  /* We use this to map every character in the string.  */
5586  RE_TRANSLATE_TYPE translate = bufp->translate;
5587
5588  /* Failure point stack.  Each place that can handle a failure further
5589     down the line pushes a failure point on this stack.  It consists of
5590     restart, regend, and reg_info for all registers corresponding to
5591     the subexpressions we're currently inside, plus the number of such
5592     registers, and, finally, two char *'s.  The first char * is where
5593     to resume scanning the pattern; the second one is where to resume
5594     scanning the strings.  If the latter is zero, the failure point is
5595     a ``dummy''; if a failure happens and the failure point is a dummy,
5596     it gets discarded and the next next one is tried.  */
5597#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5598  PREFIX(fail_stack_type) fail_stack;
5599#endif
5600#ifdef DEBUG
5601  static unsigned failure_id;
5602  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5603#endif
5604
5605#ifdef REL_ALLOC
5606  /* This holds the pointer to the failure stack, when
5607     it is allocated relocatably.  */
5608  fail_stack_elt_t *failure_stack_ptr;
5609#endif
5610
5611  /* We fill all the registers internally, independent of what we
5612     return, for use in backreferences.  The number here includes
5613     an element for register zero.  */
5614  size_t num_regs = bufp->re_nsub + 1;
5615
5616  /* The currently active registers.  */
5617  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5618  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5619
5620  /* Information on the contents of registers. These are pointers into
5621     the input strings; they record just what was matched (on this
5622     attempt) by a subexpression part of the pattern, that is, the
5623     regnum-th regstart pointer points to where in the pattern we began
5624     matching and the regnum-th regend points to right after where we
5625     stopped matching the regnum-th subexpression.  (The zeroth register
5626     keeps track of what the whole pattern matches.)  */
5627#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5628  const CHAR_T **regstart, **regend;
5629#endif
5630
5631  /* If a group that's operated upon by a repetition operator fails to
5632     match anything, then the register for its start will need to be
5633     restored because it will have been set to wherever in the string we
5634     are when we last see its open-group operator.  Similarly for a
5635     register's end.  */
5636#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5637  const CHAR_T **old_regstart, **old_regend;
5638#endif
5639
5640  /* The is_active field of reg_info helps us keep track of which (possibly
5641     nested) subexpressions we are currently in. The matched_something
5642     field of reg_info[reg_num] helps us tell whether or not we have
5643     matched any of the pattern so far this time through the reg_num-th
5644     subexpression.  These two fields get reset each time through any
5645     loop their register is in.  */
5646#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5647  PREFIX(register_info_type) *reg_info;
5648#endif
5649
5650  /* The following record the register info as found in the above
5651     variables when we find a match better than any we've seen before.
5652     This happens as we backtrack through the failure points, which in
5653     turn happens only if we have not yet matched the entire string. */
5654  unsigned best_regs_set = false;
5655#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5656  const CHAR_T **best_regstart, **best_regend;
5657#endif
5658
5659  /* Logically, this is `best_regend[0]'.  But we don't want to have to
5660     allocate space for that if we're not allocating space for anything
5661     else (see below).  Also, we never need info about register 0 for
5662     any of the other register vectors, and it seems rather a kludge to
5663     treat `best_regend' differently than the rest.  So we keep track of
5664     the end of the best match so far in a separate variable.  We
5665     initialize this to NULL so that when we backtrack the first time
5666     and need to test it, it's not garbage.  */
5667  const CHAR_T *match_end = NULL;
5668
5669  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5670  int set_regs_matched_done = 0;
5671
5672  /* Used when we pop values we don't care about.  */
5673#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5674  const CHAR_T **reg_dummy;
5675  PREFIX(register_info_type) *reg_info_dummy;
5676#endif
5677
5678#ifdef DEBUG
5679  /* Counts the total number of registers pushed.  */
5680  unsigned num_regs_pushed = 0;
5681#endif
5682
5683  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5684
5685  INIT_FAIL_STACK ();
5686
5687#ifdef MATCH_MAY_ALLOCATE
5688  /* Do not bother to initialize all the register variables if there are
5689     no groups in the pattern, as it takes a fair amount of time.  If
5690     there are groups, we include space for register 0 (the whole
5691     pattern), even though we never use it, since it simplifies the
5692     array indexing.  We should fix this.  */
5693  if (bufp->re_nsub)
5694    {
5695      regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5696      regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5697      old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5698      old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5699      best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5700      best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5701      reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5702      reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5703      reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5704
5705      if (!(regstart && regend && old_regstart && old_regend && reg_info
5706            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5707        {
5708          FREE_VARIABLES ();
5709          return -2;
5710        }
5711    }
5712  else
5713    {
5714      /* We must initialize all our variables to NULL, so that
5715         `FREE_VARIABLES' doesn't try to free them.  */
5716      regstart = regend = old_regstart = old_regend = best_regstart
5717        = best_regend = reg_dummy = NULL;
5718      reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5719    }
5720#endif /* MATCH_MAY_ALLOCATE */
5721
5722  /* The starting position is bogus.  */
5723#ifdef WCHAR
5724  if (pos < 0 || pos > csize1 + csize2)
5725#else /* BYTE */
5726  if (pos < 0 || pos > size1 + size2)
5727#endif
5728    {
5729      FREE_VARIABLES ();
5730      return -1;
5731    }
5732
5733#ifdef WCHAR
5734  /* Allocate wchar_t array for string1 and string2 and
5735     fill them with converted string.  */
5736  if (string1 == NULL && string2 == NULL)
5737    {
5738      /* We need seting up buffers here.  */
5739
5740      /* We must free wcs buffers in this function.  */
5741      cant_free_wcs_buf = 0;
5742
5743      if (csize1 != 0)
5744	{
5745	  string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5746	  mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5747	  is_binary = REGEX_TALLOC (csize1 + 1, char);
5748	  if (!string1 || !mbs_offset1 || !is_binary)
5749	    {
5750	      FREE_VAR (string1);
5751	      FREE_VAR (mbs_offset1);
5752	      FREE_VAR (is_binary);
5753	      return -2;
5754	    }
5755	}
5756      if (csize2 != 0)
5757	{
5758	  string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5759	  mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5760	  is_binary = REGEX_TALLOC (csize2 + 1, char);
5761	  if (!string2 || !mbs_offset2 || !is_binary)
5762	    {
5763	      FREE_VAR (string1);
5764	      FREE_VAR (mbs_offset1);
5765	      FREE_VAR (string2);
5766	      FREE_VAR (mbs_offset2);
5767	      FREE_VAR (is_binary);
5768	      return -2;
5769	    }
5770	  size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5771				     mbs_offset2, is_binary);
5772	  string2[size2] = L'\0'; /* for a sentinel  */
5773	  FREE_VAR (is_binary);
5774	}
5775    }
5776
5777  /* We need to cast pattern to (wchar_t*), because we casted this compiled
5778     pattern to (char*) in regex_compile.  */
5779  p = pattern = (CHAR_T*)bufp->buffer;
5780  pend = (CHAR_T*)(bufp->buffer + bufp->used);
5781
5782#endif /* WCHAR */
5783
5784  /* Initialize subexpression text positions to -1 to mark ones that no
5785     start_memory/stop_memory has been seen for. Also initialize the
5786     register information struct.  */
5787  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5788    {
5789      regstart[mcnt] = regend[mcnt]
5790        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5791
5792      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5793      IS_ACTIVE (reg_info[mcnt]) = 0;
5794      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5795      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5796    }
5797
5798  /* We move `string1' into `string2' if the latter's empty -- but not if
5799     `string1' is null.  */
5800  if (size2 == 0 && string1 != NULL)
5801    {
5802      string2 = string1;
5803      size2 = size1;
5804      string1 = 0;
5805      size1 = 0;
5806#ifdef WCHAR
5807      mbs_offset2 = mbs_offset1;
5808      csize2 = csize1;
5809      mbs_offset1 = NULL;
5810      csize1 = 0;
5811#endif
5812    }
5813  end1 = string1 + size1;
5814  end2 = string2 + size2;
5815
5816  /* Compute where to stop matching, within the two strings.  */
5817#ifdef WCHAR
5818  if (stop <= csize1)
5819    {
5820      mcnt = count_mbs_length(mbs_offset1, stop);
5821      end_match_1 = string1 + mcnt;
5822      end_match_2 = string2;
5823    }
5824  else
5825    {
5826      if (stop > csize1 + csize2)
5827	stop = csize1 + csize2;
5828      end_match_1 = end1;
5829      mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5830      end_match_2 = string2 + mcnt;
5831    }
5832  if (mcnt < 0)
5833    { /* count_mbs_length return error.  */
5834      FREE_VARIABLES ();
5835      return -1;
5836    }
5837#else
5838  if (stop <= size1)
5839    {
5840      end_match_1 = string1 + stop;
5841      end_match_2 = string2;
5842    }
5843  else
5844    {
5845      end_match_1 = end1;
5846      end_match_2 = string2 + stop - size1;
5847    }
5848#endif /* WCHAR */
5849
5850  /* `p' scans through the pattern as `d' scans through the data.
5851     `dend' is the end of the input string that `d' points within.  `d'
5852     is advanced into the following input string whenever necessary, but
5853     this happens before fetching; therefore, at the beginning of the
5854     loop, `d' can be pointing at the end of a string, but it cannot
5855     equal `string2'.  */
5856#ifdef WCHAR
5857  if (size1 > 0 && pos <= csize1)
5858    {
5859      mcnt = count_mbs_length(mbs_offset1, pos);
5860      d = string1 + mcnt;
5861      dend = end_match_1;
5862    }
5863  else
5864    {
5865      mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5866      d = string2 + mcnt;
5867      dend = end_match_2;
5868    }
5869
5870  if (mcnt < 0)
5871    { /* count_mbs_length return error.  */
5872      FREE_VARIABLES ();
5873      return -1;
5874    }
5875#else
5876  if (size1 > 0 && pos <= size1)
5877    {
5878      d = string1 + pos;
5879      dend = end_match_1;
5880    }
5881  else
5882    {
5883      d = string2 + pos - size1;
5884      dend = end_match_2;
5885    }
5886#endif /* WCHAR */
5887
5888  DEBUG_PRINT1 ("The compiled pattern is:\n");
5889  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5890  DEBUG_PRINT1 ("The string to match is: `");
5891  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5892  DEBUG_PRINT1 ("'\n");
5893
5894  /* This loops over pattern commands.  It exits by returning from the
5895     function if the match is complete, or it drops through if the match
5896     fails at this starting point in the input data.  */
5897  for (;;)
5898    {
5899#ifdef _LIBC
5900      DEBUG_PRINT2 ("\n%p: ", p);
5901#else
5902      DEBUG_PRINT2 ("\n0x%x: ", p);
5903#endif
5904
5905      if (p == pend)
5906	{ /* End of pattern means we might have succeeded.  */
5907          DEBUG_PRINT1 ("end of pattern ... ");
5908
5909	  /* If we haven't matched the entire string, and we want the
5910             longest match, try backtracking.  */
5911          if (d != end_match_2)
5912	    {
5913	      /* 1 if this match ends in the same string (string1 or string2)
5914		 as the best previous match.  */
5915	      boolean same_str_p;
5916
5917	      /* 1 if this match is the best seen so far.  */
5918	      boolean best_match_p;
5919
5920              same_str_p = (FIRST_STRING_P (match_end)
5921                            == MATCHING_IN_FIRST_STRING);
5922
5923	      /* AIX compiler got confused when this was combined
5924		 with the previous declaration.  */
5925	      if (same_str_p)
5926		best_match_p = d > match_end;
5927	      else
5928		best_match_p = !MATCHING_IN_FIRST_STRING;
5929
5930              DEBUG_PRINT1 ("backtracking.\n");
5931
5932              if (!FAIL_STACK_EMPTY ())
5933                { /* More failure points to try.  */
5934
5935                  /* If exceeds best match so far, save it.  */
5936                  if (!best_regs_set || best_match_p)
5937                    {
5938                      best_regs_set = true;
5939                      match_end = d;
5940
5941                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5942
5943                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5944                        {
5945                          best_regstart[mcnt] = regstart[mcnt];
5946                          best_regend[mcnt] = regend[mcnt];
5947                        }
5948                    }
5949                  goto fail;
5950                }
5951
5952              /* If no failure points, don't restore garbage.  And if
5953                 last match is real best match, don't restore second
5954                 best one. */
5955              else if (best_regs_set && !best_match_p)
5956                {
5957  	        restore_best_regs:
5958                  /* Restore best match.  It may happen that `dend ==
5959                     end_match_1' while the restored d is in string2.
5960                     For example, the pattern `x.*y.*z' against the
5961                     strings `x-' and `y-z-', if the two strings are
5962                     not consecutive in memory.  */
5963                  DEBUG_PRINT1 ("Restoring best registers.\n");
5964
5965                  d = match_end;
5966                  dend = ((d >= string1 && d <= end1)
5967		           ? end_match_1 : end_match_2);
5968
5969		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5970		    {
5971		      regstart[mcnt] = best_regstart[mcnt];
5972		      regend[mcnt] = best_regend[mcnt];
5973		    }
5974                }
5975            } /* d != end_match_2 */
5976
5977	succeed_label:
5978          DEBUG_PRINT1 ("Accepting match.\n");
5979          /* If caller wants register contents data back, do it.  */
5980          if (regs && !bufp->no_sub)
5981	    {
5982	      /* Have the register data arrays been allocated?  */
5983              if (bufp->regs_allocated == REGS_UNALLOCATED)
5984                { /* No.  So allocate them with malloc.  We need one
5985                     extra element beyond `num_regs' for the `-1' marker
5986                     GNU code uses.  */
5987                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5988                  regs->start = TALLOC (regs->num_regs, regoff_t);
5989                  regs->end = TALLOC (regs->num_regs, regoff_t);
5990                  if (regs->start == NULL || regs->end == NULL)
5991		    {
5992		      FREE_VARIABLES ();
5993		      return -2;
5994		    }
5995                  bufp->regs_allocated = REGS_REALLOCATE;
5996                }
5997              else if (bufp->regs_allocated == REGS_REALLOCATE)
5998                { /* Yes.  If we need more elements than were already
5999                     allocated, reallocate them.  If we need fewer, just
6000                     leave it alone.  */
6001                  if (regs->num_regs < num_regs + 1)
6002                    {
6003                      regs->num_regs = num_regs + 1;
6004                      RETALLOC (regs->start, regs->num_regs, regoff_t);
6005                      RETALLOC (regs->end, regs->num_regs, regoff_t);
6006                      if (regs->start == NULL || regs->end == NULL)
6007			{
6008			  FREE_VARIABLES ();
6009			  return -2;
6010			}
6011                    }
6012                }
6013              else
6014		{
6015		  /* These braces fend off a "empty body in an else-statement"
6016		     warning under GCC when assert expands to nothing.  */
6017		  assert (bufp->regs_allocated == REGS_FIXED);
6018		}
6019
6020              /* Convert the pointer data in `regstart' and `regend' to
6021                 indices.  Register zero has to be set differently,
6022                 since we haven't kept track of any info for it.  */
6023              if (regs->num_regs > 0)
6024                {
6025                  regs->start[0] = pos;
6026#ifdef WCHAR
6027		  if (MATCHING_IN_FIRST_STRING)
6028		    regs->end[0] = mbs_offset1 != NULL ?
6029					mbs_offset1[d-string1] : 0;
6030		  else
6031		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6032					     mbs_offset2[d-string2] : 0);
6033#else
6034                  regs->end[0] = (MATCHING_IN_FIRST_STRING
6035				  ? ((regoff_t) (d - string1))
6036			          : ((regoff_t) (d - string2 + size1)));
6037#endif /* WCHAR */
6038                }
6039
6040              /* Go through the first `min (num_regs, regs->num_regs)'
6041                 registers, since that is all we initialized.  */
6042	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6043		   mcnt++)
6044		{
6045                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6046                    regs->start[mcnt] = regs->end[mcnt] = -1;
6047                  else
6048                    {
6049		      regs->start[mcnt]
6050			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6051                      regs->end[mcnt]
6052			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6053                    }
6054		}
6055
6056              /* If the regs structure we return has more elements than
6057                 were in the pattern, set the extra elements to -1.  If
6058                 we (re)allocated the registers, this is the case,
6059                 because we always allocate enough to have at least one
6060                 -1 at the end.  */
6061              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6062                regs->start[mcnt] = regs->end[mcnt] = -1;
6063	    } /* regs && !bufp->no_sub */
6064
6065          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6066                        nfailure_points_pushed, nfailure_points_popped,
6067                        nfailure_points_pushed - nfailure_points_popped);
6068          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6069
6070#ifdef WCHAR
6071	  if (MATCHING_IN_FIRST_STRING)
6072	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6073	  else
6074	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6075			csize1;
6076          mcnt -= pos;
6077#else
6078          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6079			    ? string1
6080			    : string2 - size1);
6081#endif /* WCHAR */
6082
6083          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6084
6085          FREE_VARIABLES ();
6086          return mcnt;
6087        }
6088
6089      /* Otherwise match next pattern command.  */
6090      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6091	{
6092        /* Ignore these.  Used to ignore the n of succeed_n's which
6093           currently have n == 0.  */
6094        case no_op:
6095          DEBUG_PRINT1 ("EXECUTING no_op.\n");
6096          break;
6097
6098	case succeed:
6099          DEBUG_PRINT1 ("EXECUTING succeed.\n");
6100	  goto succeed_label;
6101
6102        /* Match the next n pattern characters exactly.  The following
6103           byte in the pattern defines n, and the n bytes after that
6104           are the characters to match.  */
6105	case exactn:
6106#ifdef MBS_SUPPORT
6107	case exactn_bin:
6108#endif
6109	  mcnt = *p++;
6110          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6111
6112          /* This is written out as an if-else so we don't waste time
6113             testing `translate' inside the loop.  */
6114          if (translate)
6115	    {
6116	      do
6117		{
6118		  PREFETCH ();
6119#ifdef WCHAR
6120		  if (*d <= 0xff)
6121		    {
6122		      if ((UCHAR_T) translate[(unsigned char) *d++]
6123			  != (UCHAR_T) *p++)
6124			goto fail;
6125		    }
6126		  else
6127		    {
6128		      if (*d++ != (CHAR_T) *p++)
6129			goto fail;
6130		    }
6131#else
6132		  if ((UCHAR_T) translate[(unsigned char) *d++]
6133		      != (UCHAR_T) *p++)
6134                    goto fail;
6135#endif /* WCHAR */
6136		}
6137	      while (--mcnt);
6138	    }
6139	  else
6140	    {
6141	      do
6142		{
6143		  PREFETCH ();
6144		  if (*d++ != (CHAR_T) *p++) goto fail;
6145		}
6146	      while (--mcnt);
6147	    }
6148	  SET_REGS_MATCHED ();
6149          break;
6150
6151
6152        /* Match any character except possibly a newline or a null.  */
6153	case anychar:
6154          DEBUG_PRINT1 ("EXECUTING anychar.\n");
6155
6156          PREFETCH ();
6157
6158          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6159              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6160	    goto fail;
6161
6162          SET_REGS_MATCHED ();
6163          DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6164          d++;
6165	  break;
6166
6167
6168	case charset:
6169	case charset_not:
6170	  {
6171	    register UCHAR_T c;
6172#ifdef WCHAR
6173	    unsigned int i, char_class_length, coll_symbol_length,
6174              equiv_class_length, ranges_length, chars_length, length;
6175	    CHAR_T *workp, *workp2, *charset_top;
6176#define WORK_BUFFER_SIZE 128
6177            CHAR_T str_buf[WORK_BUFFER_SIZE];
6178# ifdef _LIBC
6179	    uint32_t nrules;
6180# endif /* _LIBC */
6181#endif /* WCHAR */
6182	    boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6183
6184            DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6185	    PREFETCH ();
6186	    c = TRANSLATE (*d); /* The character to match.  */
6187#ifdef WCHAR
6188# ifdef _LIBC
6189	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6190# endif /* _LIBC */
6191	    charset_top = p - 1;
6192	    char_class_length = *p++;
6193	    coll_symbol_length = *p++;
6194	    equiv_class_length = *p++;
6195	    ranges_length = *p++;
6196	    chars_length = *p++;
6197	    /* p points charset[6], so the address of the next instruction
6198	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6199	       where l=length of char_classes, m=length of collating_symbol,
6200	       n=equivalence_class, o=length of char_range,
6201	       p'=length of character.  */
6202	    workp = p;
6203	    /* Update p to indicate the next instruction.  */
6204	    p += char_class_length + coll_symbol_length+ equiv_class_length +
6205              2*ranges_length + chars_length;
6206
6207            /* match with char_class?  */
6208	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6209	      {
6210		wctype_t wctype;
6211		uintptr_t alignedp = ((uintptr_t)workp
6212				      + __alignof__(wctype_t) - 1)
6213		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6214		wctype = *((wctype_t*)alignedp);
6215		workp += CHAR_CLASS_SIZE;
6216# ifdef _LIBC
6217		if (__iswctype((wint_t)c, wctype))
6218		  goto char_set_matched;
6219# else
6220		if (iswctype((wint_t)c, wctype))
6221		  goto char_set_matched;
6222# endif
6223	      }
6224
6225            /* match with collating_symbol?  */
6226# ifdef _LIBC
6227	    if (nrules != 0)
6228	      {
6229		const unsigned char *extra = (const unsigned char *)
6230		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6231
6232		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6233		     workp++)
6234		  {
6235		    int32_t *wextra;
6236		    wextra = (int32_t*)(extra + *workp++);
6237		    for (i = 0; i < *wextra; ++i)
6238		      if (TRANSLATE(d[i]) != wextra[1 + i])
6239			break;
6240
6241		    if (i == *wextra)
6242		      {
6243			/* Update d, however d will be incremented at
6244			   char_set_matched:, we decrement d here.  */
6245			d += i - 1;
6246			goto char_set_matched;
6247		      }
6248		  }
6249	      }
6250	    else /* (nrules == 0) */
6251# endif
6252	      /* If we can't look up collation data, we use wcscoll
6253		 instead.  */
6254	      {
6255		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6256		  {
6257		    const CHAR_T *backup_d = d, *backup_dend = dend;
6258# ifdef _LIBC
6259		    length = __wcslen (workp);
6260# else
6261		    length = wcslen (workp);
6262# endif
6263
6264		    /* If wcscoll(the collating symbol, whole string) > 0,
6265		       any substring of the string never match with the
6266		       collating symbol.  */
6267# ifdef _LIBC
6268		    if (__wcscoll (workp, d) > 0)
6269# else
6270		    if (wcscoll (workp, d) > 0)
6271# endif
6272		      {
6273			workp += length + 1;
6274			continue;
6275		      }
6276
6277		    /* First, we compare the collating symbol with
6278		       the first character of the string.
6279		       If it don't match, we add the next character to
6280		       the compare buffer in turn.  */
6281		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6282		      {
6283			int match;
6284			if (d == dend)
6285			  {
6286			    if (dend == end_match_2)
6287			      break;
6288			    d = string2;
6289			    dend = end_match_2;
6290			  }
6291
6292			/* add next character to the compare buffer.  */
6293			str_buf[i] = TRANSLATE(*d);
6294			str_buf[i+1] = '\0';
6295
6296# ifdef _LIBC
6297			match = __wcscoll (workp, str_buf);
6298# else
6299			match = wcscoll (workp, str_buf);
6300# endif
6301			if (match == 0)
6302			  goto char_set_matched;
6303
6304			if (match < 0)
6305			  /* (str_buf > workp) indicate (str_buf + X > workp),
6306			     because for all X (str_buf + X > str_buf).
6307			     So we don't need continue this loop.  */
6308			  break;
6309
6310			/* Otherwise(str_buf < workp),
6311			   (str_buf+next_character) may equals (workp).
6312			   So we continue this loop.  */
6313		      }
6314		    /* not matched */
6315		    d = backup_d;
6316		    dend = backup_dend;
6317		    workp += length + 1;
6318		  }
6319              }
6320            /* match with equivalence_class?  */
6321# ifdef _LIBC
6322	    if (nrules != 0)
6323	      {
6324                const CHAR_T *backup_d = d, *backup_dend = dend;
6325		/* Try to match the equivalence class against
6326		   those known to the collate implementation.  */
6327		const int32_t *table;
6328		const int32_t *weights;
6329		const int32_t *extra;
6330		const int32_t *indirect;
6331		int32_t idx, idx2;
6332		wint_t *cp;
6333		size_t len;
6334
6335		/* This #include defines a local function!  */
6336#  include <locale/weightwc.h>
6337
6338		table = (const int32_t *)
6339		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6340		weights = (const wint_t *)
6341		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6342		extra = (const wint_t *)
6343		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6344		indirect = (const int32_t *)
6345		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6346
6347		/* Write 1 collating element to str_buf, and
6348		   get its index.  */
6349		idx2 = 0;
6350
6351		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6352		  {
6353		    cp = (wint_t*)str_buf;
6354		    if (d == dend)
6355		      {
6356			if (dend == end_match_2)
6357			  break;
6358			d = string2;
6359			dend = end_match_2;
6360		      }
6361		    str_buf[i] = TRANSLATE(*(d+i));
6362		    str_buf[i+1] = '\0'; /* sentinel */
6363		    idx2 = findidx ((const wint_t**)&cp);
6364		  }
6365
6366		/* Update d, however d will be incremented at
6367		   char_set_matched:, we decrement d here.  */
6368		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6369		if (d >= dend)
6370		  {
6371		    if (dend == end_match_2)
6372			d = dend;
6373		    else
6374		      {
6375			d = string2;
6376			dend = end_match_2;
6377		      }
6378		  }
6379
6380		len = weights[idx2];
6381
6382		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6383		     workp++)
6384		  {
6385		    idx = (int32_t)*workp;
6386		    /* We already checked idx != 0 in regex_compile. */
6387
6388		    if (idx2 != 0 && len == weights[idx])
6389		      {
6390			int cnt = 0;
6391			while (cnt < len && (weights[idx + 1 + cnt]
6392					     == weights[idx2 + 1 + cnt]))
6393			  ++cnt;
6394
6395			if (cnt == len)
6396			  goto char_set_matched;
6397		      }
6398		  }
6399		/* not matched */
6400                d = backup_d;
6401                dend = backup_dend;
6402	      }
6403	    else /* (nrules == 0) */
6404# endif
6405	      /* If we can't look up collation data, we use wcscoll
6406		 instead.  */
6407	      {
6408		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6409		  {
6410		    const CHAR_T *backup_d = d, *backup_dend = dend;
6411# ifdef _LIBC
6412		    length = __wcslen (workp);
6413# else
6414		    length = wcslen (workp);
6415# endif
6416
6417		    /* If wcscoll(the collating symbol, whole string) > 0,
6418		       any substring of the string never match with the
6419		       collating symbol.  */
6420# ifdef _LIBC
6421		    if (__wcscoll (workp, d) > 0)
6422# else
6423		    if (wcscoll (workp, d) > 0)
6424# endif
6425		      {
6426			workp += length + 1;
6427			break;
6428		      }
6429
6430		    /* First, we compare the equivalence class with
6431		       the first character of the string.
6432		       If it don't match, we add the next character to
6433		       the compare buffer in turn.  */
6434		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6435		      {
6436			int match;
6437			if (d == dend)
6438			  {
6439			    if (dend == end_match_2)
6440			      break;
6441			    d = string2;
6442			    dend = end_match_2;
6443			  }
6444
6445			/* add next character to the compare buffer.  */
6446			str_buf[i] = TRANSLATE(*d);
6447			str_buf[i+1] = '\0';
6448
6449# ifdef _LIBC
6450			match = __wcscoll (workp, str_buf);
6451# else
6452			match = wcscoll (workp, str_buf);
6453# endif
6454
6455			if (match == 0)
6456			  goto char_set_matched;
6457
6458			if (match < 0)
6459			/* (str_buf > workp) indicate (str_buf + X > workp),
6460			   because for all X (str_buf + X > str_buf).
6461			   So we don't need continue this loop.  */
6462			  break;
6463
6464			/* Otherwise(str_buf < workp),
6465			   (str_buf+next_character) may equals (workp).
6466			   So we continue this loop.  */
6467		      }
6468		    /* not matched */
6469		    d = backup_d;
6470		    dend = backup_dend;
6471		    workp += length + 1;
6472		  }
6473	      }
6474
6475            /* match with char_range?  */
6476# ifdef _LIBC
6477	    if (nrules != 0)
6478	      {
6479		uint32_t collseqval;
6480		const char *collseq = (const char *)
6481		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6482
6483		collseqval = collseq_table_lookup (collseq, c);
6484
6485		for (; workp < p - chars_length ;)
6486		  {
6487		    uint32_t start_val, end_val;
6488
6489		    /* We already compute the collation sequence value
6490		       of the characters (or collating symbols).  */
6491		    start_val = (uint32_t) *workp++; /* range_start */
6492		    end_val = (uint32_t) *workp++; /* range_end */
6493
6494		    if (start_val <= collseqval && collseqval <= end_val)
6495		      goto char_set_matched;
6496		  }
6497	      }
6498	    else
6499# endif
6500	      {
6501		/* We set range_start_char at str_buf[0], range_end_char
6502		   at str_buf[4], and compared char at str_buf[2].  */
6503		str_buf[1] = 0;
6504		str_buf[2] = c;
6505		str_buf[3] = 0;
6506		str_buf[5] = 0;
6507		for (; workp < p - chars_length ;)
6508		  {
6509		    wchar_t *range_start_char, *range_end_char;
6510
6511		    /* match if (range_start_char <= c <= range_end_char).  */
6512
6513		    /* If range_start(or end) < 0, we assume -range_start(end)
6514		       is the offset of the collating symbol which is specified
6515		       as the character of the range start(end).  */
6516
6517		    /* range_start */
6518		    if (*workp < 0)
6519		      range_start_char = charset_top - (*workp++);
6520		    else
6521		      {
6522			str_buf[0] = *workp++;
6523			range_start_char = str_buf;
6524		      }
6525
6526		    /* range_end */
6527		    if (*workp < 0)
6528		      range_end_char = charset_top - (*workp++);
6529		    else
6530		      {
6531			str_buf[4] = *workp++;
6532			range_end_char = str_buf + 4;
6533		      }
6534
6535# ifdef _LIBC
6536		    if (__wcscoll (range_start_char, str_buf+2) <= 0
6537			&& __wcscoll (str_buf+2, range_end_char) <= 0)
6538# else
6539		    if (wcscoll (range_start_char, str_buf+2) <= 0
6540			&& wcscoll (str_buf+2, range_end_char) <= 0)
6541# endif
6542		      goto char_set_matched;
6543		  }
6544	      }
6545
6546            /* match with char?  */
6547	    for (; workp < p ; workp++)
6548	      if (c == *workp)
6549		goto char_set_matched;
6550
6551	    negate = !negate;
6552
6553	  char_set_matched:
6554	    if (negate) goto fail;
6555#else
6556            /* Cast to `unsigned' instead of `unsigned char' in case the
6557               bit list is a full 32 bytes long.  */
6558	    if (c < (unsigned) (*p * BYTEWIDTH)
6559		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6560	      negate = !negate;
6561
6562	    p += 1 + *p;
6563
6564	    if (!negate) goto fail;
6565#undef WORK_BUFFER_SIZE
6566#endif /* WCHAR */
6567	    SET_REGS_MATCHED ();
6568            d++;
6569	    break;
6570	  }
6571
6572
6573        /* The beginning of a group is represented by start_memory.
6574           The arguments are the register number in the next byte, and the
6575           number of groups inner to this one in the next.  The text
6576           matched within the group is recorded (in the internal
6577           registers data structure) under the register number.  */
6578        case start_memory:
6579	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6580			(long int) *p, (long int) p[1]);
6581
6582          /* Find out if this group can match the empty string.  */
6583	  p1 = p;		/* To send to group_match_null_string_p.  */
6584
6585          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6586            REG_MATCH_NULL_STRING_P (reg_info[*p])
6587              = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6588
6589          /* Save the position in the string where we were the last time
6590             we were at this open-group operator in case the group is
6591             operated upon by a repetition operator, e.g., with `(a*)*b'
6592             against `ab'; then we want to ignore where we are now in
6593             the string in case this attempt to match fails.  */
6594          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6595                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6596                             : regstart[*p];
6597	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6598			 POINTER_TO_OFFSET (old_regstart[*p]));
6599
6600          regstart[*p] = d;
6601	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6602
6603          IS_ACTIVE (reg_info[*p]) = 1;
6604          MATCHED_SOMETHING (reg_info[*p]) = 0;
6605
6606	  /* Clear this whenever we change the register activity status.  */
6607	  set_regs_matched_done = 0;
6608
6609          /* This is the new highest active register.  */
6610          highest_active_reg = *p;
6611
6612          /* If nothing was active before, this is the new lowest active
6613             register.  */
6614          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6615            lowest_active_reg = *p;
6616
6617          /* Move past the register number and inner group count.  */
6618          p += 2;
6619	  just_past_start_mem = p;
6620
6621          break;
6622
6623
6624        /* The stop_memory opcode represents the end of a group.  Its
6625           arguments are the same as start_memory's: the register
6626           number, and the number of inner groups.  */
6627	case stop_memory:
6628	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6629			(long int) *p, (long int) p[1]);
6630
6631          /* We need to save the string position the last time we were at
6632             this close-group operator in case the group is operated
6633             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6634             against `aba'; then we want to ignore where we are now in
6635             the string in case this attempt to match fails.  */
6636          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6637                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
6638			   : regend[*p];
6639	  DEBUG_PRINT2 ("      old_regend: %d\n",
6640			 POINTER_TO_OFFSET (old_regend[*p]));
6641
6642          regend[*p] = d;
6643	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6644
6645          /* This register isn't active anymore.  */
6646          IS_ACTIVE (reg_info[*p]) = 0;
6647
6648	  /* Clear this whenever we change the register activity status.  */
6649	  set_regs_matched_done = 0;
6650
6651          /* If this was the only register active, nothing is active
6652             anymore.  */
6653          if (lowest_active_reg == highest_active_reg)
6654            {
6655              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6656              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6657            }
6658          else
6659            { /* We must scan for the new highest active register, since
6660                 it isn't necessarily one less than now: consider
6661                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6662                 new highest active register is 1.  */
6663              UCHAR_T r = *p - 1;
6664              while (r > 0 && !IS_ACTIVE (reg_info[r]))
6665                r--;
6666
6667              /* If we end up at register zero, that means that we saved
6668                 the registers as the result of an `on_failure_jump', not
6669                 a `start_memory', and we jumped to past the innermost
6670                 `stop_memory'.  For example, in ((.)*) we save
6671                 registers 1 and 2 as a result of the *, but when we pop
6672                 back to the second ), we are at the stop_memory 1.
6673                 Thus, nothing is active.  */
6674	      if (r == 0)
6675                {
6676                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6677                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6678                }
6679              else
6680                highest_active_reg = r;
6681            }
6682
6683          /* If just failed to match something this time around with a
6684             group that's operated on by a repetition operator, try to
6685             force exit from the ``loop'', and restore the register
6686             information for this group that we had before trying this
6687             last match.  */
6688          if ((!MATCHED_SOMETHING (reg_info[*p])
6689               || just_past_start_mem == p - 1)
6690	      && (p + 2) < pend)
6691            {
6692              boolean is_a_jump_n = false;
6693
6694              p1 = p + 2;
6695              mcnt = 0;
6696              switch ((re_opcode_t) *p1++)
6697                {
6698                  case jump_n:
6699		    is_a_jump_n = true;
6700		    /* Fall through.  */
6701                  case pop_failure_jump:
6702		  case maybe_pop_jump:
6703		  case jump:
6704		  case dummy_failure_jump:
6705                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6706		    if (is_a_jump_n)
6707		      p1 += OFFSET_ADDRESS_SIZE;
6708                    break;
6709
6710                  default:
6711                    /* do nothing */ ;
6712                }
6713	      p1 += mcnt;
6714
6715              /* If the next operation is a jump backwards in the pattern
6716	         to an on_failure_jump right before the start_memory
6717                 corresponding to this stop_memory, exit from the loop
6718                 by forcing a failure after pushing on the stack the
6719                 on_failure_jump's jump in the pattern, and d.  */
6720              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6721                  && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6722		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6723		{
6724                  /* If this group ever matched anything, then restore
6725                     what its registers were before trying this last
6726                     failed match, e.g., with `(a*)*b' against `ab' for
6727                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
6728                     against `aba' for regend[3].
6729
6730                     Also restore the registers for inner groups for,
6731                     e.g., `((a*)(b*))*' against `aba' (register 3 would
6732                     otherwise get trashed).  */
6733
6734                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6735		    {
6736		      unsigned r;
6737
6738                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6739
6740		      /* Restore this and inner groups' (if any) registers.  */
6741                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6742			   r++)
6743                        {
6744                          regstart[r] = old_regstart[r];
6745
6746                          /* xx why this test?  */
6747                          if (old_regend[r] >= regstart[r])
6748                            regend[r] = old_regend[r];
6749                        }
6750                    }
6751		  p1++;
6752                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6753                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6754
6755                  goto fail;
6756                }
6757            }
6758
6759          /* Move past the register number and the inner group count.  */
6760          p += 2;
6761          break;
6762
6763
6764	/* \<digit> has been turned into a `duplicate' command which is
6765           followed by the numeric value of <digit> as the register number.  */
6766        case duplicate:
6767	  {
6768	    register const CHAR_T *d2, *dend2;
6769	    int regno = *p++;   /* Get which register to match against.  */
6770	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6771
6772	    /* Can't back reference a group which we've never matched.  */
6773            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6774              goto fail;
6775
6776            /* Where in input to try to start matching.  */
6777            d2 = regstart[regno];
6778
6779            /* Where to stop matching; if both the place to start and
6780               the place to stop matching are in the same string, then
6781               set to the place to stop, otherwise, for now have to use
6782               the end of the first string.  */
6783
6784            dend2 = ((FIRST_STRING_P (regstart[regno])
6785		      == FIRST_STRING_P (regend[regno]))
6786		     ? regend[regno] : end_match_1);
6787	    for (;;)
6788	      {
6789		/* If necessary, advance to next segment in register
6790                   contents.  */
6791		while (d2 == dend2)
6792		  {
6793		    if (dend2 == end_match_2) break;
6794		    if (dend2 == regend[regno]) break;
6795
6796                    /* End of string1 => advance to string2. */
6797                    d2 = string2;
6798                    dend2 = regend[regno];
6799		  }
6800		/* At end of register contents => success */
6801		if (d2 == dend2) break;
6802
6803		/* If necessary, advance to next segment in data.  */
6804		PREFETCH ();
6805
6806		/* How many characters left in this segment to match.  */
6807		mcnt = dend - d;
6808
6809		/* Want how many consecutive characters we can match in
6810                   one shot, so, if necessary, adjust the count.  */
6811                if (mcnt > dend2 - d2)
6812		  mcnt = dend2 - d2;
6813
6814		/* Compare that many; failure if mismatch, else move
6815                   past them.  */
6816		if (translate
6817                    ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6818                    : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6819		  goto fail;
6820		d += mcnt, d2 += mcnt;
6821
6822		/* Do this because we've match some characters.  */
6823		SET_REGS_MATCHED ();
6824	      }
6825	  }
6826	  break;
6827
6828
6829        /* begline matches the empty string at the beginning of the string
6830           (unless `not_bol' is set in `bufp'), and, if
6831           `newline_anchor' is set, after newlines.  */
6832	case begline:
6833          DEBUG_PRINT1 ("EXECUTING begline.\n");
6834
6835          if (AT_STRINGS_BEG (d))
6836            {
6837              if (!bufp->not_bol) break;
6838            }
6839          else if (d[-1] == '\n' && bufp->newline_anchor)
6840            {
6841              break;
6842            }
6843          /* In all other cases, we fail.  */
6844          goto fail;
6845
6846
6847        /* endline is the dual of begline.  */
6848	case endline:
6849          DEBUG_PRINT1 ("EXECUTING endline.\n");
6850
6851          if (AT_STRINGS_END (d))
6852            {
6853              if (!bufp->not_eol) break;
6854            }
6855
6856          /* We have to ``prefetch'' the next character.  */
6857          else if ((d == end1 ? *string2 : *d) == '\n'
6858                   && bufp->newline_anchor)
6859            {
6860              break;
6861            }
6862          goto fail;
6863
6864
6865	/* Match at the very beginning of the data.  */
6866        case begbuf:
6867          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6868          if (AT_STRINGS_BEG (d))
6869            break;
6870          goto fail;
6871
6872
6873	/* Match at the very end of the data.  */
6874        case endbuf:
6875          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6876	  if (AT_STRINGS_END (d))
6877	    break;
6878          goto fail;
6879
6880
6881        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6882           pushes NULL as the value for the string on the stack.  Then
6883           `pop_failure_point' will keep the current value for the
6884           string, instead of restoring it.  To see why, consider
6885           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6886           then the . fails against the \n.  But the next thing we want
6887           to do is match the \n against the \n; if we restored the
6888           string value, we would be back at the foo.
6889
6890           Because this is used only in specific cases, we don't need to
6891           check all the things that `on_failure_jump' does, to make
6892           sure the right things get saved on the stack.  Hence we don't
6893           share its code.  The only reason to push anything on the
6894           stack at all is that otherwise we would have to change
6895           `anychar's code to do something besides goto fail in this
6896           case; that seems worse than this.  */
6897        case on_failure_keep_string_jump:
6898          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6899
6900          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6901#ifdef _LIBC
6902          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6903#else
6904          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6905#endif
6906
6907          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6908          break;
6909
6910
6911	/* Uses of on_failure_jump:
6912
6913           Each alternative starts with an on_failure_jump that points
6914           to the beginning of the next alternative.  Each alternative
6915           except the last ends with a jump that in effect jumps past
6916           the rest of the alternatives.  (They really jump to the
6917           ending jump of the following alternative, because tensioning
6918           these jumps is a hassle.)
6919
6920           Repeats start with an on_failure_jump that points past both
6921           the repetition text and either the following jump or
6922           pop_failure_jump back to this on_failure_jump.  */
6923	case on_failure_jump:
6924        on_failure:
6925          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6926
6927          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6928#ifdef _LIBC
6929          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6930#else
6931          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6932#endif
6933
6934          /* If this on_failure_jump comes right before a group (i.e.,
6935             the original * applied to a group), save the information
6936             for that group and all inner ones, so that if we fail back
6937             to this point, the group's information will be correct.
6938             For example, in \(a*\)*\1, we need the preceding group,
6939             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6940
6941          /* We can't use `p' to check ahead because we push
6942             a failure point to `p + mcnt' after we do this.  */
6943          p1 = p;
6944
6945          /* We need to skip no_op's before we look for the
6946             start_memory in case this on_failure_jump is happening as
6947             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6948             against aba.  */
6949          while (p1 < pend && (re_opcode_t) *p1 == no_op)
6950            p1++;
6951
6952          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6953            {
6954              /* We have a new highest active register now.  This will
6955                 get reset at the start_memory we are about to get to,
6956                 but we will have saved all the registers relevant to
6957                 this repetition op, as described above.  */
6958              highest_active_reg = *(p1 + 1) + *(p1 + 2);
6959              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6960                lowest_active_reg = *(p1 + 1);
6961            }
6962
6963          DEBUG_PRINT1 (":\n");
6964          PUSH_FAILURE_POINT (p + mcnt, d, -2);
6965          break;
6966
6967
6968        /* A smart repeat ends with `maybe_pop_jump'.
6969	   We change it to either `pop_failure_jump' or `jump'.  */
6970        case maybe_pop_jump:
6971          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6972          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6973          {
6974	    register UCHAR_T *p2 = p;
6975
6976            /* Compare the beginning of the repeat with what in the
6977               pattern follows its end. If we can establish that there
6978               is nothing that they would both match, i.e., that we
6979               would have to backtrack because of (as in, e.g., `a*a')
6980               then we can change to pop_failure_jump, because we'll
6981               never have to backtrack.
6982
6983               This is not true in the case of alternatives: in
6984               `(a|ab)*' we do need to backtrack to the `ab' alternative
6985               (e.g., if the string was `ab').  But instead of trying to
6986               detect that here, the alternative has put on a dummy
6987               failure point which is what we will end up popping.  */
6988
6989	    /* Skip over open/close-group commands.
6990	       If what follows this loop is a ...+ construct,
6991	       look at what begins its body, since we will have to
6992	       match at least one of that.  */
6993	    while (1)
6994	      {
6995		if (p2 + 2 < pend
6996		    && ((re_opcode_t) *p2 == stop_memory
6997			|| (re_opcode_t) *p2 == start_memory))
6998		  p2 += 3;
6999		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7000			 && (re_opcode_t) *p2 == dummy_failure_jump)
7001		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7002		else
7003		  break;
7004	      }
7005
7006	    p1 = p + mcnt;
7007	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7008	       to the `maybe_finalize_jump' of this case.  Examine what
7009	       follows.  */
7010
7011            /* If we're at the end of the pattern, we can change.  */
7012            if (p2 == pend)
7013	      {
7014		/* Consider what happens when matching ":\(.*\)"
7015		   against ":/".  I don't really understand this code
7016		   yet.  */
7017  	        p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7018		  pop_failure_jump;
7019                DEBUG_PRINT1
7020                  ("  End of pattern: change to `pop_failure_jump'.\n");
7021              }
7022
7023            else if ((re_opcode_t) *p2 == exactn
7024#ifdef MBS_SUPPORT
7025		     || (re_opcode_t) *p2 == exactn_bin
7026#endif
7027		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7028	      {
7029		register UCHAR_T c
7030                  = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7031
7032                if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7033#ifdef MBS_SUPPORT
7034		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7035#endif
7036		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7037                  {
7038  		    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7039		      pop_failure_jump;
7040#ifdef WCHAR
7041		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7042				    (wint_t) c,
7043				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7044#else
7045		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7046				    (char) c,
7047				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7048#endif
7049                  }
7050
7051#ifndef WCHAR
7052		else if ((re_opcode_t) p1[3] == charset
7053			 || (re_opcode_t) p1[3] == charset_not)
7054		  {
7055		    int negate = (re_opcode_t) p1[3] == charset_not;
7056
7057		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7058			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7059		      negate = !negate;
7060
7061                    /* `negate' is equal to 1 if c would match, which means
7062                        that we can't change to pop_failure_jump.  */
7063		    if (!negate)
7064                      {
7065  		        p[-3] = (unsigned char) pop_failure_jump;
7066                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7067                      }
7068		  }
7069#endif /* not WCHAR */
7070	      }
7071#ifndef WCHAR
7072            else if ((re_opcode_t) *p2 == charset)
7073	      {
7074		/* We win if the first character of the loop is not part
7075                   of the charset.  */
7076                if ((re_opcode_t) p1[3] == exactn
7077 		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7078 			  && (p2[2 + p1[5] / BYTEWIDTH]
7079 			      & (1 << (p1[5] % BYTEWIDTH)))))
7080		  {
7081		    p[-3] = (unsigned char) pop_failure_jump;
7082		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7083                  }
7084
7085		else if ((re_opcode_t) p1[3] == charset_not)
7086		  {
7087		    int idx;
7088		    /* We win if the charset_not inside the loop
7089		       lists every character listed in the charset after.  */
7090		    for (idx = 0; idx < (int) p2[1]; idx++)
7091		      if (! (p2[2 + idx] == 0
7092			     || (idx < (int) p1[4]
7093				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7094			break;
7095
7096		    if (idx == p2[1])
7097                      {
7098  		        p[-3] = (unsigned char) pop_failure_jump;
7099                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7100                      }
7101		  }
7102		else if ((re_opcode_t) p1[3] == charset)
7103		  {
7104		    int idx;
7105		    /* We win if the charset inside the loop
7106		       has no overlap with the one after the loop.  */
7107		    for (idx = 0;
7108			 idx < (int) p2[1] && idx < (int) p1[4];
7109			 idx++)
7110		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7111			break;
7112
7113		    if (idx == p2[1] || idx == p1[4])
7114                      {
7115  		        p[-3] = (unsigned char) pop_failure_jump;
7116                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7117                      }
7118		  }
7119	      }
7120#endif /* not WCHAR */
7121	  }
7122	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
7123	  if ((re_opcode_t) p[-1] != pop_failure_jump)
7124	    {
7125	      p[-1] = (UCHAR_T) jump;
7126              DEBUG_PRINT1 ("  Match => jump.\n");
7127	      goto unconditional_jump;
7128	    }
7129        /* Fall through.  */
7130
7131
7132	/* The end of a simple repeat has a pop_failure_jump back to
7133           its matching on_failure_jump, where the latter will push a
7134           failure point.  The pop_failure_jump takes off failure
7135           points put on by this pop_failure_jump's matching
7136           on_failure_jump; we got through the pattern to here from the
7137           matching on_failure_jump, so didn't fail.  */
7138        case pop_failure_jump:
7139          {
7140            /* We need to pass separate storage for the lowest and
7141               highest registers, even though we don't care about the
7142               actual values.  Otherwise, we will restore only one
7143               register from the stack, since lowest will == highest in
7144               `pop_failure_point'.  */
7145            active_reg_t dummy_low_reg, dummy_high_reg;
7146            UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL;
7147            const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL;
7148
7149            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7150            POP_FAILURE_POINT (sdummy, pdummy,
7151                               dummy_low_reg, dummy_high_reg,
7152                               reg_dummy, reg_dummy, reg_info_dummy);
7153          }
7154	  /* Fall through.  */
7155
7156	unconditional_jump:
7157#ifdef _LIBC
7158	  DEBUG_PRINT2 ("\n%p: ", p);
7159#else
7160	  DEBUG_PRINT2 ("\n0x%x: ", p);
7161#endif
7162          /* Note fall through.  */
7163
7164        /* Unconditionally jump (without popping any failure points).  */
7165        case jump:
7166	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
7167          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7168	  p += mcnt;				/* Do the jump.  */
7169#ifdef _LIBC
7170          DEBUG_PRINT2 ("(to %p).\n", p);
7171#else
7172          DEBUG_PRINT2 ("(to 0x%x).\n", p);
7173#endif
7174	  break;
7175
7176
7177        /* We need this opcode so we can detect where alternatives end
7178           in `group_match_null_string_p' et al.  */
7179        case jump_past_alt:
7180          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7181          goto unconditional_jump;
7182
7183
7184        /* Normally, the on_failure_jump pushes a failure point, which
7185           then gets popped at pop_failure_jump.  We will end up at
7186           pop_failure_jump, also, and with a pattern of, say, `a+', we
7187           are skipping over the on_failure_jump, so we have to push
7188           something meaningless for pop_failure_jump to pop.  */
7189        case dummy_failure_jump:
7190          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7191          /* It doesn't matter what we push for the string here.  What
7192             the code at `fail' tests is the value for the pattern.  */
7193          PUSH_FAILURE_POINT (NULL, NULL, -2);
7194          goto unconditional_jump;
7195
7196
7197        /* At the end of an alternative, we need to push a dummy failure
7198           point in case we are followed by a `pop_failure_jump', because
7199           we don't want the failure point for the alternative to be
7200           popped.  For example, matching `(a|ab)*' against `aab'
7201           requires that we match the `ab' alternative.  */
7202        case push_dummy_failure:
7203          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7204          /* See comments just above at `dummy_failure_jump' about the
7205             two zeroes.  */
7206          PUSH_FAILURE_POINT (NULL, NULL, -2);
7207          break;
7208
7209        /* Have to succeed matching what follows at least n times.
7210           After that, handle like `on_failure_jump'.  */
7211        case succeed_n:
7212          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7213          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7214
7215          assert (mcnt >= 0);
7216          /* Originally, this is how many times we HAVE to succeed.  */
7217          if (mcnt > 0)
7218            {
7219               mcnt--;
7220	       p += OFFSET_ADDRESS_SIZE;
7221               STORE_NUMBER_AND_INCR (p, mcnt);
7222#ifdef _LIBC
7223               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7224			     , mcnt);
7225#else
7226               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7227			     , mcnt);
7228#endif
7229            }
7230	  else if (mcnt == 0)
7231            {
7232#ifdef _LIBC
7233              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7234			    p + OFFSET_ADDRESS_SIZE);
7235#else
7236              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7237			    p + OFFSET_ADDRESS_SIZE);
7238#endif /* _LIBC */
7239
7240#ifdef WCHAR
7241	      p[1] = (UCHAR_T) no_op;
7242#else
7243	      p[2] = (UCHAR_T) no_op;
7244              p[3] = (UCHAR_T) no_op;
7245#endif /* WCHAR */
7246              goto on_failure;
7247            }
7248          break;
7249
7250        case jump_n:
7251          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7252          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7253
7254          /* Originally, this is how many times we CAN jump.  */
7255          if (mcnt)
7256            {
7257               mcnt--;
7258               STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7259
7260#ifdef _LIBC
7261               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7262			     mcnt);
7263#else
7264               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7265			     mcnt);
7266#endif /* _LIBC */
7267	       goto unconditional_jump;
7268            }
7269          /* If don't have to jump any more, skip over the rest of command.  */
7270	  else
7271	    p += 2 * OFFSET_ADDRESS_SIZE;
7272          break;
7273
7274	case set_number_at:
7275	  {
7276            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7277
7278            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7279            p1 = p + mcnt;
7280            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7281#ifdef _LIBC
7282            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7283#else
7284            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7285#endif
7286	    STORE_NUMBER (p1, mcnt);
7287            break;
7288          }
7289
7290#if 0
7291	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7292	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7293	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7294	   macro and introducing temporary variables works around the bug.  */
7295
7296	case wordbound:
7297	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7298	  if (AT_WORD_BOUNDARY (d))
7299	    break;
7300	  goto fail;
7301
7302	case notwordbound:
7303	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7304	  if (AT_WORD_BOUNDARY (d))
7305	    goto fail;
7306	  break;
7307#else
7308	case wordbound:
7309	{
7310	  boolean prevchar, thischar;
7311
7312	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7313	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7314	    break;
7315
7316	  prevchar = WORDCHAR_P (d - 1);
7317	  thischar = WORDCHAR_P (d);
7318	  if (prevchar != thischar)
7319	    break;
7320	  goto fail;
7321	}
7322
7323      case notwordbound:
7324	{
7325	  boolean prevchar, thischar;
7326
7327	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7328	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7329	    goto fail;
7330
7331	  prevchar = WORDCHAR_P (d - 1);
7332	  thischar = WORDCHAR_P (d);
7333	  if (prevchar != thischar)
7334	    goto fail;
7335	  break;
7336	}
7337#endif
7338
7339	case wordbeg:
7340          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7341	  if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7342	      && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7343	    break;
7344          goto fail;
7345
7346	case wordend:
7347          DEBUG_PRINT1 ("EXECUTING wordend.\n");
7348	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7349              && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7350	    break;
7351          goto fail;
7352
7353#ifdef emacs
7354  	case before_dot:
7355          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7356 	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7357  	    goto fail;
7358  	  break;
7359
7360  	case at_dot:
7361          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7362 	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7363  	    goto fail;
7364  	  break;
7365
7366  	case after_dot:
7367          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7368          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7369  	    goto fail;
7370  	  break;
7371
7372	case syntaxspec:
7373          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7374	  mcnt = *p++;
7375	  goto matchsyntax;
7376
7377        case wordchar:
7378          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7379	  mcnt = (int) Sword;
7380        matchsyntax:
7381	  PREFETCH ();
7382	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7383	  d++;
7384	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7385	    goto fail;
7386          SET_REGS_MATCHED ();
7387	  break;
7388
7389	case notsyntaxspec:
7390          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7391	  mcnt = *p++;
7392	  goto matchnotsyntax;
7393
7394        case notwordchar:
7395          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7396	  mcnt = (int) Sword;
7397        matchnotsyntax:
7398	  PREFETCH ();
7399	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7400	  d++;
7401	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7402	    goto fail;
7403	  SET_REGS_MATCHED ();
7404          break;
7405
7406#else /* not emacs */
7407	case wordchar:
7408          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7409	  PREFETCH ();
7410          if (!WORDCHAR_P (d))
7411            goto fail;
7412	  SET_REGS_MATCHED ();
7413          d++;
7414	  break;
7415
7416	case notwordchar:
7417          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7418	  PREFETCH ();
7419	  if (WORDCHAR_P (d))
7420            goto fail;
7421          SET_REGS_MATCHED ();
7422          d++;
7423	  break;
7424#endif /* not emacs */
7425
7426        default:
7427          abort ();
7428	}
7429      continue;  /* Successfully executed one pattern command; keep going.  */
7430
7431
7432    /* We goto here if a matching operation fails. */
7433    fail:
7434      if (!FAIL_STACK_EMPTY ())
7435	{ /* A restart point is known.  Restore to that state.  */
7436          DEBUG_PRINT1 ("\nFAIL:\n");
7437          POP_FAILURE_POINT (d, p,
7438                             lowest_active_reg, highest_active_reg,
7439                             regstart, regend, reg_info);
7440
7441          /* If this failure point is a dummy, try the next one.  */
7442          if (!p)
7443	    goto fail;
7444
7445          /* If we failed to the end of the pattern, don't examine *p.  */
7446	  assert (p <= pend);
7447          if (p < pend)
7448            {
7449              boolean is_a_jump_n = false;
7450
7451              /* If failed to a backwards jump that's part of a repetition
7452                 loop, need to pop this failure point and use the next one.  */
7453              switch ((re_opcode_t) *p)
7454                {
7455                case jump_n:
7456                  is_a_jump_n = true;
7457		  /* Fall through.  */
7458                case maybe_pop_jump:
7459                case pop_failure_jump:
7460                case jump:
7461                  p1 = p + 1;
7462                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7463                  p1 += mcnt;
7464
7465                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7466                      || (!is_a_jump_n
7467                          && (re_opcode_t) *p1 == on_failure_jump))
7468                    goto fail;
7469                  break;
7470                default:
7471                  /* do nothing */ ;
7472                }
7473            }
7474
7475          if (d >= string1 && d <= end1)
7476	    dend = end_match_1;
7477        }
7478      else
7479        break;   /* Matching at this starting point really fails.  */
7480    } /* for (;;) */
7481
7482  if (best_regs_set)
7483    goto restore_best_regs;
7484
7485  FREE_VARIABLES ();
7486
7487  return -1;         			/* Failure to match.  */
7488} /* re_match_2 */
7489
7490/* Subroutine definitions for re_match_2.  */
7491
7492
7493/* We are passed P pointing to a register number after a start_memory.
7494
7495   Return true if the pattern up to the corresponding stop_memory can
7496   match the empty string, and false otherwise.
7497
7498   If we find the matching stop_memory, sets P to point to one past its number.
7499   Otherwise, sets P to an undefined byte less than or equal to END.
7500
7501   We don't handle duplicates properly (yet).  */
7502
7503static boolean
7504PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7505                                   PREFIX(register_info_type) *reg_info)
7506{
7507  int mcnt;
7508  /* Point to after the args to the start_memory.  */
7509  UCHAR_T *p1 = *p + 2;
7510
7511  while (p1 < end)
7512    {
7513      /* Skip over opcodes that can match nothing, and return true or
7514	 false, as appropriate, when we get to one that can't, or to the
7515         matching stop_memory.  */
7516
7517      switch ((re_opcode_t) *p1)
7518        {
7519        /* Could be either a loop or a series of alternatives.  */
7520        case on_failure_jump:
7521          p1++;
7522          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7523
7524          /* If the next operation is not a jump backwards in the
7525	     pattern.  */
7526
7527	  if (mcnt >= 0)
7528	    {
7529              /* Go through the on_failure_jumps of the alternatives,
7530                 seeing if any of the alternatives cannot match nothing.
7531                 The last alternative starts with only a jump,
7532                 whereas the rest start with on_failure_jump and end
7533                 with a jump, e.g., here is the pattern for `a|b|c':
7534
7535                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7536                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7537                 /exactn/1/c
7538
7539                 So, we have to first go through the first (n-1)
7540                 alternatives and then deal with the last one separately.  */
7541
7542
7543              /* Deal with the first (n-1) alternatives, which start
7544                 with an on_failure_jump (see above) that jumps to right
7545                 past a jump_past_alt.  */
7546
7547              while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7548		     jump_past_alt)
7549                {
7550                  /* `mcnt' holds how many bytes long the alternative
7551                     is, including the ending `jump_past_alt' and
7552                     its number.  */
7553
7554                  if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7555						(1 + OFFSET_ADDRESS_SIZE),
7556						reg_info))
7557                    return false;
7558
7559                  /* Move to right after this alternative, including the
7560		     jump_past_alt.  */
7561                  p1 += mcnt;
7562
7563                  /* Break if it's the beginning of an n-th alternative
7564                     that doesn't begin with an on_failure_jump.  */
7565                  if ((re_opcode_t) *p1 != on_failure_jump)
7566                    break;
7567
7568		  /* Still have to check that it's not an n-th
7569		     alternative that starts with an on_failure_jump.  */
7570		  p1++;
7571                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7572                  if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7573		      jump_past_alt)
7574                    {
7575		      /* Get to the beginning of the n-th alternative.  */
7576                      p1 -= 1 + OFFSET_ADDRESS_SIZE;
7577                      break;
7578                    }
7579                }
7580
7581              /* Deal with the last alternative: go back and get number
7582                 of the `jump_past_alt' just before it.  `mcnt' contains
7583                 the length of the alternative.  */
7584              EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7585
7586              if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7587                return false;
7588
7589              p1 += mcnt;	/* Get past the n-th alternative.  */
7590            } /* if mcnt > 0 */
7591          break;
7592
7593
7594        case stop_memory:
7595	  assert (p1[1] == **p);
7596          *p = p1 + 2;
7597          return true;
7598
7599
7600        default:
7601          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7602            return false;
7603        }
7604    } /* while p1 < end */
7605
7606  return false;
7607} /* group_match_null_string_p */
7608
7609
7610/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7611   It expects P to be the first byte of a single alternative and END one
7612   byte past the last. The alternative can contain groups.  */
7613
7614static boolean
7615PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7616                                 PREFIX(register_info_type) *reg_info)
7617{
7618  int mcnt;
7619  UCHAR_T *p1 = p;
7620
7621  while (p1 < end)
7622    {
7623      /* Skip over opcodes that can match nothing, and break when we get
7624         to one that can't.  */
7625
7626      switch ((re_opcode_t) *p1)
7627        {
7628	/* It's a loop.  */
7629        case on_failure_jump:
7630          p1++;
7631          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7632          p1 += mcnt;
7633          break;
7634
7635	default:
7636          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7637            return false;
7638        }
7639    }  /* while p1 < end */
7640
7641  return true;
7642} /* alt_match_null_string_p */
7643
7644
7645/* Deals with the ops common to group_match_null_string_p and
7646   alt_match_null_string_p.
7647
7648   Sets P to one after the op and its arguments, if any.  */
7649
7650static boolean
7651PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7652                                       PREFIX(register_info_type) *reg_info)
7653{
7654  int mcnt;
7655  boolean ret;
7656  int reg_no;
7657  UCHAR_T *p1 = *p;
7658
7659  switch ((re_opcode_t) *p1++)
7660    {
7661    case no_op:
7662    case begline:
7663    case endline:
7664    case begbuf:
7665    case endbuf:
7666    case wordbeg:
7667    case wordend:
7668    case wordbound:
7669    case notwordbound:
7670#ifdef emacs
7671    case before_dot:
7672    case at_dot:
7673    case after_dot:
7674#endif
7675      break;
7676
7677    case start_memory:
7678      reg_no = *p1;
7679      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7680      ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7681
7682      /* Have to set this here in case we're checking a group which
7683         contains a group and a back reference to it.  */
7684
7685      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7686        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7687
7688      if (!ret)
7689        return false;
7690      break;
7691
7692    /* If this is an optimized succeed_n for zero times, make the jump.  */
7693    case jump:
7694      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7695      if (mcnt >= 0)
7696        p1 += mcnt;
7697      else
7698        return false;
7699      break;
7700
7701    case succeed_n:
7702      /* Get to the number of times to succeed.  */
7703      p1 += OFFSET_ADDRESS_SIZE;
7704      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7705
7706      if (mcnt == 0)
7707        {
7708          p1 -= 2 * OFFSET_ADDRESS_SIZE;
7709          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7710          p1 += mcnt;
7711        }
7712      else
7713        return false;
7714      break;
7715
7716    case duplicate:
7717      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7718        return false;
7719      break;
7720
7721    case set_number_at:
7722      p1 += 2 * OFFSET_ADDRESS_SIZE;
7723      return false;
7724
7725    default:
7726      /* All other opcodes mean we cannot match the empty string.  */
7727      return false;
7728  }
7729
7730  *p = p1;
7731  return true;
7732} /* common_op_match_null_string_p */
7733
7734
7735/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7736   bytes; nonzero otherwise.  */
7737
7738static int
7739PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7740                        RE_TRANSLATE_TYPE translate)
7741{
7742  register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7743  register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7744  while (len)
7745    {
7746#ifdef WCHAR
7747      if (((*p1<=0xff)?translate[*p1++]:*p1++)
7748	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7749	return 1;
7750#else /* BYTE */
7751      if (translate[*p1++] != translate[*p2++]) return 1;
7752#endif /* WCHAR */
7753      len--;
7754    }
7755  return 0;
7756}
7757
7758
7759#else /* not INSIDE_RECURSION */
7760
7761/* Entry points for GNU code.  */
7762
7763/* re_compile_pattern is the GNU regular expression compiler: it
7764   compiles PATTERN (of length SIZE) and puts the result in BUFP.
7765   Returns 0 if the pattern was valid, otherwise an error string.
7766
7767   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7768   are set in BUFP on entry.
7769
7770   We call regex_compile to do the actual compilation.  */
7771
7772const char *
7773re_compile_pattern (const char *pattern, size_t length,
7774                    struct re_pattern_buffer *bufp)
7775{
7776  reg_errcode_t ret;
7777
7778  /* GNU code is written to assume at least RE_NREGS registers will be set
7779     (and at least one extra will be -1).  */
7780  bufp->regs_allocated = REGS_UNALLOCATED;
7781
7782  /* And GNU code determines whether or not to get register information
7783     by passing null for the REGS argument to re_match, etc., not by
7784     setting no_sub.  */
7785  bufp->no_sub = 0;
7786
7787  /* Match anchors at newline.  */
7788  bufp->newline_anchor = 1;
7789
7790# ifdef MBS_SUPPORT
7791  if (MB_CUR_MAX != 1)
7792    ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7793  else
7794# endif
7795    ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7796
7797  if (!ret)
7798    return NULL;
7799  return gettext (re_error_msgid[(int) ret]);
7800}
7801#ifdef _LIBC
7802weak_alias (__re_compile_pattern, re_compile_pattern)
7803#endif
7804
7805/* Entry points compatible with 4.2 BSD regex library.  We don't define
7806   them unless specifically requested.  */
7807
7808#if defined _REGEX_RE_COMP || defined _LIBC
7809
7810/* BSD has one and only one pattern buffer.  */
7811static struct re_pattern_buffer re_comp_buf;
7812
7813char *
7814#ifdef _LIBC
7815/* Make these definitions weak in libc, so POSIX programs can redefine
7816   these names if they don't use our functions, and still use
7817   regcomp/regexec below without link errors.  */
7818weak_function
7819#endif
7820re_comp (const char *s)
7821{
7822  reg_errcode_t ret;
7823
7824  if (!s)
7825    {
7826      if (!re_comp_buf.buffer)
7827	return (char *) gettext ("No previous regular expression");
7828      return 0;
7829    }
7830
7831  if (!re_comp_buf.buffer)
7832    {
7833      re_comp_buf.buffer = (unsigned char *) malloc (200);
7834      if (re_comp_buf.buffer == NULL)
7835        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7836      re_comp_buf.allocated = 200;
7837
7838      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7839      if (re_comp_buf.fastmap == NULL)
7840	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7841    }
7842
7843  /* Since `re_exec' always passes NULL for the `regs' argument, we
7844     don't need to initialize the pattern buffer fields which affect it.  */
7845
7846  /* Match anchors at newlines.  */
7847  re_comp_buf.newline_anchor = 1;
7848
7849# ifdef MBS_SUPPORT
7850  if (MB_CUR_MAX != 1)
7851    ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7852  else
7853# endif
7854    ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7855
7856  if (!ret)
7857    return NULL;
7858
7859  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7860  return (char *) gettext (re_error_msgid[(int) ret]);
7861}
7862
7863
7864int
7865#ifdef _LIBC
7866weak_function
7867#endif
7868re_exec (const char *s)
7869{
7870  const int len = strlen (s);
7871  return
7872    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7873}
7874
7875#endif /* _REGEX_RE_COMP */
7876
7877/* POSIX.2 functions.  Don't define these for Emacs.  */
7878
7879#ifndef emacs
7880
7881/* regcomp takes a regular expression as a string and compiles it.
7882
7883   PREG is a regex_t *.  We do not expect any fields to be initialized,
7884   since POSIX says we shouldn't.  Thus, we set
7885
7886     `buffer' to the compiled pattern;
7887     `used' to the length of the compiled pattern;
7888     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7889       REG_EXTENDED bit in CFLAGS is set; otherwise, to
7890       RE_SYNTAX_POSIX_BASIC;
7891     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7892     `fastmap' to an allocated space for the fastmap;
7893     `fastmap_accurate' to zero;
7894     `re_nsub' to the number of subexpressions in PATTERN.
7895
7896   PATTERN is the address of the pattern string.
7897
7898   CFLAGS is a series of bits which affect compilation.
7899
7900     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7901     use POSIX basic syntax.
7902
7903     If REG_NEWLINE is set, then . and [^...] don't match newline.
7904     Also, regexec will try a match beginning after every newline.
7905
7906     If REG_ICASE is set, then we considers upper- and lowercase
7907     versions of letters to be equivalent when matching.
7908
7909     If REG_NOSUB is set, then when PREG is passed to regexec, that
7910     routine will report only success or failure, and nothing about the
7911     registers.
7912
7913   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7914   the return codes and their meanings.)  */
7915
7916int
7917regcomp (regex_t *preg, const char *pattern, int cflags)
7918{
7919  reg_errcode_t ret;
7920  reg_syntax_t syntax
7921    = (cflags & REG_EXTENDED) ?
7922      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7923
7924  /* regex_compile will allocate the space for the compiled pattern.  */
7925  preg->buffer = 0;
7926  preg->allocated = 0;
7927  preg->used = 0;
7928
7929  /* Try to allocate space for the fastmap.  */
7930  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7931
7932  if (cflags & REG_ICASE)
7933    {
7934      int i;
7935
7936      preg->translate
7937	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7938				      * sizeof (*(RE_TRANSLATE_TYPE)0));
7939      if (preg->translate == NULL)
7940        return (int) REG_ESPACE;
7941
7942      /* Map uppercase characters to corresponding lowercase ones.  */
7943      for (i = 0; i < CHAR_SET_SIZE; i++)
7944        preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7945    }
7946  else
7947    preg->translate = NULL;
7948
7949  /* If REG_NEWLINE is set, newlines are treated differently.  */
7950  if (cflags & REG_NEWLINE)
7951    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7952      syntax &= ~RE_DOT_NEWLINE;
7953      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7954      /* It also changes the matching behavior.  */
7955      preg->newline_anchor = 1;
7956    }
7957  else
7958    preg->newline_anchor = 0;
7959
7960  preg->no_sub = !!(cflags & REG_NOSUB);
7961
7962  /* POSIX says a null character in the pattern terminates it, so we
7963     can use strlen here in compiling the pattern.  */
7964# ifdef MBS_SUPPORT
7965  if (MB_CUR_MAX != 1)
7966    ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7967  else
7968# endif
7969    ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7970
7971  /* POSIX doesn't distinguish between an unmatched open-group and an
7972     unmatched close-group: both are REG_EPAREN.  */
7973  if (ret == REG_ERPAREN) ret = REG_EPAREN;
7974
7975  if (ret == REG_NOERROR && preg->fastmap)
7976    {
7977      /* Compute the fastmap now, since regexec cannot modify the pattern
7978	 buffer.  */
7979      if (re_compile_fastmap (preg) == -2)
7980	{
7981	  /* Some error occurred while computing the fastmap, just forget
7982	     about it.  */
7983	  free (preg->fastmap);
7984	  preg->fastmap = NULL;
7985	}
7986    }
7987
7988  return (int) ret;
7989}
7990#ifdef _LIBC
7991weak_alias (__regcomp, regcomp)
7992#endif
7993
7994
7995/* regexec searches for a given pattern, specified by PREG, in the
7996   string STRING.
7997
7998   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7999   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
8000   least NMATCH elements, and we set them to the offsets of the
8001   corresponding matched substrings.
8002
8003   EFLAGS specifies `execution flags' which affect matching: if
8004   REG_NOTBOL is set, then ^ does not match at the beginning of the
8005   string; if REG_NOTEOL is set, then $ does not match at the end.
8006
8007   We return 0 if we find a match and REG_NOMATCH if not.  */
8008
8009int
8010regexec (const regex_t *preg, const char *string, size_t nmatch,
8011         regmatch_t pmatch[], int eflags)
8012{
8013  int ret;
8014  struct re_registers regs;
8015  regex_t private_preg;
8016  int len = strlen (string);
8017  boolean want_reg_info = !preg->no_sub && nmatch > 0;
8018
8019  private_preg = *preg;
8020
8021  private_preg.not_bol = !!(eflags & REG_NOTBOL);
8022  private_preg.not_eol = !!(eflags & REG_NOTEOL);
8023
8024  /* The user has told us exactly how many registers to return
8025     information about, via `nmatch'.  We have to pass that on to the
8026     matching routines.  */
8027  private_preg.regs_allocated = REGS_FIXED;
8028
8029  if (want_reg_info)
8030    {
8031      regs.num_regs = nmatch;
8032      regs.start = TALLOC (nmatch * 2, regoff_t);
8033      if (regs.start == NULL)
8034        return (int) REG_NOMATCH;
8035      regs.end = regs.start + nmatch;
8036    }
8037
8038  /* Perform the searching operation.  */
8039  ret = re_search (&private_preg, string, len,
8040                   /* start: */ 0, /* range: */ len,
8041                   want_reg_info ? &regs : (struct re_registers *) 0);
8042
8043  /* Copy the register information to the POSIX structure.  */
8044  if (want_reg_info)
8045    {
8046      if (ret >= 0)
8047        {
8048          unsigned r;
8049
8050          for (r = 0; r < nmatch; r++)
8051            {
8052              pmatch[r].rm_so = regs.start[r];
8053              pmatch[r].rm_eo = regs.end[r];
8054            }
8055        }
8056
8057      /* If we needed the temporary register info, free the space now.  */
8058      free (regs.start);
8059    }
8060
8061  /* We want zero return to mean success, unlike `re_search'.  */
8062  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8063}
8064#ifdef _LIBC
8065weak_alias (__regexec, regexec)
8066#endif
8067
8068
8069/* Returns a message corresponding to an error code, ERRCODE, returned
8070   from either regcomp or regexec.   We don't use PREG here.  */
8071
8072size_t
8073regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
8074          char *errbuf, size_t errbuf_size)
8075{
8076  const char *msg;
8077  size_t msg_size;
8078
8079  if (errcode < 0
8080      || errcode >= (int) (sizeof (re_error_msgid)
8081			   / sizeof (re_error_msgid[0])))
8082    /* Only error codes returned by the rest of the code should be passed
8083       to this routine.  If we are given anything else, or if other regex
8084       code generates an invalid error code, then the program has a bug.
8085       Dump core so we can fix it.  */
8086    abort ();
8087
8088  msg = gettext (re_error_msgid[errcode]);
8089
8090  msg_size = strlen (msg) + 1; /* Includes the null.  */
8091
8092  if (errbuf_size != 0)
8093    {
8094      if (msg_size > errbuf_size)
8095        {
8096#if defined HAVE_MEMPCPY || defined _LIBC
8097	  *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8098#else
8099          (void) memcpy (errbuf, msg, errbuf_size - 1);
8100          errbuf[errbuf_size - 1] = 0;
8101#endif
8102        }
8103      else
8104        (void) memcpy (errbuf, msg, msg_size);
8105    }
8106
8107  return msg_size;
8108}
8109#ifdef _LIBC
8110weak_alias (__regerror, regerror)
8111#endif
8112
8113
8114/* Free dynamically allocated space used by PREG.  */
8115
8116void
8117regfree (regex_t *preg)
8118{
8119  free (preg->buffer);
8120  preg->buffer = NULL;
8121
8122  preg->allocated = 0;
8123  preg->used = 0;
8124
8125  free (preg->fastmap);
8126  preg->fastmap = NULL;
8127  preg->fastmap_accurate = 0;
8128
8129  free (preg->translate);
8130  preg->translate = NULL;
8131}
8132#ifdef _LIBC
8133weak_alias (__regfree, regfree)
8134#endif
8135
8136#endif /* not emacs  */
8137
8138#endif /* not INSIDE_RECURSION */
8139
8140
8141#undef STORE_NUMBER
8142#undef STORE_NUMBER_AND_INCR
8143#undef EXTRACT_NUMBER
8144#undef EXTRACT_NUMBER_AND_INCR
8145
8146#undef DEBUG_PRINT_COMPILED_PATTERN
8147#undef DEBUG_PRINT_DOUBLE_STRING
8148
8149#undef INIT_FAIL_STACK
8150#undef RESET_FAIL_STACK
8151#undef DOUBLE_FAIL_STACK
8152#undef PUSH_PATTERN_OP
8153#undef PUSH_FAILURE_POINTER
8154#undef PUSH_FAILURE_INT
8155#undef PUSH_FAILURE_ELT
8156#undef POP_FAILURE_POINTER
8157#undef POP_FAILURE_INT
8158#undef POP_FAILURE_ELT
8159#undef DEBUG_PUSH
8160#undef DEBUG_POP
8161#undef PUSH_FAILURE_POINT
8162#undef POP_FAILURE_POINT
8163
8164#undef REG_UNSET_VALUE
8165#undef REG_UNSET
8166
8167#undef PATFETCH
8168#undef PATFETCH_RAW
8169#undef PATUNFETCH
8170#undef TRANSLATE
8171
8172#undef INIT_BUF_SIZE
8173#undef GET_BUFFER_SPACE
8174#undef BUF_PUSH
8175#undef BUF_PUSH_2
8176#undef BUF_PUSH_3
8177#undef STORE_JUMP
8178#undef STORE_JUMP2
8179#undef INSERT_JUMP
8180#undef INSERT_JUMP2
8181#undef EXTEND_BUFFER
8182#undef GET_UNSIGNED_NUMBER
8183#undef FREE_STACK_RETURN
8184
8185# undef POINTER_TO_OFFSET
8186# undef MATCHING_IN_FRST_STRING
8187# undef PREFETCH
8188# undef AT_STRINGS_BEG
8189# undef AT_STRINGS_END
8190# undef WORDCHAR_P
8191# undef FREE_VAR
8192# undef FREE_VARIABLES
8193# undef NO_HIGHEST_ACTIVE_REG
8194# undef NO_LOWEST_ACTIVE_REG
8195
8196# undef CHAR_T
8197# undef UCHAR_T
8198# undef COMPILED_BUFFER_VAR
8199# undef OFFSET_ADDRESS_SIZE
8200# undef CHAR_CLASS_SIZE
8201# undef PREFIX
8202# undef ARG_PREFIX
8203# undef PUT_CHAR
8204# undef BYTE
8205# undef WCHAR
8206
8207# define DEFINED_ONCE
8208