1// symtab.h -- the gold symbol table   -*- C++ -*-
2
3// Copyright (C) 2006-2020 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// Symbol_table
24//   The symbol table.
25
26#ifndef GOLD_SYMTAB_H
27#define GOLD_SYMTAB_H
28
29#include <string>
30#include <utility>
31#include <vector>
32
33#include "elfcpp.h"
34#include "parameters.h"
35#include "stringpool.h"
36#include "object.h"
37
38namespace gold
39{
40
41class Mapfile;
42class Object;
43class Relobj;
44template<int size, bool big_endian>
45class Sized_relobj_file;
46template<int size, bool big_endian>
47class Sized_pluginobj;
48class Dynobj;
49template<int size, bool big_endian>
50class Sized_dynobj;
51template<int size, bool big_endian>
52class Sized_incrobj;
53class Versions;
54class Version_script_info;
55class Input_objects;
56class Output_data;
57class Output_section;
58class Output_segment;
59class Output_file;
60class Output_symtab_xindex;
61class Garbage_collection;
62class Icf;
63
64// The base class of an entry in the symbol table.  The symbol table
65// can have a lot of entries, so we don't want this class too big.
66// Size dependent fields can be found in the template class
67// Sized_symbol.  Targets may support their own derived classes.
68
69class Symbol
70{
71 public:
72  // Because we want the class to be small, we don't use any virtual
73  // functions.  But because symbols can be defined in different
74  // places, we need to classify them.  This enum is the different
75  // sources of symbols we support.
76  enum Source
77  {
78    // Symbol defined in a relocatable or dynamic input file--this is
79    // the most common case.
80    FROM_OBJECT,
81    // Symbol defined in an Output_data, a special section created by
82    // the target.
83    IN_OUTPUT_DATA,
84    // Symbol defined in an Output_segment, with no associated
85    // section.
86    IN_OUTPUT_SEGMENT,
87    // Symbol value is constant.
88    IS_CONSTANT,
89    // Symbol is undefined.
90    IS_UNDEFINED
91  };
92
93  // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94  // the offset means.
95  enum Segment_offset_base
96  {
97    // From the start of the segment.
98    SEGMENT_START,
99    // From the end of the segment.
100    SEGMENT_END,
101    // From the filesz of the segment--i.e., after the loaded bytes
102    // but before the bytes which are allocated but zeroed.
103    SEGMENT_BSS
104  };
105
106  // Return the symbol name.
107  const char*
108  name() const
109  { return this->name_; }
110
111  // Return the (ANSI) demangled version of the name, if
112  // parameters.demangle() is true.  Otherwise, return the name.  This
113  // is intended to be used only for logging errors, so it's not
114  // super-efficient.
115  std::string
116  demangled_name() const;
117
118  // Return the symbol version.  This will return NULL for an
119  // unversioned symbol.
120  const char*
121  version() const
122  { return this->version_; }
123
124  void
125  clear_version()
126  { this->version_ = NULL; }
127
128  // Return whether this version is the default for this symbol name
129  // (eg, "foo@@V2" is a default version; "foo@V1" is not).  Only
130  // meaningful for versioned symbols.
131  bool
132  is_default() const
133  {
134    gold_assert(this->version_ != NULL);
135    return this->is_def_;
136  }
137
138  // Set that this version is the default for this symbol name.
139  void
140  set_is_default()
141  { this->is_def_ = true; }
142
143  // Set that this version is not the default for this symbol name.
144  void
145  set_is_not_default()
146  { this->is_def_ = false; }
147
148  // Return the symbol's name as name@version (or name@@version).
149  std::string
150  versioned_name() const;
151
152  // Return the symbol source.
153  Source
154  source() const
155  { return this->source_; }
156
157  // Return the object with which this symbol is associated.
158  Object*
159  object() const
160  {
161    gold_assert(this->source_ == FROM_OBJECT);
162    return this->u1_.object;
163  }
164
165  // Return the index of the section in the input relocatable or
166  // dynamic object file.
167  unsigned int
168  shndx(bool* is_ordinary) const
169  {
170    gold_assert(this->source_ == FROM_OBJECT);
171    *is_ordinary = this->is_ordinary_shndx_;
172    return this->u2_.shndx;
173  }
174
175  // Return the output data section with which this symbol is
176  // associated, if the symbol was specially defined with respect to
177  // an output data section.
178  Output_data*
179  output_data() const
180  {
181    gold_assert(this->source_ == IN_OUTPUT_DATA);
182    return this->u1_.output_data;
183  }
184
185  // If this symbol was defined with respect to an output data
186  // section, return whether the value is an offset from end.
187  bool
188  offset_is_from_end() const
189  {
190    gold_assert(this->source_ == IN_OUTPUT_DATA);
191    return this->u2_.offset_is_from_end;
192  }
193
194  // Return the output segment with which this symbol is associated,
195  // if the symbol was specially defined with respect to an output
196  // segment.
197  Output_segment*
198  output_segment() const
199  {
200    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201    return this->u1_.output_segment;
202  }
203
204  // If this symbol was defined with respect to an output segment,
205  // return the offset base.
206  Segment_offset_base
207  offset_base() const
208  {
209    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
210    return this->u2_.offset_base;
211  }
212
213  // Return the symbol binding.
214  elfcpp::STB
215  binding() const
216  { return this->binding_; }
217
218  // Return the symbol type.
219  elfcpp::STT
220  type() const
221  { return this->type_; }
222
223  // Set the symbol type.
224  void
225  set_type(elfcpp::STT type)
226  { this->type_ = type; }
227
228  // Return true for function symbol.
229  bool
230  is_func() const
231  {
232    return (this->type_ == elfcpp::STT_FUNC
233	    || this->type_ == elfcpp::STT_GNU_IFUNC);
234  }
235
236  // Return the symbol visibility.
237  elfcpp::STV
238  visibility() const
239  { return this->visibility_; }
240
241  // Set the visibility.
242  void
243  set_visibility(elfcpp::STV visibility)
244  { this->visibility_ = visibility; }
245
246  // Override symbol visibility.
247  void
248  override_visibility(elfcpp::STV);
249
250  // Set whether the symbol was originally a weak undef or a regular undef
251  // when resolved by a dynamic def or by a special symbol.
252  inline void
253  set_undef_binding(elfcpp::STB bind)
254  {
255    if (!this->undef_binding_set_ || this->undef_binding_weak_)
256      {
257        this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
258        this->undef_binding_set_ = true;
259      }
260  }
261
262  // Return TRUE if a weak undef was resolved by a dynamic def or
263  // by a special symbol.
264  inline bool
265  is_undef_binding_weak() const
266  { return this->undef_binding_weak_; }
267
268  // Return the non-visibility part of the st_other field.
269  unsigned char
270  nonvis() const
271  { return this->nonvis_; }
272
273  // Set the non-visibility part of the st_other field.
274  void
275  set_nonvis(unsigned int nonvis)
276  { this->nonvis_ = nonvis; }
277
278  // Return whether this symbol is a forwarder.  This will never be
279  // true of a symbol found in the hash table, but may be true of
280  // symbol pointers attached to object files.
281  bool
282  is_forwarder() const
283  { return this->is_forwarder_; }
284
285  // Mark this symbol as a forwarder.
286  void
287  set_forwarder()
288  { this->is_forwarder_ = true; }
289
290  // Return whether this symbol has an alias in the weak aliases table
291  // in Symbol_table.
292  bool
293  has_alias() const
294  { return this->has_alias_; }
295
296  // Mark this symbol as having an alias.
297  void
298  set_has_alias()
299  { this->has_alias_ = true; }
300
301  // Return whether this symbol needs an entry in the dynamic symbol
302  // table.
303  bool
304  needs_dynsym_entry() const
305  {
306    return (this->needs_dynsym_entry_
307            || (this->in_reg()
308		&& this->in_dyn()
309		&& this->is_externally_visible()));
310  }
311
312  // Mark this symbol as needing an entry in the dynamic symbol table.
313  void
314  set_needs_dynsym_entry()
315  { this->needs_dynsym_entry_ = true; }
316
317  // Return whether this symbol should be added to the dynamic symbol
318  // table.
319  bool
320  should_add_dynsym_entry(Symbol_table*) const;
321
322  // Return whether this symbol has been seen in a regular object.
323  bool
324  in_reg() const
325  { return this->in_reg_; }
326
327  // Mark this symbol as having been seen in a regular object.
328  void
329  set_in_reg()
330  { this->in_reg_ = true; }
331
332  // Forget this symbol was seen in a regular object.
333  void
334  clear_in_reg()
335  { this->in_reg_ = false; }
336
337  // Return whether this symbol has been seen in a dynamic object.
338  bool
339  in_dyn() const
340  { return this->in_dyn_; }
341
342  // Mark this symbol as having been seen in a dynamic object.
343  void
344  set_in_dyn()
345  { this->in_dyn_ = true; }
346
347  // Return whether this symbol is defined in a dynamic object.
348  bool
349  from_dyn() const
350  { return this->source_ == FROM_OBJECT && this->object()->is_dynamic(); }
351
352  // Return whether this symbol has been seen in a real ELF object.
353  // (IN_REG will return TRUE if the symbol has been seen in either
354  // a real ELF object or an object claimed by a plugin.)
355  bool
356  in_real_elf() const
357  { return this->in_real_elf_; }
358
359  // Mark this symbol as having been seen in a real ELF object.
360  void
361  set_in_real_elf()
362  { this->in_real_elf_ = true; }
363
364  // Return whether this symbol was defined in a section that was
365  // discarded from the link.  This is used to control some error
366  // reporting.
367  bool
368  is_defined_in_discarded_section() const
369  { return this->is_defined_in_discarded_section_; }
370
371  // Mark this symbol as having been defined in a discarded section.
372  void
373  set_is_defined_in_discarded_section()
374  { this->is_defined_in_discarded_section_ = true; }
375
376  // Return the index of this symbol in the output file symbol table.
377  // A value of -1U means that this symbol is not going into the
378  // output file.  This starts out as zero, and is set to a non-zero
379  // value by Symbol_table::finalize.  It is an error to ask for the
380  // symbol table index before it has been set.
381  unsigned int
382  symtab_index() const
383  {
384    gold_assert(this->symtab_index_ != 0);
385    return this->symtab_index_;
386  }
387
388  // Set the index of the symbol in the output file symbol table.
389  void
390  set_symtab_index(unsigned int index)
391  {
392    gold_assert(index != 0);
393    this->symtab_index_ = index;
394  }
395
396  // Return whether this symbol already has an index in the output
397  // file symbol table.
398  bool
399  has_symtab_index() const
400  { return this->symtab_index_ != 0; }
401
402  // Return the index of this symbol in the dynamic symbol table.  A
403  // value of -1U means that this symbol is not going into the dynamic
404  // symbol table.  This starts out as zero, and is set to a non-zero
405  // during Layout::finalize.  It is an error to ask for the dynamic
406  // symbol table index before it has been set.
407  unsigned int
408  dynsym_index() const
409  {
410    gold_assert(this->dynsym_index_ != 0);
411    return this->dynsym_index_;
412  }
413
414  // Set the index of the symbol in the dynamic symbol table.
415  void
416  set_dynsym_index(unsigned int index)
417  {
418    gold_assert(index != 0);
419    this->dynsym_index_ = index;
420  }
421
422  // Return whether this symbol already has an index in the dynamic
423  // symbol table.
424  bool
425  has_dynsym_index() const
426  { return this->dynsym_index_ != 0; }
427
428  // Return whether this symbol has an entry in the GOT section.
429  // For a TLS symbol, this GOT entry will hold its tp-relative offset.
430  bool
431  has_got_offset(unsigned int got_type) const
432  { return this->got_offsets_.get_offset(got_type) != -1U; }
433
434  // Return the offset into the GOT section of this symbol.
435  unsigned int
436  got_offset(unsigned int got_type) const
437  {
438    unsigned int got_offset = this->got_offsets_.get_offset(got_type);
439    gold_assert(got_offset != -1U);
440    return got_offset;
441  }
442
443  // Set the GOT offset of this symbol.
444  void
445  set_got_offset(unsigned int got_type, unsigned int got_offset)
446  { this->got_offsets_.set_offset(got_type, got_offset); }
447
448  // Return the GOT offset list.
449  const Got_offset_list*
450  got_offset_list() const
451  { return this->got_offsets_.get_list(); }
452
453  // Return whether this symbol has an entry in the PLT section.
454  bool
455  has_plt_offset() const
456  { return this->plt_offset_ != -1U; }
457
458  // Return the offset into the PLT section of this symbol.
459  unsigned int
460  plt_offset() const
461  {
462    gold_assert(this->has_plt_offset());
463    return this->plt_offset_;
464  }
465
466  // Set the PLT offset of this symbol.
467  void
468  set_plt_offset(unsigned int plt_offset)
469  {
470    gold_assert(plt_offset != -1U);
471    this->plt_offset_ = plt_offset;
472  }
473
474  // Return whether this dynamic symbol needs a special value in the
475  // dynamic symbol table.
476  bool
477  needs_dynsym_value() const
478  { return this->needs_dynsym_value_; }
479
480  // Set that this dynamic symbol needs a special value in the dynamic
481  // symbol table.
482  void
483  set_needs_dynsym_value()
484  {
485    gold_assert(this->object()->is_dynamic());
486    this->needs_dynsym_value_ = true;
487  }
488
489  // Return true if the final value of this symbol is known at link
490  // time.
491  bool
492  final_value_is_known() const;
493
494  // Return true if SHNDX represents a common symbol.  This depends on
495  // the target.
496  static bool
497  is_common_shndx(unsigned int shndx);
498
499  // Return whether this is a defined symbol (not undefined or
500  // common).
501  bool
502  is_defined() const
503  {
504    bool is_ordinary;
505    if (this->source_ != FROM_OBJECT)
506      return this->source_ != IS_UNDEFINED;
507    unsigned int shndx = this->shndx(&is_ordinary);
508    return (is_ordinary
509	    ? shndx != elfcpp::SHN_UNDEF
510	    : !Symbol::is_common_shndx(shndx));
511  }
512
513  // Return true if this symbol is from a dynamic object.
514  bool
515  is_from_dynobj() const
516  {
517    return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
518  }
519
520  // Return whether this is a placeholder symbol from a plugin object.
521  bool
522  is_placeholder() const
523  {
524    return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
525  }
526
527  // Return whether this is an undefined symbol.
528  bool
529  is_undefined() const
530  {
531    bool is_ordinary;
532    return ((this->source_ == FROM_OBJECT
533	     && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
534	     && is_ordinary)
535	    || this->source_ == IS_UNDEFINED);
536  }
537
538  // Return whether this is a weak undefined symbol.
539  bool
540  is_weak_undefined() const
541  {
542    return (this->is_undefined()
543	    && (this->binding() == elfcpp::STB_WEAK
544		|| this->is_undef_binding_weak()
545		|| parameters->options().weak_unresolved_symbols()));
546  }
547
548  // Return whether this is a strong undefined symbol.
549  bool
550  is_strong_undefined() const
551  {
552    return (this->is_undefined()
553	    && this->binding() != elfcpp::STB_WEAK
554	    && !this->is_undef_binding_weak()
555	    && !parameters->options().weak_unresolved_symbols());
556  }
557
558  // Return whether this is an absolute symbol.
559  bool
560  is_absolute() const
561  {
562    bool is_ordinary;
563    return ((this->source_ == FROM_OBJECT
564	     && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
565	     && !is_ordinary)
566	    || this->source_ == IS_CONSTANT);
567  }
568
569  // Return whether this is a common symbol.
570  bool
571  is_common() const
572  {
573    if (this->source_ != FROM_OBJECT)
574      return false;
575    bool is_ordinary;
576    unsigned int shndx = this->shndx(&is_ordinary);
577    return !is_ordinary && Symbol::is_common_shndx(shndx);
578  }
579
580  // Return whether this symbol can be seen outside this object.
581  bool
582  is_externally_visible() const
583  {
584    return ((this->visibility_ == elfcpp::STV_DEFAULT
585             || this->visibility_ == elfcpp::STV_PROTECTED)
586	    && !this->is_forced_local_);
587  }
588
589  // Return true if this symbol can be preempted by a definition in
590  // another link unit.
591  bool
592  is_preemptible() const
593  {
594    // It doesn't make sense to ask whether a symbol defined in
595    // another object is preemptible.
596    gold_assert(!this->is_from_dynobj());
597
598    // It doesn't make sense to ask whether an undefined symbol
599    // is preemptible.
600    gold_assert(!this->is_undefined());
601
602    // If a symbol does not have default visibility, it can not be
603    // seen outside this link unit and therefore is not preemptible.
604    if (this->visibility_ != elfcpp::STV_DEFAULT)
605      return false;
606
607    // If this symbol has been forced to be a local symbol by a
608    // version script, then it is not visible outside this link unit
609    // and is not preemptible.
610    if (this->is_forced_local_)
611      return false;
612
613    // If we are not producing a shared library, then nothing is
614    // preemptible.
615    if (!parameters->options().shared())
616      return false;
617
618    // If the symbol was named in a --dynamic-list script, it is preemptible.
619    if (parameters->options().in_dynamic_list(this->name()))
620      return true;
621
622    // If the user used -Bsymbolic, then nothing (else) is preemptible.
623    if (parameters->options().Bsymbolic())
624      return false;
625
626    // If the user used -Bsymbolic-functions, then functions are not
627    // preemptible.  We explicitly check for not being STT_OBJECT,
628    // rather than for being STT_FUNC, because that is what the GNU
629    // linker does.
630    if (this->type() != elfcpp::STT_OBJECT
631	&& parameters->options().Bsymbolic_functions())
632      return false;
633
634    // Otherwise the symbol is preemptible.
635    return true;
636  }
637
638  // Return true if this symbol is a function that needs a PLT entry.
639  bool
640  needs_plt_entry() const
641  {
642    // An undefined symbol from an executable does not need a PLT entry.
643    if (this->is_undefined() && !parameters->options().shared())
644      return false;
645
646    // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
647    // doing a static link.
648    if (this->type() == elfcpp::STT_GNU_IFUNC)
649      return true;
650
651    // We only need a PLT entry for a function.
652    if (!this->is_func())
653      return false;
654
655    // If we're doing a static link or a -pie link, we don't create
656    // PLT entries.
657    if (parameters->doing_static_link()
658	|| parameters->options().pie())
659      return false;
660
661    // We need a PLT entry if the function is defined in a dynamic
662    // object, or is undefined when building a shared object, or if it
663    // is subject to pre-emption.
664    return (this->is_from_dynobj()
665	    || this->is_undefined()
666	    || this->is_preemptible());
667  }
668
669  // When determining whether a reference to a symbol needs a dynamic
670  // relocation, we need to know several things about the reference.
671  // These flags may be or'ed together.  0 means that the symbol
672  // isn't referenced at all.
673  enum Reference_flags
674  {
675    // A reference to the symbol's absolute address.  This includes
676    // references that cause an absolute address to be stored in the GOT.
677    ABSOLUTE_REF = 1,
678    // A reference that calculates the offset of the symbol from some
679    // anchor point, such as the PC or GOT.
680    RELATIVE_REF = 2,
681    // A TLS-related reference.
682    TLS_REF = 4,
683    // A reference that can always be treated as a function call.
684    FUNCTION_CALL = 8,
685    // When set, says that dynamic relocations are needed even if a
686    // symbol has a plt entry.
687    FUNC_DESC_ABI = 16,
688  };
689
690  // Given a direct absolute or pc-relative static relocation against
691  // the global symbol, this function returns whether a dynamic relocation
692  // is needed.
693
694  bool
695  needs_dynamic_reloc(int flags) const
696  {
697    // No dynamic relocations in a static link!
698    if (parameters->doing_static_link())
699      return false;
700
701    // A reference to an undefined symbol from an executable should be
702    // statically resolved to 0, and does not need a dynamic relocation.
703    // This matches gnu ld behavior.
704    if (this->is_undefined() && !parameters->options().shared())
705      return false;
706
707    // A reference to an absolute symbol does not need a dynamic relocation.
708    if (this->is_absolute())
709      return false;
710
711    // An absolute reference within a position-independent output file
712    // will need a dynamic relocation.
713    if ((flags & ABSOLUTE_REF)
714        && parameters->options().output_is_position_independent())
715      return true;
716
717    // A function call that can branch to a local PLT entry does not need
718    // a dynamic relocation.
719    if ((flags & FUNCTION_CALL) && this->has_plt_offset())
720      return false;
721
722    // A reference to any PLT entry in a non-position-independent executable
723    // does not need a dynamic relocation.
724    if (!(flags & FUNC_DESC_ABI)
725	&& !parameters->options().output_is_position_independent()
726        && this->has_plt_offset())
727      return false;
728
729    // A reference to a symbol defined in a dynamic object or to a
730    // symbol that is preemptible will need a dynamic relocation.
731    if (this->is_from_dynobj()
732        || this->is_undefined()
733        || this->is_preemptible())
734      return true;
735
736    // For all other cases, return FALSE.
737    return false;
738  }
739
740  // Whether we should use the PLT offset associated with a symbol for
741  // a relocation.  FLAGS is a set of Reference_flags.
742
743  bool
744  use_plt_offset(int flags) const
745  {
746    // If the symbol doesn't have a PLT offset, then naturally we
747    // don't want to use it.
748    if (!this->has_plt_offset())
749      return false;
750
751    // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
752    if (this->type() == elfcpp::STT_GNU_IFUNC)
753      return true;
754
755    // If we are going to generate a dynamic relocation, then we will
756    // wind up using that, so no need to use the PLT entry.
757    if (this->needs_dynamic_reloc(flags))
758      return false;
759
760    // If the symbol is from a dynamic object, we need to use the PLT
761    // entry.
762    if (this->is_from_dynobj())
763      return true;
764
765    // If we are generating a shared object, and this symbol is
766    // undefined or preemptible, we need to use the PLT entry.
767    if (parameters->options().shared()
768	&& (this->is_undefined() || this->is_preemptible()))
769      return true;
770
771    // If this is a call to a weak undefined symbol, we need to use
772    // the PLT entry; the symbol may be defined by a library loaded
773    // at runtime.
774    if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
775      return true;
776
777    // Otherwise we can use the regular definition.
778    return false;
779  }
780
781  // Given a direct absolute static relocation against
782  // the global symbol, where a dynamic relocation is needed, this
783  // function returns whether a relative dynamic relocation can be used.
784  // The caller must determine separately whether the static relocation
785  // is compatible with a relative relocation.
786
787  bool
788  can_use_relative_reloc(bool is_function_call) const
789  {
790    // A function call that can branch to a local PLT entry can
791    // use a RELATIVE relocation.
792    if (is_function_call && this->has_plt_offset())
793      return true;
794
795    // A reference to a symbol defined in a dynamic object or to a
796    // symbol that is preemptible can not use a RELATIVE relocation.
797    if (this->is_from_dynobj()
798        || this->is_undefined()
799        || this->is_preemptible())
800      return false;
801
802    // For all other cases, return TRUE.
803    return true;
804  }
805
806  // Return the output section where this symbol is defined.  Return
807  // NULL if the symbol has an absolute value.
808  Output_section*
809  output_section() const;
810
811  // Set the symbol's output section.  This is used for symbols
812  // defined in scripts.  This should only be called after the symbol
813  // table has been finalized.
814  void
815  set_output_section(Output_section*);
816
817  // Set the symbol's output segment.  This is used for pre-defined
818  // symbols whose segments aren't known until after layout is done
819  // (e.g., __ehdr_start).
820  void
821  set_output_segment(Output_segment*, Segment_offset_base);
822
823  // Set the symbol to undefined.  This is used for pre-defined
824  // symbols whose segments aren't known until after layout is done
825  // (e.g., __ehdr_start).
826  void
827  set_undefined();
828
829  // Return whether there should be a warning for references to this
830  // symbol.
831  bool
832  has_warning() const
833  { return this->has_warning_; }
834
835  // Mark this symbol as having a warning.
836  void
837  set_has_warning()
838  { this->has_warning_ = true; }
839
840  // Return whether this symbol is defined by a COPY reloc from a
841  // dynamic object.
842  bool
843  is_copied_from_dynobj() const
844  { return this->is_copied_from_dynobj_; }
845
846  // Mark this symbol as defined by a COPY reloc.
847  void
848  set_is_copied_from_dynobj()
849  { this->is_copied_from_dynobj_ = true; }
850
851  // Return whether this symbol is forced to visibility STB_LOCAL
852  // by a "local:" entry in a version script.
853  bool
854  is_forced_local() const
855  { return this->is_forced_local_; }
856
857  // Mark this symbol as forced to STB_LOCAL visibility.
858  void
859  set_is_forced_local()
860  { this->is_forced_local_ = true; }
861
862  // Return true if this may need a COPY relocation.
863  // References from an executable object to non-function symbols
864  // defined in a dynamic object may need a COPY relocation.
865  bool
866  may_need_copy_reloc() const
867  {
868    return (parameters->options().copyreloc()
869	    && this->is_from_dynobj()
870	    && !this->is_func());
871  }
872
873  // Return true if this symbol was predefined by the linker.
874  bool
875  is_predefined() const
876  { return this->is_predefined_; }
877
878  // Return true if this is a C++ vtable symbol.
879  bool
880  is_cxx_vtable() const
881  { return is_prefix_of("_ZTV", this->name_); }
882
883  // Return true if this symbol is protected in a shared object.
884  // This is not the same as checking if visibility() == elfcpp::STV_PROTECTED,
885  // because the visibility_ field reflects the symbol's visibility from
886  // outside the shared object.
887  bool
888  is_protected() const
889  { return this->is_protected_; }
890
891  // Mark this symbol as protected in a shared object.
892  void
893  set_is_protected()
894  { this->is_protected_ = true; }
895
896  // Return state of PowerPC64 ELFv2 specific flag.
897  bool
898  non_zero_localentry() const
899  { return this->non_zero_localentry_; }
900
901  // Set PowerPC64 ELFv2 specific flag.
902  void
903  set_non_zero_localentry()
904  { this->non_zero_localentry_ = true; }
905
906  // Completely override existing symbol.  Everything bar name_,
907  // version_, and is_forced_local_ flag are copied.  version_ is
908  // cleared if from->version_ is clear.  Returns true if this symbol
909  // should be forced local.
910  bool
911  clone(const Symbol* from);
912
913 protected:
914  // Instances of this class should always be created at a specific
915  // size.
916  Symbol()
917  { memset(static_cast<void*>(this), 0, sizeof *this); }
918
919  // Initialize the general fields.
920  void
921  init_fields(const char* name, const char* version,
922	      elfcpp::STT type, elfcpp::STB binding,
923	      elfcpp::STV visibility, unsigned char nonvis);
924
925  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
926  // section index, IS_ORDINARY is whether it is a normal section
927  // index rather than a special code.
928  template<int size, bool big_endian>
929  void
930  init_base_object(const char* name, const char* version, Object* object,
931		   const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
932		   bool is_ordinary);
933
934  // Initialize fields for an Output_data.
935  void
936  init_base_output_data(const char* name, const char* version, Output_data*,
937			elfcpp::STT, elfcpp::STB, elfcpp::STV,
938			unsigned char nonvis, bool offset_is_from_end,
939			bool is_predefined);
940
941  // Initialize fields for an Output_segment.
942  void
943  init_base_output_segment(const char* name, const char* version,
944			   Output_segment* os, elfcpp::STT type,
945			   elfcpp::STB binding, elfcpp::STV visibility,
946			   unsigned char nonvis,
947			   Segment_offset_base offset_base,
948			   bool is_predefined);
949
950  // Initialize fields for a constant.
951  void
952  init_base_constant(const char* name, const char* version, elfcpp::STT type,
953		     elfcpp::STB binding, elfcpp::STV visibility,
954		     unsigned char nonvis, bool is_predefined);
955
956  // Initialize fields for an undefined symbol.
957  void
958  init_base_undefined(const char* name, const char* version, elfcpp::STT type,
959		      elfcpp::STB binding, elfcpp::STV visibility,
960		      unsigned char nonvis);
961
962  // Override existing symbol.
963  template<int size, bool big_endian>
964  void
965  override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
966		bool is_ordinary, Object* object, const char* version);
967
968  // Override existing symbol with a special symbol.
969  void
970  override_base_with_special(const Symbol* from);
971
972  // Override symbol version.
973  void
974  override_version(const char* version);
975
976  // Allocate a common symbol by giving it a location in the output
977  // file.
978  void
979  allocate_base_common(Output_data*);
980
981 private:
982  Symbol(const Symbol&);
983  Symbol& operator=(const Symbol&);
984
985  // Symbol name (expected to point into a Stringpool).
986  const char* name_;
987  // Symbol version (expected to point into a Stringpool).  This may
988  // be NULL.
989  const char* version_;
990
991  union
992  {
993    // This is used if SOURCE_ == FROM_OBJECT.
994    // Object in which symbol is defined, or in which it was first
995    // seen.
996    Object* object;
997
998    // This is used if SOURCE_ == IN_OUTPUT_DATA.
999    // Output_data in which symbol is defined.  Before
1000    // Layout::finalize the symbol's value is an offset within the
1001    // Output_data.
1002    Output_data* output_data;
1003
1004    // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1005    // Output_segment in which the symbol is defined.  Before
1006    // Layout::finalize the symbol's value is an offset.
1007    Output_segment* output_segment;
1008  } u1_;
1009
1010  union
1011  {
1012    // This is used if SOURCE_ == FROM_OBJECT.
1013    // Section number in object in which symbol is defined.
1014    unsigned int shndx;
1015
1016    // This is used if SOURCE_ == IN_OUTPUT_DATA.
1017    // True if the offset is from the end, false if the offset is
1018    // from the beginning.
1019    bool offset_is_from_end;
1020
1021    // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1022    // The base to use for the offset before Layout::finalize.
1023    Segment_offset_base offset_base;
1024  } u2_;
1025
1026  // The index of this symbol in the output file.  If the symbol is
1027  // not going into the output file, this value is -1U.  This field
1028  // starts as always holding zero.  It is set to a non-zero value by
1029  // Symbol_table::finalize.
1030  unsigned int symtab_index_;
1031
1032  // The index of this symbol in the dynamic symbol table.  If the
1033  // symbol is not going into the dynamic symbol table, this value is
1034  // -1U.  This field starts as always holding zero.  It is set to a
1035  // non-zero value during Layout::finalize.
1036  unsigned int dynsym_index_;
1037
1038  // If this symbol has an entry in the PLT section, then this is the
1039  // offset from the start of the PLT section.  This is -1U if there
1040  // is no PLT entry.
1041  unsigned int plt_offset_;
1042
1043  // The GOT section entries for this symbol.  A symbol may have more
1044  // than one GOT offset (e.g., when mixing modules compiled with two
1045  // different TLS models), but will usually have at most one.
1046  Got_offset_list got_offsets_;
1047
1048  // Symbol type (bits 0 to 3).
1049  elfcpp::STT type_ : 4;
1050  // Symbol binding (bits 4 to 7).
1051  elfcpp::STB binding_ : 4;
1052  // Symbol visibility (bits 8 to 9).
1053  elfcpp::STV visibility_ : 2;
1054  // Rest of symbol st_other field (bits 10 to 15).
1055  unsigned int nonvis_ : 6;
1056  // The type of symbol (bits 16 to 18).
1057  Source source_ : 3;
1058  // True if this is the default version of the symbol (bit 19).
1059  bool is_def_ : 1;
1060  // True if this symbol really forwards to another symbol.  This is
1061  // used when we discover after the fact that two different entries
1062  // in the hash table really refer to the same symbol.  This will
1063  // never be set for a symbol found in the hash table, but may be set
1064  // for a symbol found in the list of symbols attached to an Object.
1065  // It forwards to the symbol found in the forwarders_ map of
1066  // Symbol_table (bit 20).
1067  bool is_forwarder_ : 1;
1068  // True if the symbol has an alias in the weak_aliases table in
1069  // Symbol_table (bit 21).
1070  bool has_alias_ : 1;
1071  // True if this symbol needs to be in the dynamic symbol table (bit
1072  // 22).
1073  bool needs_dynsym_entry_ : 1;
1074  // True if we've seen this symbol in a regular object (bit 23).
1075  bool in_reg_ : 1;
1076  // True if we've seen this symbol in a dynamic object (bit 24).
1077  bool in_dyn_ : 1;
1078  // True if this is a dynamic symbol which needs a special value in
1079  // the dynamic symbol table (bit 25).
1080  bool needs_dynsym_value_ : 1;
1081  // True if there is a warning for this symbol (bit 26).
1082  bool has_warning_ : 1;
1083  // True if we are using a COPY reloc for this symbol, so that the
1084  // real definition lives in a dynamic object (bit 27).
1085  bool is_copied_from_dynobj_ : 1;
1086  // True if this symbol was forced to local visibility by a version
1087  // script (bit 28).
1088  bool is_forced_local_ : 1;
1089  // True if the field u2_.shndx is an ordinary section
1090  // index, not one of the special codes from SHN_LORESERVE to
1091  // SHN_HIRESERVE (bit 29).
1092  bool is_ordinary_shndx_ : 1;
1093  // True if we've seen this symbol in a "real" ELF object (bit 30).
1094  // If the symbol has been seen in a relocatable, non-IR, object file,
1095  // it's known to be referenced from outside the IR.  A reference from
1096  // a dynamic object doesn't count as a "real" ELF, and we'll simply
1097  // mark the symbol as "visible" from outside the IR.  The compiler
1098  // can use this distinction to guide its handling of COMDAT symbols.
1099  bool in_real_elf_ : 1;
1100  // True if this symbol is defined in a section which was discarded
1101  // (bit 31).
1102  bool is_defined_in_discarded_section_ : 1;
1103  // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1104  bool undef_binding_set_ : 1;
1105  // True if this symbol was a weak undef resolved by a dynamic def
1106  // or by a special symbol (bit 33).
1107  bool undef_binding_weak_ : 1;
1108  // True if this symbol is a predefined linker symbol (bit 34).
1109  bool is_predefined_ : 1;
1110  // True if this symbol has protected visibility in a shared object (bit 35).
1111  // The visibility_ field will be STV_DEFAULT in this case because we
1112  // must treat it as such from outside the shared object.
1113  bool is_protected_  : 1;
1114  // Used by PowerPC64 ELFv2 to track st_other localentry (bit 36).
1115  bool non_zero_localentry_ : 1;
1116};
1117
1118// The parts of a symbol which are size specific.  Using a template
1119// derived class like this helps us use less space on a 32-bit system.
1120
1121template<int size>
1122class Sized_symbol : public Symbol
1123{
1124 public:
1125  typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1126  typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1127
1128  Sized_symbol()
1129  { }
1130
1131  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
1132  // section index, IS_ORDINARY is whether it is a normal section
1133  // index rather than a special code.
1134  template<bool big_endian>
1135  void
1136  init_object(const char* name, const char* version, Object* object,
1137	      const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1138	      bool is_ordinary);
1139
1140  // Initialize fields for an Output_data.
1141  void
1142  init_output_data(const char* name, const char* version, Output_data*,
1143		   Value_type value, Size_type symsize, elfcpp::STT,
1144		   elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1145		   bool offset_is_from_end, bool is_predefined);
1146
1147  // Initialize fields for an Output_segment.
1148  void
1149  init_output_segment(const char* name, const char* version, Output_segment*,
1150		      Value_type value, Size_type symsize, elfcpp::STT,
1151		      elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1152		      Segment_offset_base offset_base, bool is_predefined);
1153
1154  // Initialize fields for a constant.
1155  void
1156  init_constant(const char* name, const char* version, Value_type value,
1157		Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1158		unsigned char nonvis, bool is_predefined);
1159
1160  // Initialize fields for an undefined symbol.
1161  void
1162  init_undefined(const char* name, const char* version, Value_type value,
1163		 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1164
1165  // Override existing symbol.
1166  template<bool big_endian>
1167  void
1168  override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1169	   bool is_ordinary, Object* object, const char* version);
1170
1171  // Override existing symbol with a special symbol.
1172  void
1173  override_with_special(const Sized_symbol<size>*);
1174
1175  // Return the symbol's value.
1176  Value_type
1177  value() const
1178  { return this->value_; }
1179
1180  // Return the symbol's size (we can't call this 'size' because that
1181  // is a template parameter).
1182  Size_type
1183  symsize() const
1184  { return this->symsize_; }
1185
1186  // Set the symbol size.  This is used when resolving common symbols.
1187  void
1188  set_symsize(Size_type symsize)
1189  { this->symsize_ = symsize; }
1190
1191  // Set the symbol value.  This is called when we store the final
1192  // values of the symbols into the symbol table.
1193  void
1194  set_value(Value_type value)
1195  { this->value_ = value; }
1196
1197  // Allocate a common symbol by giving it a location in the output
1198  // file.
1199  void
1200  allocate_common(Output_data*, Value_type value);
1201
1202  // Completely override existing symbol.  Everything bar name_,
1203  // version_, and is_forced_local_ flag are copied.  version_ is
1204  // cleared if from->version_ is clear.  Returns true if this symbol
1205  // should be forced local.
1206  bool
1207  clone(const Sized_symbol<size>* from);
1208
1209 private:
1210  Sized_symbol(const Sized_symbol&);
1211  Sized_symbol& operator=(const Sized_symbol&);
1212
1213  // Symbol value.  Before Layout::finalize this is the offset in the
1214  // input section.  This is set to the final value during
1215  // Layout::finalize.
1216  Value_type value_;
1217  // Symbol size.
1218  Size_type symsize_;
1219};
1220
1221// A struct describing a symbol defined by the linker, where the value
1222// of the symbol is defined based on an output section.  This is used
1223// for symbols defined by the linker, like "_init_array_start".
1224
1225struct Define_symbol_in_section
1226{
1227  // The symbol name.
1228  const char* name;
1229  // The name of the output section with which this symbol should be
1230  // associated.  If there is no output section with that name, the
1231  // symbol will be defined as zero.
1232  const char* output_section;
1233  // The offset of the symbol within the output section.  This is an
1234  // offset from the start of the output section, unless start_at_end
1235  // is true, in which case this is an offset from the end of the
1236  // output section.
1237  uint64_t value;
1238  // The size of the symbol.
1239  uint64_t size;
1240  // The symbol type.
1241  elfcpp::STT type;
1242  // The symbol binding.
1243  elfcpp::STB binding;
1244  // The symbol visibility.
1245  elfcpp::STV visibility;
1246  // The rest of the st_other field.
1247  unsigned char nonvis;
1248  // If true, the value field is an offset from the end of the output
1249  // section.
1250  bool offset_is_from_end;
1251  // If true, this symbol is defined only if we see a reference to it.
1252  bool only_if_ref;
1253};
1254
1255// A struct describing a symbol defined by the linker, where the value
1256// of the symbol is defined based on a segment.  This is used for
1257// symbols defined by the linker, like "_end".  We describe the
1258// segment with which the symbol should be associated by its
1259// characteristics.  If no segment meets these characteristics, the
1260// symbol will be defined as zero.  If there is more than one segment
1261// which meets these characteristics, we will use the first one.
1262
1263struct Define_symbol_in_segment
1264{
1265  // The symbol name.
1266  const char* name;
1267  // The segment type where the symbol should be defined, typically
1268  // PT_LOAD.
1269  elfcpp::PT segment_type;
1270  // Bitmask of segment flags which must be set.
1271  elfcpp::PF segment_flags_set;
1272  // Bitmask of segment flags which must be clear.
1273  elfcpp::PF segment_flags_clear;
1274  // The offset of the symbol within the segment.  The offset is
1275  // calculated from the position set by offset_base.
1276  uint64_t value;
1277  // The size of the symbol.
1278  uint64_t size;
1279  // The symbol type.
1280  elfcpp::STT type;
1281  // The symbol binding.
1282  elfcpp::STB binding;
1283  // The symbol visibility.
1284  elfcpp::STV visibility;
1285  // The rest of the st_other field.
1286  unsigned char nonvis;
1287  // The base from which we compute the offset.
1288  Symbol::Segment_offset_base offset_base;
1289  // If true, this symbol is defined only if we see a reference to it.
1290  bool only_if_ref;
1291};
1292
1293// Specify an object/section/offset location.  Used by ODR code.
1294
1295struct Symbol_location
1296{
1297  // Object where the symbol is defined.
1298  Object* object;
1299  // Section-in-object where the symbol is defined.
1300  unsigned int shndx;
1301  // For relocatable objects, offset-in-section where the symbol is defined.
1302  // For dynamic objects, address where the symbol is defined.
1303  off_t offset;
1304  bool operator==(const Symbol_location& that) const
1305  {
1306    return (this->object == that.object
1307	    && this->shndx == that.shndx
1308	    && this->offset == that.offset);
1309  }
1310};
1311
1312// A map from symbol name (as a pointer into the namepool) to all
1313// the locations the symbols is (weakly) defined (and certain other
1314// conditions are met).  This map will be used later to detect
1315// possible One Definition Rule (ODR) violations.
1316struct Symbol_location_hash
1317{
1318  size_t operator()(const Symbol_location& loc) const
1319  { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1320};
1321
1322// This class manages warnings.  Warnings are a GNU extension.  When
1323// we see a section named .gnu.warning.SYM in an object file, and if
1324// we wind using the definition of SYM from that object file, then we
1325// will issue a warning for any relocation against SYM from a
1326// different object file.  The text of the warning is the contents of
1327// the section.  This is not precisely the definition used by the old
1328// GNU linker; the old GNU linker treated an occurrence of
1329// .gnu.warning.SYM as defining a warning symbol.  A warning symbol
1330// would trigger a warning on any reference.  However, it was
1331// inconsistent in that a warning in a dynamic object only triggered
1332// if there was no definition in a regular object.  This linker is
1333// different in that we only issue a warning if we use the symbol
1334// definition from the same object file as the warning section.
1335
1336class Warnings
1337{
1338 public:
1339  Warnings()
1340    : warnings_()
1341  { }
1342
1343  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1344  // of the warning.
1345  void
1346  add_warning(Symbol_table* symtab, const char* name, Object* obj,
1347	      const std::string& warning);
1348
1349  // For each symbol for which we should give a warning, make a note
1350  // on the symbol.
1351  void
1352  note_warnings(Symbol_table* symtab);
1353
1354  // Issue a warning for a reference to SYM at RELINFO's location.
1355  template<int size, bool big_endian>
1356  void
1357  issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1358		size_t relnum, off_t reloffset) const;
1359
1360 private:
1361  Warnings(const Warnings&);
1362  Warnings& operator=(const Warnings&);
1363
1364  // What we need to know to get the warning text.
1365  struct Warning_location
1366  {
1367    // The object the warning is in.
1368    Object* object;
1369    // The warning text.
1370    std::string text;
1371
1372    Warning_location()
1373      : object(NULL), text()
1374    { }
1375
1376    void
1377    set(Object* o, const std::string& t)
1378    {
1379      this->object = o;
1380      this->text = t;
1381    }
1382  };
1383
1384  // A mapping from warning symbol names (canonicalized in
1385  // Symbol_table's namepool_ field) to warning information.
1386  typedef Unordered_map<const char*, Warning_location> Warning_table;
1387
1388  Warning_table warnings_;
1389};
1390
1391// The main linker symbol table.
1392
1393class Symbol_table
1394{
1395 public:
1396  // The different places where a symbol definition can come from.
1397  enum Defined
1398  {
1399    // Defined in an object file--the normal case.
1400    OBJECT,
1401    // Defined for a COPY reloc.
1402    COPY,
1403    // Defined on the command line using --defsym.
1404    DEFSYM,
1405    // Defined (so to speak) on the command line using -u.
1406    UNDEFINED,
1407    // Defined in a linker script.
1408    SCRIPT,
1409    // Predefined by the linker.
1410    PREDEFINED,
1411    // Defined by the linker during an incremental base link, but not
1412    // a predefined symbol (e.g., common, defined in script).
1413    INCREMENTAL_BASE,
1414  };
1415
1416  // The order in which we sort common symbols.
1417  enum Sort_commons_order
1418  {
1419    SORT_COMMONS_BY_SIZE_DESCENDING,
1420    SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1421    SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1422  };
1423
1424  // COUNT is an estimate of how many symbols will be inserted in the
1425  // symbol table.  It's ok to put 0 if you don't know; a correct
1426  // guess will just save some CPU by reducing hashtable resizes.
1427  Symbol_table(unsigned int count, const Version_script_info& version_script);
1428
1429  ~Symbol_table();
1430
1431  void
1432  set_icf(Icf* icf)
1433  { this->icf_ = icf;}
1434
1435  Icf*
1436  icf() const
1437  { return this->icf_; }
1438
1439  // Returns true if ICF determined that this is a duplicate section.
1440  bool
1441  is_section_folded(Relobj* obj, unsigned int shndx) const;
1442
1443  void
1444  set_gc(Garbage_collection* gc)
1445  { this->gc_ = gc; }
1446
1447  Garbage_collection*
1448  gc() const
1449  { return this->gc_; }
1450
1451  // During garbage collection, this keeps undefined symbols.
1452  void
1453  gc_mark_undef_symbols(Layout*);
1454
1455  // This tells garbage collection that this symbol is referenced.
1456  void
1457  gc_mark_symbol(Symbol* sym);
1458
1459  // During garbage collection, this keeps sections that correspond to
1460  // symbols seen in dynamic objects.
1461  inline void
1462  gc_mark_dyn_syms(Symbol* sym);
1463
1464  // Add COUNT external symbols from the relocatable object RELOBJ to
1465  // the symbol table.  SYMS is the symbols, SYMNDX_OFFSET is the
1466  // offset in the symbol table of the first symbol, SYM_NAMES is
1467  // their names, SYM_NAME_SIZE is the size of SYM_NAMES.  This sets
1468  // SYMPOINTERS to point to the symbols in the symbol table.  It sets
1469  // *DEFINED to the number of defined symbols.
1470  template<int size, bool big_endian>
1471  void
1472  add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1473		  const unsigned char* syms, size_t count,
1474		  size_t symndx_offset, const char* sym_names,
1475		  size_t sym_name_size,
1476		  typename Sized_relobj_file<size, big_endian>::Symbols*,
1477		  size_t* defined);
1478
1479  // Add one external symbol from the plugin object OBJ to the symbol table.
1480  // Returns a pointer to the resolved symbol in the symbol table.
1481  template<int size, bool big_endian>
1482  Symbol*
1483  add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1484                     const char* name, const char* ver,
1485                     elfcpp::Sym<size, big_endian>* sym);
1486
1487  // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1488  // symbol table.  SYMS is the symbols.  SYM_NAMES is their names.
1489  // SYM_NAME_SIZE is the size of SYM_NAMES.  The other parameters are
1490  // symbol version data.
1491  template<int size, bool big_endian>
1492  void
1493  add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1494		  const unsigned char* syms, size_t count,
1495		  const char* sym_names, size_t sym_name_size,
1496		  const unsigned char* versym, size_t versym_size,
1497		  const std::vector<const char*>*,
1498		  typename Sized_relobj_file<size, big_endian>::Symbols*,
1499		  size_t* defined);
1500
1501  // Add one external symbol from the incremental object OBJ to the symbol
1502  // table.  Returns a pointer to the resolved symbol in the symbol table.
1503  template<int size, bool big_endian>
1504  Sized_symbol<size>*
1505  add_from_incrobj(Object* obj, const char* name,
1506		   const char* ver, elfcpp::Sym<size, big_endian>* sym);
1507
1508  // Define a special symbol based on an Output_data.  It is a
1509  // multiple definition error if this symbol is already defined.
1510  Symbol*
1511  define_in_output_data(const char* name, const char* version, Defined,
1512			Output_data*, uint64_t value, uint64_t symsize,
1513			elfcpp::STT type, elfcpp::STB binding,
1514			elfcpp::STV visibility, unsigned char nonvis,
1515			bool offset_is_from_end, bool only_if_ref);
1516
1517  // Define a special symbol based on an Output_segment.  It is a
1518  // multiple definition error if this symbol is already defined.
1519  Symbol*
1520  define_in_output_segment(const char* name, const char* version, Defined,
1521			   Output_segment*, uint64_t value, uint64_t symsize,
1522			   elfcpp::STT type, elfcpp::STB binding,
1523			   elfcpp::STV visibility, unsigned char nonvis,
1524			   Symbol::Segment_offset_base, bool only_if_ref);
1525
1526  // Define a special symbol with a constant value.  It is a multiple
1527  // definition error if this symbol is already defined.
1528  Symbol*
1529  define_as_constant(const char* name, const char* version, Defined,
1530		     uint64_t value, uint64_t symsize, elfcpp::STT type,
1531		     elfcpp::STB binding, elfcpp::STV visibility,
1532		     unsigned char nonvis, bool only_if_ref,
1533                     bool force_override);
1534
1535  // Define a set of symbols in output sections.  If ONLY_IF_REF is
1536  // true, only define them if they are referenced.
1537  void
1538  define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1539		 bool only_if_ref);
1540
1541  // Define a set of symbols in output segments.  If ONLY_IF_REF is
1542  // true, only defined them if they are referenced.
1543  void
1544  define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1545		 bool only_if_ref);
1546
1547  // Add a target-specific global symbol.
1548  // (Used by SPARC backend to add STT_SPARC_REGISTER symbols.)
1549  void
1550  add_target_global_symbol(Symbol* sym)
1551  { this->target_symbols_.push_back(sym); }
1552
1553  // Define SYM using a COPY reloc.  POSD is the Output_data where the
1554  // symbol should be defined--typically a .dyn.bss section.  VALUE is
1555  // the offset within POSD.
1556  template<int size>
1557  void
1558  define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1559			 typename elfcpp::Elf_types<size>::Elf_Addr);
1560
1561  // Look up a symbol.
1562  Symbol*
1563  lookup(const char*, const char* version = NULL) const;
1564
1565  // Return the real symbol associated with the forwarder symbol FROM.
1566  Symbol*
1567  resolve_forwards(const Symbol* from) const;
1568
1569  // Return the sized version of a symbol in this table.
1570  template<int size>
1571  Sized_symbol<size>*
1572  get_sized_symbol(Symbol*) const;
1573
1574  template<int size>
1575  const Sized_symbol<size>*
1576  get_sized_symbol(const Symbol*) const;
1577
1578  // Return the count of undefined symbols seen.
1579  size_t
1580  saw_undefined() const
1581  { return this->saw_undefined_; }
1582
1583  void
1584  set_has_gnu_output()
1585  { this->has_gnu_output_ = true; }
1586
1587  // Allocate the common symbols
1588  void
1589  allocate_commons(Layout*, Mapfile*);
1590
1591  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1592  // of the warning.
1593  void
1594  add_warning(const char* name, Object* obj, const std::string& warning)
1595  { this->warnings_.add_warning(this, name, obj, warning); }
1596
1597  // Canonicalize a symbol name for use in the hash table.
1598  const char*
1599  canonicalize_name(const char* name)
1600  { return this->namepool_.add(name, true, NULL); }
1601
1602  // Possibly issue a warning for a reference to SYM at LOCATION which
1603  // is in OBJ.
1604  template<int size, bool big_endian>
1605  void
1606  issue_warning(const Symbol* sym,
1607		const Relocate_info<size, big_endian>* relinfo,
1608		size_t relnum, off_t reloffset) const
1609  { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1610
1611  // Check candidate_odr_violations_ to find symbols with the same name
1612  // but apparently different definitions (different source-file/line-no).
1613  void
1614  detect_odr_violations(const Task*, const char* output_file_name) const;
1615
1616  // Add any undefined symbols named on the command line to the symbol
1617  // table.
1618  void
1619  add_undefined_symbols_from_command_line(Layout*);
1620
1621  // SYM is defined using a COPY reloc.  Return the dynamic object
1622  // where the original definition was found.
1623  Dynobj*
1624  get_copy_source(const Symbol* sym) const;
1625
1626  // Set the dynamic symbol indexes.  INDEX is the index of the first
1627  // global dynamic symbol.  Return the count of forced-local symbols in
1628  // *PFORCED_LOCAL_COUNT.  Pointers to the symbols are stored into
1629  // the vector.  The names are stored into the Stringpool.  This
1630  // returns an updated dynamic symbol index.
1631  unsigned int
1632  set_dynsym_indexes(unsigned int index, unsigned int* pforced_local_count,
1633		     std::vector<Symbol*>*, Stringpool*, Versions*);
1634
1635  // Finalize the symbol table after we have set the final addresses
1636  // of all the input sections.  This sets the final symbol indexes,
1637  // values and adds the names to *POOL.  *PLOCAL_SYMCOUNT is the
1638  // index of the first global symbol.  OFF is the file offset of the
1639  // global symbol table, DYNOFF is the offset of the globals in the
1640  // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1641  // global dynamic symbol, and DYNCOUNT is the number of global
1642  // dynamic symbols.  This records the parameters, and returns the
1643  // new file offset.  It updates *PLOCAL_SYMCOUNT if it created any
1644  // local symbols.
1645  off_t
1646  finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1647	   Stringpool* pool, unsigned int* plocal_symcount);
1648
1649  // Set the final file offset of the symbol table.
1650  void
1651  set_file_offset(off_t off)
1652  { this->offset_ = off; }
1653
1654  // Status code of Symbol_table::compute_final_value.
1655  enum Compute_final_value_status
1656  {
1657    // No error.
1658    CFVS_OK,
1659    // Unsupported symbol section.
1660    CFVS_UNSUPPORTED_SYMBOL_SECTION,
1661    // No output section.
1662    CFVS_NO_OUTPUT_SECTION
1663  };
1664
1665  // Compute the final value of SYM and store status in location PSTATUS.
1666  // During relaxation, this may be called multiple times for a symbol to
1667  // compute its would-be final value in each relaxation pass.
1668
1669  template<int size>
1670  typename Sized_symbol<size>::Value_type
1671  compute_final_value(const Sized_symbol<size>* sym,
1672		      Compute_final_value_status* pstatus) const;
1673
1674  // Return the index of the first global symbol.
1675  unsigned int
1676  first_global_index() const
1677  { return this->first_global_index_; }
1678
1679  // Return the total number of symbols in the symbol table.
1680  unsigned int
1681  output_count() const
1682  { return this->output_count_; }
1683
1684  // Write out the global symbols.
1685  void
1686  write_globals(const Stringpool*, const Stringpool*,
1687		Output_symtab_xindex*, Output_symtab_xindex*,
1688		Output_file*) const;
1689
1690  // Write out a section symbol.  Return the updated offset.
1691  void
1692  write_section_symbol(const Output_section*, Output_symtab_xindex*,
1693		       Output_file*, off_t) const;
1694
1695  // Loop over all symbols, applying the function F to each.
1696  template<int size, typename F>
1697  void
1698  for_all_symbols(F f) const
1699  {
1700    for (Symbol_table_type::const_iterator p = this->table_.begin();
1701         p != this->table_.end();
1702         ++p)
1703      {
1704	Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1705	f(sym);
1706      }
1707  }
1708
1709  // Dump statistical information to stderr.
1710  void
1711  print_stats() const;
1712
1713  // Return the version script information.
1714  const Version_script_info&
1715  version_script() const
1716  { return version_script_; }
1717
1718  // Completely override existing symbol.
1719  template<int size>
1720  void
1721  clone(Sized_symbol<size>* to, const Sized_symbol<size>* from)
1722  {
1723    if (to->clone(from))
1724      this->force_local(to);
1725  }
1726
1727 private:
1728  Symbol_table(const Symbol_table&);
1729  Symbol_table& operator=(const Symbol_table&);
1730
1731  // The type of the list of common symbols.
1732  typedef std::vector<Symbol*> Commons_type;
1733
1734  // The type of the symbol hash table.
1735
1736  typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1737
1738  // The hash function.  The key values are Stringpool keys.
1739  struct Symbol_table_hash
1740  {
1741    inline size_t
1742    operator()(const Symbol_table_key& key) const
1743    {
1744      return key.first ^ key.second;
1745    }
1746  };
1747
1748  struct Symbol_table_eq
1749  {
1750    bool
1751    operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1752  };
1753
1754  typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1755			Symbol_table_eq> Symbol_table_type;
1756
1757  typedef Unordered_map<const char*,
1758                        Unordered_set<Symbol_location, Symbol_location_hash> >
1759  Odr_map;
1760
1761  // Make FROM a forwarder symbol to TO.
1762  void
1763  make_forwarder(Symbol* from, Symbol* to);
1764
1765  // Add a symbol.
1766  template<int size, bool big_endian>
1767  Sized_symbol<size>*
1768  add_from_object(Object*, const char* name, Stringpool::Key name_key,
1769		  const char* version, Stringpool::Key version_key,
1770		  bool def, const elfcpp::Sym<size, big_endian>& sym,
1771		  unsigned int st_shndx, bool is_ordinary,
1772		  unsigned int orig_st_shndx);
1773
1774  // Define a default symbol.
1775  template<int size, bool big_endian>
1776  void
1777  define_default_version(Sized_symbol<size>*, bool,
1778			 Symbol_table_type::iterator);
1779
1780  // Resolve symbols.
1781  template<int size, bool big_endian>
1782  void
1783  resolve(Sized_symbol<size>* to,
1784	  const elfcpp::Sym<size, big_endian>& sym,
1785	  unsigned int st_shndx, bool is_ordinary,
1786	  unsigned int orig_st_shndx,
1787	  Object*, const char* version,
1788	  bool is_default_version);
1789
1790  template<int size, bool big_endian>
1791  void
1792  resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1793
1794  // Record that a symbol is forced to be local by a version script or
1795  // by visibility.
1796  void
1797  force_local(Symbol*);
1798
1799  // Adjust NAME and *NAME_KEY for wrapping.
1800  const char*
1801  wrap_symbol(const char* name, Stringpool::Key* name_key);
1802
1803  // Whether we should override a symbol, based on flags in
1804  // resolve.cc.
1805  static bool
1806  should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1807		  Object*, bool*, bool*, bool);
1808
1809  // Report a problem in symbol resolution.
1810  static void
1811  report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1812			 Defined, Object* object);
1813
1814  // Override a symbol.
1815  template<int size, bool big_endian>
1816  void
1817  override(Sized_symbol<size>* tosym,
1818	   const elfcpp::Sym<size, big_endian>& fromsym,
1819	   unsigned int st_shndx, bool is_ordinary,
1820	   Object* object, const char* version);
1821
1822  // Whether we should override a symbol with a special symbol which
1823  // is automatically defined by the linker.
1824  static bool
1825  should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1826
1827  // Override a symbol with a special symbol.
1828  template<int size>
1829  void
1830  override_with_special(Sized_symbol<size>* tosym,
1831			const Sized_symbol<size>* fromsym);
1832
1833  // Record all weak alias sets for a dynamic object.
1834  template<int size>
1835  void
1836  record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1837
1838  // Define a special symbol.
1839  template<int size, bool big_endian>
1840  Sized_symbol<size>*
1841  define_special_symbol(const char** pname, const char** pversion,
1842			bool only_if_ref, elfcpp::STV visibility,
1843			Sized_symbol<size>** poldsym,
1844			bool* resolve_oldsym, bool is_forced_local);
1845
1846  // Define a symbol in an Output_data, sized version.
1847  template<int size>
1848  Sized_symbol<size>*
1849  do_define_in_output_data(const char* name, const char* version, Defined,
1850			   Output_data*,
1851			   typename elfcpp::Elf_types<size>::Elf_Addr value,
1852			   typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1853			   elfcpp::STT type, elfcpp::STB binding,
1854			   elfcpp::STV visibility, unsigned char nonvis,
1855			   bool offset_is_from_end, bool only_if_ref);
1856
1857  // Define a symbol in an Output_segment, sized version.
1858  template<int size>
1859  Sized_symbol<size>*
1860  do_define_in_output_segment(
1861    const char* name, const char* version, Defined, Output_segment* os,
1862    typename elfcpp::Elf_types<size>::Elf_Addr value,
1863    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1864    elfcpp::STT type, elfcpp::STB binding,
1865    elfcpp::STV visibility, unsigned char nonvis,
1866    Symbol::Segment_offset_base offset_base, bool only_if_ref);
1867
1868  // Define a symbol as a constant, sized version.
1869  template<int size>
1870  Sized_symbol<size>*
1871  do_define_as_constant(
1872    const char* name, const char* version, Defined,
1873    typename elfcpp::Elf_types<size>::Elf_Addr value,
1874    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1875    elfcpp::STT type, elfcpp::STB binding,
1876    elfcpp::STV visibility, unsigned char nonvis,
1877    bool only_if_ref, bool force_override);
1878
1879  // Add any undefined symbols named on the command line to the symbol
1880  // table, sized version.
1881  template<int size>
1882  void
1883  do_add_undefined_symbols_from_command_line(Layout*);
1884
1885  // Add one undefined symbol.
1886  template<int size>
1887  void
1888  add_undefined_symbol_from_command_line(const char* name);
1889
1890  // Types of common symbols.
1891
1892  enum Commons_section_type
1893  {
1894    COMMONS_NORMAL,
1895    COMMONS_TLS,
1896    COMMONS_SMALL,
1897    COMMONS_LARGE
1898  };
1899
1900  // Allocate the common symbols, sized version.
1901  template<int size>
1902  void
1903  do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1904
1905  // Allocate the common symbols from one list.
1906  template<int size>
1907  void
1908  do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1909			   Mapfile*, Sort_commons_order);
1910
1911  // Returns all of the lines attached to LOC, not just the one the
1912  // instruction actually came from.  This helps the ODR checker avoid
1913  // false positives.
1914  static std::vector<std::string>
1915  linenos_from_loc(const Task* task, const Symbol_location& loc);
1916
1917  // Implement detect_odr_violations.
1918  template<int size, bool big_endian>
1919  void
1920  sized_detect_odr_violations() const;
1921
1922  // Finalize symbols specialized for size.
1923  template<int size>
1924  off_t
1925  sized_finalize(off_t, Stringpool*, unsigned int*);
1926
1927  // Finalize a symbol.  Return whether it should be added to the
1928  // symbol table.
1929  template<int size>
1930  bool
1931  sized_finalize_symbol(Symbol*);
1932
1933  // Add a symbol the final symtab by setting its index.
1934  template<int size>
1935  void
1936  add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1937
1938  // Write globals specialized for size and endianness.
1939  template<int size, bool big_endian>
1940  void
1941  sized_write_globals(const Stringpool*, const Stringpool*,
1942		      Output_symtab_xindex*, Output_symtab_xindex*,
1943		      Output_file*) const;
1944
1945  // Write out a symbol to P.
1946  template<int size, bool big_endian>
1947  void
1948  sized_write_symbol(Sized_symbol<size>*,
1949		     typename elfcpp::Elf_types<size>::Elf_Addr value,
1950		     unsigned int shndx, elfcpp::STB,
1951		     const Stringpool*, unsigned char* p) const;
1952
1953  // Possibly warn about an undefined symbol from a dynamic object.
1954  void
1955  warn_about_undefined_dynobj_symbol(Symbol*) const;
1956
1957  // Write out a section symbol, specialized for size and endianness.
1958  template<int size, bool big_endian>
1959  void
1960  sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1961			     Output_file*, off_t) const;
1962
1963  // The type of the list of symbols which have been forced local.
1964  typedef std::vector<Symbol*> Forced_locals;
1965
1966  // A map from symbols with COPY relocs to the dynamic objects where
1967  // they are defined.
1968  typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1969
1970  // We increment this every time we see a new undefined symbol, for
1971  // use in archive groups.
1972  size_t saw_undefined_;
1973  // The index of the first global symbol in the output file.
1974  unsigned int first_global_index_;
1975  // The file offset within the output symtab section where we should
1976  // write the table.
1977  off_t offset_;
1978  // The number of global symbols we want to write out.
1979  unsigned int output_count_;
1980  // The file offset of the global dynamic symbols, or 0 if none.
1981  off_t dynamic_offset_;
1982  // The index of the first global dynamic symbol (including
1983  // forced-local symbols).
1984  unsigned int first_dynamic_global_index_;
1985  // The number of global dynamic symbols (including forced-local symbols),
1986  // or 0 if none.
1987  unsigned int dynamic_count_;
1988  // Set if a STT_GNU_IFUNC or STB_GNU_UNIQUE symbol will be output.
1989  bool has_gnu_output_;
1990  // The symbol hash table.
1991  Symbol_table_type table_;
1992  // A pool of symbol names.  This is used for all global symbols.
1993  // Entries in the hash table point into this pool.
1994  Stringpool namepool_;
1995  // Forwarding symbols.
1996  Unordered_map<const Symbol*, Symbol*> forwarders_;
1997  // Weak aliases.  A symbol in this list points to the next alias.
1998  // The aliases point to each other in a circular list.
1999  Unordered_map<Symbol*, Symbol*> weak_aliases_;
2000  // We don't expect there to be very many common symbols, so we keep
2001  // a list of them.  When we find a common symbol we add it to this
2002  // list.  It is possible that by the time we process the list the
2003  // symbol is no longer a common symbol.  It may also have become a
2004  // forwarder.
2005  Commons_type commons_;
2006  // This is like the commons_ field, except that it holds TLS common
2007  // symbols.
2008  Commons_type tls_commons_;
2009  // This is for small common symbols.
2010  Commons_type small_commons_;
2011  // This is for large common symbols.
2012  Commons_type large_commons_;
2013  // A list of symbols which have been forced to be local.  We don't
2014  // expect there to be very many of them, so we keep a list of them
2015  // rather than walking the whole table to find them.
2016  Forced_locals forced_locals_;
2017  // Manage symbol warnings.
2018  Warnings warnings_;
2019  // Manage potential One Definition Rule (ODR) violations.
2020  Odr_map candidate_odr_violations_;
2021
2022  // When we emit a COPY reloc for a symbol, we define it in an
2023  // Output_data.  When it's time to emit version information for it,
2024  // we need to know the dynamic object in which we found the original
2025  // definition.  This maps symbols with COPY relocs to the dynamic
2026  // object where they were defined.
2027  Copied_symbol_dynobjs copied_symbol_dynobjs_;
2028  // Information parsed from the version script, if any.
2029  const Version_script_info& version_script_;
2030  Garbage_collection* gc_;
2031  Icf* icf_;
2032  // Target-specific symbols, if any.
2033  std::vector<Symbol*> target_symbols_;
2034};
2035
2036// We inline get_sized_symbol for efficiency.
2037
2038template<int size>
2039Sized_symbol<size>*
2040Symbol_table::get_sized_symbol(Symbol* sym) const
2041{
2042  gold_assert(size == parameters->target().get_size());
2043  return static_cast<Sized_symbol<size>*>(sym);
2044}
2045
2046template<int size>
2047const Sized_symbol<size>*
2048Symbol_table::get_sized_symbol(const Symbol* sym) const
2049{
2050  gold_assert(size == parameters->target().get_size());
2051  return static_cast<const Sized_symbol<size>*>(sym);
2052}
2053
2054} // End namespace gold.
2055
2056#endif // !defined(GOLD_SYMTAB_H)
2057