1/* Motorola 68k series support for 32-bit ELF
2   Copyright (C) 1993-2022 Free Software Foundation, Inc.
3
4   This file is part of BFD, the Binary File Descriptor library.
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 3 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program; if not, write to the Free Software
18   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19   MA 02110-1301, USA.  */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/m68k.h"
27#include "opcode/m68k.h"
28#include "cpu-m68k.h"
29#include "elf32-m68k.h"
30
31static bool
32elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
33
34static reloc_howto_type howto_table[] =
35{
36  HOWTO(R_68K_NONE,	  0, 0, 0, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_NONE",	  false, 0, 0x00000000,false),
37  HOWTO(R_68K_32,	  0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32",	  false, 0, 0xffffffff,false),
38  HOWTO(R_68K_16,	  0, 2,16, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16",	  false, 0, 0x0000ffff,false),
39  HOWTO(R_68K_8,	  0, 1, 8, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8",	  false, 0, 0x000000ff,false),
40  HOWTO(R_68K_PC32,	  0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32",	  false, 0, 0xffffffff,true),
41  HOWTO(R_68K_PC16,	  0, 2,16, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PC16",	  false, 0, 0x0000ffff,true),
42  HOWTO(R_68K_PC8,	  0, 1, 8, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PC8",	  false, 0, 0x000000ff,true),
43  HOWTO(R_68K_GOT32,	  0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32",	  false, 0, 0xffffffff,true),
44  HOWTO(R_68K_GOT16,	  0, 2,16, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT16",	  false, 0, 0x0000ffff,true),
45  HOWTO(R_68K_GOT8,	  0, 1, 8, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT8",	  false, 0, 0x000000ff,true),
46  HOWTO(R_68K_GOT32O,	  0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O",	  false, 0, 0xffffffff,false),
47  HOWTO(R_68K_GOT16O,	  0, 2,16, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT16O",	  false, 0, 0x0000ffff,false),
48  HOWTO(R_68K_GOT8O,	  0, 1, 8, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT8O",	  false, 0, 0x000000ff,false),
49  HOWTO(R_68K_PLT32,	  0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32",	  false, 0, 0xffffffff,true),
50  HOWTO(R_68K_PLT16,	  0, 2,16, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT16",	  false, 0, 0x0000ffff,true),
51  HOWTO(R_68K_PLT8,	  0, 1, 8, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT8",	  false, 0, 0x000000ff,true),
52  HOWTO(R_68K_PLT32O,	  0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O",	  false, 0, 0xffffffff,false),
53  HOWTO(R_68K_PLT16O,	  0, 2,16, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT16O",	  false, 0, 0x0000ffff,false),
54  HOWTO(R_68K_PLT8O,	  0, 1, 8, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT8O",	  false, 0, 0x000000ff,false),
55  HOWTO(R_68K_COPY,	  0, 0, 0, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_COPY",	  false, 0, 0xffffffff,false),
56  HOWTO(R_68K_GLOB_DAT,	  0, 4,32, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_GLOB_DAT",  false, 0, 0xffffffff,false),
57  HOWTO(R_68K_JMP_SLOT,	  0, 4,32, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_JMP_SLOT",  false, 0, 0xffffffff,false),
58  HOWTO(R_68K_RELATIVE,	  0, 4,32, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_RELATIVE",  false, 0, 0xffffffff,false),
59  /* GNU extension to record C++ vtable hierarchy.  */
60  HOWTO (R_68K_GNU_VTINHERIT,	/* type */
61	 0,			/* rightshift */
62	 4,			/* size */
63	 0,			/* bitsize */
64	 false,			/* pc_relative */
65	 0,			/* bitpos */
66	 complain_overflow_dont, /* complain_on_overflow */
67	 NULL,			/* special_function */
68	 "R_68K_GNU_VTINHERIT",	/* name */
69	 false,			/* partial_inplace */
70	 0,			/* src_mask */
71	 0,			/* dst_mask */
72	 false),
73  /* GNU extension to record C++ vtable member usage.  */
74  HOWTO (R_68K_GNU_VTENTRY,	/* type */
75	 0,			/* rightshift */
76	 4,			/* size */
77	 0,			/* bitsize */
78	 false,			/* pc_relative */
79	 0,			/* bitpos */
80	 complain_overflow_dont, /* complain_on_overflow */
81	 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
82	 "R_68K_GNU_VTENTRY",	/* name */
83	 false,			/* partial_inplace */
84	 0,			/* src_mask */
85	 0,			/* dst_mask */
86	 false),
87
88  /* TLS general dynamic variable reference.  */
89  HOWTO (R_68K_TLS_GD32,	/* type */
90	 0,			/* rightshift */
91	 4,			/* size */
92	 32,			/* bitsize */
93	 false,			/* pc_relative */
94	 0,			/* bitpos */
95	 complain_overflow_bitfield, /* complain_on_overflow */
96	 bfd_elf_generic_reloc, /* special_function */
97	 "R_68K_TLS_GD32",	/* name */
98	 false,			/* partial_inplace */
99	 0,			/* src_mask */
100	 0xffffffff,		/* dst_mask */
101	 false),		/* pcrel_offset */
102
103  HOWTO (R_68K_TLS_GD16,	/* type */
104	 0,			/* rightshift */
105	 2,			/* size */
106	 16,			/* bitsize */
107	 false,			/* pc_relative */
108	 0,			/* bitpos */
109	 complain_overflow_signed, /* complain_on_overflow */
110	 bfd_elf_generic_reloc, /* special_function */
111	 "R_68K_TLS_GD16",	/* name */
112	 false,			/* partial_inplace */
113	 0,			/* src_mask */
114	 0x0000ffff,		/* dst_mask */
115	 false),		/* pcrel_offset */
116
117  HOWTO (R_68K_TLS_GD8,		/* type */
118	 0,			/* rightshift */
119	 1,			/* size */
120	 8,			/* bitsize */
121	 false,			/* pc_relative */
122	 0,			/* bitpos */
123	 complain_overflow_signed, /* complain_on_overflow */
124	 bfd_elf_generic_reloc, /* special_function */
125	 "R_68K_TLS_GD8",	/* name */
126	 false,			/* partial_inplace */
127	 0,			/* src_mask */
128	 0x000000ff,		/* dst_mask */
129	 false),		/* pcrel_offset */
130
131  /* TLS local dynamic variable reference.  */
132  HOWTO (R_68K_TLS_LDM32,	/* type */
133	 0,			/* rightshift */
134	 4,			/* size */
135	 32,			/* bitsize */
136	 false,			/* pc_relative */
137	 0,			/* bitpos */
138	 complain_overflow_bitfield, /* complain_on_overflow */
139	 bfd_elf_generic_reloc, /* special_function */
140	 "R_68K_TLS_LDM32",	/* name */
141	 false,			/* partial_inplace */
142	 0,			/* src_mask */
143	 0xffffffff,		/* dst_mask */
144	 false),		/* pcrel_offset */
145
146  HOWTO (R_68K_TLS_LDM16,	/* type */
147	 0,			/* rightshift */
148	 2,			/* size */
149	 16,			/* bitsize */
150	 false,			/* pc_relative */
151	 0,			/* bitpos */
152	 complain_overflow_signed, /* complain_on_overflow */
153	 bfd_elf_generic_reloc, /* special_function */
154	 "R_68K_TLS_LDM16",	/* name */
155	 false,			/* partial_inplace */
156	 0,			/* src_mask */
157	 0x0000ffff,		/* dst_mask */
158	 false),		/* pcrel_offset */
159
160  HOWTO (R_68K_TLS_LDM8,		/* type */
161	 0,			/* rightshift */
162	 1,			/* size */
163	 8,			/* bitsize */
164	 false,			/* pc_relative */
165	 0,			/* bitpos */
166	 complain_overflow_signed, /* complain_on_overflow */
167	 bfd_elf_generic_reloc, /* special_function */
168	 "R_68K_TLS_LDM8",	/* name */
169	 false,			/* partial_inplace */
170	 0,			/* src_mask */
171	 0x000000ff,		/* dst_mask */
172	 false),		/* pcrel_offset */
173
174  HOWTO (R_68K_TLS_LDO32,	/* type */
175	 0,			/* rightshift */
176	 4,			/* size */
177	 32,			/* bitsize */
178	 false,			/* pc_relative */
179	 0,			/* bitpos */
180	 complain_overflow_bitfield, /* complain_on_overflow */
181	 bfd_elf_generic_reloc, /* special_function */
182	 "R_68K_TLS_LDO32",	/* name */
183	 false,			/* partial_inplace */
184	 0,			/* src_mask */
185	 0xffffffff,		/* dst_mask */
186	 false),		/* pcrel_offset */
187
188  HOWTO (R_68K_TLS_LDO16,	/* type */
189	 0,			/* rightshift */
190	 2,			/* size */
191	 16,			/* bitsize */
192	 false,			/* pc_relative */
193	 0,			/* bitpos */
194	 complain_overflow_signed, /* complain_on_overflow */
195	 bfd_elf_generic_reloc, /* special_function */
196	 "R_68K_TLS_LDO16",	/* name */
197	 false,			/* partial_inplace */
198	 0,			/* src_mask */
199	 0x0000ffff,		/* dst_mask */
200	 false),		/* pcrel_offset */
201
202  HOWTO (R_68K_TLS_LDO8,		/* type */
203	 0,			/* rightshift */
204	 1,			/* size */
205	 8,			/* bitsize */
206	 false,			/* pc_relative */
207	 0,			/* bitpos */
208	 complain_overflow_signed, /* complain_on_overflow */
209	 bfd_elf_generic_reloc, /* special_function */
210	 "R_68K_TLS_LDO8",	/* name */
211	 false,			/* partial_inplace */
212	 0,			/* src_mask */
213	 0x000000ff,		/* dst_mask */
214	 false),		/* pcrel_offset */
215
216  /* TLS initial execution variable reference.  */
217  HOWTO (R_68K_TLS_IE32,	/* type */
218	 0,			/* rightshift */
219	 4,			/* size */
220	 32,			/* bitsize */
221	 false,			/* pc_relative */
222	 0,			/* bitpos */
223	 complain_overflow_bitfield, /* complain_on_overflow */
224	 bfd_elf_generic_reloc, /* special_function */
225	 "R_68K_TLS_IE32",	/* name */
226	 false,			/* partial_inplace */
227	 0,			/* src_mask */
228	 0xffffffff,		/* dst_mask */
229	 false),		/* pcrel_offset */
230
231  HOWTO (R_68K_TLS_IE16,	/* type */
232	 0,			/* rightshift */
233	 2,			/* size */
234	 16,			/* bitsize */
235	 false,			/* pc_relative */
236	 0,			/* bitpos */
237	 complain_overflow_signed, /* complain_on_overflow */
238	 bfd_elf_generic_reloc, /* special_function */
239	 "R_68K_TLS_IE16",	/* name */
240	 false,			/* partial_inplace */
241	 0,			/* src_mask */
242	 0x0000ffff,		/* dst_mask */
243	 false),		/* pcrel_offset */
244
245  HOWTO (R_68K_TLS_IE8,		/* type */
246	 0,			/* rightshift */
247	 1,			/* size */
248	 8,			/* bitsize */
249	 false,			/* pc_relative */
250	 0,			/* bitpos */
251	 complain_overflow_signed, /* complain_on_overflow */
252	 bfd_elf_generic_reloc, /* special_function */
253	 "R_68K_TLS_IE8",	/* name */
254	 false,			/* partial_inplace */
255	 0,			/* src_mask */
256	 0x000000ff,		/* dst_mask */
257	 false),		/* pcrel_offset */
258
259  /* TLS local execution variable reference.  */
260  HOWTO (R_68K_TLS_LE32,	/* type */
261	 0,			/* rightshift */
262	 4,			/* size */
263	 32,			/* bitsize */
264	 false,			/* pc_relative */
265	 0,			/* bitpos */
266	 complain_overflow_bitfield, /* complain_on_overflow */
267	 bfd_elf_generic_reloc, /* special_function */
268	 "R_68K_TLS_LE32",	/* name */
269	 false,			/* partial_inplace */
270	 0,			/* src_mask */
271	 0xffffffff,		/* dst_mask */
272	 false),		/* pcrel_offset */
273
274  HOWTO (R_68K_TLS_LE16,	/* type */
275	 0,			/* rightshift */
276	 2,			/* size */
277	 16,			/* bitsize */
278	 false,			/* pc_relative */
279	 0,			/* bitpos */
280	 complain_overflow_signed, /* complain_on_overflow */
281	 bfd_elf_generic_reloc, /* special_function */
282	 "R_68K_TLS_LE16",	/* name */
283	 false,			/* partial_inplace */
284	 0,			/* src_mask */
285	 0x0000ffff,		/* dst_mask */
286	 false),		/* pcrel_offset */
287
288  HOWTO (R_68K_TLS_LE8,		/* type */
289	 0,			/* rightshift */
290	 1,			/* size */
291	 8,			/* bitsize */
292	 false,			/* pc_relative */
293	 0,			/* bitpos */
294	 complain_overflow_signed, /* complain_on_overflow */
295	 bfd_elf_generic_reloc, /* special_function */
296	 "R_68K_TLS_LE8",	/* name */
297	 false,			/* partial_inplace */
298	 0,			/* src_mask */
299	 0x000000ff,		/* dst_mask */
300	 false),		/* pcrel_offset */
301
302  /* TLS GD/LD dynamic relocations.  */
303  HOWTO (R_68K_TLS_DTPMOD32,	/* type */
304	 0,			/* rightshift */
305	 4,			/* size */
306	 32,			/* bitsize */
307	 false,			/* pc_relative */
308	 0,			/* bitpos */
309	 complain_overflow_dont, /* complain_on_overflow */
310	 bfd_elf_generic_reloc, /* special_function */
311	 "R_68K_TLS_DTPMOD32",	/* name */
312	 false,			/* partial_inplace */
313	 0,			/* src_mask */
314	 0xffffffff,		/* dst_mask */
315	 false),		/* pcrel_offset */
316
317  HOWTO (R_68K_TLS_DTPREL32,	/* type */
318	 0,			/* rightshift */
319	 4,			/* size */
320	 32,			/* bitsize */
321	 false,			/* pc_relative */
322	 0,			/* bitpos */
323	 complain_overflow_dont, /* complain_on_overflow */
324	 bfd_elf_generic_reloc, /* special_function */
325	 "R_68K_TLS_DTPREL32",	/* name */
326	 false,			/* partial_inplace */
327	 0,			/* src_mask */
328	 0xffffffff,		/* dst_mask */
329	 false),		/* pcrel_offset */
330
331  HOWTO (R_68K_TLS_TPREL32,	/* type */
332	 0,			/* rightshift */
333	 4,			/* size */
334	 32,			/* bitsize */
335	 false,			/* pc_relative */
336	 0,			/* bitpos */
337	 complain_overflow_dont, /* complain_on_overflow */
338	 bfd_elf_generic_reloc, /* special_function */
339	 "R_68K_TLS_TPREL32",	/* name */
340	 false,			/* partial_inplace */
341	 0,			/* src_mask */
342	 0xffffffff,		/* dst_mask */
343	 false),		/* pcrel_offset */
344};
345
346static bool
347rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
348{
349  unsigned int indx = ELF32_R_TYPE (dst->r_info);
350
351  if (indx >= (unsigned int) R_68K_max)
352    {
353      /* xgettext:c-format */
354      _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
355			  abfd, indx);
356      bfd_set_error (bfd_error_bad_value);
357      return false;
358    }
359  cache_ptr->howto = &howto_table[indx];
360  return true;
361}
362
363#define elf_info_to_howto rtype_to_howto
364
365static const struct
366{
367  bfd_reloc_code_real_type bfd_val;
368  int elf_val;
369}
370  reloc_map[] =
371{
372  { BFD_RELOC_NONE, R_68K_NONE },
373  { BFD_RELOC_32, R_68K_32 },
374  { BFD_RELOC_16, R_68K_16 },
375  { BFD_RELOC_8, R_68K_8 },
376  { BFD_RELOC_32_PCREL, R_68K_PC32 },
377  { BFD_RELOC_16_PCREL, R_68K_PC16 },
378  { BFD_RELOC_8_PCREL, R_68K_PC8 },
379  { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
380  { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
381  { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
382  { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
383  { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
384  { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
385  { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
386  { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
387  { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
388  { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
389  { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
390  { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
391  { BFD_RELOC_NONE, R_68K_COPY },
392  { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
393  { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
394  { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
395  { BFD_RELOC_CTOR, R_68K_32 },
396  { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
397  { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
398  { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
399  { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
400  { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
401  { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
402  { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
403  { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
404  { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
405  { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
406  { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
407  { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
408  { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
409  { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
410  { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
411  { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
412  { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
413};
414
415static reloc_howto_type *
416reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
417		   bfd_reloc_code_real_type code)
418{
419  unsigned int i;
420  for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
421    {
422      if (reloc_map[i].bfd_val == code)
423	return &howto_table[reloc_map[i].elf_val];
424    }
425  return 0;
426}
427
428static reloc_howto_type *
429reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
430{
431  unsigned int i;
432
433  for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
434    if (howto_table[i].name != NULL
435	&& strcasecmp (howto_table[i].name, r_name) == 0)
436      return &howto_table[i];
437
438  return NULL;
439}
440
441#define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
442#define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
443#define ELF_ARCH bfd_arch_m68k
444#define ELF_TARGET_ID M68K_ELF_DATA
445
446/* Functions for the m68k ELF linker.  */
447
448/* The name of the dynamic interpreter.  This is put in the .interp
449   section.  */
450
451#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
452
453/* Describes one of the various PLT styles.  */
454
455struct elf_m68k_plt_info
456{
457  /* The size of each PLT entry.  */
458  bfd_vma size;
459
460  /* The template for the first PLT entry.  */
461  const bfd_byte *plt0_entry;
462
463  /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
464     The comments by each member indicate the value that the relocation
465     is against.  */
466  struct {
467    unsigned int got4; /* .got + 4 */
468    unsigned int got8; /* .got + 8 */
469  } plt0_relocs;
470
471  /* The template for a symbol's PLT entry.  */
472  const bfd_byte *symbol_entry;
473
474  /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
475     The comments by each member indicate the value that the relocation
476     is against.  */
477  struct {
478    unsigned int got; /* the symbol's .got.plt entry */
479    unsigned int plt; /* .plt */
480  } symbol_relocs;
481
482  /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
483     The stub starts with "move.l #relocoffset,%d0".  */
484  bfd_vma symbol_resolve_entry;
485};
486
487/* The size in bytes of an entry in the procedure linkage table.  */
488
489#define PLT_ENTRY_SIZE 20
490
491/* The first entry in a procedure linkage table looks like this.  See
492   the SVR4 ABI m68k supplement to see how this works.  */
493
494static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
495{
496  0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
497  0, 0, 0, 2,		  /* + (.got + 4) - . */
498  0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
499  0, 0, 0, 2,		  /* + (.got + 8) - . */
500  0, 0, 0, 0		  /* pad out to 20 bytes.  */
501};
502
503/* Subsequent entries in a procedure linkage table look like this.  */
504
505static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
506{
507  0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
508  0, 0, 0, 2,		  /* + (.got.plt entry) - . */
509  0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
510  0, 0, 0, 0,		  /* + reloc index */
511  0x60, 0xff,		  /* bra.l .plt */
512  0, 0, 0, 0		  /* + .plt - . */
513};
514
515static const struct elf_m68k_plt_info elf_m68k_plt_info =
516{
517  PLT_ENTRY_SIZE,
518  elf_m68k_plt0_entry, { 4, 12 },
519  elf_m68k_plt_entry, { 4, 16 }, 8
520};
521
522#define ISAB_PLT_ENTRY_SIZE 24
523
524static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
525{
526  0x20, 0x3c,		  /* move.l #offset,%d0 */
527  0, 0, 0, 0,		  /* + (.got + 4) - . */
528  0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
529  0x20, 0x3c,		  /* move.l #offset,%d0 */
530  0, 0, 0, 0,		  /* + (.got + 8) - . */
531  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
532  0x4e, 0xd0,		  /* jmp (%a0) */
533  0x4e, 0x71		  /* nop */
534};
535
536/* Subsequent entries in a procedure linkage table look like this.  */
537
538static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
539{
540  0x20, 0x3c,		  /* move.l #offset,%d0 */
541  0, 0, 0, 0,		  /* + (.got.plt entry) - . */
542  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
543  0x4e, 0xd0,		  /* jmp (%a0) */
544  0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
545  0, 0, 0, 0,		  /* + reloc index */
546  0x60, 0xff,		  /* bra.l .plt */
547  0, 0, 0, 0		  /* + .plt - . */
548};
549
550static const struct elf_m68k_plt_info elf_isab_plt_info =
551{
552  ISAB_PLT_ENTRY_SIZE,
553  elf_isab_plt0_entry, { 2, 12 },
554  elf_isab_plt_entry, { 2, 20 }, 12
555};
556
557#define ISAC_PLT_ENTRY_SIZE 24
558
559static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
560{
561  0x20, 0x3c,		  /* move.l #offset,%d0 */
562  0, 0, 0, 0,		  /* replaced with .got + 4 - . */
563  0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
564  0x20, 0x3c,		  /* move.l #offset,%d0 */
565  0, 0, 0, 0,		  /* replaced with .got + 8 - . */
566  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
567  0x4e, 0xd0,		  /* jmp (%a0) */
568  0x4e, 0x71		  /* nop */
569};
570
571/* Subsequent entries in a procedure linkage table look like this.  */
572
573static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
574{
575  0x20, 0x3c,		  /* move.l #offset,%d0 */
576  0, 0, 0, 0,		  /* replaced with (.got entry) - . */
577  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
578  0x4e, 0xd0,		  /* jmp (%a0) */
579  0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
580  0, 0, 0, 0,		  /* replaced with offset into relocation table */
581  0x61, 0xff,		  /* bsr.l .plt */
582  0, 0, 0, 0		  /* replaced with .plt - . */
583};
584
585static const struct elf_m68k_plt_info elf_isac_plt_info =
586{
587  ISAC_PLT_ENTRY_SIZE,
588  elf_isac_plt0_entry, { 2, 12},
589  elf_isac_plt_entry, { 2, 20 }, 12
590};
591
592#define CPU32_PLT_ENTRY_SIZE 24
593/* Procedure linkage table entries for the cpu32 */
594static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
595{
596  0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
597  0, 0, 0, 2,		  /* + (.got + 4) - . */
598  0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
599  0, 0, 0, 2,		  /* + (.got + 8) - . */
600  0x4e, 0xd1,		  /* jmp %a1@ */
601  0, 0, 0, 0,		  /* pad out to 24 bytes.  */
602  0, 0
603};
604
605static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
606{
607  0x22, 0x7b, 0x01, 0x70,  /* moveal %pc@(0xc), %a1 */
608  0, 0, 0, 2,		   /* + (.got.plt entry) - . */
609  0x4e, 0xd1,		   /* jmp %a1@ */
610  0x2f, 0x3c,		   /* move.l #offset,-(%sp) */
611  0, 0, 0, 0,		   /* + reloc index */
612  0x60, 0xff,		   /* bra.l .plt */
613  0, 0, 0, 0,		   /* + .plt - . */
614  0, 0
615};
616
617static const struct elf_m68k_plt_info elf_cpu32_plt_info =
618{
619  CPU32_PLT_ENTRY_SIZE,
620  elf_cpu32_plt0_entry, { 4, 12 },
621  elf_cpu32_plt_entry, { 4, 18 }, 10
622};
623
624/* The m68k linker needs to keep track of the number of relocs that it
625   decides to copy in check_relocs for each symbol.  This is so that it
626   can discard PC relative relocs if it doesn't need them when linking
627   with -Bsymbolic.  We store the information in a field extending the
628   regular ELF linker hash table.  */
629
630/* This structure keeps track of the number of PC relative relocs we have
631   copied for a given symbol.  */
632
633struct elf_m68k_pcrel_relocs_copied
634{
635  /* Next section.  */
636  struct elf_m68k_pcrel_relocs_copied *next;
637  /* A section in dynobj.  */
638  asection *section;
639  /* Number of relocs copied in this section.  */
640  bfd_size_type count;
641};
642
643/* Forward declaration.  */
644struct elf_m68k_got_entry;
645
646/* m68k ELF linker hash entry.  */
647
648struct elf_m68k_link_hash_entry
649{
650  struct elf_link_hash_entry root;
651
652  /* Number of PC relative relocs copied for this symbol.  */
653  struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
654
655  /* Key to got_entries.  */
656  unsigned long got_entry_key;
657
658  /* List of GOT entries for this symbol.  This list is build during
659     offset finalization and is used within elf_m68k_finish_dynamic_symbol
660     to traverse all GOT entries for a particular symbol.
661
662     ??? We could've used root.got.glist field instead, but having
663     a separate field is cleaner.  */
664  struct elf_m68k_got_entry *glist;
665};
666
667#define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
668
669/* Key part of GOT entry in hashtable.  */
670struct elf_m68k_got_entry_key
671{
672  /* BFD in which this symbol was defined.  NULL for global symbols.  */
673  const bfd *bfd;
674
675  /* Symbol index.  Either local symbol index or h->got_entry_key.  */
676  unsigned long symndx;
677
678  /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
679     R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
680
681     From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
682     matters.  That is, we distinguish between, say, R_68K_GOT16O
683     and R_68K_GOT32O when allocating offsets, but they are considered to be
684     the same when searching got->entries.  */
685  enum elf_m68k_reloc_type type;
686};
687
688/* Size of the GOT offset suitable for relocation.  */
689enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
690
691/* Entry of the GOT.  */
692struct elf_m68k_got_entry
693{
694  /* GOT entries are put into a got->entries hashtable.  This is the key.  */
695  struct elf_m68k_got_entry_key key_;
696
697  /* GOT entry data.  We need s1 before offset finalization and s2 after.  */
698  union
699  {
700    struct
701    {
702      /* Number of times this entry is referenced.  */
703      bfd_vma refcount;
704    } s1;
705
706    struct
707    {
708      /* Offset from the start of .got section.  To calculate offset relative
709	 to GOT pointer one should subtract got->offset from this value.  */
710      bfd_vma offset;
711
712      /* Pointer to the next GOT entry for this global symbol.
713	 Symbols have at most one entry in one GOT, but might
714	 have entries in more than one GOT.
715	 Root of this list is h->glist.
716	 NULL for local symbols.  */
717      struct elf_m68k_got_entry *next;
718    } s2;
719  } u;
720};
721
722/* Return representative type for relocation R_TYPE.
723   This is used to avoid enumerating many relocations in comparisons,
724   switches etc.  */
725
726static enum elf_m68k_reloc_type
727elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
728{
729  switch (r_type)
730    {
731      /* In most cases R_68K_GOTx relocations require the very same
732	 handling as R_68K_GOT32O relocation.  In cases when we need
733	 to distinguish between the two, we use explicitly compare against
734	 r_type.  */
735    case R_68K_GOT32:
736    case R_68K_GOT16:
737    case R_68K_GOT8:
738    case R_68K_GOT32O:
739    case R_68K_GOT16O:
740    case R_68K_GOT8O:
741      return R_68K_GOT32O;
742
743    case R_68K_TLS_GD32:
744    case R_68K_TLS_GD16:
745    case R_68K_TLS_GD8:
746      return R_68K_TLS_GD32;
747
748    case R_68K_TLS_LDM32:
749    case R_68K_TLS_LDM16:
750    case R_68K_TLS_LDM8:
751      return R_68K_TLS_LDM32;
752
753    case R_68K_TLS_IE32:
754    case R_68K_TLS_IE16:
755    case R_68K_TLS_IE8:
756      return R_68K_TLS_IE32;
757
758    default:
759      BFD_ASSERT (false);
760      return 0;
761    }
762}
763
764/* Return size of the GOT entry offset for relocation R_TYPE.  */
765
766static enum elf_m68k_got_offset_size
767elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
768{
769  switch (r_type)
770    {
771    case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
772    case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
773    case R_68K_TLS_IE32:
774      return R_32;
775
776    case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
777    case R_68K_TLS_IE16:
778      return R_16;
779
780    case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
781    case R_68K_TLS_IE8:
782      return R_8;
783
784    default:
785      BFD_ASSERT (false);
786      return 0;
787    }
788}
789
790/* Return number of GOT entries we need to allocate in GOT for
791   relocation R_TYPE.  */
792
793static bfd_vma
794elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
795{
796  switch (elf_m68k_reloc_got_type (r_type))
797    {
798    case R_68K_GOT32O:
799    case R_68K_TLS_IE32:
800      return 1;
801
802    case R_68K_TLS_GD32:
803    case R_68K_TLS_LDM32:
804      return 2;
805
806    default:
807      BFD_ASSERT (false);
808      return 0;
809    }
810}
811
812/* Return TRUE if relocation R_TYPE is a TLS one.  */
813
814static bool
815elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
816{
817  switch (r_type)
818    {
819    case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
820    case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
821    case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
822    case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
823    case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
824    case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
825      return true;
826
827    default:
828      return false;
829    }
830}
831
832/* Data structure representing a single GOT.  */
833struct elf_m68k_got
834{
835  /* Hashtable of 'struct elf_m68k_got_entry's.
836     Starting size of this table is the maximum number of
837     R_68K_GOT8O entries.  */
838  htab_t entries;
839
840  /* Number of R_x slots in this GOT.  Some (e.g., TLS) entries require
841     several GOT slots.
842
843     n_slots[R_8] is the count of R_8 slots in this GOT.
844     n_slots[R_16] is the cumulative count of R_8 and R_16 slots
845     in this GOT.
846     n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
847     in this GOT.  This is the total number of slots.  */
848  bfd_vma n_slots[R_LAST];
849
850  /* Number of local (entry->key_.h == NULL) slots in this GOT.
851     This is only used to properly calculate size of .rela.got section;
852     see elf_m68k_partition_multi_got.  */
853  bfd_vma local_n_slots;
854
855  /* Offset of this GOT relative to beginning of .got section.  */
856  bfd_vma offset;
857};
858
859/* BFD and its GOT.  This is an entry in multi_got->bfd2got hashtable.  */
860struct elf_m68k_bfd2got_entry
861{
862  /* BFD.  */
863  const bfd *bfd;
864
865  /* Assigned GOT.  Before partitioning multi-GOT each BFD has its own
866     GOT structure.  After partitioning several BFD's might [and often do]
867     share a single GOT.  */
868  struct elf_m68k_got *got;
869};
870
871/* The main data structure holding all the pieces.  */
872struct elf_m68k_multi_got
873{
874  /* Hashtable mapping each BFD to its GOT.  If a BFD doesn't have an entry
875     here, then it doesn't need a GOT (this includes the case of a BFD
876     having an empty GOT).
877
878     ??? This hashtable can be replaced by an array indexed by bfd->id.  */
879  htab_t bfd2got;
880
881  /* Next symndx to assign a global symbol.
882     h->got_entry_key is initialized from this counter.  */
883  unsigned long global_symndx;
884};
885
886/* m68k ELF linker hash table.  */
887
888struct elf_m68k_link_hash_table
889{
890  struct elf_link_hash_table root;
891
892  /* The PLT format used by this link, or NULL if the format has not
893     yet been chosen.  */
894  const struct elf_m68k_plt_info *plt_info;
895
896  /* True, if GP is loaded within each function which uses it.
897     Set to TRUE when GOT negative offsets or multi-GOT is enabled.  */
898  bool local_gp_p;
899
900  /* Switch controlling use of negative offsets to double the size of GOTs.  */
901  bool use_neg_got_offsets_p;
902
903  /* Switch controlling generation of multiple GOTs.  */
904  bool allow_multigot_p;
905
906  /* Multi-GOT data structure.  */
907  struct elf_m68k_multi_got multi_got_;
908};
909
910/* Get the m68k ELF linker hash table from a link_info structure.  */
911
912#define elf_m68k_hash_table(p) \
913  ((is_elf_hash_table ((p)->hash)					\
914    && elf_hash_table_id (elf_hash_table (p)) == M68K_ELF_DATA)		\
915   ? (struct elf_m68k_link_hash_table *) (p)->hash : NULL)
916
917/* Shortcut to multi-GOT data.  */
918#define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
919
920/* Create an entry in an m68k ELF linker hash table.  */
921
922static struct bfd_hash_entry *
923elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
924			    struct bfd_hash_table *table,
925			    const char *string)
926{
927  struct bfd_hash_entry *ret = entry;
928
929  /* Allocate the structure if it has not already been allocated by a
930     subclass.  */
931  if (ret == NULL)
932    ret = bfd_hash_allocate (table,
933			     sizeof (struct elf_m68k_link_hash_entry));
934  if (ret == NULL)
935    return ret;
936
937  /* Call the allocation method of the superclass.  */
938  ret = _bfd_elf_link_hash_newfunc (ret, table, string);
939  if (ret != NULL)
940    {
941      elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
942      elf_m68k_hash_entry (ret)->got_entry_key = 0;
943      elf_m68k_hash_entry (ret)->glist = NULL;
944    }
945
946  return ret;
947}
948
949/* Destroy an m68k ELF linker hash table.  */
950
951static void
952elf_m68k_link_hash_table_free (bfd *obfd)
953{
954  struct elf_m68k_link_hash_table *htab;
955
956  htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
957
958  if (htab->multi_got_.bfd2got != NULL)
959    {
960      htab_delete (htab->multi_got_.bfd2got);
961      htab->multi_got_.bfd2got = NULL;
962    }
963  _bfd_elf_link_hash_table_free (obfd);
964}
965
966/* Create an m68k ELF linker hash table.  */
967
968static struct bfd_link_hash_table *
969elf_m68k_link_hash_table_create (bfd *abfd)
970{
971  struct elf_m68k_link_hash_table *ret;
972  size_t amt = sizeof (struct elf_m68k_link_hash_table);
973
974  ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
975  if (ret == (struct elf_m68k_link_hash_table *) NULL)
976    return NULL;
977
978  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
979				      elf_m68k_link_hash_newfunc,
980				      sizeof (struct elf_m68k_link_hash_entry),
981				      M68K_ELF_DATA))
982    {
983      free (ret);
984      return NULL;
985    }
986  ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
987
988  ret->multi_got_.global_symndx = 1;
989
990  return &ret->root.root;
991}
992
993/* Set the right machine number.  */
994
995static bool
996elf32_m68k_object_p (bfd *abfd)
997{
998  unsigned int mach = 0;
999  unsigned features = 0;
1000  flagword eflags = elf_elfheader (abfd)->e_flags;
1001
1002  if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1003    features |= m68000;
1004  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1005    features |= cpu32;
1006  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1007    features |= fido_a;
1008  else
1009    {
1010      switch (eflags & EF_M68K_CF_ISA_MASK)
1011	{
1012	case EF_M68K_CF_ISA_A_NODIV:
1013	  features |= mcfisa_a;
1014	  break;
1015	case EF_M68K_CF_ISA_A:
1016	  features |= mcfisa_a|mcfhwdiv;
1017	  break;
1018	case EF_M68K_CF_ISA_A_PLUS:
1019	  features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1020	  break;
1021	case EF_M68K_CF_ISA_B_NOUSP:
1022	  features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1023	  break;
1024	case EF_M68K_CF_ISA_B:
1025	  features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1026	  break;
1027	case EF_M68K_CF_ISA_C:
1028	  features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1029	  break;
1030	case EF_M68K_CF_ISA_C_NODIV:
1031	  features |= mcfisa_a|mcfisa_c|mcfusp;
1032	  break;
1033	}
1034      switch (eflags & EF_M68K_CF_MAC_MASK)
1035	{
1036	case EF_M68K_CF_MAC:
1037	  features |= mcfmac;
1038	  break;
1039	case EF_M68K_CF_EMAC:
1040	  features |= mcfemac;
1041	  break;
1042	}
1043      if (eflags & EF_M68K_CF_FLOAT)
1044	features |= cfloat;
1045    }
1046
1047  mach = bfd_m68k_features_to_mach (features);
1048  bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1049
1050  return true;
1051}
1052
1053/* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1054   field based on the machine number.  */
1055
1056static bool
1057elf_m68k_final_write_processing (bfd *abfd)
1058{
1059  int mach = bfd_get_mach (abfd);
1060  unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1061
1062  if (!e_flags)
1063    {
1064      unsigned int arch_mask;
1065
1066      arch_mask = bfd_m68k_mach_to_features (mach);
1067
1068      if (arch_mask & m68000)
1069	e_flags = EF_M68K_M68000;
1070      else if (arch_mask & cpu32)
1071	e_flags = EF_M68K_CPU32;
1072      else if (arch_mask & fido_a)
1073	e_flags = EF_M68K_FIDO;
1074      else
1075	{
1076	  switch (arch_mask
1077		  & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1078	    {
1079	    case mcfisa_a:
1080	      e_flags |= EF_M68K_CF_ISA_A_NODIV;
1081	      break;
1082	    case mcfisa_a | mcfhwdiv:
1083	      e_flags |= EF_M68K_CF_ISA_A;
1084	      break;
1085	    case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1086	      e_flags |= EF_M68K_CF_ISA_A_PLUS;
1087	      break;
1088	    case mcfisa_a | mcfisa_b | mcfhwdiv:
1089	      e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1090	      break;
1091	    case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1092	      e_flags |= EF_M68K_CF_ISA_B;
1093	      break;
1094	    case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1095	      e_flags |= EF_M68K_CF_ISA_C;
1096	      break;
1097	    case mcfisa_a | mcfisa_c | mcfusp:
1098	      e_flags |= EF_M68K_CF_ISA_C_NODIV;
1099	      break;
1100	    }
1101	  if (arch_mask & mcfmac)
1102	    e_flags |= EF_M68K_CF_MAC;
1103	  else if (arch_mask & mcfemac)
1104	    e_flags |= EF_M68K_CF_EMAC;
1105	  if (arch_mask & cfloat)
1106	    e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1107	}
1108      elf_elfheader (abfd)->e_flags = e_flags;
1109    }
1110  return _bfd_elf_final_write_processing (abfd);
1111}
1112
1113/* Keep m68k-specific flags in the ELF header.  */
1114
1115static bool
1116elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1117{
1118  elf_elfheader (abfd)->e_flags = flags;
1119  elf_flags_init (abfd) = true;
1120  return true;
1121}
1122
1123/* Merge object attributes from IBFD into OBFD.  Warn if
1124   there are conflicting attributes. */
1125static bool
1126m68k_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
1127{
1128  bfd *obfd = info->output_bfd;
1129  obj_attribute *in_attr, *in_attrs;
1130  obj_attribute *out_attr, *out_attrs;
1131  bool ret = true;
1132
1133  in_attrs = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
1134  out_attrs = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
1135
1136  in_attr = &in_attrs[Tag_GNU_M68K_ABI_FP];
1137  out_attr = &out_attrs[Tag_GNU_M68K_ABI_FP];
1138
1139  if (in_attr->i != out_attr->i)
1140    {
1141      int in_fp = in_attr->i & 3;
1142      int out_fp = out_attr->i & 3;
1143      static bfd *last_fp;
1144
1145      if (in_fp == 0)
1146	;
1147      else if (out_fp == 0)
1148	{
1149	  out_attr->type = ATTR_TYPE_FLAG_INT_VAL;
1150	  out_attr->i ^= in_fp;
1151	  last_fp = ibfd;
1152	}
1153      else if (out_fp == 1 && in_fp == 2)
1154	{
1155	  _bfd_error_handler
1156	    /* xgettext:c-format */
1157	    (_("%pB uses hard float, %pB uses soft float"),
1158	     last_fp, ibfd);
1159	  ret = false;
1160	}
1161      else if (out_fp == 2 && in_fp == 1)
1162	{
1163	  _bfd_error_handler
1164	    /* xgettext:c-format */
1165	    (_("%pB uses hard float, %pB uses soft float"),
1166	     ibfd, last_fp);
1167	  ret = false;
1168	}
1169    }
1170
1171  if (!ret)
1172    {
1173      out_attr->type = ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_ERROR;
1174      bfd_set_error (bfd_error_bad_value);
1175      return false;
1176    }
1177
1178  /* Merge Tag_compatibility attributes and any common GNU ones.  */
1179  return _bfd_elf_merge_object_attributes (ibfd, info);
1180}
1181
1182/* Merge backend specific data from an object file to the output
1183   object file when linking.  */
1184static bool
1185elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1186{
1187  bfd *obfd = info->output_bfd;
1188  flagword out_flags;
1189  flagword in_flags;
1190  flagword out_isa;
1191  flagword in_isa;
1192  const bfd_arch_info_type *arch_info;
1193
1194  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1195      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1196    /* PR 24523: For non-ELF files do not try to merge any private
1197       data, but also do not prevent the link from succeeding.  */
1198    return true;
1199
1200  /* Get the merged machine.  This checks for incompatibility between
1201     Coldfire & non-Coldfire flags, incompability between different
1202     Coldfire ISAs, and incompability between different MAC types.  */
1203  arch_info = bfd_arch_get_compatible (ibfd, obfd, false);
1204  if (!arch_info)
1205    return false;
1206
1207  bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1208
1209  if (!m68k_elf_merge_obj_attributes (ibfd, info))
1210    return false;
1211
1212  in_flags = elf_elfheader (ibfd)->e_flags;
1213  if (!elf_flags_init (obfd))
1214    {
1215      elf_flags_init (obfd) = true;
1216      out_flags = in_flags;
1217    }
1218  else
1219    {
1220      out_flags = elf_elfheader (obfd)->e_flags;
1221      unsigned int variant_mask;
1222
1223      if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1224	variant_mask = 0;
1225      else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1226	variant_mask = 0;
1227      else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1228	variant_mask = 0;
1229      else
1230	variant_mask = EF_M68K_CF_ISA_MASK;
1231
1232      in_isa = (in_flags & variant_mask);
1233      out_isa = (out_flags & variant_mask);
1234      if (in_isa > out_isa)
1235	out_flags ^= in_isa ^ out_isa;
1236      if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1237	   && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1238	  || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1239	      && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1240	out_flags = EF_M68K_FIDO;
1241      else
1242      out_flags |= in_flags ^ in_isa;
1243    }
1244  elf_elfheader (obfd)->e_flags = out_flags;
1245
1246  return true;
1247}
1248
1249/* Display the flags field.  */
1250
1251static bool
1252elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1253{
1254  FILE *file = (FILE *) ptr;
1255  flagword eflags = elf_elfheader (abfd)->e_flags;
1256
1257  BFD_ASSERT (abfd != NULL && ptr != NULL);
1258
1259  /* Print normal ELF private data.  */
1260  _bfd_elf_print_private_bfd_data (abfd, ptr);
1261
1262  /* Ignore init flag - it may not be set, despite the flags field containing valid data.  */
1263
1264  /* xgettext:c-format */
1265  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1266
1267  if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1268    fprintf (file, " [m68000]");
1269  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1270    fprintf (file, " [cpu32]");
1271  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1272    fprintf (file, " [fido]");
1273  else
1274    {
1275      if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1276	fprintf (file, " [cfv4e]");
1277
1278      if (eflags & EF_M68K_CF_ISA_MASK)
1279	{
1280	  char const *isa = _("unknown");
1281	  char const *mac = _("unknown");
1282	  char const *additional = "";
1283
1284	  switch (eflags & EF_M68K_CF_ISA_MASK)
1285	    {
1286	    case EF_M68K_CF_ISA_A_NODIV:
1287	      isa = "A";
1288	      additional = " [nodiv]";
1289	      break;
1290	    case EF_M68K_CF_ISA_A:
1291	      isa = "A";
1292	      break;
1293	    case EF_M68K_CF_ISA_A_PLUS:
1294	      isa = "A+";
1295	      break;
1296	    case EF_M68K_CF_ISA_B_NOUSP:
1297	      isa = "B";
1298	      additional = " [nousp]";
1299	      break;
1300	    case EF_M68K_CF_ISA_B:
1301	      isa = "B";
1302	      break;
1303	    case EF_M68K_CF_ISA_C:
1304	      isa = "C";
1305	      break;
1306	    case EF_M68K_CF_ISA_C_NODIV:
1307	      isa = "C";
1308	      additional = " [nodiv]";
1309	      break;
1310	    }
1311	  fprintf (file, " [isa %s]%s", isa, additional);
1312
1313	  if (eflags & EF_M68K_CF_FLOAT)
1314	    fprintf (file, " [float]");
1315
1316	  switch (eflags & EF_M68K_CF_MAC_MASK)
1317	    {
1318	    case 0:
1319	      mac = NULL;
1320	      break;
1321	    case EF_M68K_CF_MAC:
1322	      mac = "mac";
1323	      break;
1324	    case EF_M68K_CF_EMAC:
1325	      mac = "emac";
1326	      break;
1327	    case EF_M68K_CF_EMAC_B:
1328	      mac = "emac_b";
1329	      break;
1330	    }
1331	  if (mac)
1332	    fprintf (file, " [%s]", mac);
1333	}
1334    }
1335
1336  fputc ('\n', file);
1337
1338  return true;
1339}
1340
1341/* Multi-GOT support implementation design:
1342
1343   Multi-GOT starts in check_relocs hook.  There we scan all
1344   relocations of a BFD and build a local GOT (struct elf_m68k_got)
1345   for it.  If a single BFD appears to require too many GOT slots with
1346   R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1347   to user.
1348   After check_relocs has been invoked for each input BFD, we have
1349   constructed a GOT for each input BFD.
1350
1351   To minimize total number of GOTs required for a particular output BFD
1352   (as some environments support only 1 GOT per output object) we try
1353   to merge some of the GOTs to share an offset space.  Ideally [and in most
1354   cases] we end up with a single GOT.  In cases when there are too many
1355   restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1356   several GOTs, assuming the environment can handle them.
1357
1358   Partitioning is done in elf_m68k_partition_multi_got.  We start with
1359   an empty GOT and traverse bfd2got hashtable putting got_entries from
1360   local GOTs to the new 'big' one.  We do that by constructing an
1361   intermediate GOT holding all the entries the local GOT has and the big
1362   GOT lacks.  Then we check if there is room in the big GOT to accomodate
1363   all the entries from diff.  On success we add those entries to the big
1364   GOT; on failure we start the new 'big' GOT and retry the adding of
1365   entries from the local GOT.  Note that this retry will always succeed as
1366   each local GOT doesn't overflow the limits.  After partitioning we
1367   end up with each bfd assigned one of the big GOTs.  GOT entries in the
1368   big GOTs are initialized with GOT offsets.  Note that big GOTs are
1369   positioned consequently in program space and represent a single huge GOT
1370   to the outside world.
1371
1372   After that we get to elf_m68k_relocate_section.  There we
1373   adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1374   relocations to refer to appropriate [assigned to current input_bfd]
1375   big GOT.
1376
1377   Notes:
1378
1379   GOT entry type: We have several types of GOT entries.
1380   * R_8 type is used in entries for symbols that have at least one
1381   R_68K_GOT8O or R_68K_TLS_*8 relocation.  We can have at most 0x40
1382   such entries in one GOT.
1383   * R_16 type is used in entries for symbols that have at least one
1384   R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1385   We can have at most 0x4000 such entries in one GOT.
1386   * R_32 type is used in all other cases.  We can have as many
1387   such entries in one GOT as we'd like.
1388   When counting relocations we have to include the count of the smaller
1389   ranged relocations in the counts of the larger ranged ones in order
1390   to correctly detect overflow.
1391
1392   Sorting the GOT: In each GOT starting offsets are assigned to
1393   R_8 entries, which are followed by R_16 entries, and
1394   R_32 entries go at the end.  See finalize_got_offsets for details.
1395
1396   Negative GOT offsets: To double usable offset range of GOTs we use
1397   negative offsets.  As we assign entries with GOT offsets relative to
1398   start of .got section, the offset values are positive.  They become
1399   negative only in relocate_section where got->offset value is
1400   subtracted from them.
1401
1402   3 special GOT entries: There are 3 special GOT entries used internally
1403   by loader.  These entries happen to be placed to .got.plt section,
1404   so we don't do anything about them in multi-GOT support.
1405
1406   Memory management: All data except for hashtables
1407   multi_got->bfd2got and got->entries are allocated on
1408   elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1409   to most functions), so we don't need to care to free them.  At the
1410   moment of allocation hashtables are being linked into main data
1411   structure (multi_got), all pieces of which are reachable from
1412   elf_m68k_multi_got (info).  We deallocate them in
1413   elf_m68k_link_hash_table_free.  */
1414
1415/* Initialize GOT.  */
1416
1417static void
1418elf_m68k_init_got (struct elf_m68k_got *got)
1419{
1420  got->entries = NULL;
1421  got->n_slots[R_8] = 0;
1422  got->n_slots[R_16] = 0;
1423  got->n_slots[R_32] = 0;
1424  got->local_n_slots = 0;
1425  got->offset = (bfd_vma) -1;
1426}
1427
1428/* Destruct GOT.  */
1429
1430static void
1431elf_m68k_clear_got (struct elf_m68k_got *got)
1432{
1433  if (got->entries != NULL)
1434    {
1435      htab_delete (got->entries);
1436      got->entries = NULL;
1437    }
1438}
1439
1440/* Create and empty GOT structure.  INFO is the context where memory
1441   should be allocated.  */
1442
1443static struct elf_m68k_got *
1444elf_m68k_create_empty_got (struct bfd_link_info *info)
1445{
1446  struct elf_m68k_got *got;
1447
1448  got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1449  if (got == NULL)
1450    return NULL;
1451
1452  elf_m68k_init_got (got);
1453
1454  return got;
1455}
1456
1457/* Initialize KEY.  */
1458
1459static void
1460elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1461			     struct elf_link_hash_entry *h,
1462			     const bfd *abfd, unsigned long symndx,
1463			     enum elf_m68k_reloc_type reloc_type)
1464{
1465  if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1466    /* All TLS_LDM relocations share a single GOT entry.  */
1467    {
1468      key->bfd = NULL;
1469      key->symndx = 0;
1470    }
1471  else if (h != NULL)
1472    /* Global symbols are identified with their got_entry_key.  */
1473    {
1474      key->bfd = NULL;
1475      key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1476      BFD_ASSERT (key->symndx != 0);
1477    }
1478  else
1479    /* Local symbols are identified by BFD they appear in and symndx.  */
1480    {
1481      key->bfd = abfd;
1482      key->symndx = symndx;
1483    }
1484
1485  key->type = reloc_type;
1486}
1487
1488/* Calculate hash of got_entry.
1489   ??? Is it good?  */
1490
1491static hashval_t
1492elf_m68k_got_entry_hash (const void *_entry)
1493{
1494  const struct elf_m68k_got_entry_key *key;
1495
1496  key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1497
1498  return (key->symndx
1499	  + (key->bfd != NULL ? (int) key->bfd->id : -1)
1500	  + elf_m68k_reloc_got_type (key->type));
1501}
1502
1503/* Check if two got entries are equal.  */
1504
1505static int
1506elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1507{
1508  const struct elf_m68k_got_entry_key *key1;
1509  const struct elf_m68k_got_entry_key *key2;
1510
1511  key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1512  key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1513
1514  return (key1->bfd == key2->bfd
1515	  && key1->symndx == key2->symndx
1516	  && (elf_m68k_reloc_got_type (key1->type)
1517	      == elf_m68k_reloc_got_type (key2->type)));
1518}
1519
1520/* When using negative offsets, we allocate one extra R_8, one extra R_16
1521   and one extra R_32 slots to simplify handling of 2-slot entries during
1522   offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots.  */
1523
1524/* Maximal number of R_8 slots in a single GOT.  */
1525#define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO)		\
1526  (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1527   ? (0x40 - 1)							\
1528   : 0x20)
1529
1530/* Maximal number of R_8 and R_16 slots in a single GOT.  */
1531#define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO)		\
1532  (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1533   ? (0x4000 - 2)						\
1534   : 0x2000)
1535
1536/* SEARCH - simply search the hashtable, don't insert new entries or fail when
1537   the entry cannot be found.
1538   FIND_OR_CREATE - search for an existing entry, but create new if there's
1539   no such.
1540   MUST_FIND - search for an existing entry and assert that it exist.
1541   MUST_CREATE - assert that there's no such entry and create new one.  */
1542enum elf_m68k_get_entry_howto
1543  {
1544    SEARCH,
1545    FIND_OR_CREATE,
1546    MUST_FIND,
1547    MUST_CREATE
1548  };
1549
1550/* Get or create (depending on HOWTO) entry with KEY in GOT.
1551   INFO is context in which memory should be allocated (can be NULL if
1552   HOWTO is SEARCH or MUST_FIND).  */
1553
1554static struct elf_m68k_got_entry *
1555elf_m68k_get_got_entry (struct elf_m68k_got *got,
1556			const struct elf_m68k_got_entry_key *key,
1557			enum elf_m68k_get_entry_howto howto,
1558			struct bfd_link_info *info)
1559{
1560  struct elf_m68k_got_entry entry_;
1561  struct elf_m68k_got_entry *entry;
1562  void **ptr;
1563
1564  BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1565
1566  if (got->entries == NULL)
1567    /* This is the first entry in ABFD.  Initialize hashtable.  */
1568    {
1569      if (howto == SEARCH)
1570	return NULL;
1571
1572      got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1573				      (info),
1574				      elf_m68k_got_entry_hash,
1575				      elf_m68k_got_entry_eq, NULL);
1576      if (got->entries == NULL)
1577	{
1578	  bfd_set_error (bfd_error_no_memory);
1579	  return NULL;
1580	}
1581    }
1582
1583  entry_.key_ = *key;
1584  ptr = htab_find_slot (got->entries, &entry_,
1585			(howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1586			 : INSERT));
1587  if (ptr == NULL)
1588    {
1589      if (howto == SEARCH)
1590	/* Entry not found.  */
1591	return NULL;
1592
1593      if (howto == MUST_FIND)
1594	abort ();
1595
1596      /* We're out of memory.  */
1597      bfd_set_error (bfd_error_no_memory);
1598      return NULL;
1599    }
1600
1601  if (*ptr == NULL)
1602    /* We didn't find the entry and we're asked to create a new one.  */
1603    {
1604      if (howto == MUST_FIND)
1605	abort ();
1606
1607      BFD_ASSERT (howto != SEARCH);
1608
1609      entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1610      if (entry == NULL)
1611	return NULL;
1612
1613      /* Initialize new entry.  */
1614      entry->key_ = *key;
1615
1616      entry->u.s1.refcount = 0;
1617
1618      /* Mark the entry as not initialized.  */
1619      entry->key_.type = R_68K_max;
1620
1621      *ptr = entry;
1622    }
1623  else
1624    /* We found the entry.  */
1625    {
1626      BFD_ASSERT (howto != MUST_CREATE);
1627
1628      entry = *ptr;
1629    }
1630
1631  return entry;
1632}
1633
1634/* Update GOT counters when merging entry of WAS type with entry of NEW type.
1635   Return the value to which ENTRY's type should be set.  */
1636
1637static enum elf_m68k_reloc_type
1638elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1639				enum elf_m68k_reloc_type was,
1640				enum elf_m68k_reloc_type new_reloc)
1641{
1642  enum elf_m68k_got_offset_size was_size;
1643  enum elf_m68k_got_offset_size new_size;
1644  bfd_vma n_slots;
1645
1646  if (was == R_68K_max)
1647    /* The type of the entry is not initialized yet.  */
1648    {
1649      /* Update all got->n_slots counters, including n_slots[R_32].  */
1650      was_size = R_LAST;
1651
1652      was = new_reloc;
1653    }
1654  else
1655    {
1656      /* !!! We, probably, should emit an error rather then fail on assert
1657	 in such a case.  */
1658      BFD_ASSERT (elf_m68k_reloc_got_type (was)
1659		  == elf_m68k_reloc_got_type (new_reloc));
1660
1661      was_size = elf_m68k_reloc_got_offset_size (was);
1662    }
1663
1664  new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1665  n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1666
1667  while (was_size > new_size)
1668    {
1669      --was_size;
1670      got->n_slots[was_size] += n_slots;
1671    }
1672
1673  if (new_reloc > was)
1674    /* Relocations are ordered from bigger got offset size to lesser,
1675       so choose the relocation type with lesser offset size.  */
1676    was = new_reloc;
1677
1678  return was;
1679}
1680
1681/* Add new or update existing entry to GOT.
1682   H, ABFD, TYPE and SYMNDX is data for the entry.
1683   INFO is a context where memory should be allocated.  */
1684
1685static struct elf_m68k_got_entry *
1686elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1687			   struct elf_link_hash_entry *h,
1688			   const bfd *abfd,
1689			   enum elf_m68k_reloc_type reloc_type,
1690			   unsigned long symndx,
1691			   struct bfd_link_info *info)
1692{
1693  struct elf_m68k_got_entry_key key_;
1694  struct elf_m68k_got_entry *entry;
1695
1696  if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1697    elf_m68k_hash_entry (h)->got_entry_key
1698      = elf_m68k_multi_got (info)->global_symndx++;
1699
1700  elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1701
1702  entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1703  if (entry == NULL)
1704    return NULL;
1705
1706  /* Determine entry's type and update got->n_slots counters.  */
1707  entry->key_.type = elf_m68k_update_got_entry_type (got,
1708						     entry->key_.type,
1709						     reloc_type);
1710
1711  /* Update refcount.  */
1712  ++entry->u.s1.refcount;
1713
1714  if (entry->u.s1.refcount == 1)
1715    /* We see this entry for the first time.  */
1716    {
1717      if (entry->key_.bfd != NULL)
1718	got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1719    }
1720
1721  BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1722
1723  if ((got->n_slots[R_8]
1724       > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1725      || (got->n_slots[R_16]
1726	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1727    /* This BFD has too many relocation.  */
1728    {
1729      if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1730	/* xgettext:c-format */
1731	_bfd_error_handler (_("%pB: GOT overflow: "
1732			      "number of relocations with 8-bit "
1733			      "offset > %d"),
1734			    abfd,
1735			    ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1736      else
1737	/* xgettext:c-format */
1738	_bfd_error_handler (_("%pB: GOT overflow: "
1739			      "number of relocations with 8- or 16-bit "
1740			      "offset > %d"),
1741			    abfd,
1742			    ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1743
1744      return NULL;
1745    }
1746
1747  return entry;
1748}
1749
1750/* Compute the hash value of the bfd in a bfd2got hash entry.  */
1751
1752static hashval_t
1753elf_m68k_bfd2got_entry_hash (const void *entry)
1754{
1755  const struct elf_m68k_bfd2got_entry *e;
1756
1757  e = (const struct elf_m68k_bfd2got_entry *) entry;
1758
1759  return e->bfd->id;
1760}
1761
1762/* Check whether two hash entries have the same bfd.  */
1763
1764static int
1765elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1766{
1767  const struct elf_m68k_bfd2got_entry *e1;
1768  const struct elf_m68k_bfd2got_entry *e2;
1769
1770  e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1771  e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1772
1773  return e1->bfd == e2->bfd;
1774}
1775
1776/* Destruct a bfd2got entry.  */
1777
1778static void
1779elf_m68k_bfd2got_entry_del (void *_entry)
1780{
1781  struct elf_m68k_bfd2got_entry *entry;
1782
1783  entry = (struct elf_m68k_bfd2got_entry *) _entry;
1784
1785  BFD_ASSERT (entry->got != NULL);
1786  elf_m68k_clear_got (entry->got);
1787}
1788
1789/* Find existing or create new (depending on HOWTO) bfd2got entry in
1790   MULTI_GOT.  ABFD is the bfd we need a GOT for.  INFO is a context where
1791   memory should be allocated.  */
1792
1793static struct elf_m68k_bfd2got_entry *
1794elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1795			    const bfd *abfd,
1796			    enum elf_m68k_get_entry_howto howto,
1797			    struct bfd_link_info *info)
1798{
1799  struct elf_m68k_bfd2got_entry entry_;
1800  void **ptr;
1801  struct elf_m68k_bfd2got_entry *entry;
1802
1803  BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1804
1805  if (multi_got->bfd2got == NULL)
1806    /* This is the first GOT.  Initialize bfd2got.  */
1807    {
1808      if (howto == SEARCH)
1809	return NULL;
1810
1811      multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1812					    elf_m68k_bfd2got_entry_eq,
1813					    elf_m68k_bfd2got_entry_del);
1814      if (multi_got->bfd2got == NULL)
1815	{
1816	  bfd_set_error (bfd_error_no_memory);
1817	  return NULL;
1818	}
1819    }
1820
1821  entry_.bfd = abfd;
1822  ptr = htab_find_slot (multi_got->bfd2got, &entry_,
1823			(howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1824			 : INSERT));
1825  if (ptr == NULL)
1826    {
1827      if (howto == SEARCH)
1828	/* Entry not found.  */
1829	return NULL;
1830
1831      if (howto == MUST_FIND)
1832	abort ();
1833
1834      /* We're out of memory.  */
1835      bfd_set_error (bfd_error_no_memory);
1836      return NULL;
1837    }
1838
1839  if (*ptr == NULL)
1840    /* Entry was not found.  Create new one.  */
1841    {
1842      if (howto == MUST_FIND)
1843	abort ();
1844
1845      BFD_ASSERT (howto != SEARCH);
1846
1847      entry = ((struct elf_m68k_bfd2got_entry *)
1848	       bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1849      if (entry == NULL)
1850	return NULL;
1851
1852      entry->bfd = abfd;
1853
1854      entry->got = elf_m68k_create_empty_got (info);
1855      if (entry->got == NULL)
1856	return NULL;
1857
1858      *ptr = entry;
1859    }
1860  else
1861    {
1862      BFD_ASSERT (howto != MUST_CREATE);
1863
1864      /* Return existing entry.  */
1865      entry = *ptr;
1866    }
1867
1868  return entry;
1869}
1870
1871struct elf_m68k_can_merge_gots_arg
1872{
1873  /* A current_got that we constructing a DIFF against.  */
1874  struct elf_m68k_got *big;
1875
1876  /* GOT holding entries not present or that should be changed in
1877     BIG.  */
1878  struct elf_m68k_got *diff;
1879
1880  /* Context where to allocate memory.  */
1881  struct bfd_link_info *info;
1882
1883  /* Error flag.  */
1884  bool error_p;
1885};
1886
1887/* Process a single entry from the small GOT to see if it should be added
1888   or updated in the big GOT.  */
1889
1890static int
1891elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1892{
1893  const struct elf_m68k_got_entry *entry1;
1894  struct elf_m68k_can_merge_gots_arg *arg;
1895  const struct elf_m68k_got_entry *entry2;
1896  enum elf_m68k_reloc_type type;
1897
1898  entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1899  arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1900
1901  entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1902
1903  if (entry2 != NULL)
1904    /* We found an existing entry.  Check if we should update it.  */
1905    {
1906      type = elf_m68k_update_got_entry_type (arg->diff,
1907					     entry2->key_.type,
1908					     entry1->key_.type);
1909
1910      if (type == entry2->key_.type)
1911	/* ENTRY1 doesn't update data in ENTRY2.  Skip it.
1912	   To skip creation of difference entry we use the type,
1913	   which we won't see in GOT entries for sure.  */
1914	type = R_68K_max;
1915    }
1916  else
1917    /* We didn't find the entry.  Add entry1 to DIFF.  */
1918    {
1919      BFD_ASSERT (entry1->key_.type != R_68K_max);
1920
1921      type = elf_m68k_update_got_entry_type (arg->diff,
1922					     R_68K_max, entry1->key_.type);
1923
1924      if (entry1->key_.bfd != NULL)
1925	arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1926    }
1927
1928  if (type != R_68K_max)
1929    /* Create an entry in DIFF.  */
1930    {
1931      struct elf_m68k_got_entry *entry;
1932
1933      entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1934				      arg->info);
1935      if (entry == NULL)
1936	{
1937	  arg->error_p = true;
1938	  return 0;
1939	}
1940
1941      entry->key_.type = type;
1942    }
1943
1944  return 1;
1945}
1946
1947/* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1948   Construct DIFF GOT holding the entries which should be added or updated
1949   in BIG GOT to accumulate information from SMALL.
1950   INFO is the context where memory should be allocated.  */
1951
1952static bool
1953elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1954			 const struct elf_m68k_got *small,
1955			 struct bfd_link_info *info,
1956			 struct elf_m68k_got *diff)
1957{
1958  struct elf_m68k_can_merge_gots_arg arg_;
1959
1960  BFD_ASSERT (small->offset == (bfd_vma) -1);
1961
1962  arg_.big = big;
1963  arg_.diff = diff;
1964  arg_.info = info;
1965  arg_.error_p = false;
1966  htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1967  if (arg_.error_p)
1968    {
1969      diff->offset = 0;
1970      return false;
1971    }
1972
1973  /* Check for overflow.  */
1974  if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1975       > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1976      || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1977	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1978    return false;
1979
1980  return true;
1981}
1982
1983struct elf_m68k_merge_gots_arg
1984{
1985  /* The BIG got.  */
1986  struct elf_m68k_got *big;
1987
1988  /* Context where memory should be allocated.  */
1989  struct bfd_link_info *info;
1990
1991  /* Error flag.  */
1992  bool error_p;
1993};
1994
1995/* Process a single entry from DIFF got.  Add or update corresponding
1996   entry in the BIG got.  */
1997
1998static int
1999elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
2000{
2001  const struct elf_m68k_got_entry *from;
2002  struct elf_m68k_merge_gots_arg *arg;
2003  struct elf_m68k_got_entry *to;
2004
2005  from = (const struct elf_m68k_got_entry *) *entry_ptr;
2006  arg = (struct elf_m68k_merge_gots_arg *) _arg;
2007
2008  to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
2009			       arg->info);
2010  if (to == NULL)
2011    {
2012      arg->error_p = true;
2013      return 0;
2014    }
2015
2016  BFD_ASSERT (to->u.s1.refcount == 0);
2017  /* All we need to merge is TYPE.  */
2018  to->key_.type = from->key_.type;
2019
2020  return 1;
2021}
2022
2023/* Merge data from DIFF to BIG.  INFO is context where memory should be
2024   allocated.  */
2025
2026static bool
2027elf_m68k_merge_gots (struct elf_m68k_got *big,
2028		     struct elf_m68k_got *diff,
2029		     struct bfd_link_info *info)
2030{
2031  if (diff->entries != NULL)
2032    /* DIFF is not empty.  Merge it into BIG GOT.  */
2033    {
2034      struct elf_m68k_merge_gots_arg arg_;
2035
2036      /* Merge entries.  */
2037      arg_.big = big;
2038      arg_.info = info;
2039      arg_.error_p = false;
2040      htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
2041      if (arg_.error_p)
2042	return false;
2043
2044      /* Merge counters.  */
2045      big->n_slots[R_8] += diff->n_slots[R_8];
2046      big->n_slots[R_16] += diff->n_slots[R_16];
2047      big->n_slots[R_32] += diff->n_slots[R_32];
2048      big->local_n_slots += diff->local_n_slots;
2049    }
2050  else
2051    /* DIFF is empty.  */
2052    {
2053      BFD_ASSERT (diff->n_slots[R_8] == 0);
2054      BFD_ASSERT (diff->n_slots[R_16] == 0);
2055      BFD_ASSERT (diff->n_slots[R_32] == 0);
2056      BFD_ASSERT (diff->local_n_slots == 0);
2057    }
2058
2059  BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
2060	      || ((big->n_slots[R_8]
2061		   <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2062		  && (big->n_slots[R_16]
2063		      <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2064
2065  return true;
2066}
2067
2068struct elf_m68k_finalize_got_offsets_arg
2069{
2070  /* Ranges of the offsets for GOT entries.
2071     R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2072     R_x is R_8, R_16 and R_32.  */
2073  bfd_vma *offset1;
2074  bfd_vma *offset2;
2075
2076  /* Mapping from global symndx to global symbols.
2077     This is used to build lists of got entries for global symbols.  */
2078  struct elf_m68k_link_hash_entry **symndx2h;
2079
2080  bfd_vma n_ldm_entries;
2081};
2082
2083/* Assign ENTRY an offset.  Build list of GOT entries for global symbols
2084   along the way.  */
2085
2086static int
2087elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2088{
2089  struct elf_m68k_got_entry *entry;
2090  struct elf_m68k_finalize_got_offsets_arg *arg;
2091
2092  enum elf_m68k_got_offset_size got_offset_size;
2093  bfd_vma entry_size;
2094
2095  entry = (struct elf_m68k_got_entry *) *entry_ptr;
2096  arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2097
2098  /* This should be a fresh entry created in elf_m68k_can_merge_gots.  */
2099  BFD_ASSERT (entry->u.s1.refcount == 0);
2100
2101  /* Get GOT offset size for the entry .  */
2102  got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2103
2104  /* Calculate entry size in bytes.  */
2105  entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2106
2107  /* Check if we should switch to negative range of the offsets. */
2108  if (arg->offset1[got_offset_size] + entry_size
2109      > arg->offset2[got_offset_size])
2110    {
2111      /* Verify that this is the only switch to negative range for
2112	 got_offset_size.  If this assertion fails, then we've miscalculated
2113	 range for got_offset_size entries in
2114	 elf_m68k_finalize_got_offsets.  */
2115      BFD_ASSERT (arg->offset2[got_offset_size]
2116		  != arg->offset2[-(int) got_offset_size - 1]);
2117
2118      /* Switch.  */
2119      arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2120      arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2121
2122      /* Verify that now we have enough room for the entry.  */
2123      BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2124		  <= arg->offset2[got_offset_size]);
2125    }
2126
2127  /* Assign offset to entry.  */
2128  entry->u.s2.offset = arg->offset1[got_offset_size];
2129  arg->offset1[got_offset_size] += entry_size;
2130
2131  if (entry->key_.bfd == NULL)
2132    /* Hook up this entry into the list of got_entries of H.  */
2133    {
2134      struct elf_m68k_link_hash_entry *h;
2135
2136      h = arg->symndx2h[entry->key_.symndx];
2137      if (h != NULL)
2138	{
2139	  entry->u.s2.next = h->glist;
2140	  h->glist = entry;
2141	}
2142      else
2143	/* This should be the entry for TLS_LDM relocation then.  */
2144	{
2145	  BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2146		       == R_68K_TLS_LDM32)
2147		      && entry->key_.symndx == 0);
2148
2149	  ++arg->n_ldm_entries;
2150	}
2151    }
2152  else
2153    /* This entry is for local symbol.  */
2154    entry->u.s2.next = NULL;
2155
2156  return 1;
2157}
2158
2159/* Assign offsets within GOT.  USE_NEG_GOT_OFFSETS_P indicates if we
2160   should use negative offsets.
2161   Build list of GOT entries for global symbols along the way.
2162   SYMNDX2H is mapping from global symbol indices to actual
2163   global symbols.
2164   Return offset at which next GOT should start.  */
2165
2166static void
2167elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2168			       bool use_neg_got_offsets_p,
2169			       struct elf_m68k_link_hash_entry **symndx2h,
2170			       bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2171{
2172  struct elf_m68k_finalize_got_offsets_arg arg_;
2173  bfd_vma offset1_[2 * R_LAST];
2174  bfd_vma offset2_[2 * R_LAST];
2175  int i;
2176  bfd_vma start_offset;
2177
2178  BFD_ASSERT (got->offset != (bfd_vma) -1);
2179
2180  /* We set entry offsets relative to the .got section (and not the
2181     start of a particular GOT), so that we can use them in
2182     finish_dynamic_symbol without needing to know the GOT which they come
2183     from.  */
2184
2185  /* Put offset1 in the middle of offset1_, same for offset2.  */
2186  arg_.offset1 = offset1_ + R_LAST;
2187  arg_.offset2 = offset2_ + R_LAST;
2188
2189  start_offset = got->offset;
2190
2191  if (use_neg_got_offsets_p)
2192    /* Setup both negative and positive ranges for R_8, R_16 and R_32.  */
2193    i = -(int) R_32 - 1;
2194  else
2195    /* Setup positives ranges for R_8, R_16 and R_32.  */
2196    i = (int) R_8;
2197
2198  for (; i <= (int) R_32; ++i)
2199    {
2200      int j;
2201      size_t n;
2202
2203      /* Set beginning of the range of offsets I.  */
2204      arg_.offset1[i] = start_offset;
2205
2206      /* Calculate number of slots that require I offsets.  */
2207      j = (i >= 0) ? i : -i - 1;
2208      n = (j >= 1) ? got->n_slots[j - 1] : 0;
2209      n = got->n_slots[j] - n;
2210
2211      if (use_neg_got_offsets_p && n != 0)
2212	{
2213	  if (i < 0)
2214	    /* We first fill the positive side of the range, so we might
2215	       end up with one empty slot at that side when we can't fit
2216	       whole 2-slot entry.  Account for that at negative side of
2217	       the interval with one additional entry.  */
2218	    n = n / 2 + 1;
2219	  else
2220	    /* When the number of slots is odd, make positive side of the
2221	       range one entry bigger.  */
2222	    n = (n + 1) / 2;
2223	}
2224
2225      /* N is the number of slots that require I offsets.
2226	 Calculate length of the range for I offsets.  */
2227      n = 4 * n;
2228
2229      /* Set end of the range.  */
2230      arg_.offset2[i] = start_offset + n;
2231
2232      start_offset = arg_.offset2[i];
2233    }
2234
2235  if (!use_neg_got_offsets_p)
2236    /* Make sure that if we try to switch to negative offsets in
2237       elf_m68k_finalize_got_offsets_1, the assert therein will catch
2238       the bug.  */
2239    for (i = R_8; i <= R_32; ++i)
2240      arg_.offset2[-i - 1] = arg_.offset2[i];
2241
2242  /* Setup got->offset.  offset1[R_8] is either in the middle or at the
2243     beginning of GOT depending on use_neg_got_offsets_p.  */
2244  got->offset = arg_.offset1[R_8];
2245
2246  arg_.symndx2h = symndx2h;
2247  arg_.n_ldm_entries = 0;
2248
2249  /* Assign offsets.  */
2250  htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2251
2252  /* Check offset ranges we have actually assigned.  */
2253  for (i = (int) R_8; i <= (int) R_32; ++i)
2254    BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2255
2256  *final_offset = start_offset;
2257  *n_ldm_entries = arg_.n_ldm_entries;
2258}
2259
2260struct elf_m68k_partition_multi_got_arg
2261{
2262  /* The GOT we are adding entries to.  Aka big got.  */
2263  struct elf_m68k_got *current_got;
2264
2265  /* Offset to assign the next CURRENT_GOT.  */
2266  bfd_vma offset;
2267
2268  /* Context where memory should be allocated.  */
2269  struct bfd_link_info *info;
2270
2271  /* Total number of slots in the .got section.
2272     This is used to calculate size of the .got and .rela.got sections.  */
2273  bfd_vma n_slots;
2274
2275  /* Difference in numbers of allocated slots in the .got section
2276     and necessary relocations in the .rela.got section.
2277     This is used to calculate size of the .rela.got section.  */
2278  bfd_vma slots_relas_diff;
2279
2280  /* Error flag.  */
2281  bool error_p;
2282
2283  /* Mapping from global symndx to global symbols.
2284     This is used to build lists of got entries for global symbols.  */
2285  struct elf_m68k_link_hash_entry **symndx2h;
2286};
2287
2288static void
2289elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2290{
2291  bfd_vma n_ldm_entries;
2292
2293  elf_m68k_finalize_got_offsets (arg->current_got,
2294				 (elf_m68k_hash_table (arg->info)
2295				  ->use_neg_got_offsets_p),
2296				 arg->symndx2h,
2297				 &arg->offset, &n_ldm_entries);
2298
2299  arg->n_slots += arg->current_got->n_slots[R_32];
2300
2301  if (!bfd_link_pic (arg->info))
2302    /* If we are generating a shared object, we need to
2303       output a R_68K_RELATIVE reloc so that the dynamic
2304       linker can adjust this GOT entry.  Overwise we
2305       don't need space in .rela.got for local symbols.  */
2306    arg->slots_relas_diff += arg->current_got->local_n_slots;
2307
2308  /* @LDM relocations require a 2-slot GOT entry, but only
2309     one relocation.  Account for that.  */
2310  arg->slots_relas_diff += n_ldm_entries;
2311
2312  BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2313}
2314
2315
2316/* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2317   or start a new CURRENT_GOT.  */
2318
2319static int
2320elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2321{
2322  struct elf_m68k_bfd2got_entry *entry;
2323  struct elf_m68k_partition_multi_got_arg *arg;
2324  struct elf_m68k_got *got;
2325  struct elf_m68k_got diff_;
2326  struct elf_m68k_got *diff;
2327
2328  entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2329  arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2330
2331  got = entry->got;
2332  BFD_ASSERT (got != NULL);
2333  BFD_ASSERT (got->offset == (bfd_vma) -1);
2334
2335  diff = NULL;
2336
2337  if (arg->current_got != NULL)
2338    /* Construct diff.  */
2339    {
2340      diff = &diff_;
2341      elf_m68k_init_got (diff);
2342
2343      if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2344	{
2345	  if (diff->offset == 0)
2346	    /* Offset set to 0 in the diff_ indicates an error.  */
2347	    {
2348	      arg->error_p = true;
2349	      goto final_return;
2350	    }
2351
2352	  if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2353	    {
2354	      elf_m68k_clear_got (diff);
2355	      /* Schedule to finish up current_got and start new one.  */
2356	      diff = NULL;
2357	    }
2358	  /* else
2359	     Merge GOTs no matter what.  If big GOT overflows,
2360	     we'll fail in relocate_section due to truncated relocations.
2361
2362	     ??? May be fail earlier?  E.g., in can_merge_gots.  */
2363	}
2364    }
2365  else
2366    /* Diff of got against empty current_got is got itself.  */
2367    {
2368      /* Create empty current_got to put subsequent GOTs to.  */
2369      arg->current_got = elf_m68k_create_empty_got (arg->info);
2370      if (arg->current_got == NULL)
2371	{
2372	  arg->error_p = true;
2373	  goto final_return;
2374	}
2375
2376      arg->current_got->offset = arg->offset;
2377
2378      diff = got;
2379    }
2380
2381  if (diff != NULL)
2382    {
2383      if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2384	{
2385	  arg->error_p = true;
2386	  goto final_return;
2387	}
2388
2389      /* Now we can free GOT.  */
2390      elf_m68k_clear_got (got);
2391
2392      entry->got = arg->current_got;
2393    }
2394  else
2395    {
2396      /* Finish up current_got.  */
2397      elf_m68k_partition_multi_got_2 (arg);
2398
2399      /* Schedule to start a new current_got.  */
2400      arg->current_got = NULL;
2401
2402      /* Retry.  */
2403      if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2404	{
2405	  BFD_ASSERT (arg->error_p);
2406	  goto final_return;
2407	}
2408    }
2409
2410 final_return:
2411  if (diff != NULL)
2412    elf_m68k_clear_got (diff);
2413
2414  return !arg->error_p;
2415}
2416
2417/* Helper function to build symndx2h mapping.  */
2418
2419static bool
2420elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2421			  void *_arg)
2422{
2423  struct elf_m68k_link_hash_entry *h;
2424
2425  h = elf_m68k_hash_entry (_h);
2426
2427  if (h->got_entry_key != 0)
2428    /* H has at least one entry in the GOT.  */
2429    {
2430      struct elf_m68k_partition_multi_got_arg *arg;
2431
2432      arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2433
2434      BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2435      arg->symndx2h[h->got_entry_key] = h;
2436    }
2437
2438  return true;
2439}
2440
2441/* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2442   lists of GOT entries for global symbols.
2443   Calculate sizes of .got and .rela.got sections.  */
2444
2445static bool
2446elf_m68k_partition_multi_got (struct bfd_link_info *info)
2447{
2448  struct elf_m68k_multi_got *multi_got;
2449  struct elf_m68k_partition_multi_got_arg arg_;
2450
2451  multi_got = elf_m68k_multi_got (info);
2452
2453  arg_.current_got = NULL;
2454  arg_.offset = 0;
2455  arg_.info = info;
2456  arg_.n_slots = 0;
2457  arg_.slots_relas_diff = 0;
2458  arg_.error_p = false;
2459
2460  if (multi_got->bfd2got != NULL)
2461    {
2462      /* Initialize symndx2h mapping.  */
2463      {
2464	arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2465				     * sizeof (*arg_.symndx2h));
2466	if (arg_.symndx2h == NULL)
2467	  return false;
2468
2469	elf_link_hash_traverse (elf_hash_table (info),
2470				elf_m68k_init_symndx2h_1, &arg_);
2471      }
2472
2473      /* Partition.  */
2474      htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2475		     &arg_);
2476      if (arg_.error_p)
2477	{
2478	  free (arg_.symndx2h);
2479	  arg_.symndx2h = NULL;
2480
2481	  return false;
2482	}
2483
2484      /* Finish up last current_got.  */
2485      elf_m68k_partition_multi_got_2 (&arg_);
2486
2487      free (arg_.symndx2h);
2488    }
2489
2490  if (elf_hash_table (info)->dynobj != NULL)
2491    /* Set sizes of .got and .rela.got sections.  */
2492    {
2493      asection *s;
2494
2495      s = elf_hash_table (info)->sgot;
2496      if (s != NULL)
2497	s->size = arg_.offset;
2498      else
2499	BFD_ASSERT (arg_.offset == 0);
2500
2501      BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2502      arg_.n_slots -= arg_.slots_relas_diff;
2503
2504      s = elf_hash_table (info)->srelgot;
2505      if (s != NULL)
2506	s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2507      else
2508	BFD_ASSERT (arg_.n_slots == 0);
2509    }
2510  else
2511    BFD_ASSERT (multi_got->bfd2got == NULL);
2512
2513  return true;
2514}
2515
2516/* Copy any information related to dynamic linking from a pre-existing
2517   symbol to a newly created symbol.  Also called to copy flags and
2518   other back-end info to a weakdef, in which case the symbol is not
2519   newly created and plt/got refcounts and dynamic indices should not
2520   be copied.  */
2521
2522static void
2523elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2524			       struct elf_link_hash_entry *_dir,
2525			       struct elf_link_hash_entry *_ind)
2526{
2527  struct elf_m68k_link_hash_entry *dir;
2528  struct elf_m68k_link_hash_entry *ind;
2529
2530  _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2531
2532  if (_ind->root.type != bfd_link_hash_indirect)
2533    return;
2534
2535  dir = elf_m68k_hash_entry (_dir);
2536  ind = elf_m68k_hash_entry (_ind);
2537
2538  /* Any absolute non-dynamic relocations against an indirect or weak
2539     definition will be against the target symbol.  */
2540  _dir->non_got_ref |= _ind->non_got_ref;
2541
2542  /* We might have a direct symbol already having entries in the GOTs.
2543     Update its key only in case indirect symbol has GOT entries and
2544     assert that both indirect and direct symbols don't have GOT entries
2545     at the same time.  */
2546  if (ind->got_entry_key != 0)
2547    {
2548      BFD_ASSERT (dir->got_entry_key == 0);
2549      /* Assert that GOTs aren't partitioned yet.  */
2550      BFD_ASSERT (ind->glist == NULL);
2551
2552      dir->got_entry_key = ind->got_entry_key;
2553      ind->got_entry_key = 0;
2554    }
2555}
2556
2557/* Look through the relocs for a section during the first phase, and
2558   allocate space in the global offset table or procedure linkage
2559   table.  */
2560
2561static bool
2562elf_m68k_check_relocs (bfd *abfd,
2563		       struct bfd_link_info *info,
2564		       asection *sec,
2565		       const Elf_Internal_Rela *relocs)
2566{
2567  bfd *dynobj;
2568  Elf_Internal_Shdr *symtab_hdr;
2569  struct elf_link_hash_entry **sym_hashes;
2570  const Elf_Internal_Rela *rel;
2571  const Elf_Internal_Rela *rel_end;
2572  asection *sreloc;
2573  struct elf_m68k_got *got;
2574
2575  if (bfd_link_relocatable (info))
2576    return true;
2577
2578  dynobj = elf_hash_table (info)->dynobj;
2579  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2580  sym_hashes = elf_sym_hashes (abfd);
2581
2582  sreloc = NULL;
2583
2584  got = NULL;
2585
2586  rel_end = relocs + sec->reloc_count;
2587  for (rel = relocs; rel < rel_end; rel++)
2588    {
2589      unsigned long r_symndx;
2590      struct elf_link_hash_entry *h;
2591
2592      r_symndx = ELF32_R_SYM (rel->r_info);
2593
2594      if (r_symndx < symtab_hdr->sh_info)
2595	h = NULL;
2596      else
2597	{
2598	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2599	  while (h->root.type == bfd_link_hash_indirect
2600		 || h->root.type == bfd_link_hash_warning)
2601	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2602	}
2603
2604      switch (ELF32_R_TYPE (rel->r_info))
2605	{
2606	case R_68K_GOT8:
2607	case R_68K_GOT16:
2608	case R_68K_GOT32:
2609	  if (h != NULL
2610	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2611	    break;
2612	  /* Fall through.  */
2613
2614	  /* Relative GOT relocations.  */
2615	case R_68K_GOT8O:
2616	case R_68K_GOT16O:
2617	case R_68K_GOT32O:
2618	  /* Fall through.  */
2619
2620	  /* TLS relocations.  */
2621	case R_68K_TLS_GD8:
2622	case R_68K_TLS_GD16:
2623	case R_68K_TLS_GD32:
2624	case R_68K_TLS_LDM8:
2625	case R_68K_TLS_LDM16:
2626	case R_68K_TLS_LDM32:
2627	case R_68K_TLS_IE8:
2628	case R_68K_TLS_IE16:
2629	case R_68K_TLS_IE32:
2630
2631	case R_68K_TLS_TPREL32:
2632	case R_68K_TLS_DTPREL32:
2633
2634	  if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2635	      && bfd_link_pic (info))
2636	    /* Do the special chorus for libraries with static TLS.  */
2637	    info->flags |= DF_STATIC_TLS;
2638
2639	  /* This symbol requires a global offset table entry.  */
2640
2641	  if (dynobj == NULL)
2642	    {
2643	      /* Create the .got section.  */
2644	      elf_hash_table (info)->dynobj = dynobj = abfd;
2645	      if (!_bfd_elf_create_got_section (dynobj, info))
2646		return false;
2647	    }
2648
2649	  if (got == NULL)
2650	    {
2651	      struct elf_m68k_bfd2got_entry *bfd2got_entry;
2652
2653	      bfd2got_entry
2654		= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2655					      abfd, FIND_OR_CREATE, info);
2656	      if (bfd2got_entry == NULL)
2657		return false;
2658
2659	      got = bfd2got_entry->got;
2660	      BFD_ASSERT (got != NULL);
2661	    }
2662
2663	  {
2664	    struct elf_m68k_got_entry *got_entry;
2665
2666	    /* Add entry to got.  */
2667	    got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2668						   ELF32_R_TYPE (rel->r_info),
2669						   r_symndx, info);
2670	    if (got_entry == NULL)
2671	      return false;
2672
2673	    if (got_entry->u.s1.refcount == 1)
2674	      {
2675		/* Make sure this symbol is output as a dynamic symbol.  */
2676		if (h != NULL
2677		    && h->dynindx == -1
2678		    && !h->forced_local)
2679		  {
2680		    if (!bfd_elf_link_record_dynamic_symbol (info, h))
2681		      return false;
2682		  }
2683	      }
2684	  }
2685
2686	  break;
2687
2688	case R_68K_PLT8:
2689	case R_68K_PLT16:
2690	case R_68K_PLT32:
2691	  /* This symbol requires a procedure linkage table entry.  We
2692	     actually build the entry in adjust_dynamic_symbol,
2693	     because this might be a case of linking PIC code which is
2694	     never referenced by a dynamic object, in which case we
2695	     don't need to generate a procedure linkage table entry
2696	     after all.  */
2697
2698	  /* If this is a local symbol, we resolve it directly without
2699	     creating a procedure linkage table entry.  */
2700	  if (h == NULL)
2701	    continue;
2702
2703	  h->needs_plt = 1;
2704	  h->plt.refcount++;
2705	  break;
2706
2707	case R_68K_PLT8O:
2708	case R_68K_PLT16O:
2709	case R_68K_PLT32O:
2710	  /* This symbol requires a procedure linkage table entry.  */
2711
2712	  if (h == NULL)
2713	    {
2714	      /* It does not make sense to have this relocation for a
2715		 local symbol.  FIXME: does it?  How to handle it if
2716		 it does make sense?  */
2717	      bfd_set_error (bfd_error_bad_value);
2718	      return false;
2719	    }
2720
2721	  /* Make sure this symbol is output as a dynamic symbol.  */
2722	  if (h->dynindx == -1
2723	      && !h->forced_local)
2724	    {
2725	      if (!bfd_elf_link_record_dynamic_symbol (info, h))
2726		return false;
2727	    }
2728
2729	  h->needs_plt = 1;
2730	  h->plt.refcount++;
2731	  break;
2732
2733	case R_68K_PC8:
2734	case R_68K_PC16:
2735	case R_68K_PC32:
2736	  /* If we are creating a shared library and this is not a local
2737	     symbol, we need to copy the reloc into the shared library.
2738	     However when linking with -Bsymbolic and this is a global
2739	     symbol which is defined in an object we are including in the
2740	     link (i.e., DEF_REGULAR is set), then we can resolve the
2741	     reloc directly.  At this point we have not seen all the input
2742	     files, so it is possible that DEF_REGULAR is not set now but
2743	     will be set later (it is never cleared).  We account for that
2744	     possibility below by storing information in the
2745	     pcrel_relocs_copied field of the hash table entry.  */
2746	  if (!(bfd_link_pic (info)
2747		&& (sec->flags & SEC_ALLOC) != 0
2748		&& h != NULL
2749		&& (!SYMBOLIC_BIND (info, h)
2750		    || h->root.type == bfd_link_hash_defweak
2751		    || !h->def_regular)))
2752	    {
2753	      if (h != NULL)
2754		{
2755		  /* Make sure a plt entry is created for this symbol if
2756		     it turns out to be a function defined by a dynamic
2757		     object.  */
2758		  h->plt.refcount++;
2759		}
2760	      break;
2761	    }
2762	  /* Fall through.  */
2763	case R_68K_8:
2764	case R_68K_16:
2765	case R_68K_32:
2766	  /* We don't need to handle relocs into sections not going into
2767	     the "real" output.  */
2768	  if ((sec->flags & SEC_ALLOC) == 0)
2769	      break;
2770
2771	  if (h != NULL)
2772	    {
2773	      /* Make sure a plt entry is created for this symbol if it
2774		 turns out to be a function defined by a dynamic object.  */
2775	      h->plt.refcount++;
2776
2777	      if (bfd_link_executable (info))
2778		/* This symbol needs a non-GOT reference.  */
2779		h->non_got_ref = 1;
2780	    }
2781
2782	  /* If we are creating a shared library, we need to copy the
2783	     reloc into the shared library.  */
2784	  if (bfd_link_pic (info)
2785	      && (h == NULL
2786		  || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2787	    {
2788	      /* When creating a shared object, we must copy these
2789		 reloc types into the output file.  We create a reloc
2790		 section in dynobj and make room for this reloc.  */
2791	      if (sreloc == NULL)
2792		{
2793		  sreloc = _bfd_elf_make_dynamic_reloc_section
2794		    (sec, dynobj, 2, abfd, /*rela?*/ true);
2795
2796		  if (sreloc == NULL)
2797		    return false;
2798		}
2799
2800	      if (sec->flags & SEC_READONLY
2801		  /* Don't set DF_TEXTREL yet for PC relative
2802		     relocations, they might be discarded later.  */
2803		  && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2804		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2805		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2806		{
2807		  if (bfd_link_textrel_check(info))
2808		    (*_bfd_error_handler)
2809		      (_("warning: dynamic relocation to `%s' in readonly section `%s'"),
2810		      h->root.root.string, sec->name);
2811		  info->flags |= DF_TEXTREL;
2812		}
2813
2814	      sreloc->size += sizeof (Elf32_External_Rela);
2815
2816	      /* We count the number of PC relative relocations we have
2817		 entered for this symbol, so that we can discard them
2818		 again if, in the -Bsymbolic case, the symbol is later
2819		 defined by a regular object, or, in the normal shared
2820		 case, the symbol is forced to be local.  Note that this
2821		 function is only called if we are using an m68kelf linker
2822		 hash table, which means that h is really a pointer to an
2823		 elf_m68k_link_hash_entry.  */
2824	      if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2825		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2826		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2827		{
2828		  struct elf_m68k_pcrel_relocs_copied *p;
2829		  struct elf_m68k_pcrel_relocs_copied **head;
2830
2831		  if (h != NULL)
2832		    {
2833		      struct elf_m68k_link_hash_entry *eh
2834			= elf_m68k_hash_entry (h);
2835		      head = &eh->pcrel_relocs_copied;
2836		    }
2837		  else
2838		    {
2839		      asection *s;
2840		      void *vpp;
2841		      Elf_Internal_Sym *isym;
2842
2843		      isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->root.sym_cache,
2844						    abfd, r_symndx);
2845		      if (isym == NULL)
2846			return false;
2847
2848		      s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2849		      if (s == NULL)
2850			s = sec;
2851
2852		      vpp = &elf_section_data (s)->local_dynrel;
2853		      head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2854		    }
2855
2856		  for (p = *head; p != NULL; p = p->next)
2857		    if (p->section == sreloc)
2858		      break;
2859
2860		  if (p == NULL)
2861		    {
2862		      p = ((struct elf_m68k_pcrel_relocs_copied *)
2863			   bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2864		      if (p == NULL)
2865			return false;
2866		      p->next = *head;
2867		      *head = p;
2868		      p->section = sreloc;
2869		      p->count = 0;
2870		    }
2871
2872		  ++p->count;
2873		}
2874	    }
2875
2876	  break;
2877
2878	  /* This relocation describes the C++ object vtable hierarchy.
2879	     Reconstruct it for later use during GC.  */
2880	case R_68K_GNU_VTINHERIT:
2881	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2882	    return false;
2883	  break;
2884
2885	  /* This relocation describes which C++ vtable entries are actually
2886	     used.  Record for later use during GC.  */
2887	case R_68K_GNU_VTENTRY:
2888	  if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2889	    return false;
2890	  break;
2891
2892	default:
2893	  break;
2894	}
2895    }
2896
2897  return true;
2898}
2899
2900/* Return the section that should be marked against GC for a given
2901   relocation.  */
2902
2903static asection *
2904elf_m68k_gc_mark_hook (asection *sec,
2905		       struct bfd_link_info *info,
2906		       Elf_Internal_Rela *rel,
2907		       struct elf_link_hash_entry *h,
2908		       Elf_Internal_Sym *sym)
2909{
2910  if (h != NULL)
2911    switch (ELF32_R_TYPE (rel->r_info))
2912      {
2913      case R_68K_GNU_VTINHERIT:
2914      case R_68K_GNU_VTENTRY:
2915	return NULL;
2916      }
2917
2918  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2919}
2920
2921/* Return the type of PLT associated with OUTPUT_BFD.  */
2922
2923static const struct elf_m68k_plt_info *
2924elf_m68k_get_plt_info (bfd *output_bfd)
2925{
2926  unsigned int features;
2927
2928  features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2929  if (features & cpu32)
2930    return &elf_cpu32_plt_info;
2931  if (features & mcfisa_b)
2932    return &elf_isab_plt_info;
2933  if (features & mcfisa_c)
2934    return &elf_isac_plt_info;
2935  return &elf_m68k_plt_info;
2936}
2937
2938/* This function is called after all the input files have been read,
2939   and the input sections have been assigned to output sections.
2940   It's a convenient place to determine the PLT style.  */
2941
2942static bool
2943elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2944{
2945  /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2946     sections.  */
2947  if (!elf_m68k_partition_multi_got (info))
2948    return false;
2949
2950  elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2951  return true;
2952}
2953
2954/* Adjust a symbol defined by a dynamic object and referenced by a
2955   regular object.  The current definition is in some section of the
2956   dynamic object, but we're not including those sections.  We have to
2957   change the definition to something the rest of the link can
2958   understand.  */
2959
2960static bool
2961elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2962				struct elf_link_hash_entry *h)
2963{
2964  struct elf_m68k_link_hash_table *htab;
2965  bfd *dynobj;
2966  asection *s;
2967
2968  htab = elf_m68k_hash_table (info);
2969  dynobj = htab->root.dynobj;
2970
2971  /* Make sure we know what is going on here.  */
2972  BFD_ASSERT (dynobj != NULL
2973	      && (h->needs_plt
2974		  || h->type == STT_GNU_IFUNC
2975		  || h->is_weakalias
2976		  || (h->def_dynamic
2977		      && h->ref_regular
2978		      && !h->def_regular)));
2979
2980  /* If this is a function, put it in the procedure linkage table.  We
2981     will fill in the contents of the procedure linkage table later,
2982     when we know the address of the .got section.  */
2983  if ((h->type == STT_FUNC || h->type == STT_GNU_IFUNC)
2984      || h->needs_plt)
2985    {
2986      if ((h->plt.refcount <= 0
2987	   || SYMBOL_CALLS_LOCAL (info, h)
2988	   || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2989		|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2990	       && h->root.type == bfd_link_hash_undefweak))
2991	  /* We must always create the plt entry if it was referenced
2992	     by a PLTxxO relocation.  In this case we already recorded
2993	     it as a dynamic symbol.  */
2994	  && h->dynindx == -1)
2995	{
2996	  /* This case can occur if we saw a PLTxx reloc in an input
2997	     file, but the symbol was never referred to by a dynamic
2998	     object, or if all references were garbage collected.  In
2999	     such a case, we don't actually need to build a procedure
3000	     linkage table, and we can just do a PCxx reloc instead.  */
3001	  h->plt.offset = (bfd_vma) -1;
3002	  h->needs_plt = 0;
3003	  return true;
3004	}
3005
3006      /* Make sure this symbol is output as a dynamic symbol.  */
3007      if (h->dynindx == -1
3008	  && !h->forced_local)
3009	{
3010	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
3011	    return false;
3012	}
3013
3014      s = htab->root.splt;
3015      BFD_ASSERT (s != NULL);
3016
3017      /* If this is the first .plt entry, make room for the special
3018	 first entry.  */
3019      if (s->size == 0)
3020	s->size = htab->plt_info->size;
3021
3022      /* If this symbol is not defined in a regular file, and we are
3023	 not generating a shared library, then set the symbol to this
3024	 location in the .plt.  This is required to make function
3025	 pointers compare as equal between the normal executable and
3026	 the shared library.  */
3027      if (!bfd_link_pic (info)
3028	  && !h->def_regular)
3029	{
3030	  h->root.u.def.section = s;
3031	  h->root.u.def.value = s->size;
3032	}
3033
3034      h->plt.offset = s->size;
3035
3036      /* Make room for this entry.  */
3037      s->size += htab->plt_info->size;
3038
3039      /* We also need to make an entry in the .got.plt section, which
3040	 will be placed in the .got section by the linker script.  */
3041      s = htab->root.sgotplt;
3042      BFD_ASSERT (s != NULL);
3043      s->size += 4;
3044
3045      /* We also need to make an entry in the .rela.plt section.  */
3046      s = htab->root.srelplt;
3047      BFD_ASSERT (s != NULL);
3048      s->size += sizeof (Elf32_External_Rela);
3049
3050      return true;
3051    }
3052
3053  /* Reinitialize the plt offset now that it is not used as a reference
3054     count any more.  */
3055  h->plt.offset = (bfd_vma) -1;
3056
3057  /* If this is a weak symbol, and there is a real definition, the
3058     processor independent code will have arranged for us to see the
3059     real definition first, and we can just use the same value.  */
3060  if (h->is_weakalias)
3061    {
3062      struct elf_link_hash_entry *def = weakdef (h);
3063      BFD_ASSERT (def->root.type == bfd_link_hash_defined);
3064      h->root.u.def.section = def->root.u.def.section;
3065      h->root.u.def.value = def->root.u.def.value;
3066      return true;
3067    }
3068
3069  /* This is a reference to a symbol defined by a dynamic object which
3070     is not a function.  */
3071
3072  /* If we are creating a shared library, we must presume that the
3073     only references to the symbol are via the global offset table.
3074     For such cases we need not do anything here; the relocations will
3075     be handled correctly by relocate_section.  */
3076  if (bfd_link_pic (info))
3077    return true;
3078
3079  /* If there are no references to this symbol that do not use the
3080     GOT, we don't need to generate a copy reloc.  */
3081  if (!h->non_got_ref)
3082    return true;
3083
3084  /* We must allocate the symbol in our .dynbss section, which will
3085     become part of the .bss section of the executable.  There will be
3086     an entry for this symbol in the .dynsym section.  The dynamic
3087     object will contain position independent code, so all references
3088     from the dynamic object to this symbol will go through the global
3089     offset table.  The dynamic linker will use the .dynsym entry to
3090     determine the address it must put in the global offset table, so
3091     both the dynamic object and the regular object will refer to the
3092     same memory location for the variable.  */
3093
3094  s = bfd_get_linker_section (dynobj, ".dynbss");
3095  BFD_ASSERT (s != NULL);
3096
3097  /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3098     copy the initial value out of the dynamic object and into the
3099     runtime process image.  We need to remember the offset into the
3100     .rela.bss section we are going to use.  */
3101  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3102    {
3103      asection *srel;
3104
3105      srel = bfd_get_linker_section (dynobj, ".rela.bss");
3106      BFD_ASSERT (srel != NULL);
3107      srel->size += sizeof (Elf32_External_Rela);
3108      h->needs_copy = 1;
3109    }
3110
3111  return _bfd_elf_adjust_dynamic_copy (info, h, s);
3112}
3113
3114/* Set the sizes of the dynamic sections.  */
3115
3116static bool
3117elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3118				struct bfd_link_info *info)
3119{
3120  bfd *dynobj;
3121  asection *s;
3122  bool relocs;
3123
3124  dynobj = elf_hash_table (info)->dynobj;
3125  BFD_ASSERT (dynobj != NULL);
3126
3127  if (elf_hash_table (info)->dynamic_sections_created)
3128    {
3129      /* Set the contents of the .interp section to the interpreter.  */
3130      if (bfd_link_executable (info) && !info->nointerp)
3131	{
3132	  s = bfd_get_linker_section (dynobj, ".interp");
3133	  BFD_ASSERT (s != NULL);
3134	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3135	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3136	}
3137    }
3138  else
3139    {
3140      /* We may have created entries in the .rela.got section.
3141	 However, if we are not creating the dynamic sections, we will
3142	 not actually use these entries.  Reset the size of .rela.got,
3143	 which will cause it to get stripped from the output file
3144	 below.  */
3145      s = elf_hash_table (info)->srelgot;
3146      if (s != NULL)
3147	s->size = 0;
3148    }
3149
3150  /* If this is a -Bsymbolic shared link, then we need to discard all
3151     PC relative relocs against symbols defined in a regular object.
3152     For the normal shared case we discard the PC relative relocs
3153     against symbols that have become local due to visibility changes.
3154     We allocated space for them in the check_relocs routine, but we
3155     will not fill them in in the relocate_section routine.  */
3156  if (bfd_link_pic (info))
3157    elf_link_hash_traverse (elf_hash_table (info),
3158			    elf_m68k_discard_copies,
3159			    info);
3160
3161  /* The check_relocs and adjust_dynamic_symbol entry points have
3162     determined the sizes of the various dynamic sections.  Allocate
3163     memory for them.  */
3164  relocs = false;
3165  for (s = dynobj->sections; s != NULL; s = s->next)
3166    {
3167      const char *name;
3168
3169      if ((s->flags & SEC_LINKER_CREATED) == 0)
3170	continue;
3171
3172      /* It's OK to base decisions on the section name, because none
3173	 of the dynobj section names depend upon the input files.  */
3174      name = bfd_section_name (s);
3175
3176      if (strcmp (name, ".plt") == 0)
3177	{
3178	  /* Remember whether there is a PLT.  */
3179	  ;
3180	}
3181      else if (startswith (name, ".rela"))
3182	{
3183	  if (s->size != 0)
3184	    {
3185	      relocs = true;
3186
3187	      /* We use the reloc_count field as a counter if we need
3188		 to copy relocs into the output file.  */
3189	      s->reloc_count = 0;
3190	    }
3191	}
3192      else if (! startswith (name, ".got")
3193	       && strcmp (name, ".dynbss") != 0)
3194	{
3195	  /* It's not one of our sections, so don't allocate space.  */
3196	  continue;
3197	}
3198
3199      if (s->size == 0)
3200	{
3201	  /* If we don't need this section, strip it from the
3202	     output file.  This is mostly to handle .rela.bss and
3203	     .rela.plt.  We must create both sections in
3204	     create_dynamic_sections, because they must be created
3205	     before the linker maps input sections to output
3206	     sections.  The linker does that before
3207	     adjust_dynamic_symbol is called, and it is that
3208	     function which decides whether anything needs to go
3209	     into these sections.  */
3210	  s->flags |= SEC_EXCLUDE;
3211	  continue;
3212	}
3213
3214      if ((s->flags & SEC_HAS_CONTENTS) == 0)
3215	continue;
3216
3217      /* Allocate memory for the section contents.  */
3218      /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3219	 Unused entries should be reclaimed before the section's contents
3220	 are written out, but at the moment this does not happen.  Thus in
3221	 order to prevent writing out garbage, we initialise the section's
3222	 contents to zero.  */
3223      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3224      if (s->contents == NULL)
3225	return false;
3226    }
3227
3228  return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
3229}
3230
3231/* This function is called via elf_link_hash_traverse if we are
3232   creating a shared object.  In the -Bsymbolic case it discards the
3233   space allocated to copy PC relative relocs against symbols which
3234   are defined in regular objects.  For the normal shared case, it
3235   discards space for pc-relative relocs that have become local due to
3236   symbol visibility changes.  We allocated space for them in the
3237   check_relocs routine, but we won't fill them in in the
3238   relocate_section routine.
3239
3240   We also check whether any of the remaining relocations apply
3241   against a readonly section, and set the DF_TEXTREL flag in this
3242   case.  */
3243
3244static bool
3245elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3246			 void * inf)
3247{
3248  struct bfd_link_info *info = (struct bfd_link_info *) inf;
3249  struct elf_m68k_pcrel_relocs_copied *s;
3250
3251  if (!SYMBOL_CALLS_LOCAL (info, h))
3252    {
3253      if ((info->flags & DF_TEXTREL) == 0)
3254	{
3255	  /* Look for relocations against read-only sections.  */
3256	  for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3257	       s != NULL;
3258	       s = s->next)
3259	    if ((s->section->flags & SEC_READONLY) != 0)
3260	      {
3261		if (bfd_link_textrel_check(info))
3262		  (*_bfd_error_handler)
3263		    (_("warning: dynamic relocation to `%s' in readonly section `%s'"),
3264		    h->root.root.string, s->section->name);
3265		info->flags |= DF_TEXTREL;
3266		break;
3267	      }
3268	}
3269
3270      /* Make sure undefined weak symbols are output as a dynamic symbol
3271	 in PIEs.  */
3272      if (h->non_got_ref
3273	  && h->root.type == bfd_link_hash_undefweak
3274	  && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3275	  && h->dynindx == -1
3276	  && !h->forced_local)
3277	{
3278	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
3279	    return false;
3280	}
3281
3282      return true;
3283    }
3284
3285  for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3286       s != NULL;
3287       s = s->next)
3288    s->section->size -= s->count * sizeof (Elf32_External_Rela);
3289
3290  return true;
3291}
3292
3293
3294/* Install relocation RELA.  */
3295
3296static void
3297elf_m68k_install_rela (bfd *output_bfd,
3298		       asection *srela,
3299		       Elf_Internal_Rela *rela)
3300{
3301  bfd_byte *loc;
3302
3303  loc = srela->contents;
3304  loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3305  bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3306}
3307
3308/* Find the base offsets for thread-local storage in this object,
3309   for GD/LD and IE/LE respectively.  */
3310
3311#define DTP_OFFSET 0x8000
3312#define TP_OFFSET  0x7000
3313
3314static bfd_vma
3315dtpoff_base (struct bfd_link_info *info)
3316{
3317  /* If tls_sec is NULL, we should have signalled an error already.  */
3318  if (elf_hash_table (info)->tls_sec == NULL)
3319    return 0;
3320  return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3321}
3322
3323static bfd_vma
3324tpoff_base (struct bfd_link_info *info)
3325{
3326  /* If tls_sec is NULL, we should have signalled an error already.  */
3327  if (elf_hash_table (info)->tls_sec == NULL)
3328    return 0;
3329  return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3330}
3331
3332/* Output necessary relocation to handle a symbol during static link.
3333   This function is called from elf_m68k_relocate_section.  */
3334
3335static void
3336elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3337				bfd *output_bfd,
3338				enum elf_m68k_reloc_type r_type,
3339				asection *sgot,
3340				bfd_vma got_entry_offset,
3341				bfd_vma relocation)
3342{
3343  switch (elf_m68k_reloc_got_type (r_type))
3344    {
3345    case R_68K_GOT32O:
3346      bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3347      break;
3348
3349    case R_68K_TLS_GD32:
3350      /* We know the offset within the module,
3351	 put it into the second GOT slot.  */
3352      bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3353		  sgot->contents + got_entry_offset + 4);
3354      /* FALLTHRU */
3355
3356    case R_68K_TLS_LDM32:
3357      /* Mark it as belonging to module 1, the executable.  */
3358      bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3359      break;
3360
3361    case R_68K_TLS_IE32:
3362      bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3363		  sgot->contents + got_entry_offset);
3364      break;
3365
3366    default:
3367      BFD_ASSERT (false);
3368    }
3369}
3370
3371/* Output necessary relocation to handle a local symbol
3372   during dynamic link.
3373   This function is called either from elf_m68k_relocate_section
3374   or from elf_m68k_finish_dynamic_symbol.  */
3375
3376static void
3377elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3378				      bfd *output_bfd,
3379				      enum elf_m68k_reloc_type r_type,
3380				      asection *sgot,
3381				      bfd_vma got_entry_offset,
3382				      bfd_vma relocation,
3383				      asection *srela)
3384{
3385  Elf_Internal_Rela outrel;
3386
3387  switch (elf_m68k_reloc_got_type (r_type))
3388    {
3389    case R_68K_GOT32O:
3390      /* Emit RELATIVE relocation to initialize GOT slot
3391	 at run-time.  */
3392      outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3393      outrel.r_addend = relocation;
3394      break;
3395
3396    case R_68K_TLS_GD32:
3397      /* We know the offset within the module,
3398	 put it into the second GOT slot.  */
3399      bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3400		  sgot->contents + got_entry_offset + 4);
3401      /* FALLTHRU */
3402
3403    case R_68K_TLS_LDM32:
3404      /* We don't know the module number,
3405	 create a relocation for it.  */
3406      outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3407      outrel.r_addend = 0;
3408      break;
3409
3410    case R_68K_TLS_IE32:
3411      /* Emit TPREL relocation to initialize GOT slot
3412	 at run-time.  */
3413      outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3414      outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3415      break;
3416
3417    default:
3418      BFD_ASSERT (false);
3419    }
3420
3421  /* Offset of the GOT entry.  */
3422  outrel.r_offset = (sgot->output_section->vma
3423		     + sgot->output_offset
3424		     + got_entry_offset);
3425
3426  /* Install one of the above relocations.  */
3427  elf_m68k_install_rela (output_bfd, srela, &outrel);
3428
3429  bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3430}
3431
3432/* Relocate an M68K ELF section.  */
3433
3434static int
3435elf_m68k_relocate_section (bfd *output_bfd,
3436			   struct bfd_link_info *info,
3437			   bfd *input_bfd,
3438			   asection *input_section,
3439			   bfd_byte *contents,
3440			   Elf_Internal_Rela *relocs,
3441			   Elf_Internal_Sym *local_syms,
3442			   asection **local_sections)
3443{
3444  Elf_Internal_Shdr *symtab_hdr;
3445  struct elf_link_hash_entry **sym_hashes;
3446  asection *sgot;
3447  asection *splt;
3448  asection *sreloc;
3449  asection *srela;
3450  struct elf_m68k_got *got;
3451  Elf_Internal_Rela *rel;
3452  Elf_Internal_Rela *relend;
3453
3454  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3455  sym_hashes = elf_sym_hashes (input_bfd);
3456
3457  sgot = NULL;
3458  splt = NULL;
3459  sreloc = NULL;
3460  srela = NULL;
3461
3462  got = NULL;
3463
3464  rel = relocs;
3465  relend = relocs + input_section->reloc_count;
3466  for (; rel < relend; rel++)
3467    {
3468      int r_type;
3469      reloc_howto_type *howto;
3470      unsigned long r_symndx;
3471      struct elf_link_hash_entry *h;
3472      Elf_Internal_Sym *sym;
3473      asection *sec;
3474      bfd_vma relocation;
3475      bool unresolved_reloc;
3476      bfd_reloc_status_type r;
3477      bool resolved_to_zero;
3478
3479      r_type = ELF32_R_TYPE (rel->r_info);
3480      if (r_type < 0 || r_type >= (int) R_68K_max)
3481	{
3482	  bfd_set_error (bfd_error_bad_value);
3483	  return false;
3484	}
3485      howto = howto_table + r_type;
3486
3487      r_symndx = ELF32_R_SYM (rel->r_info);
3488
3489      h = NULL;
3490      sym = NULL;
3491      sec = NULL;
3492      unresolved_reloc = false;
3493
3494      if (r_symndx < symtab_hdr->sh_info)
3495	{
3496	  sym = local_syms + r_symndx;
3497	  sec = local_sections[r_symndx];
3498	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3499	}
3500      else
3501	{
3502	  bool warned, ignored;
3503
3504	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3505				   r_symndx, symtab_hdr, sym_hashes,
3506				   h, sec, relocation,
3507				   unresolved_reloc, warned, ignored);
3508	}
3509
3510      if (sec != NULL && discarded_section (sec))
3511	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3512					 rel, 1, relend, howto, 0, contents);
3513
3514      if (bfd_link_relocatable (info))
3515	continue;
3516
3517      resolved_to_zero = (h != NULL
3518			  && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3519
3520      switch (r_type)
3521	{
3522	case R_68K_GOT8:
3523	case R_68K_GOT16:
3524	case R_68K_GOT32:
3525	  /* Relocation is to the address of the entry for this symbol
3526	     in the global offset table.  */
3527	  if (h != NULL
3528	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3529	    {
3530	      if (elf_m68k_hash_table (info)->local_gp_p)
3531		{
3532		  bfd_vma sgot_output_offset;
3533		  bfd_vma got_offset;
3534
3535		  sgot = elf_hash_table (info)->sgot;
3536
3537		  if (sgot != NULL)
3538		    sgot_output_offset = sgot->output_offset;
3539		  else
3540		    /* In this case we have a reference to
3541		       _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3542		       empty.
3543		       ??? Issue a warning?  */
3544		    sgot_output_offset = 0;
3545
3546		  if (got == NULL)
3547		    {
3548		      struct elf_m68k_bfd2got_entry *bfd2got_entry;
3549
3550		      bfd2got_entry
3551			= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3552						      input_bfd, SEARCH, NULL);
3553
3554		      if (bfd2got_entry != NULL)
3555			{
3556			  got = bfd2got_entry->got;
3557			  BFD_ASSERT (got != NULL);
3558
3559			  got_offset = got->offset;
3560			}
3561		      else
3562			/* In this case we have a reference to
3563			   _GLOBAL_OFFSET_TABLE_, but no other references
3564			   accessing any GOT entries.
3565			   ??? Issue a warning?  */
3566			got_offset = 0;
3567		    }
3568		  else
3569		    got_offset = got->offset;
3570
3571		  /* Adjust GOT pointer to point to the GOT
3572		     assigned to input_bfd.  */
3573		  rel->r_addend += sgot_output_offset + got_offset;
3574		}
3575	      else
3576		BFD_ASSERT (got == NULL || got->offset == 0);
3577
3578	      break;
3579	    }
3580	  /* Fall through.  */
3581	case R_68K_GOT8O:
3582	case R_68K_GOT16O:
3583	case R_68K_GOT32O:
3584
3585	case R_68K_TLS_LDM32:
3586	case R_68K_TLS_LDM16:
3587	case R_68K_TLS_LDM8:
3588
3589	case R_68K_TLS_GD8:
3590	case R_68K_TLS_GD16:
3591	case R_68K_TLS_GD32:
3592
3593	case R_68K_TLS_IE8:
3594	case R_68K_TLS_IE16:
3595	case R_68K_TLS_IE32:
3596
3597	  /* Relocation is the offset of the entry for this symbol in
3598	     the global offset table.  */
3599
3600	  {
3601	    struct elf_m68k_got_entry_key key_;
3602	    bfd_vma *off_ptr;
3603	    bfd_vma off;
3604
3605	    sgot = elf_hash_table (info)->sgot;
3606	    BFD_ASSERT (sgot != NULL);
3607
3608	    if (got == NULL)
3609	      got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3610						input_bfd, MUST_FIND,
3611						NULL)->got;
3612
3613	    /* Get GOT offset for this symbol.  */
3614	    elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3615					 r_type);
3616	    off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3617					       NULL)->u.s2.offset;
3618	    off = *off_ptr;
3619
3620	    /* The offset must always be a multiple of 4.  We use
3621	       the least significant bit to record whether we have
3622	       already generated the necessary reloc.  */
3623	    if ((off & 1) != 0)
3624	      off &= ~1;
3625	    else
3626	      {
3627		if (h != NULL
3628		    /* @TLSLDM relocations are bounded to the module, in
3629		       which the symbol is defined -- not to the symbol
3630		       itself.  */
3631		    && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3632		  {
3633		    bool dyn;
3634
3635		    dyn = elf_hash_table (info)->dynamic_sections_created;
3636		    if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3637							  bfd_link_pic (info),
3638							  h)
3639			|| (bfd_link_pic (info)
3640			    && SYMBOL_REFERENCES_LOCAL (info, h))
3641			|| ((ELF_ST_VISIBILITY (h->other)
3642			     || resolved_to_zero)
3643			    && h->root.type == bfd_link_hash_undefweak))
3644		      {
3645			/* This is actually a static link, or it is a
3646			   -Bsymbolic link and the symbol is defined
3647			   locally, or the symbol was forced to be local
3648			   because of a version file.  We must initialize
3649			   this entry in the global offset table.  Since
3650			   the offset must always be a multiple of 4, we
3651			   use the least significant bit to record whether
3652			   we have initialized it already.
3653
3654			   When doing a dynamic link, we create a .rela.got
3655			   relocation entry to initialize the value.  This
3656			   is done in the finish_dynamic_symbol routine.  */
3657
3658			elf_m68k_init_got_entry_static (info,
3659							output_bfd,
3660							r_type,
3661							sgot,
3662							off,
3663							relocation);
3664
3665			*off_ptr |= 1;
3666		      }
3667		    else
3668		      unresolved_reloc = false;
3669		  }
3670		else if (bfd_link_pic (info)) /* && h == NULL */
3671		  /* Process local symbol during dynamic link.  */
3672		  {
3673		    srela = elf_hash_table (info)->srelgot;
3674		    BFD_ASSERT (srela != NULL);
3675
3676		    elf_m68k_init_got_entry_local_shared (info,
3677							  output_bfd,
3678							  r_type,
3679							  sgot,
3680							  off,
3681							  relocation,
3682							  srela);
3683
3684		    *off_ptr |= 1;
3685		  }
3686		else /* h == NULL && !bfd_link_pic (info) */
3687		  {
3688		    elf_m68k_init_got_entry_static (info,
3689						    output_bfd,
3690						    r_type,
3691						    sgot,
3692						    off,
3693						    relocation);
3694
3695		    *off_ptr |= 1;
3696		  }
3697	      }
3698
3699	    /* We don't use elf_m68k_reloc_got_type in the condition below
3700	       because this is the only place where difference between
3701	       R_68K_GOTx and R_68K_GOTxO relocations matters.  */
3702	    if (r_type == R_68K_GOT32O
3703		|| r_type == R_68K_GOT16O
3704		|| r_type == R_68K_GOT8O
3705		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3706		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3707		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3708	      {
3709		/* GOT pointer is adjusted to point to the start/middle
3710		   of local GOT.  Adjust the offset accordingly.  */
3711		BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3712			    || off >= got->offset);
3713
3714		if (elf_m68k_hash_table (info)->local_gp_p)
3715		  relocation = off - got->offset;
3716		else
3717		  {
3718		    BFD_ASSERT (got->offset == 0);
3719		    relocation = sgot->output_offset + off;
3720		  }
3721
3722		/* This relocation does not use the addend.  */
3723		rel->r_addend = 0;
3724	      }
3725	    else
3726	      relocation = (sgot->output_section->vma + sgot->output_offset
3727			    + off);
3728	  }
3729	  break;
3730
3731	case R_68K_TLS_LDO32:
3732	case R_68K_TLS_LDO16:
3733	case R_68K_TLS_LDO8:
3734	  relocation -= dtpoff_base (info);
3735	  break;
3736
3737	case R_68K_TLS_LE32:
3738	case R_68K_TLS_LE16:
3739	case R_68K_TLS_LE8:
3740	  if (bfd_link_dll (info))
3741	    {
3742	      _bfd_error_handler
3743		/* xgettext:c-format */
3744		(_("%pB(%pA+%#" PRIx64 "): "
3745		   "%s relocation not permitted in shared object"),
3746		 input_bfd, input_section, (uint64_t) rel->r_offset,
3747		 howto->name);
3748
3749	      return false;
3750	    }
3751	  else
3752	    relocation -= tpoff_base (info);
3753
3754	  break;
3755
3756	case R_68K_PLT8:
3757	case R_68K_PLT16:
3758	case R_68K_PLT32:
3759	  /* Relocation is to the entry for this symbol in the
3760	     procedure linkage table.  */
3761
3762	  /* Resolve a PLTxx reloc against a local symbol directly,
3763	     without using the procedure linkage table.  */
3764	  if (h == NULL)
3765	    break;
3766
3767	  if (h->plt.offset == (bfd_vma) -1
3768	      || !elf_hash_table (info)->dynamic_sections_created)
3769	    {
3770	      /* We didn't make a PLT entry for this symbol.  This
3771		 happens when statically linking PIC code, or when
3772		 using -Bsymbolic.  */
3773	      break;
3774	    }
3775
3776	  splt = elf_hash_table (info)->splt;
3777	  BFD_ASSERT (splt != NULL);
3778
3779	  relocation = (splt->output_section->vma
3780			+ splt->output_offset
3781			+ h->plt.offset);
3782	  unresolved_reloc = false;
3783	  break;
3784
3785	case R_68K_PLT8O:
3786	case R_68K_PLT16O:
3787	case R_68K_PLT32O:
3788	  /* Relocation is the offset of the entry for this symbol in
3789	     the procedure linkage table.  */
3790	  BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3791
3792	  splt = elf_hash_table (info)->splt;
3793	  BFD_ASSERT (splt != NULL);
3794
3795	  relocation = h->plt.offset;
3796	  unresolved_reloc = false;
3797
3798	  /* This relocation does not use the addend.  */
3799	  rel->r_addend = 0;
3800
3801	  break;
3802
3803	case R_68K_8:
3804	case R_68K_16:
3805	case R_68K_32:
3806	case R_68K_PC8:
3807	case R_68K_PC16:
3808	case R_68K_PC32:
3809	  if (bfd_link_pic (info)
3810	      && r_symndx != STN_UNDEF
3811	      && (input_section->flags & SEC_ALLOC) != 0
3812	      && (h == NULL
3813		  || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3814		      && !resolved_to_zero)
3815		  || h->root.type != bfd_link_hash_undefweak)
3816	      && ((r_type != R_68K_PC8
3817		   && r_type != R_68K_PC16
3818		   && r_type != R_68K_PC32)
3819		  || !SYMBOL_CALLS_LOCAL (info, h)))
3820	    {
3821	      Elf_Internal_Rela outrel;
3822	      bfd_byte *loc;
3823	      bool skip, relocate;
3824
3825	      /* When generating a shared object, these relocations
3826		 are copied into the output file to be resolved at run
3827		 time.  */
3828
3829	      skip = false;
3830	      relocate = false;
3831
3832	      outrel.r_offset =
3833		_bfd_elf_section_offset (output_bfd, info, input_section,
3834					 rel->r_offset);
3835	      if (outrel.r_offset == (bfd_vma) -1)
3836		skip = true;
3837	      else if (outrel.r_offset == (bfd_vma) -2)
3838		skip = true, relocate = true;
3839	      outrel.r_offset += (input_section->output_section->vma
3840				  + input_section->output_offset);
3841
3842	      if (skip)
3843		memset (&outrel, 0, sizeof outrel);
3844	      else if (h != NULL
3845		       && h->dynindx != -1
3846		       && (r_type == R_68K_PC8
3847			   || r_type == R_68K_PC16
3848			   || r_type == R_68K_PC32
3849			   || !bfd_link_pic (info)
3850			   || !SYMBOLIC_BIND (info, h)
3851			   || !h->def_regular))
3852		{
3853		  outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3854		  outrel.r_addend = rel->r_addend;
3855		}
3856	      else
3857		{
3858		  /* This symbol is local, or marked to become local.  */
3859		  outrel.r_addend = relocation + rel->r_addend;
3860
3861		  if (r_type == R_68K_32)
3862		    {
3863		      relocate = true;
3864		      outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3865		    }
3866		  else
3867		    {
3868		      long indx;
3869
3870		      if (bfd_is_abs_section (sec))
3871			indx = 0;
3872		      else if (sec == NULL || sec->owner == NULL)
3873			{
3874			  bfd_set_error (bfd_error_bad_value);
3875			  return false;
3876			}
3877		      else
3878			{
3879			  asection *osec;
3880
3881			  /* We are turning this relocation into one
3882			     against a section symbol.  It would be
3883			     proper to subtract the symbol's value,
3884			     osec->vma, from the emitted reloc addend,
3885			     but ld.so expects buggy relocs.  */
3886			  osec = sec->output_section;
3887			  indx = elf_section_data (osec)->dynindx;
3888			  if (indx == 0)
3889			    {
3890			      struct elf_link_hash_table *htab;
3891			      htab = elf_hash_table (info);
3892			      osec = htab->text_index_section;
3893			      indx = elf_section_data (osec)->dynindx;
3894			    }
3895			  BFD_ASSERT (indx != 0);
3896			}
3897
3898		      outrel.r_info = ELF32_R_INFO (indx, r_type);
3899		    }
3900		}
3901
3902	      sreloc = elf_section_data (input_section)->sreloc;
3903	      if (sreloc == NULL)
3904		abort ();
3905
3906	      loc = sreloc->contents;
3907	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3908	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3909
3910	      /* This reloc will be computed at runtime, so there's no
3911		 need to do anything now, except for R_68K_32
3912		 relocations that have been turned into
3913		 R_68K_RELATIVE.  */
3914	      if (!relocate)
3915		continue;
3916	    }
3917
3918	  break;
3919
3920	case R_68K_GNU_VTINHERIT:
3921	case R_68K_GNU_VTENTRY:
3922	  /* These are no-ops in the end.  */
3923	  continue;
3924
3925	default:
3926	  break;
3927	}
3928
3929      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3930	 because such sections are not SEC_ALLOC and thus ld.so will
3931	 not process them.  */
3932      if (unresolved_reloc
3933	  && !((input_section->flags & SEC_DEBUGGING) != 0
3934	       && h->def_dynamic)
3935	  && _bfd_elf_section_offset (output_bfd, info, input_section,
3936				      rel->r_offset) != (bfd_vma) -1)
3937	{
3938	  _bfd_error_handler
3939	    /* xgettext:c-format */
3940	    (_("%pB(%pA+%#" PRIx64 "): "
3941	       "unresolvable %s relocation against symbol `%s'"),
3942	     input_bfd,
3943	     input_section,
3944	     (uint64_t) rel->r_offset,
3945	     howto->name,
3946	     h->root.root.string);
3947	  return false;
3948	}
3949
3950      if (r_symndx != STN_UNDEF
3951	  && r_type != R_68K_NONE
3952	  && (h == NULL
3953	      || h->root.type == bfd_link_hash_defined
3954	      || h->root.type == bfd_link_hash_defweak))
3955	{
3956	  char sym_type;
3957
3958	  sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3959
3960	  if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3961	    {
3962	      const char *name;
3963
3964	      if (h != NULL)
3965		name = h->root.root.string;
3966	      else
3967		{
3968		  name = (bfd_elf_string_from_elf_section
3969			  (input_bfd, symtab_hdr->sh_link, sym->st_name));
3970		  if (name == NULL || *name == '\0')
3971		    name = bfd_section_name (sec);
3972		}
3973
3974	      _bfd_error_handler
3975		((sym_type == STT_TLS
3976		  /* xgettext:c-format */
3977		  ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
3978		  /* xgettext:c-format */
3979		  : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
3980		 input_bfd,
3981		 input_section,
3982		 (uint64_t) rel->r_offset,
3983		 howto->name,
3984		 name);
3985	    }
3986	}
3987
3988      r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3989				    contents, rel->r_offset,
3990				    relocation, rel->r_addend);
3991
3992      if (r != bfd_reloc_ok)
3993	{
3994	  const char *name;
3995
3996	  if (h != NULL)
3997	    name = h->root.root.string;
3998	  else
3999	    {
4000	      name = bfd_elf_string_from_elf_section (input_bfd,
4001						      symtab_hdr->sh_link,
4002						      sym->st_name);
4003	      if (name == NULL)
4004		return false;
4005	      if (*name == '\0')
4006		name = bfd_section_name (sec);
4007	    }
4008
4009	  if (r == bfd_reloc_overflow)
4010	    (*info->callbacks->reloc_overflow)
4011	      (info, (h ? &h->root : NULL), name, howto->name,
4012	       (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
4013	  else
4014	    {
4015	      _bfd_error_handler
4016		/* xgettext:c-format */
4017		(_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
4018		 input_bfd, input_section,
4019		 (uint64_t) rel->r_offset, name, (int) r);
4020	      return false;
4021	    }
4022	}
4023    }
4024
4025  return true;
4026}
4027
4028/* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4029   into section SEC.  */
4030
4031static void
4032elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4033{
4034  /* Make VALUE PC-relative.  */
4035  value -= sec->output_section->vma + offset;
4036
4037  /* Apply any in-place addend.  */
4038  value += bfd_get_32 (sec->owner, sec->contents + offset);
4039
4040  bfd_put_32 (sec->owner, value, sec->contents + offset);
4041}
4042
4043/* Finish up dynamic symbol handling.  We set the contents of various
4044   dynamic sections here.  */
4045
4046static bool
4047elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4048				struct bfd_link_info *info,
4049				struct elf_link_hash_entry *h,
4050				Elf_Internal_Sym *sym)
4051{
4052  bfd *dynobj;
4053
4054  dynobj = elf_hash_table (info)->dynobj;
4055
4056  if (h->plt.offset != (bfd_vma) -1)
4057    {
4058      const struct elf_m68k_plt_info *plt_info;
4059      asection *splt;
4060      asection *sgot;
4061      asection *srela;
4062      bfd_vma plt_index;
4063      bfd_vma got_offset;
4064      Elf_Internal_Rela rela;
4065      bfd_byte *loc;
4066
4067      /* This symbol has an entry in the procedure linkage table.  Set
4068	 it up.  */
4069
4070      BFD_ASSERT (h->dynindx != -1);
4071
4072      plt_info = elf_m68k_hash_table (info)->plt_info;
4073      splt = elf_hash_table (info)->splt;
4074      sgot = elf_hash_table (info)->sgotplt;
4075      srela = elf_hash_table (info)->srelplt;
4076      BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4077
4078      /* Get the index in the procedure linkage table which
4079	 corresponds to this symbol.  This is the index of this symbol
4080	 in all the symbols for which we are making plt entries.  The
4081	 first entry in the procedure linkage table is reserved.  */
4082      plt_index = (h->plt.offset / plt_info->size) - 1;
4083
4084      /* Get the offset into the .got table of the entry that
4085	 corresponds to this function.  Each .got entry is 4 bytes.
4086	 The first three are reserved.  */
4087      got_offset = (plt_index + 3) * 4;
4088
4089      memcpy (splt->contents + h->plt.offset,
4090	      plt_info->symbol_entry,
4091	      plt_info->size);
4092
4093      elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4094			     (sgot->output_section->vma
4095			      + sgot->output_offset
4096			      + got_offset));
4097
4098      bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4099		  splt->contents
4100		  + h->plt.offset
4101		  + plt_info->symbol_resolve_entry + 2);
4102
4103      elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4104			     splt->output_section->vma);
4105
4106      /* Fill in the entry in the global offset table.  */
4107      bfd_put_32 (output_bfd,
4108		  (splt->output_section->vma
4109		   + splt->output_offset
4110		   + h->plt.offset
4111		   + plt_info->symbol_resolve_entry),
4112		  sgot->contents + got_offset);
4113
4114      /* Fill in the entry in the .rela.plt section.  */
4115      rela.r_offset = (sgot->output_section->vma
4116		       + sgot->output_offset
4117		       + got_offset);
4118      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4119      rela.r_addend = 0;
4120      loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4121      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4122
4123      if (!h->def_regular)
4124	{
4125	  /* Mark the symbol as undefined, rather than as defined in
4126	     the .plt section.  Leave the value alone.  */
4127	  sym->st_shndx = SHN_UNDEF;
4128	}
4129    }
4130
4131  if (elf_m68k_hash_entry (h)->glist != NULL)
4132    {
4133      asection *sgot;
4134      asection *srela;
4135      struct elf_m68k_got_entry *got_entry;
4136
4137      /* This symbol has an entry in the global offset table.  Set it
4138	 up.  */
4139
4140      sgot = elf_hash_table (info)->sgot;
4141      srela = elf_hash_table (info)->srelgot;
4142      BFD_ASSERT (sgot != NULL && srela != NULL);
4143
4144      got_entry = elf_m68k_hash_entry (h)->glist;
4145
4146      while (got_entry != NULL)
4147	{
4148	  enum elf_m68k_reloc_type r_type;
4149	  bfd_vma got_entry_offset;
4150
4151	  r_type = got_entry->key_.type;
4152	  got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4153
4154	  /* If this is a -Bsymbolic link, and the symbol is defined
4155	     locally, we just want to emit a RELATIVE reloc.  Likewise if
4156	     the symbol was forced to be local because of a version file.
4157	     The entry in the global offset table already have been
4158	     initialized in the relocate_section function.  */
4159	  if (bfd_link_pic (info)
4160	      && SYMBOL_REFERENCES_LOCAL (info, h))
4161	    {
4162	      bfd_vma relocation;
4163
4164	      relocation = bfd_get_signed_32 (output_bfd,
4165					      (sgot->contents
4166					       + got_entry_offset));
4167
4168	      /* Undo TP bias.  */
4169	      switch (elf_m68k_reloc_got_type (r_type))
4170		{
4171		case R_68K_GOT32O:
4172		case R_68K_TLS_LDM32:
4173		  break;
4174
4175		case R_68K_TLS_GD32:
4176		  /* The value for this relocation is actually put in
4177		     the second GOT slot.  */
4178		  relocation = bfd_get_signed_32 (output_bfd,
4179						  (sgot->contents
4180						   + got_entry_offset + 4));
4181		  relocation += dtpoff_base (info);
4182		  break;
4183
4184		case R_68K_TLS_IE32:
4185		  relocation += tpoff_base (info);
4186		  break;
4187
4188		default:
4189		  BFD_ASSERT (false);
4190		}
4191
4192	      elf_m68k_init_got_entry_local_shared (info,
4193						    output_bfd,
4194						    r_type,
4195						    sgot,
4196						    got_entry_offset,
4197						    relocation,
4198						    srela);
4199	    }
4200	  else
4201	    {
4202	      Elf_Internal_Rela rela;
4203
4204	      /* Put zeros to GOT slots that will be initialized
4205		 at run-time.  */
4206	      {
4207		bfd_vma n_slots;
4208
4209		n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4210		while (n_slots--)
4211		  bfd_put_32 (output_bfd, (bfd_vma) 0,
4212			      (sgot->contents + got_entry_offset
4213			       + 4 * n_slots));
4214	      }
4215
4216	      rela.r_addend = 0;
4217	      rela.r_offset = (sgot->output_section->vma
4218			       + sgot->output_offset
4219			       + got_entry_offset);
4220
4221	      switch (elf_m68k_reloc_got_type (r_type))
4222		{
4223		case R_68K_GOT32O:
4224		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4225		  elf_m68k_install_rela (output_bfd, srela, &rela);
4226		  break;
4227
4228		case R_68K_TLS_GD32:
4229		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4230		  elf_m68k_install_rela (output_bfd, srela, &rela);
4231
4232		  rela.r_offset += 4;
4233		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4234		  elf_m68k_install_rela (output_bfd, srela, &rela);
4235		  break;
4236
4237		case R_68K_TLS_IE32:
4238		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4239		  elf_m68k_install_rela (output_bfd, srela, &rela);
4240		  break;
4241
4242		default:
4243		  BFD_ASSERT (false);
4244		  break;
4245		}
4246	    }
4247
4248	  got_entry = got_entry->u.s2.next;
4249	}
4250    }
4251
4252  if (h->needs_copy)
4253    {
4254      asection *s;
4255      Elf_Internal_Rela rela;
4256      bfd_byte *loc;
4257
4258      /* This symbol needs a copy reloc.  Set it up.  */
4259
4260      BFD_ASSERT (h->dynindx != -1
4261		  && (h->root.type == bfd_link_hash_defined
4262		      || h->root.type == bfd_link_hash_defweak));
4263
4264      s = bfd_get_linker_section (dynobj, ".rela.bss");
4265      BFD_ASSERT (s != NULL);
4266
4267      rela.r_offset = (h->root.u.def.value
4268		       + h->root.u.def.section->output_section->vma
4269		       + h->root.u.def.section->output_offset);
4270      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4271      rela.r_addend = 0;
4272      loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4273      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4274    }
4275
4276  return true;
4277}
4278
4279/* Finish up the dynamic sections.  */
4280
4281static bool
4282elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4283{
4284  bfd *dynobj;
4285  asection *sgot;
4286  asection *sdyn;
4287
4288  dynobj = elf_hash_table (info)->dynobj;
4289
4290  sgot = elf_hash_table (info)->sgotplt;
4291  BFD_ASSERT (sgot != NULL);
4292  sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4293
4294  if (elf_hash_table (info)->dynamic_sections_created)
4295    {
4296      asection *splt;
4297      Elf32_External_Dyn *dyncon, *dynconend;
4298
4299      splt = elf_hash_table (info)->splt;
4300      BFD_ASSERT (splt != NULL && sdyn != NULL);
4301
4302      dyncon = (Elf32_External_Dyn *) sdyn->contents;
4303      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4304      for (; dyncon < dynconend; dyncon++)
4305	{
4306	  Elf_Internal_Dyn dyn;
4307	  asection *s;
4308
4309	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4310
4311	  switch (dyn.d_tag)
4312	    {
4313	    default:
4314	      break;
4315
4316	    case DT_PLTGOT:
4317	      s = elf_hash_table (info)->sgotplt;
4318	      goto get_vma;
4319	    case DT_JMPREL:
4320	      s = elf_hash_table (info)->srelplt;
4321	    get_vma:
4322	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4323	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4324	      break;
4325
4326	    case DT_PLTRELSZ:
4327	      s = elf_hash_table (info)->srelplt;
4328	      dyn.d_un.d_val = s->size;
4329	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4330	      break;
4331	    }
4332	}
4333
4334      /* Fill in the first entry in the procedure linkage table.  */
4335      if (splt->size > 0)
4336	{
4337	  const struct elf_m68k_plt_info *plt_info;
4338
4339	  plt_info = elf_m68k_hash_table (info)->plt_info;
4340	  memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4341
4342	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4343				 (sgot->output_section->vma
4344				  + sgot->output_offset
4345				  + 4));
4346
4347	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4348				 (sgot->output_section->vma
4349				  + sgot->output_offset
4350				  + 8));
4351
4352	  elf_section_data (splt->output_section)->this_hdr.sh_entsize
4353	    = plt_info->size;
4354	}
4355    }
4356
4357  /* Fill in the first three entries in the global offset table.  */
4358  if (sgot->size > 0)
4359    {
4360      if (sdyn == NULL)
4361	bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4362      else
4363	bfd_put_32 (output_bfd,
4364		    sdyn->output_section->vma + sdyn->output_offset,
4365		    sgot->contents);
4366      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4367      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4368    }
4369
4370  elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4371
4372  return true;
4373}
4374
4375/* Given a .data section and a .emreloc in-memory section, store
4376   relocation information into the .emreloc section which can be
4377   used at runtime to relocate the section.  This is called by the
4378   linker when the --embedded-relocs switch is used.  This is called
4379   after the add_symbols entry point has been called for all the
4380   objects, and before the final_link entry point is called.  */
4381
4382bool
4383bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4384				       asection *datasec, asection *relsec,
4385				       char **errmsg)
4386{
4387  Elf_Internal_Shdr *symtab_hdr;
4388  Elf_Internal_Sym *isymbuf = NULL;
4389  Elf_Internal_Rela *internal_relocs = NULL;
4390  Elf_Internal_Rela *irel, *irelend;
4391  bfd_byte *p;
4392  bfd_size_type amt;
4393
4394  BFD_ASSERT (! bfd_link_relocatable (info));
4395
4396  *errmsg = NULL;
4397
4398  if (datasec->reloc_count == 0)
4399    return true;
4400
4401  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4402
4403  /* Get a copy of the native relocations.  */
4404  internal_relocs = (_bfd_elf_link_read_relocs
4405		     (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4406		      info->keep_memory));
4407  if (internal_relocs == NULL)
4408    goto error_return;
4409
4410  amt = (bfd_size_type) datasec->reloc_count * 12;
4411  relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4412  if (relsec->contents == NULL)
4413    goto error_return;
4414
4415  p = relsec->contents;
4416
4417  irelend = internal_relocs + datasec->reloc_count;
4418  for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4419    {
4420      asection *targetsec;
4421
4422      /* We are going to write a four byte longword into the runtime
4423       reloc section.  The longword will be the address in the data
4424       section which must be relocated.  It is followed by the name
4425       of the target section NUL-padded or truncated to 8
4426       characters.  */
4427
4428      /* We can only relocate absolute longword relocs at run time.  */
4429      if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4430	{
4431	  *errmsg = _("unsupported relocation type");
4432	  bfd_set_error (bfd_error_bad_value);
4433	  goto error_return;
4434	}
4435
4436      /* Get the target section referred to by the reloc.  */
4437      if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4438	{
4439	  /* A local symbol.  */
4440	  Elf_Internal_Sym *isym;
4441
4442	  /* Read this BFD's local symbols if we haven't done so already.  */
4443	  if (isymbuf == NULL)
4444	    {
4445	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4446	      if (isymbuf == NULL)
4447		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4448						symtab_hdr->sh_info, 0,
4449						NULL, NULL, NULL);
4450	      if (isymbuf == NULL)
4451		goto error_return;
4452	    }
4453
4454	  isym = isymbuf + ELF32_R_SYM (irel->r_info);
4455	  targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4456	}
4457      else
4458	{
4459	  unsigned long indx;
4460	  struct elf_link_hash_entry *h;
4461
4462	  /* An external symbol.  */
4463	  indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4464	  h = elf_sym_hashes (abfd)[indx];
4465	  BFD_ASSERT (h != NULL);
4466	  if (h->root.type == bfd_link_hash_defined
4467	      || h->root.type == bfd_link_hash_defweak)
4468	    targetsec = h->root.u.def.section;
4469	  else
4470	    targetsec = NULL;
4471	}
4472
4473      bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4474      memset (p + 4, 0, 8);
4475      if (targetsec != NULL)
4476	strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4477    }
4478
4479  if (symtab_hdr->contents != (unsigned char *) isymbuf)
4480    free (isymbuf);
4481  if (elf_section_data (datasec)->relocs != internal_relocs)
4482    free (internal_relocs);
4483  return true;
4484
4485 error_return:
4486  if (symtab_hdr->contents != (unsigned char *) isymbuf)
4487    free (isymbuf);
4488  if (elf_section_data (datasec)->relocs != internal_relocs)
4489    free (internal_relocs);
4490  return false;
4491}
4492
4493/* Set target options.  */
4494
4495void
4496bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4497{
4498  struct elf_m68k_link_hash_table *htab;
4499  bool use_neg_got_offsets_p;
4500  bool allow_multigot_p;
4501  bool local_gp_p;
4502
4503  switch (got_handling)
4504    {
4505    case 0:
4506      /* --got=single.  */
4507      local_gp_p = false;
4508      use_neg_got_offsets_p = false;
4509      allow_multigot_p = false;
4510      break;
4511
4512    case 1:
4513      /* --got=negative.  */
4514      local_gp_p = true;
4515      use_neg_got_offsets_p = true;
4516      allow_multigot_p = false;
4517      break;
4518
4519    case 2:
4520      /* --got=multigot.  */
4521      local_gp_p = true;
4522      use_neg_got_offsets_p = true;
4523      allow_multigot_p = true;
4524      break;
4525
4526    default:
4527      BFD_ASSERT (false);
4528      return;
4529    }
4530
4531  htab = elf_m68k_hash_table (info);
4532  if (htab != NULL)
4533    {
4534      htab->local_gp_p = local_gp_p;
4535      htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4536      htab->allow_multigot_p = allow_multigot_p;
4537    }
4538}
4539
4540static enum elf_reloc_type_class
4541elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4542			     const asection *rel_sec ATTRIBUTE_UNUSED,
4543			     const Elf_Internal_Rela *rela)
4544{
4545  switch ((int) ELF32_R_TYPE (rela->r_info))
4546    {
4547    case R_68K_RELATIVE:
4548      return reloc_class_relative;
4549    case R_68K_JMP_SLOT:
4550      return reloc_class_plt;
4551    case R_68K_COPY:
4552      return reloc_class_copy;
4553    default:
4554      return reloc_class_normal;
4555    }
4556}
4557
4558/* Return address for Ith PLT stub in section PLT, for relocation REL
4559   or (bfd_vma) -1 if it should not be included.  */
4560
4561static bfd_vma
4562elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4563		      const arelent *rel ATTRIBUTE_UNUSED)
4564{
4565  return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4566}
4567
4568/* Support for core dump NOTE sections.  */
4569
4570static bool
4571elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4572{
4573  int offset;
4574  size_t size;
4575
4576  switch (note->descsz)
4577    {
4578    default:
4579      return false;
4580
4581    case 154:		/* Linux/m68k */
4582      /* pr_cursig */
4583      elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4584
4585      /* pr_pid */
4586      elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4587
4588      /* pr_reg */
4589      offset = 70;
4590      size = 80;
4591
4592      break;
4593    }
4594
4595  /* Make a ".reg/999" section.  */
4596  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4597					  size, note->descpos + offset);
4598}
4599
4600static bool
4601elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4602{
4603  switch (note->descsz)
4604    {
4605    default:
4606      return false;
4607
4608    case 124:		/* Linux/m68k elf_prpsinfo.  */
4609      elf_tdata (abfd)->core->pid
4610	= bfd_get_32 (abfd, note->descdata + 12);
4611      elf_tdata (abfd)->core->program
4612	= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4613      elf_tdata (abfd)->core->command
4614	= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4615    }
4616
4617  /* Note that for some reason, a spurious space is tacked
4618     onto the end of the args in some (at least one anyway)
4619     implementations, so strip it off if it exists.  */
4620  {
4621    char *command = elf_tdata (abfd)->core->command;
4622    int n = strlen (command);
4623
4624    if (n > 0 && command[n - 1] == ' ')
4625      command[n - 1] = '\0';
4626  }
4627
4628  return true;
4629}
4630
4631#define TARGET_BIG_SYM			m68k_elf32_vec
4632#define TARGET_BIG_NAME			"elf32-m68k"
4633#define ELF_MACHINE_CODE		EM_68K
4634#define ELF_MAXPAGESIZE			0x2000
4635#define elf_backend_create_dynamic_sections \
4636					_bfd_elf_create_dynamic_sections
4637#define bfd_elf32_bfd_link_hash_table_create \
4638					elf_m68k_link_hash_table_create
4639#define bfd_elf32_bfd_final_link	bfd_elf_final_link
4640
4641#define elf_backend_check_relocs	elf_m68k_check_relocs
4642#define elf_backend_always_size_sections \
4643					elf_m68k_always_size_sections
4644#define elf_backend_adjust_dynamic_symbol \
4645					elf_m68k_adjust_dynamic_symbol
4646#define elf_backend_size_dynamic_sections \
4647					elf_m68k_size_dynamic_sections
4648#define elf_backend_final_write_processing	elf_m68k_final_write_processing
4649#define elf_backend_init_index_section	_bfd_elf_init_1_index_section
4650#define elf_backend_relocate_section	elf_m68k_relocate_section
4651#define elf_backend_finish_dynamic_symbol \
4652					elf_m68k_finish_dynamic_symbol
4653#define elf_backend_finish_dynamic_sections \
4654					elf_m68k_finish_dynamic_sections
4655#define elf_backend_gc_mark_hook	elf_m68k_gc_mark_hook
4656#define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4657#define bfd_elf32_bfd_merge_private_bfd_data \
4658					elf32_m68k_merge_private_bfd_data
4659#define bfd_elf32_bfd_set_private_flags \
4660					elf32_m68k_set_private_flags
4661#define bfd_elf32_bfd_print_private_bfd_data \
4662					elf32_m68k_print_private_bfd_data
4663#define elf_backend_reloc_type_class	elf32_m68k_reloc_type_class
4664#define elf_backend_plt_sym_val		elf_m68k_plt_sym_val
4665#define elf_backend_object_p		elf32_m68k_object_p
4666#define elf_backend_grok_prstatus	elf_m68k_grok_prstatus
4667#define elf_backend_grok_psinfo		elf_m68k_grok_psinfo
4668
4669#define elf_backend_can_gc_sections 1
4670#define elf_backend_can_refcount 1
4671#define elf_backend_want_got_plt 1
4672#define elf_backend_plt_readonly 1
4673#define elf_backend_want_plt_sym 0
4674#define elf_backend_got_header_size	12
4675#define elf_backend_rela_normal		1
4676#define elf_backend_dtrel_excludes_plt	1
4677
4678#define elf_backend_linux_prpsinfo32_ugid16	true
4679
4680#include "elf32-target.h"
4681