1@section Sections
2The raw data contained within a BFD is maintained through the
3section abstraction.  A single BFD may have any number of
4sections.  It keeps hold of them by pointing to the first;
5each one points to the next in the list.
6
7Sections are supported in BFD in @code{section.c}.
8
9@menu
10* Section Input::
11* Section Output::
12* typedef asection::
13* section prototypes::
14@end menu
15
16@node Section Input, Section Output, Sections, Sections
17@subsection Section input
18When a BFD is opened for reading, the section structures are
19created and attached to the BFD.
20
21Each section has a name which describes the section in the
22outside world---for example, @code{a.out} would contain at least
23three sections, called @code{.text}, @code{.data} and @code{.bss}.
24
25Names need not be unique; for example a COFF file may have several
26sections named @code{.data}.
27
28Sometimes a BFD will contain more than the ``natural'' number of
29sections. A back end may attach other sections containing
30constructor data, or an application may add a section (using
31@code{bfd_make_section}) to the sections attached to an already open
32BFD. For example, the linker creates an extra section
33@code{COMMON} for each input file's BFD to hold information about
34common storage.
35
36The raw data is not necessarily read in when
37the section descriptor is created. Some targets may leave the
38data in place until a @code{bfd_get_section_contents} call is
39made. Other back ends may read in all the data at once.  For
40example, an S-record file has to be read once to determine the
41size of the data.
42
43@node Section Output, typedef asection, Section Input, Sections
44@subsection Section output
45To write a new object style BFD, the various sections to be
46written have to be created. They are attached to the BFD in
47the same way as input sections; data is written to the
48sections using @code{bfd_set_section_contents}.
49
50Any program that creates or combines sections (e.g., the assembler
51and linker) must use the @code{asection} fields @code{output_section} and
52@code{output_offset} to indicate the file sections to which each
53section must be written.  (If the section is being created from
54scratch, @code{output_section} should probably point to the section
55itself and @code{output_offset} should probably be zero.)
56
57The data to be written comes from input sections attached
58(via @code{output_section} pointers) to
59the output sections.  The output section structure can be
60considered a filter for the input section: the output section
61determines the vma of the output data and the name, but the
62input section determines the offset into the output section of
63the data to be written.
64
65E.g., to create a section "O", starting at 0x100, 0x123 long,
66containing two subsections, "A" at offset 0x0 (i.e., at vma
670x100) and "B" at offset 0x20 (i.e., at vma 0x120) the @code{asection}
68structures would look like:
69
70@example
71   section name          "A"
72     output_offset   0x00
73     size            0x20
74     output_section ----------->  section name    "O"
75                             |    vma             0x100
76   section name          "B" |    size            0x123
77     output_offset   0x20    |
78     size            0x103   |
79     output_section  --------|
80@end example
81
82@subsection Link orders
83The data within a section is stored in a @dfn{link_order}.
84These are much like the fixups in @code{gas}.  The link_order
85abstraction allows a section to grow and shrink within itself.
86
87A link_order knows how big it is, and which is the next
88link_order and where the raw data for it is; it also points to
89a list of relocations which apply to it.
90
91The link_order is used by the linker to perform relaxing on
92final code.  The compiler creates code which is as big as
93necessary to make it work without relaxing, and the user can
94select whether to relax.  Sometimes relaxing takes a lot of
95time.  The linker runs around the relocations to see if any
96are attached to data which can be shrunk, if so it does it on
97a link_order by link_order basis.
98
99
100@node typedef asection, section prototypes, Section Output, Sections
101@subsection typedef asection
102Here is the section structure:
103
104
105@example
106
107typedef struct bfd_section
108@{
109  /* The name of the section; the name isn't a copy, the pointer is
110     the same as that passed to bfd_make_section.  */
111  const char *name;
112
113  /* The next section in the list belonging to the BFD, or NULL.  */
114  struct bfd_section *next;
115
116  /* The previous section in the list belonging to the BFD, or NULL.  */
117  struct bfd_section *prev;
118
119  /* A unique sequence number.  */
120  unsigned int id;
121
122  /* A unique section number which can be used by assembler to
123     distinguish different sections with the same section name.  */
124  unsigned int section_id;
125
126  /* Which section in the bfd; 0..n-1 as sections are created in a bfd.  */
127  unsigned int index;
128
129  /* The field flags contains attributes of the section. Some
130     flags are read in from the object file, and some are
131     synthesized from other information.  */
132  flagword flags;
133
134#define SEC_NO_FLAGS                      0x0
135
136  /* Tells the OS to allocate space for this section when loading.
137     This is clear for a section containing debug information only.  */
138#define SEC_ALLOC                         0x1
139
140  /* Tells the OS to load the section from the file when loading.
141     This is clear for a .bss section.  */
142#define SEC_LOAD                          0x2
143
144  /* The section contains data still to be relocated, so there is
145     some relocation information too.  */
146#define SEC_RELOC                         0x4
147
148  /* A signal to the OS that the section contains read only data.  */
149#define SEC_READONLY                      0x8
150
151  /* The section contains code only.  */
152#define SEC_CODE                         0x10
153
154  /* The section contains data only.  */
155#define SEC_DATA                         0x20
156
157  /* The section will reside in ROM.  */
158#define SEC_ROM                          0x40
159
160  /* The section contains constructor information. This section
161     type is used by the linker to create lists of constructors and
162     destructors used by @code{g++}. When a back end sees a symbol
163     which should be used in a constructor list, it creates a new
164     section for the type of name (e.g., @code{__CTOR_LIST__}), attaches
165     the symbol to it, and builds a relocation. To build the lists
166     of constructors, all the linker has to do is catenate all the
167     sections called @code{__CTOR_LIST__} and relocate the data
168     contained within - exactly the operations it would peform on
169     standard data.  */
170#define SEC_CONSTRUCTOR                  0x80
171
172  /* The section has contents - a data section could be
173     @code{SEC_ALLOC} | @code{SEC_HAS_CONTENTS}; a debug section could be
174     @code{SEC_HAS_CONTENTS}  */
175#define SEC_HAS_CONTENTS                0x100
176
177  /* An instruction to the linker to not output the section
178     even if it has information which would normally be written.  */
179#define SEC_NEVER_LOAD                  0x200
180
181  /* The section contains thread local data.  */
182#define SEC_THREAD_LOCAL                0x400
183
184  /* The section's size is fixed.  Generic linker code will not
185     recalculate it and it is up to whoever has set this flag to
186     get the size right.  */
187#define SEC_FIXED_SIZE                  0x800
188
189  /* The section contains common symbols (symbols may be defined
190     multiple times, the value of a symbol is the amount of
191     space it requires, and the largest symbol value is the one
192     used).  Most targets have exactly one of these (which we
193     translate to bfd_com_section_ptr), but ECOFF has two.  */
194#define SEC_IS_COMMON                  0x1000
195
196  /* The section contains only debugging information.  For
197     example, this is set for ELF .debug and .stab sections.
198     strip tests this flag to see if a section can be
199     discarded.  */
200#define SEC_DEBUGGING                  0x2000
201
202  /* The contents of this section are held in memory pointed to
203     by the contents field.  This is checked by bfd_get_section_contents,
204     and the data is retrieved from memory if appropriate.  */
205#define SEC_IN_MEMORY                  0x4000
206
207  /* The contents of this section are to be excluded by the
208     linker for executable and shared objects unless those
209     objects are to be further relocated.  */
210#define SEC_EXCLUDE                    0x8000
211
212  /* The contents of this section are to be sorted based on the sum of
213     the symbol and addend values specified by the associated relocation
214     entries.  Entries without associated relocation entries will be
215     appended to the end of the section in an unspecified order.  */
216#define SEC_SORT_ENTRIES              0x10000
217
218  /* When linking, duplicate sections of the same name should be
219     discarded, rather than being combined into a single section as
220     is usually done.  This is similar to how common symbols are
221     handled.  See SEC_LINK_DUPLICATES below.  */
222#define SEC_LINK_ONCE                 0x20000
223
224  /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
225     should handle duplicate sections.  */
226#define SEC_LINK_DUPLICATES           0xc0000
227
228  /* This value for SEC_LINK_DUPLICATES means that duplicate
229     sections with the same name should simply be discarded.  */
230#define SEC_LINK_DUPLICATES_DISCARD       0x0
231
232  /* This value for SEC_LINK_DUPLICATES means that the linker
233     should warn if there are any duplicate sections, although
234     it should still only link one copy.  */
235#define SEC_LINK_DUPLICATES_ONE_ONLY  0x40000
236
237  /* This value for SEC_LINK_DUPLICATES means that the linker
238     should warn if any duplicate sections are a different size.  */
239#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
240
241  /* This value for SEC_LINK_DUPLICATES means that the linker
242     should warn if any duplicate sections contain different
243     contents.  */
244#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
245  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
246
247  /* This section was created by the linker as part of dynamic
248     relocation or other arcane processing.  It is skipped when
249     going through the first-pass output, trusting that someone
250     else up the line will take care of it later.  */
251#define SEC_LINKER_CREATED           0x100000
252
253  /* This section contains a section ID to distinguish different
254     sections with the same section name.  */
255#define SEC_ASSEMBLER_SECTION_ID     0x100000
256
257  /* This section should not be subject to garbage collection.
258     Also set to inform the linker that this section should not be
259     listed in the link map as discarded.  */
260#define SEC_KEEP                     0x200000
261
262  /* This section contains "short" data, and should be placed
263     "near" the GP.  */
264#define SEC_SMALL_DATA               0x400000
265
266  /* Attempt to merge identical entities in the section.
267     Entity size is given in the entsize field.  */
268#define SEC_MERGE                    0x800000
269
270  /* If given with SEC_MERGE, entities to merge are zero terminated
271     strings where entsize specifies character size instead of fixed
272     size entries.  */
273#define SEC_STRINGS                 0x1000000
274
275  /* This section contains data about section groups.  */
276#define SEC_GROUP                   0x2000000
277
278  /* The section is a COFF shared library section.  This flag is
279     only for the linker.  If this type of section appears in
280     the input file, the linker must copy it to the output file
281     without changing the vma or size.  FIXME: Although this
282     was originally intended to be general, it really is COFF
283     specific (and the flag was renamed to indicate this).  It
284     might be cleaner to have some more general mechanism to
285     allow the back end to control what the linker does with
286     sections.  */
287#define SEC_COFF_SHARED_LIBRARY     0x4000000
288
289  /* This input section should be copied to output in reverse order
290     as an array of pointers.  This is for ELF linker internal use
291     only.  */
292#define SEC_ELF_REVERSE_COPY        0x4000000
293
294  /* This section contains data which may be shared with other
295     executables or shared objects. This is for COFF only.  */
296#define SEC_COFF_SHARED             0x8000000
297
298  /* This section should be compressed.  This is for ELF linker
299     internal use only.  */
300#define SEC_ELF_COMPRESS            0x8000000
301
302  /* When a section with this flag is being linked, then if the size of
303     the input section is less than a page, it should not cross a page
304     boundary.  If the size of the input section is one page or more,
305     it should be aligned on a page boundary.  This is for TI
306     TMS320C54X only.  */
307#define SEC_TIC54X_BLOCK           0x10000000
308
309  /* This section should be renamed.  This is for ELF linker
310     internal use only.  */
311#define SEC_ELF_RENAME             0x10000000
312
313  /* Conditionally link this section; do not link if there are no
314     references found to any symbol in the section.  This is for TI
315     TMS320C54X only.  */
316#define SEC_TIC54X_CLINK           0x20000000
317
318  /* This section contains vliw code.  This is for Toshiba MeP only.  */
319#define SEC_MEP_VLIW               0x20000000
320
321  /* All symbols, sizes and relocations in this section are octets
322     instead of bytes.  Required for DWARF debug sections as DWARF
323     information is organized in octets, not bytes.  */
324#define SEC_ELF_OCTETS             0x40000000
325
326  /* Indicate that section has the no read flag set. This happens
327     when memory read flag isn't set. */
328#define SEC_COFF_NOREAD            0x40000000
329
330  /* Indicate that section has the purecode flag set.  */
331#define SEC_ELF_PURECODE           0x80000000
332
333  /*  End of section flags.  */
334
335  /* Some internal packed boolean fields.  */
336
337  /* See the vma field.  */
338  unsigned int user_set_vma : 1;
339
340  /* A mark flag used by some of the linker backends.  */
341  unsigned int linker_mark : 1;
342
343  /* Another mark flag used by some of the linker backends.  Set for
344     output sections that have an input section.  */
345  unsigned int linker_has_input : 1;
346
347  /* Mark flag used by some linker backends for garbage collection.  */
348  unsigned int gc_mark : 1;
349
350  /* Section compression status.  */
351  unsigned int compress_status : 2;
352#define COMPRESS_SECTION_NONE    0
353#define COMPRESS_SECTION_DONE    1
354#define DECOMPRESS_SECTION_SIZED 2
355
356  /* The following flags are used by the ELF linker. */
357
358  /* Mark sections which have been allocated to segments.  */
359  unsigned int segment_mark : 1;
360
361  /* Type of sec_info information.  */
362  unsigned int sec_info_type:3;
363#define SEC_INFO_TYPE_NONE      0
364#define SEC_INFO_TYPE_STABS     1
365#define SEC_INFO_TYPE_MERGE     2
366#define SEC_INFO_TYPE_EH_FRAME  3
367#define SEC_INFO_TYPE_JUST_SYMS 4
368#define SEC_INFO_TYPE_TARGET    5
369#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
370
371  /* Nonzero if this section uses RELA relocations, rather than REL.  */
372  unsigned int use_rela_p:1;
373
374  /* Bits used by various backends.  The generic code doesn't touch
375     these fields.  */
376
377  unsigned int sec_flg0:1;
378  unsigned int sec_flg1:1;
379  unsigned int sec_flg2:1;
380  unsigned int sec_flg3:1;
381  unsigned int sec_flg4:1;
382  unsigned int sec_flg5:1;
383
384  /* End of internal packed boolean fields.  */
385
386  /*  The virtual memory address of the section - where it will be
387      at run time.  The symbols are relocated against this.  The
388      user_set_vma flag is maintained by bfd; if it's not set, the
389      backend can assign addresses (for example, in @code{a.out}, where
390      the default address for @code{.data} is dependent on the specific
391      target and various flags).  */
392  bfd_vma vma;
393
394  /*  The load address of the section - where it would be in a
395      rom image; really only used for writing section header
396      information.  */
397  bfd_vma lma;
398
399  /* The size of the section in *octets*, as it will be output.
400     Contains a value even if the section has no contents (e.g., the
401     size of @code{.bss}).  */
402  bfd_size_type size;
403
404  /* For input sections, the original size on disk of the section, in
405     octets.  This field should be set for any section whose size is
406     changed by linker relaxation.  It is required for sections where
407     the linker relaxation scheme doesn't cache altered section and
408     reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
409     targets), and thus the original size needs to be kept to read the
410     section multiple times.  For output sections, rawsize holds the
411     section size calculated on a previous linker relaxation pass.  */
412  bfd_size_type rawsize;
413
414  /* The compressed size of the section in octets.  */
415  bfd_size_type compressed_size;
416
417  /* If this section is going to be output, then this value is the
418     offset in *bytes* into the output section of the first byte in the
419     input section (byte ==> smallest addressable unit on the
420     target).  In most cases, if this was going to start at the
421     100th octet (8-bit quantity) in the output section, this value
422     would be 100.  However, if the target byte size is 16 bits
423     (bfd_octets_per_byte is "2"), this value would be 50.  */
424  bfd_vma output_offset;
425
426  /* The output section through which to map on output.  */
427  struct bfd_section *output_section;
428
429  /* If an input section, a pointer to a vector of relocation
430     records for the data in this section.  */
431  struct reloc_cache_entry *relocation;
432
433  /* If an output section, a pointer to a vector of pointers to
434     relocation records for the data in this section.  */
435  struct reloc_cache_entry **orelocation;
436
437  /* The number of relocation records in one of the above.  */
438  unsigned reloc_count;
439
440  /* The alignment requirement of the section, as an exponent of 2 -
441     e.g., 3 aligns to 2^3 (or 8).  */
442  unsigned int alignment_power;
443
444  /* Information below is back end specific - and not always used
445     or updated.  */
446
447  /* File position of section data.  */
448  file_ptr filepos;
449
450  /* File position of relocation info.  */
451  file_ptr rel_filepos;
452
453  /* File position of line data.  */
454  file_ptr line_filepos;
455
456  /* Pointer to data for applications.  */
457  void *userdata;
458
459  /* If the SEC_IN_MEMORY flag is set, this points to the actual
460     contents.  */
461  unsigned char *contents;
462
463  /* Attached line number information.  */
464  alent *lineno;
465
466  /* Number of line number records.  */
467  unsigned int lineno_count;
468
469  /* Entity size for merging purposes.  */
470  unsigned int entsize;
471
472  /* Points to the kept section if this section is a link-once section,
473     and is discarded.  */
474  struct bfd_section *kept_section;
475
476  /* When a section is being output, this value changes as more
477     linenumbers are written out.  */
478  file_ptr moving_line_filepos;
479
480  /* What the section number is in the target world.  */
481  int target_index;
482
483  void *used_by_bfd;
484
485  /* If this is a constructor section then here is a list of the
486     relocations created to relocate items within it.  */
487  struct relent_chain *constructor_chain;
488
489  /* The BFD which owns the section.  */
490  bfd *owner;
491
492  /* A symbol which points at this section only.  */
493  struct bfd_symbol *symbol;
494  struct bfd_symbol **symbol_ptr_ptr;
495
496  /* Early in the link process, map_head and map_tail are used to build
497     a list of input sections attached to an output section.  Later,
498     output sections use these fields for a list of bfd_link_order
499     structs.  The linked_to_symbol_name field is for ELF assembler
500     internal use.  */
501  union @{
502    struct bfd_link_order *link_order;
503    struct bfd_section *s;
504    const char *linked_to_symbol_name;
505  @} map_head, map_tail;
506
507  /* Points to the output section this section is already assigned to,
508     if any.  This is used when support for non-contiguous memory
509     regions is enabled.  */
510  struct bfd_section *already_assigned;
511
512  /* Explicitly specified section type, if non-zero.  */
513  unsigned int type;
514
515@} asection;
516
517static inline const char *
518bfd_section_name (const asection *sec)
519@{
520  return sec->name;
521@}
522
523static inline bfd_size_type
524bfd_section_size (const asection *sec)
525@{
526  return sec->size;
527@}
528
529static inline bfd_vma
530bfd_section_vma (const asection *sec)
531@{
532  return sec->vma;
533@}
534
535static inline bfd_vma
536bfd_section_lma (const asection *sec)
537@{
538  return sec->lma;
539@}
540
541static inline unsigned int
542bfd_section_alignment (const asection *sec)
543@{
544  return sec->alignment_power;
545@}
546
547static inline flagword
548bfd_section_flags (const asection *sec)
549@{
550  return sec->flags;
551@}
552
553static inline void *
554bfd_section_userdata (const asection *sec)
555@{
556  return sec->userdata;
557@}
558static inline bool
559bfd_is_com_section (const asection *sec)
560@{
561  return (sec->flags & SEC_IS_COMMON) != 0;
562@}
563
564/* Note: the following are provided as inline functions rather than macros
565   because not all callers use the return value.  A macro implementation
566   would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
567   compilers will complain about comma expressions that have no effect.  */
568static inline bool
569bfd_set_section_userdata (asection *sec, void *val)
570@{
571  sec->userdata = val;
572  return true;
573@}
574
575static inline bool
576bfd_set_section_vma (asection *sec, bfd_vma val)
577@{
578  sec->vma = sec->lma = val;
579  sec->user_set_vma = true;
580  return true;
581@}
582
583static inline bool
584bfd_set_section_lma (asection *sec, bfd_vma val)
585@{
586  sec->lma = val;
587  return true;
588@}
589
590static inline bool
591bfd_set_section_alignment (asection *sec, unsigned int val)
592@{
593  sec->alignment_power = val;
594  return true;
595@}
596
597/* These sections are global, and are managed by BFD.  The application
598   and target back end are not permitted to change the values in
599   these sections.  */
600extern asection _bfd_std_section[4];
601
602#define BFD_ABS_SECTION_NAME "*ABS*"
603#define BFD_UND_SECTION_NAME "*UND*"
604#define BFD_COM_SECTION_NAME "*COM*"
605#define BFD_IND_SECTION_NAME "*IND*"
606
607/* Pointer to the common section.  */
608#define bfd_com_section_ptr (&_bfd_std_section[0])
609/* Pointer to the undefined section.  */
610#define bfd_und_section_ptr (&_bfd_std_section[1])
611/* Pointer to the absolute section.  */
612#define bfd_abs_section_ptr (&_bfd_std_section[2])
613/* Pointer to the indirect section.  */
614#define bfd_ind_section_ptr (&_bfd_std_section[3])
615
616static inline bool
617bfd_is_und_section (const asection *sec)
618@{
619  return sec == bfd_und_section_ptr;
620@}
621
622static inline bool
623bfd_is_abs_section (const asection *sec)
624@{
625  return sec == bfd_abs_section_ptr;
626@}
627
628static inline bool
629bfd_is_ind_section (const asection *sec)
630@{
631  return sec == bfd_ind_section_ptr;
632@}
633
634static inline bool
635bfd_is_const_section (const asection *sec)
636@{
637  return (sec >= _bfd_std_section
638          && sec < _bfd_std_section + (sizeof (_bfd_std_section)
639                                       / sizeof (_bfd_std_section[0])));
640@}
641
642/* Return TRUE if input section SEC has been discarded.  */
643static inline bool
644discarded_section (const asection *sec)
645@{
646  return (!bfd_is_abs_section (sec)
647          && bfd_is_abs_section (sec->output_section)
648          && sec->sec_info_type != SEC_INFO_TYPE_MERGE
649          && sec->sec_info_type != SEC_INFO_TYPE_JUST_SYMS);
650@}
651
652#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS)                   \
653  /* name, next, prev, id,  section_id, index, flags, user_set_vma, */ \
654  @{  NAME, NULL, NULL, IDX, 0,          0,     FLAGS, 0,               \
655                                                                       \
656  /* linker_mark, linker_has_input, gc_mark, decompress_status,     */ \
657     0,           0,                1,       0,                        \
658                                                                       \
659  /* segment_mark, sec_info_type, use_rela_p,                       */ \
660     0,            0,             0,                                   \
661                                                                       \
662  /* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5,    */ \
663     0,        0,        0,        0,        0,        0,              \
664                                                                       \
665  /* vma, lma, size, rawsize, compressed_size,                      */ \
666     0,   0,   0,    0,       0,                                       \
667                                                                       \
668  /* output_offset, output_section, relocation, orelocation,        */ \
669     0,             &SEC,           NULL,       NULL,                  \
670                                                                       \
671  /* reloc_count, alignment_power, filepos, rel_filepos,            */ \
672     0,           0,               0,       0,                         \
673                                                                       \
674  /* line_filepos, userdata, contents, lineno, lineno_count,        */ \
675     0,            NULL,     NULL,     NULL,   0,                      \
676                                                                       \
677  /* entsize, kept_section, moving_line_filepos,                    */ \
678     0,       NULL,         0,                                         \
679                                                                       \
680  /* target_index, used_by_bfd, constructor_chain, owner,           */ \
681     0,            NULL,        NULL,              NULL,               \
682                                                                       \
683  /* symbol,                    symbol_ptr_ptr,                     */ \
684     (struct bfd_symbol *) SYM, &SEC.symbol,                           \
685                                                                       \
686  /* map_head, map_tail, already_assigned, type                     */ \
687     @{ NULL @}, @{ NULL @}, NULL,             0                           \
688                                                                       \
689    @}
690
691/* We use a macro to initialize the static asymbol structures because
692   traditional C does not permit us to initialize a union member while
693   gcc warns if we don't initialize it.
694   the_bfd, name, value, attr, section [, udata]  */
695#ifdef __STDC__
696#define GLOBAL_SYM_INIT(NAME, SECTION) \
697  @{ 0, NAME, 0, BSF_SECTION_SYM, SECTION, @{ 0 @}@}
698#else
699#define GLOBAL_SYM_INIT(NAME, SECTION) \
700  @{ 0, NAME, 0, BSF_SECTION_SYM, SECTION @}
701#endif
702
703@end example
704
705@node section prototypes,  , typedef asection, Sections
706@subsection Section prototypes
707These are the functions exported by the section handling part of BFD.
708
709@findex bfd_section_list_clear
710@subsubsection @code{bfd_section_list_clear}
711@strong{Synopsis}
712@example
713void bfd_section_list_clear (bfd *);
714@end example
715@strong{Description}@*
716Clears the section list, and also resets the section count and
717hash table entries.
718
719@findex bfd_get_section_by_name
720@subsubsection @code{bfd_get_section_by_name}
721@strong{Synopsis}
722@example
723asection *bfd_get_section_by_name (bfd *abfd, const char *name);
724@end example
725@strong{Description}@*
726Return the most recently created section attached to @var{abfd}
727named @var{name}.  Return NULL if no such section exists.
728
729@findex bfd_get_next_section_by_name
730@subsubsection @code{bfd_get_next_section_by_name}
731@strong{Synopsis}
732@example
733asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
734@end example
735@strong{Description}@*
736Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
737return the next most recently created section attached to the same
738BFD with the same name, or if no such section exists in the same BFD and
739IBFD is non-NULL, the next section with the same name in any input
740BFD following IBFD.  Return NULL on finding no section.
741
742@findex bfd_get_linker_section
743@subsubsection @code{bfd_get_linker_section}
744@strong{Synopsis}
745@example
746asection *bfd_get_linker_section (bfd *abfd, const char *name);
747@end example
748@strong{Description}@*
749Return the linker created section attached to @var{abfd}
750named @var{name}.  Return NULL if no such section exists.
751
752@findex bfd_get_section_by_name_if
753@subsubsection @code{bfd_get_section_by_name_if}
754@strong{Synopsis}
755@example
756asection *bfd_get_section_by_name_if
757   (bfd *abfd,
758    const char *name,
759    bool (*func) (bfd *abfd, asection *sect, void *obj),
760    void *obj);
761@end example
762@strong{Description}@*
763Call the provided function @var{func} for each section
764attached to the BFD @var{abfd} whose name matches @var{name},
765passing @var{obj} as an argument. The function will be called
766as if by
767
768@example
769       func (abfd, the_section, obj);
770@end example
771
772It returns the first section for which @var{func} returns true,
773otherwise @code{NULL}.
774
775@findex bfd_get_unique_section_name
776@subsubsection @code{bfd_get_unique_section_name}
777@strong{Synopsis}
778@example
779char *bfd_get_unique_section_name
780   (bfd *abfd, const char *templat, int *count);
781@end example
782@strong{Description}@*
783Invent a section name that is unique in @var{abfd} by tacking
784a dot and a digit suffix onto the original @var{templat}.  If
785@var{count} is non-NULL, then it specifies the first number
786tried as a suffix to generate a unique name.  The value
787pointed to by @var{count} will be incremented in this case.
788
789@findex bfd_make_section_old_way
790@subsubsection @code{bfd_make_section_old_way}
791@strong{Synopsis}
792@example
793asection *bfd_make_section_old_way (bfd *abfd, const char *name);
794@end example
795@strong{Description}@*
796Create a new empty section called @var{name}
797and attach it to the end of the chain of sections for the
798BFD @var{abfd}. An attempt to create a section with a name which
799is already in use returns its pointer without changing the
800section chain.
801
802It has the funny name since this is the way it used to be
803before it was rewritten....
804
805Possible errors are:
806@itemize @bullet
807
808@item
809@code{bfd_error_invalid_operation} -
810If output has already started for this BFD.
811@item
812@code{bfd_error_no_memory} -
813If memory allocation fails.
814@end itemize
815
816@findex bfd_make_section_anyway_with_flags
817@subsubsection @code{bfd_make_section_anyway_with_flags}
818@strong{Synopsis}
819@example
820asection *bfd_make_section_anyway_with_flags
821   (bfd *abfd, const char *name, flagword flags);
822@end example
823@strong{Description}@*
824Create a new empty section called @var{name} and attach it to the end of
825the chain of sections for @var{abfd}.  Create a new section even if there
826is already a section with that name.  Also set the attributes of the
827new section to the value @var{flags}.
828
829Return @code{NULL} and set @code{bfd_error} on error; possible errors are:
830@itemize @bullet
831
832@item
833@code{bfd_error_invalid_operation} - If output has already started for @var{abfd}.
834@item
835@code{bfd_error_no_memory} - If memory allocation fails.
836@end itemize
837
838@findex bfd_make_section_anyway
839@subsubsection @code{bfd_make_section_anyway}
840@strong{Synopsis}
841@example
842asection *bfd_make_section_anyway (bfd *abfd, const char *name);
843@end example
844@strong{Description}@*
845Create a new empty section called @var{name} and attach it to the end of
846the chain of sections for @var{abfd}.  Create a new section even if there
847is already a section with that name.
848
849Return @code{NULL} and set @code{bfd_error} on error; possible errors are:
850@itemize @bullet
851
852@item
853@code{bfd_error_invalid_operation} - If output has already started for @var{abfd}.
854@item
855@code{bfd_error_no_memory} - If memory allocation fails.
856@end itemize
857
858@findex bfd_make_section_with_flags
859@subsubsection @code{bfd_make_section_with_flags}
860@strong{Synopsis}
861@example
862asection *bfd_make_section_with_flags
863   (bfd *, const char *name, flagword flags);
864@end example
865@strong{Description}@*
866Like @code{bfd_make_section_anyway}, but return @code{NULL} (without calling
867bfd_set_error ()) without changing the section chain if there is already a
868section named @var{name}.  Also set the attributes of the new section to
869the value @var{flags}.  If there is an error, return @code{NULL} and set
870@code{bfd_error}.
871
872@findex bfd_make_section
873@subsubsection @code{bfd_make_section}
874@strong{Synopsis}
875@example
876asection *bfd_make_section (bfd *, const char *name);
877@end example
878@strong{Description}@*
879Like @code{bfd_make_section_anyway}, but return @code{NULL} (without calling
880bfd_set_error ()) without changing the section chain if there is already a
881section named @var{name}.  If there is an error, return @code{NULL} and set
882@code{bfd_error}.
883
884@findex bfd_set_section_flags
885@subsubsection @code{bfd_set_section_flags}
886@strong{Synopsis}
887@example
888bool bfd_set_section_flags (asection *sec, flagword flags);
889@end example
890@strong{Description}@*
891Set the attributes of the section @var{sec} to the value @var{flags}.
892Return @code{TRUE} on success, @code{FALSE} on error.  Possible error
893returns are:
894
895@itemize @bullet
896
897@item
898@code{bfd_error_invalid_operation} -
899The section cannot have one or more of the attributes
900requested. For example, a .bss section in @code{a.out} may not
901have the @code{SEC_HAS_CONTENTS} field set.
902@end itemize
903
904@findex bfd_rename_section
905@subsubsection @code{bfd_rename_section}
906@strong{Synopsis}
907@example
908void bfd_rename_section
909   (asection *sec, const char *newname);
910@end example
911@strong{Description}@*
912Rename section @var{sec} to @var{newname}.
913
914@findex bfd_map_over_sections
915@subsubsection @code{bfd_map_over_sections}
916@strong{Synopsis}
917@example
918void bfd_map_over_sections
919   (bfd *abfd,
920    void (*func) (bfd *abfd, asection *sect, void *obj),
921    void *obj);
922@end example
923@strong{Description}@*
924Call the provided function @var{func} for each section
925attached to the BFD @var{abfd}, passing @var{obj} as an
926argument. The function will be called as if by
927
928@example
929       func (abfd, the_section, obj);
930@end example
931
932This is the preferred method for iterating over sections; an
933alternative would be to use a loop:
934
935@example
936          asection *p;
937          for (p = abfd->sections; p != NULL; p = p->next)
938             func (abfd, p, ...)
939@end example
940
941@findex bfd_sections_find_if
942@subsubsection @code{bfd_sections_find_if}
943@strong{Synopsis}
944@example
945asection *bfd_sections_find_if
946   (bfd *abfd,
947    bool (*operation) (bfd *abfd, asection *sect, void *obj),
948    void *obj);
949@end example
950@strong{Description}@*
951Call the provided function @var{operation} for each section
952attached to the BFD @var{abfd}, passing @var{obj} as an
953argument. The function will be called as if by
954
955@example
956       operation (abfd, the_section, obj);
957@end example
958
959It returns the first section for which @var{operation} returns true.
960
961@findex bfd_set_section_size
962@subsubsection @code{bfd_set_section_size}
963@strong{Synopsis}
964@example
965bool bfd_set_section_size (asection *sec, bfd_size_type val);
966@end example
967@strong{Description}@*
968Set @var{sec} to the size @var{val}. If the operation is
969ok, then @code{TRUE} is returned, else @code{FALSE}.
970
971Possible error returns:
972@itemize @bullet
973
974@item
975@code{bfd_error_invalid_operation} -
976Writing has started to the BFD, so setting the size is invalid.
977@end itemize
978
979@findex bfd_set_section_contents
980@subsubsection @code{bfd_set_section_contents}
981@strong{Synopsis}
982@example
983bool bfd_set_section_contents
984   (bfd *abfd, asection *section, const void *data,
985    file_ptr offset, bfd_size_type count);
986@end example
987@strong{Description}@*
988Sets the contents of the section @var{section} in BFD
989@var{abfd} to the data starting in memory at @var{location}.
990The data is written to the output section starting at offset
991@var{offset} for @var{count} octets.
992
993Normally @code{TRUE} is returned, but @code{FALSE} is returned if
994there was an error.  Possible error returns are:
995@itemize @bullet
996
997@item
998@code{bfd_error_no_contents} -
999The output section does not have the @code{SEC_HAS_CONTENTS}
1000attribute, so nothing can be written to it.
1001@item
1002@code{bfd_error_bad_value} -
1003The section is unable to contain all of the data.
1004@item
1005@code{bfd_error_invalid_operation} -
1006The BFD is not writeable.
1007@item
1008and some more too.
1009@end itemize
1010This routine is front end to the back end function
1011@code{_bfd_set_section_contents}.
1012
1013@findex bfd_get_section_contents
1014@subsubsection @code{bfd_get_section_contents}
1015@strong{Synopsis}
1016@example
1017bool bfd_get_section_contents
1018   (bfd *abfd, asection *section, void *location, file_ptr offset,
1019    bfd_size_type count);
1020@end example
1021@strong{Description}@*
1022Read data from @var{section} in BFD @var{abfd}
1023into memory starting at @var{location}. The data is read at an
1024offset of @var{offset} from the start of the input section,
1025and is read for @var{count} bytes.
1026
1027If the contents of a constructor with the @code{SEC_CONSTRUCTOR}
1028flag set are requested or if the section does not have the
1029@code{SEC_HAS_CONTENTS} flag set, then the @var{location} is filled
1030with zeroes. If no errors occur, @code{TRUE} is returned, else
1031@code{FALSE}.
1032
1033@findex bfd_malloc_and_get_section
1034@subsubsection @code{bfd_malloc_and_get_section}
1035@strong{Synopsis}
1036@example
1037bool bfd_malloc_and_get_section
1038   (bfd *abfd, asection *section, bfd_byte **buf);
1039@end example
1040@strong{Description}@*
1041Read all data from @var{section} in BFD @var{abfd}
1042into a buffer, *@var{buf}, malloc'd by this function.
1043
1044@findex bfd_copy_private_section_data
1045@subsubsection @code{bfd_copy_private_section_data}
1046@strong{Synopsis}
1047@example
1048bool bfd_copy_private_section_data
1049   (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1050@end example
1051@strong{Description}@*
1052Copy private section information from @var{isec} in the BFD
1053@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1054Return @code{TRUE} on success, @code{FALSE} on error.  Possible error
1055returns are:
1056
1057@itemize @bullet
1058
1059@item
1060@code{bfd_error_no_memory} -
1061Not enough memory exists to create private data for @var{osec}.
1062@end itemize
1063@example
1064#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1065       BFD_SEND (obfd, _bfd_copy_private_section_data, \
1066                 (ibfd, isection, obfd, osection))
1067@end example
1068
1069@findex bfd_generic_is_group_section
1070@subsubsection @code{bfd_generic_is_group_section}
1071@strong{Synopsis}
1072@example
1073bool bfd_generic_is_group_section (bfd *, const asection *sec);
1074@end example
1075@strong{Description}@*
1076Returns TRUE if @var{sec} is a member of a group.
1077
1078@findex bfd_generic_group_name
1079@subsubsection @code{bfd_generic_group_name}
1080@strong{Synopsis}
1081@example
1082const char *bfd_generic_group_name (bfd *, const asection *sec);
1083@end example
1084@strong{Description}@*
1085Returns group name if @var{sec} is a member of a group.
1086
1087@findex bfd_generic_discard_group
1088@subsubsection @code{bfd_generic_discard_group}
1089@strong{Synopsis}
1090@example
1091bool bfd_generic_discard_group (bfd *abfd, asection *group);
1092@end example
1093@strong{Description}@*
1094Remove all members of @var{group} from the output.
1095
1096