1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22/*	  All Rights Reserved  	*/
23
24
25/*
26 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27 * Use is subject to license terms.
28 */
29
30#ifndef _SYS_SYSMACROS_H
31#define	_SYS_SYSMACROS_H
32
33#include <sys/param.h>
34#include <sys/isa_defs.h>
35#if defined(__FreeBSD__) && defined(_KERNEL)
36#include <sys/libkern.h>
37#endif
38#if defined(__NetBSD__) && defined(_KERNEL)
39#include <lib/libkern/libkern.h>
40#endif
41
42#ifdef	__cplusplus
43extern "C" {
44#endif
45
46/*
47 * Some macros for units conversion
48 */
49/*
50 * Disk blocks (sectors) and bytes.
51 */
52#define	dtob(DD)	((DD) << DEV_BSHIFT)
53#define	btod(BB)	(((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
54#define	btodt(BB)	((BB) >> DEV_BSHIFT)
55#define	lbtod(BB)	(((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
56
57/* common macros */
58#ifndef MIN
59#define	MIN(a, b)	((a) < (b) ? (a) : (b))
60#endif
61#ifndef MAX
62#define	MAX(a, b)	((a) < (b) ? (b) : (a))
63#endif
64#ifndef ABS
65#define	ABS(a)		((a) < 0 ? -(a) : (a))
66#endif
67#ifndef	SIGNOF
68#define	SIGNOF(a)	((a) < 0 ? -1 : (a) > 0)
69#endif
70
71#ifdef _KERNEL
72
73/*
74 * Convert a single byte to/from binary-coded decimal (BCD).
75 */
76extern unsigned char byte_to_bcd[256];
77extern unsigned char bcd_to_byte[256];
78
79#define	BYTE_TO_BCD(x)	byte_to_bcd[(x) & 0xff]
80#define	BCD_TO_BYTE(x)	bcd_to_byte[(x) & 0xff]
81
82#endif	/* _KERNEL */
83
84#ifndef __NetBSD__
85
86/*
87 * WARNING: The device number macros defined here should not be used by device
88 * drivers or user software. Device drivers should use the device functions
89 * defined in the DDI/DKI interface (see also ddi.h). Application software
90 * should make use of the library routines available in makedev(3). A set of
91 * new device macros are provided to operate on the expanded device number
92 * format supported in SVR4. Macro versions of the DDI device functions are
93 * provided for use by kernel proper routines only. Macro routines bmajor(),
94 * major(), minor(), emajor(), eminor(), and makedev() will be removed or
95 * their definitions changed at the next major release following SVR4.
96 */
97
98#define	O_BITSMAJOR	7	/* # of SVR3 major device bits */
99#define	O_BITSMINOR	8	/* # of SVR3 minor device bits */
100#define	O_MAXMAJ	0x7f	/* SVR3 max major value */
101#define	O_MAXMIN	0xff	/* SVR3 max minor value */
102
103
104#define	L_BITSMAJOR32	14	/* # of SVR4 major device bits */
105#define	L_BITSMINOR32	18	/* # of SVR4 minor device bits */
106#define	L_MAXMAJ32	0x3fff	/* SVR4 max major value */
107#define	L_MAXMIN32	0x3ffff	/* MAX minor for 3b2 software drivers. */
108				/* For 3b2 hardware devices the minor is */
109				/* restricted to 256 (0-255) */
110
111#ifdef _LP64
112#define	L_BITSMAJOR	32	/* # of major device bits in 64-bit Solaris */
113#define	L_BITSMINOR	32	/* # of minor device bits in 64-bit Solaris */
114#define	L_MAXMAJ	0xfffffffful	/* max major value */
115#define	L_MAXMIN	0xfffffffful	/* max minor value */
116#else
117#define	L_BITSMAJOR	L_BITSMAJOR32
118#define	L_BITSMINOR	L_BITSMINOR32
119#define	L_MAXMAJ	L_MAXMAJ32
120#define	L_MAXMIN	L_MAXMIN32
121#endif
122
123#ifdef illumos
124#ifdef _KERNEL
125
126/* major part of a device internal to the kernel */
127
128#define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
129#define	bmajor(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
130
131/* get internal major part of expanded device number */
132
133#define	getmajor(x)	(major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
134
135/* minor part of a device internal to the kernel */
136
137#define	minor(x)	(minor_t)((x) & O_MAXMIN)
138
139/* get internal minor part of expanded device number */
140
141#define	getminor(x)	(minor_t)((x) & L_MAXMIN)
142
143#else
144
145/* major part of a device external from the kernel (same as emajor below) */
146
147#define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
148
149/* minor part of a device external from the kernel  (same as eminor below) */
150
151#define	minor(x)	(minor_t)((x) & O_MAXMIN)
152
153#endif	/* _KERNEL */
154
155/* create old device number */
156
157#define	makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
158
159/* make an new device number */
160
161#define	makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
162
163
164/*
165 * emajor() allows kernel/driver code to print external major numbers
166 * eminor() allows kernel/driver code to print external minor numbers
167 */
168
169#define	emajor(x) \
170	(major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
171	    NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
172
173#define	eminor(x) \
174	(minor_t)((x) & O_MAXMIN)
175
176/*
177 * get external major and minor device
178 * components from expanded device number
179 */
180#define	getemajor(x)	(major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
181			    NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
182#define	geteminor(x)	(minor_t)((x) & L_MAXMIN)
183#endif /* illumos */
184
185/*
186 * These are versions of the kernel routines for compressing and
187 * expanding long device numbers that don't return errors.
188 */
189#if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
190
191#define	DEVCMPL(x)	(x)
192#define	DEVEXPL(x)	(x)
193
194#else
195
196#define	DEVCMPL(x)	\
197	(dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
198	    ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
199	    ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
200
201#define	DEVEXPL(x)	\
202	(((x) == NODEV32) ? NODEV : \
203	makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
204
205#endif /* L_BITSMAJOR32 ... */
206
207/* convert to old (SVR3.2) dev format */
208
209#define	cmpdev(x) \
210	(o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
211	    ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
212	    ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
213
214/* convert to new (SVR4) dev format */
215
216#define	expdev(x) \
217	(dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
218	    ((x) & O_MAXMIN))
219
220#endif	/* !__NetBSD__ */
221
222/*
223 * Macro for checking power of 2 address alignment.
224 */
225#define	IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
226
227#ifndef __NetBSD__
228
229/*
230 * Macros for counting and rounding.
231 */
232#define	howmany(x, y)	(((x)+((y)-1))/(y))
233#define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))
234
235#endif	/* !__NetBSD__ */
236
237/*
238 * Macro to determine if value is a power of 2
239 */
240#define	ISP2(x)		(((x) & ((x) - 1)) == 0)
241
242/*
243 * Macros for various sorts of alignment and rounding.  The "align" must
244 * be a power of 2.  Often times it is a block, sector, or page.
245 */
246
247/*
248 * return x rounded down to an align boundary
249 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
250 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
251 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
252 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
253 */
254#define	P2ALIGN(x, align)		((x) & -(align))
255
256/*
257 * return x % (mod) align
258 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
259 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
260 */
261#define	P2PHASE(x, align)		((x) & ((align) - 1))
262
263/*
264 * return how much space is left in this block (but if it's perfectly
265 * aligned, return 0).
266 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
267 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
268 */
269#define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
270
271/*
272 * return x rounded up to an align boundary
273 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
274 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
275 */
276#define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
277
278/*
279 * return the ending address of the block that x is in
280 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
281 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
282 */
283#define	P2END(x, align)			(-(~(x) & -(align)))
284
285/*
286 * return x rounded up to the next phase (offset) within align.
287 * phase should be < align.
288 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
289 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
290 */
291#define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
292
293/*
294 * return TRUE if adding len to off would cause it to cross an align
295 * boundary.
296 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
297 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
298 */
299#define	P2BOUNDARY(off, len, align) \
300	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
301
302/*
303 * Return TRUE if they have the same highest bit set.
304 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
305 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
306 */
307#define	P2SAMEHIGHBIT(x, y)		(((x) ^ (y)) < ((x) & (y)))
308
309/*
310 * Typed version of the P2* macros.  These macros should be used to ensure
311 * that the result is correctly calculated based on the data type of (x),
312 * which is passed in as the last argument, regardless of the data
313 * type of the alignment.  For example, if (x) is of type uint64_t,
314 * and we want to round it up to a page boundary using "PAGESIZE" as
315 * the alignment, we can do either
316 *	P2ROUNDUP(x, (uint64_t)PAGESIZE)
317 * or
318 *	P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
319 */
320#define	P2ALIGN_TYPED(x, align, type)	\
321	((type)(x) & -(type)(align))
322#define	P2PHASE_TYPED(x, align, type)	\
323	((type)(x) & ((type)(align) - 1))
324#define	P2NPHASE_TYPED(x, align, type)	\
325	(-(type)(x) & ((type)(align) - 1))
326#define	P2ROUNDUP_TYPED(x, align, type)	\
327	(-(-(type)(x) & -(type)(align)))
328#define	P2END_TYPED(x, align, type)	\
329	(-(~(type)(x) & -(type)(align)))
330#define	P2PHASEUP_TYPED(x, align, phase, type)	\
331	((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
332#define	P2CROSS_TYPED(x, y, align, type)	\
333	(((type)(x) ^ (type)(y)) > (type)(align) - 1)
334#define	P2SAMEHIGHBIT_TYPED(x, y, type) \
335	(((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
336
337/*
338 * Macros to atomically increment/decrement a variable.  mutex and var
339 * must be pointers.
340 */
341#define	INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
342#define	DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
343
344/*
345 * Macros to declare bitfields - the order in the parameter list is
346 * Low to High - that is, declare bit 0 first.  We only support 8-bit bitfields
347 * because if a field crosses a byte boundary it's not likely to be meaningful
348 * without reassembly in its nonnative endianness.
349 */
350#ifndef __NetBSD__
351
352#if defined(_BIT_FIELDS_LTOH)
353#define	DECL_BITFIELD2(_a, _b)				\
354	uint8_t _a, _b
355#define	DECL_BITFIELD3(_a, _b, _c)			\
356	uint8_t _a, _b, _c
357#define	DECL_BITFIELD4(_a, _b, _c, _d)			\
358	uint8_t _a, _b, _c, _d
359#define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
360	uint8_t _a, _b, _c, _d, _e
361#define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
362	uint8_t _a, _b, _c, _d, _e, _f
363#define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
364	uint8_t _a, _b, _c, _d, _e, _f, _g
365#define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
366	uint8_t _a, _b, _c, _d, _e, _f, _g, _h
367#elif defined(_BIT_FIELDS_HTOL)
368#define	DECL_BITFIELD2(_a, _b)				\
369	uint8_t _b, _a
370#define	DECL_BITFIELD3(_a, _b, _c)			\
371	uint8_t _c, _b, _a
372#define	DECL_BITFIELD4(_a, _b, _c, _d)			\
373	uint8_t _d, _c, _b, _a
374#define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
375	uint8_t _e, _d, _c, _b, _a
376#define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
377	uint8_t _f, _e, _d, _c, _b, _a
378#define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
379	uint8_t _g, _f, _e, _d, _c, _b, _a
380#define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
381	uint8_t _h, _g, _f, _e, _d, _c, _b, _a
382#else
383#error	One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
384#endif  /* _BIT_FIELDS_LTOH */
385
386#endif /* ! __NetBSD__ */
387
388#if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof)
389
390/* avoid any possibility of clashing with <stddef.h> version */
391
392#define	offsetof(s, m)	((size_t)(&(((s *)0)->m)))
393#endif
394
395#ifdef __NetBSD__
396
397#include <sys/bitops.h>
398
399#ifdef _LP64
400#define highbit(i)	fls64((i))
401#else
402#define highbit(i)	fls32((i))
403#endif
404#define highbit64(i)	fls64((i))
405
406#else /* __NetBSD__ */
407
408/*
409 * Find highest one bit set.
410 *      Returns bit number + 1 of highest bit that is set, otherwise returns 0.
411 * High order bit is 31 (or 63 in _LP64 kernel).
412 */
413static __inline int
414highbit(ulong_t i)
415{
416#if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSL)
417	return (flsl(i));
418#else
419	register int h = 1;
420
421	if (i == 0)
422		return (0);
423#ifdef _LP64
424	if (i & 0xffffffff00000000ul) {
425		h += 32; i >>= 32;
426	}
427#endif
428	if (i & 0xffff0000) {
429		h += 16; i >>= 16;
430	}
431	if (i & 0xff00) {
432		h += 8; i >>= 8;
433	}
434	if (i & 0xf0) {
435		h += 4; i >>= 4;
436	}
437	if (i & 0xc) {
438		h += 2; i >>= 2;
439	}
440	if (i & 0x2) {
441		h += 1;
442	}
443	return (h);
444#endif
445}
446
447/*
448 * Find highest one bit set.
449 *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
450 */
451static __inline int
452highbit64(uint64_t i)
453{
454#if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSLL)
455	return (flsll(i));
456#else
457	int h = 1;
458
459	if (i == 0)
460		return (0);
461	if (i & 0xffffffff00000000ULL) {
462		h += 32; i >>= 32;
463	}
464	if (i & 0xffff0000) {
465		h += 16; i >>= 16;
466	}
467	if (i & 0xff00) {
468		h += 8; i >>= 8;
469	}
470	if (i & 0xf0) {
471		h += 4; i >>= 4;
472	}
473	if (i & 0xc) {
474		h += 2; i >>= 2;
475	}
476	if (i & 0x2) {
477		h += 1;
478	}
479	return (h);
480#endif
481}
482
483#endif /* __NetBSD__ */
484
485#ifdef	__cplusplus
486}
487#endif
488
489#endif	/* _SYS_SYSMACROS_H */
490