1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/spa.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio.h>
34#include <sys/fs/zfs.h>
35
36/*
37 * Virtual device vector for mirroring.
38 */
39
40typedef struct mirror_child {
41	vdev_t		*mc_vd;
42	uint64_t	mc_offset;
43	int		mc_error;
44	int		mc_load;
45	uint8_t		mc_tried;
46	uint8_t		mc_skipped;
47	uint8_t		mc_speculative;
48} mirror_child_t;
49
50typedef struct mirror_map {
51	int		*mm_preferred;
52	int		mm_preferred_cnt;
53	int		mm_children;
54	boolean_t	mm_replacing;
55	boolean_t	mm_root;
56	mirror_child_t	mm_child[];
57} mirror_map_t;
58
59static int vdev_mirror_shift = 21;
60
61#ifdef __FreeBSD__
62#ifdef _KERNEL
63SYSCTL_DECL(_vfs_zfs_vdev);
64static SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, mirror, CTLFLAG_RD, 0,
65    "ZFS VDEV Mirror");
66#endif
67#endif
68
69/*
70 * The load configuration settings below are tuned by default for
71 * the case where all devices are of the same rotational type.
72 *
73 * If there is a mixture of rotating and non-rotating media, setting
74 * non_rotating_seek_inc to 0 may well provide better results as it
75 * will direct more reads to the non-rotating vdevs which are more
76 * likely to have a higher performance.
77 */
78
79/* Rotating media load calculation configuration. */
80static int rotating_inc = 0;
81#ifdef _KERNEL
82SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_inc, CTLFLAG_RWTUN,
83    &rotating_inc, 0, "Rotating media load increment for non-seeking I/O's");
84#endif
85
86static int rotating_seek_inc = 5;
87#ifdef _KERNEL
88SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_seek_inc, CTLFLAG_RWTUN,
89    &rotating_seek_inc, 0, "Rotating media load increment for seeking I/O's");
90#endif
91
92static int rotating_seek_offset = 1 * 1024 * 1024;
93#ifdef _KERNEL
94SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_seek_offset, CTLFLAG_RWTUN,
95    &rotating_seek_offset, 0, "Offset in bytes from the last I/O which "
96    "triggers a reduced rotating media seek increment");
97#endif
98
99/* Non-rotating media load calculation configuration. */
100static int non_rotating_inc = 0;
101#ifdef _KERNEL
102SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, non_rotating_inc, CTLFLAG_RWTUN,
103    &non_rotating_inc, 0,
104    "Non-rotating media load increment for non-seeking I/O's");
105#endif
106
107static int non_rotating_seek_inc = 1;
108#ifdef _KERNEL
109SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, non_rotating_seek_inc, CTLFLAG_RWTUN,
110    &non_rotating_seek_inc, 0,
111    "Non-rotating media load increment for seeking I/O's");
112#endif
113
114
115static inline size_t
116vdev_mirror_map_size(int children)
117{
118	return (offsetof(mirror_map_t, mm_child[children]) +
119	    sizeof(int) * children);
120}
121
122static inline mirror_map_t *
123vdev_mirror_map_alloc(int children, boolean_t replacing, boolean_t root)
124{
125	mirror_map_t *mm;
126
127	mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
128	mm->mm_children = children;
129	mm->mm_replacing = replacing;
130	mm->mm_root = root;
131	mm->mm_preferred = (int *)((uintptr_t)mm +
132	    offsetof(mirror_map_t, mm_child[children]));
133
134	return mm;
135}
136
137static void
138vdev_mirror_map_free(zio_t *zio)
139{
140	mirror_map_t *mm = zio->io_vsd;
141
142	kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
143}
144
145static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
146	vdev_mirror_map_free,
147	zio_vsd_default_cksum_report
148};
149
150static int
151vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
152{
153	uint64_t lastoffset;
154	int load;
155
156	/* All DVAs have equal weight at the root. */
157	if (mm->mm_root)
158		return (INT_MAX);
159
160	/*
161	 * We don't return INT_MAX if the device is resilvering i.e.
162	 * vdev_resilver_txg != 0 as when tested performance was slightly
163	 * worse overall when resilvering with compared to without.
164	 */
165
166	/* Standard load based on pending queue length. */
167	load = vdev_queue_length(vd);
168	lastoffset = vdev_queue_lastoffset(vd);
169
170	if (vd->vdev_rotation_rate == VDEV_RATE_NON_ROTATING) {
171		/* Non-rotating media. */
172		if (lastoffset == zio_offset)
173			return (load + non_rotating_inc);
174
175		/*
176		 * Apply a seek penalty even for non-rotating devices as
177		 * sequential I/O'a can be aggregated into fewer operations
178		 * on the device, thus avoiding unnecessary per-command
179		 * overhead and boosting performance.
180		 */
181		return (load + non_rotating_seek_inc);
182	}
183
184	/* Rotating media I/O's which directly follow the last I/O. */
185	if (lastoffset == zio_offset)
186		return (load + rotating_inc);
187
188	/*
189	 * Apply half the seek increment to I/O's within seek offset
190	 * of the last I/O queued to this vdev as they should incure less
191	 * of a seek increment.
192	 */
193	if (ABS(lastoffset - zio_offset) < rotating_seek_offset)
194		return (load + (rotating_seek_inc / 2));
195
196	/* Apply the full seek increment to all other I/O's. */
197	return (load + rotating_seek_inc);
198}
199
200
201static mirror_map_t *
202vdev_mirror_map_init(zio_t *zio)
203{
204	mirror_map_t *mm = NULL;
205	mirror_child_t *mc;
206	vdev_t *vd = zio->io_vd;
207	int c;
208
209	if (vd == NULL) {
210		dva_t *dva = zio->io_bp->blk_dva;
211		spa_t *spa = zio->io_spa;
212
213		mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE,
214		    B_TRUE);
215		for (c = 0; c < mm->mm_children; c++) {
216			mc = &mm->mm_child[c];
217			mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
218			mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
219		}
220	} else {
221		mm = vdev_mirror_map_alloc(vd->vdev_children,
222		    (vd->vdev_ops == &vdev_replacing_ops ||
223                    vd->vdev_ops == &vdev_spare_ops), B_FALSE);
224		for (c = 0; c < mm->mm_children; c++) {
225			mc = &mm->mm_child[c];
226			mc->mc_vd = vd->vdev_child[c];
227			mc->mc_offset = zio->io_offset;
228		}
229	}
230
231	zio->io_vsd = mm;
232	zio->io_vsd_ops = &vdev_mirror_vsd_ops;
233	return (mm);
234}
235
236static int
237vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
238    uint64_t *logical_ashift, uint64_t *physical_ashift)
239{
240	int numerrors = 0;
241	int lasterror = 0;
242
243	if (vd->vdev_children == 0) {
244		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
245		return (SET_ERROR(EINVAL));
246	}
247
248	vdev_open_children(vd);
249
250	for (int c = 0; c < vd->vdev_children; c++) {
251		vdev_t *cvd = vd->vdev_child[c];
252
253		if (cvd->vdev_open_error) {
254			lasterror = cvd->vdev_open_error;
255			numerrors++;
256			continue;
257		}
258
259		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
260		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
261		*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
262		*physical_ashift = MAX(*physical_ashift,
263		    cvd->vdev_physical_ashift);
264	}
265
266	if (numerrors == vd->vdev_children) {
267		vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
268		return (lasterror);
269	}
270
271	return (0);
272}
273
274static void
275vdev_mirror_close(vdev_t *vd)
276{
277	for (int c = 0; c < vd->vdev_children; c++)
278		vdev_close(vd->vdev_child[c]);
279}
280
281static void
282vdev_mirror_child_done(zio_t *zio)
283{
284	mirror_child_t *mc = zio->io_private;
285
286	mc->mc_error = zio->io_error;
287	mc->mc_tried = 1;
288	mc->mc_skipped = 0;
289}
290
291static void
292vdev_mirror_scrub_done(zio_t *zio)
293{
294	mirror_child_t *mc = zio->io_private;
295
296	if (zio->io_error == 0) {
297		zio_t *pio;
298		zio_link_t *zl = NULL;
299
300		mutex_enter(&zio->io_lock);
301		while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
302			mutex_enter(&pio->io_lock);
303			ASSERT3U(zio->io_size, >=, pio->io_size);
304			bcopy(zio->io_data, pio->io_data, pio->io_size);
305			mutex_exit(&pio->io_lock);
306		}
307		mutex_exit(&zio->io_lock);
308	}
309
310	zio_buf_free(zio->io_data, zio->io_size);
311
312	mc->mc_error = zio->io_error;
313	mc->mc_tried = 1;
314	mc->mc_skipped = 0;
315}
316
317/*
318 * Check the other, lower-index DVAs to see if they're on the same
319 * vdev as the child we picked.  If they are, use them since they
320 * are likely to have been allocated from the primary metaslab in
321 * use at the time, and hence are more likely to have locality with
322 * single-copy data.
323 */
324static int
325vdev_mirror_dva_select(zio_t *zio, int p)
326{
327	dva_t *dva = zio->io_bp->blk_dva;
328	mirror_map_t *mm = zio->io_vsd;
329	int preferred;
330	int c;
331
332	preferred = mm->mm_preferred[p];
333	for (p-- ; p >= 0; p--) {
334		c = mm->mm_preferred[p];
335		if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
336			preferred = c;
337	}
338	return (preferred);
339}
340
341static int
342vdev_mirror_preferred_child_randomize(zio_t *zio)
343{
344	mirror_map_t *mm = zio->io_vsd;
345	int p;
346
347	if (mm->mm_root) {
348		p = spa_get_random(mm->mm_preferred_cnt);
349		return (vdev_mirror_dva_select(zio, p));
350	}
351
352	/*
353	 * To ensure we don't always favour the first matching vdev,
354	 * which could lead to wear leveling issues on SSD's, we
355	 * use the I/O offset as a pseudo random seed into the vdevs
356	 * which have the lowest load.
357	 */
358	p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
359	return (mm->mm_preferred[p]);
360}
361
362/*
363 * Try to find a vdev whose DTL doesn't contain the block we want to read
364 * prefering vdevs based on determined load.
365 *
366 * If we can't, try the read on any vdev we haven't already tried.
367 */
368static int
369vdev_mirror_child_select(zio_t *zio)
370{
371	mirror_map_t *mm = zio->io_vsd;
372	uint64_t txg = zio->io_txg;
373	int c, lowest_load;
374
375	ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
376
377	lowest_load = INT_MAX;
378	mm->mm_preferred_cnt = 0;
379	for (c = 0; c < mm->mm_children; c++) {
380		mirror_child_t *mc;
381
382		mc = &mm->mm_child[c];
383		if (mc->mc_tried || mc->mc_skipped)
384			continue;
385
386		if (!vdev_readable(mc->mc_vd)) {
387			mc->mc_error = SET_ERROR(ENXIO);
388			mc->mc_tried = 1;	/* don't even try */
389			mc->mc_skipped = 1;
390			continue;
391		}
392
393		if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
394			mc->mc_error = SET_ERROR(ESTALE);
395			mc->mc_skipped = 1;
396			mc->mc_speculative = 1;
397			continue;
398		}
399
400		mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
401		if (mc->mc_load > lowest_load)
402			continue;
403
404		if (mc->mc_load < lowest_load) {
405			lowest_load = mc->mc_load;
406			mm->mm_preferred_cnt = 0;
407		}
408		mm->mm_preferred[mm->mm_preferred_cnt] = c;
409		mm->mm_preferred_cnt++;
410	}
411
412	if (mm->mm_preferred_cnt == 1) {
413		vdev_queue_register_lastoffset(
414		    mm->mm_child[mm->mm_preferred[0]].mc_vd, zio);
415		return (mm->mm_preferred[0]);
416	}
417
418	if (mm->mm_preferred_cnt > 1) {
419		int c = vdev_mirror_preferred_child_randomize(zio);
420
421		vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd, zio);
422		return (c);
423	}
424
425	/*
426	 * Every device is either missing or has this txg in its DTL.
427	 * Look for any child we haven't already tried before giving up.
428	 */
429	for (c = 0; c < mm->mm_children; c++) {
430		if (!mm->mm_child[c].mc_tried) {
431			vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd,
432			    zio);
433			return (c);
434		}
435	}
436
437	/*
438	 * Every child failed.  There's no place left to look.
439	 */
440	return (-1);
441}
442
443static void
444vdev_mirror_io_start(zio_t *zio)
445{
446	mirror_map_t *mm;
447	mirror_child_t *mc;
448	int c, children;
449
450	mm = vdev_mirror_map_init(zio);
451
452	if (zio->io_type == ZIO_TYPE_READ) {
453		if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing &&
454		    mm->mm_children > 1) {
455			/*
456			 * For scrubbing reads we need to allocate a read
457			 * buffer for each child and issue reads to all
458			 * children.  If any child succeeds, it will copy its
459			 * data into zio->io_data in vdev_mirror_scrub_done.
460			 */
461			for (c = 0; c < mm->mm_children; c++) {
462				mc = &mm->mm_child[c];
463				zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
464				    mc->mc_vd, mc->mc_offset,
465				    zio_buf_alloc(zio->io_size), zio->io_size,
466				    zio->io_type, zio->io_priority, 0,
467				    vdev_mirror_scrub_done, mc));
468			}
469			zio_execute(zio);
470			return;
471		}
472		/*
473		 * For normal reads just pick one child.
474		 */
475		c = vdev_mirror_child_select(zio);
476		children = (c >= 0);
477	} else {
478		ASSERT(zio->io_type == ZIO_TYPE_WRITE ||
479		    zio->io_type == ZIO_TYPE_FREE);
480
481		/*
482		 * Writes and frees go to all children.
483		 */
484		c = 0;
485		children = mm->mm_children;
486	}
487
488	while (children--) {
489		mc = &mm->mm_child[c];
490		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
491		    mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
492		    zio->io_type, zio->io_priority, 0,
493		    vdev_mirror_child_done, mc));
494		c++;
495	}
496
497	zio_execute(zio);
498}
499
500static int
501vdev_mirror_worst_error(mirror_map_t *mm)
502{
503	int error[2] = { 0, 0 };
504
505	for (int c = 0; c < mm->mm_children; c++) {
506		mirror_child_t *mc = &mm->mm_child[c];
507		int s = mc->mc_speculative;
508		error[s] = zio_worst_error(error[s], mc->mc_error);
509	}
510
511	return (error[0] ? error[0] : error[1]);
512}
513
514static void
515vdev_mirror_io_done(zio_t *zio)
516{
517	mirror_map_t *mm = zio->io_vsd;
518	mirror_child_t *mc;
519	int c;
520	int good_copies = 0;
521	int unexpected_errors = 0;
522
523	for (c = 0; c < mm->mm_children; c++) {
524		mc = &mm->mm_child[c];
525
526		if (mc->mc_error) {
527			if (!mc->mc_skipped)
528				unexpected_errors++;
529		} else if (mc->mc_tried) {
530			good_copies++;
531		}
532	}
533
534	if (zio->io_type == ZIO_TYPE_WRITE) {
535		/*
536		 * XXX -- for now, treat partial writes as success.
537		 *
538		 * Now that we support write reallocation, it would be better
539		 * to treat partial failure as real failure unless there are
540		 * no non-degraded top-level vdevs left, and not update DTLs
541		 * if we intend to reallocate.
542		 */
543		/* XXPOLICY */
544		if (good_copies != mm->mm_children) {
545			/*
546			 * Always require at least one good copy.
547			 *
548			 * For ditto blocks (io_vd == NULL), require
549			 * all copies to be good.
550			 *
551			 * XXX -- for replacing vdevs, there's no great answer.
552			 * If the old device is really dead, we may not even
553			 * be able to access it -- so we only want to
554			 * require good writes to the new device.  But if
555			 * the new device turns out to be flaky, we want
556			 * to be able to detach it -- which requires all
557			 * writes to the old device to have succeeded.
558			 */
559			if (good_copies == 0 || zio->io_vd == NULL)
560				zio->io_error = vdev_mirror_worst_error(mm);
561		}
562		return;
563	} else if (zio->io_type == ZIO_TYPE_FREE) {
564		return;
565	}
566
567	ASSERT(zio->io_type == ZIO_TYPE_READ);
568
569	/*
570	 * If we don't have a good copy yet, keep trying other children.
571	 */
572	/* XXPOLICY */
573	if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
574		ASSERT(c >= 0 && c < mm->mm_children);
575		mc = &mm->mm_child[c];
576		zio_vdev_io_redone(zio);
577		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
578		    mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
579		    ZIO_TYPE_READ, zio->io_priority, 0,
580		    vdev_mirror_child_done, mc));
581		return;
582	}
583
584	/* XXPOLICY */
585	if (good_copies == 0) {
586		zio->io_error = vdev_mirror_worst_error(mm);
587		ASSERT(zio->io_error != 0);
588	}
589
590	if (good_copies && spa_writeable(zio->io_spa) &&
591	    (unexpected_errors ||
592	    (zio->io_flags & ZIO_FLAG_RESILVER) ||
593	    ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) {
594		/*
595		 * Use the good data we have in hand to repair damaged children.
596		 */
597		for (c = 0; c < mm->mm_children; c++) {
598			/*
599			 * Don't rewrite known good children.
600			 * Not only is it unnecessary, it could
601			 * actually be harmful: if the system lost
602			 * power while rewriting the only good copy,
603			 * there would be no good copies left!
604			 */
605			mc = &mm->mm_child[c];
606
607			if (mc->mc_error == 0) {
608				if (mc->mc_tried)
609					continue;
610				if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
611				    !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
612				    zio->io_txg, 1))
613					continue;
614				mc->mc_error = SET_ERROR(ESTALE);
615			}
616
617			zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
618			    mc->mc_vd, mc->mc_offset,
619			    zio->io_data, zio->io_size,
620			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
621			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
622			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
623		}
624	}
625}
626
627static void
628vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
629{
630	if (faulted == vd->vdev_children)
631		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
632		    VDEV_AUX_NO_REPLICAS);
633	else if (degraded + faulted != 0)
634		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
635	else
636		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
637}
638
639vdev_ops_t vdev_mirror_ops = {
640	vdev_mirror_open,
641	vdev_mirror_close,
642	vdev_default_asize,
643	vdev_mirror_io_start,
644	vdev_mirror_io_done,
645	vdev_mirror_state_change,
646	NULL,
647	NULL,
648	VDEV_TYPE_MIRROR,	/* name of this vdev type */
649	B_FALSE			/* not a leaf vdev */
650};
651
652vdev_ops_t vdev_replacing_ops = {
653	vdev_mirror_open,
654	vdev_mirror_close,
655	vdev_default_asize,
656	vdev_mirror_io_start,
657	vdev_mirror_io_done,
658	vdev_mirror_state_change,
659	NULL,
660	NULL,
661	VDEV_TYPE_REPLACING,	/* name of this vdev type */
662	B_FALSE			/* not a leaf vdev */
663};
664
665vdev_ops_t vdev_spare_ops = {
666	vdev_mirror_open,
667	vdev_mirror_close,
668	vdev_default_asize,
669	vdev_mirror_io_start,
670	vdev_mirror_io_done,
671	vdev_mirror_state_change,
672	NULL,
673	NULL,
674	VDEV_TYPE_SPARE,	/* name of this vdev type */
675	B_FALSE			/* not a leaf vdev */
676};
677