1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#include <sys/dmu.h>
29#include <sys/dmu_impl.h>
30#include <sys/dbuf.h>
31#include <sys/dmu_tx.h>
32#include <sys/dmu_objset.h>
33#include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */
34#include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */
35#include <sys/dsl_pool.h>
36#include <sys/zap_impl.h> /* for fzap_default_block_shift */
37#include <sys/spa.h>
38#include <sys/sa.h>
39#include <sys/sa_impl.h>
40#include <sys/zfs_context.h>
41#include <sys/varargs.h>
42
43typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
44    uint64_t arg1, uint64_t arg2);
45
46
47dmu_tx_t *
48dmu_tx_create_dd(dsl_dir_t *dd)
49{
50	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
51	tx->tx_dir = dd;
52	if (dd != NULL)
53		tx->tx_pool = dd->dd_pool;
54	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
55	    offsetof(dmu_tx_hold_t, txh_node));
56	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
57	    offsetof(dmu_tx_callback_t, dcb_node));
58	tx->tx_start = gethrtime();
59#ifdef ZFS_DEBUG
60	refcount_create(&tx->tx_space_written);
61	refcount_create(&tx->tx_space_freed);
62#endif
63	return (tx);
64}
65
66dmu_tx_t *
67dmu_tx_create(objset_t *os)
68{
69	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
70	tx->tx_objset = os;
71	tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os_dsl_dataset);
72	return (tx);
73}
74
75dmu_tx_t *
76dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
77{
78	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
79
80	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
81	tx->tx_pool = dp;
82	tx->tx_txg = txg;
83	tx->tx_anyobj = TRUE;
84
85	return (tx);
86}
87
88int
89dmu_tx_is_syncing(dmu_tx_t *tx)
90{
91	return (tx->tx_anyobj);
92}
93
94int
95dmu_tx_private_ok(dmu_tx_t *tx)
96{
97	return (tx->tx_anyobj);
98}
99
100static dmu_tx_hold_t *
101dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
102    enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
103{
104	dmu_tx_hold_t *txh;
105	dnode_t *dn = NULL;
106	int err;
107
108	if (object != DMU_NEW_OBJECT) {
109		err = dnode_hold(os, object, tx, &dn);
110		if (err) {
111			tx->tx_err = err;
112			return (NULL);
113		}
114
115		if (err == 0 && tx->tx_txg != 0) {
116			mutex_enter(&dn->dn_mtx);
117			/*
118			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
119			 * problem, but there's no way for it to happen (for
120			 * now, at least).
121			 */
122			ASSERT(dn->dn_assigned_txg == 0);
123			dn->dn_assigned_txg = tx->tx_txg;
124			(void) refcount_add(&dn->dn_tx_holds, tx);
125			mutex_exit(&dn->dn_mtx);
126		}
127	}
128
129	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
130	txh->txh_tx = tx;
131	txh->txh_dnode = dn;
132	refcount_create(&txh->txh_space_towrite);
133	refcount_create(&txh->txh_space_tofree);
134	refcount_create(&txh->txh_space_tooverwrite);
135	refcount_create(&txh->txh_space_tounref);
136	refcount_create(&txh->txh_memory_tohold);
137	refcount_create(&txh->txh_fudge);
138#ifdef ZFS_DEBUG
139	txh->txh_type = type;
140	txh->txh_arg1 = arg1;
141	txh->txh_arg2 = arg2;
142#endif
143	list_insert_tail(&tx->tx_holds, txh);
144
145	return (txh);
146}
147
148void
149dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object)
150{
151	/*
152	 * If we're syncing, they can manipulate any object anyhow, and
153	 * the hold on the dnode_t can cause problems.
154	 */
155	if (!dmu_tx_is_syncing(tx)) {
156		(void) dmu_tx_hold_object_impl(tx, os,
157		    object, THT_NEWOBJECT, 0, 0);
158	}
159}
160
161static int
162dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
163{
164	int err;
165	dmu_buf_impl_t *db;
166
167	rw_enter(&dn->dn_struct_rwlock, RW_READER);
168	db = dbuf_hold_level(dn, level, blkid, FTAG);
169	rw_exit(&dn->dn_struct_rwlock);
170	if (db == NULL)
171		return (SET_ERROR(EIO));
172	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
173	dbuf_rele(db, FTAG);
174	return (err);
175}
176
177static void
178dmu_tx_count_twig(dmu_tx_hold_t *txh, dnode_t *dn, dmu_buf_impl_t *db,
179    int level, uint64_t blkid, boolean_t freeable, uint64_t *history)
180{
181	objset_t *os = dn->dn_objset;
182	dsl_dataset_t *ds = os->os_dsl_dataset;
183	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
184	dmu_buf_impl_t *parent = NULL;
185	blkptr_t *bp = NULL;
186	uint64_t space;
187
188	if (level >= dn->dn_nlevels || history[level] == blkid)
189		return;
190
191	history[level] = blkid;
192
193	space = (level == 0) ? dn->dn_datablksz : (1ULL << dn->dn_indblkshift);
194
195	if (db == NULL || db == dn->dn_dbuf) {
196		ASSERT(level != 0);
197		db = NULL;
198	} else {
199		ASSERT(DB_DNODE(db) == dn);
200		ASSERT(db->db_level == level);
201		ASSERT(db->db.db_size == space);
202		ASSERT(db->db_blkid == blkid);
203		bp = db->db_blkptr;
204		parent = db->db_parent;
205	}
206
207	freeable = (bp && (freeable ||
208	    dsl_dataset_block_freeable(ds, bp, bp->blk_birth)));
209
210	if (freeable) {
211		(void) refcount_add_many(&txh->txh_space_tooverwrite,
212		    space, FTAG);
213	} else {
214		(void) refcount_add_many(&txh->txh_space_towrite,
215		    space, FTAG);
216	}
217
218	if (bp) {
219		(void) refcount_add_many(&txh->txh_space_tounref,
220		    bp_get_dsize(os->os_spa, bp), FTAG);
221	}
222
223	dmu_tx_count_twig(txh, dn, parent, level + 1,
224	    blkid >> epbs, freeable, history);
225}
226
227/* ARGSUSED */
228static void
229dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
230{
231	dnode_t *dn = txh->txh_dnode;
232	uint64_t start, end, i;
233	int min_bs, max_bs, min_ibs, max_ibs, epbs, bits;
234	int err = 0;
235
236	if (len == 0)
237		return;
238
239	min_bs = SPA_MINBLOCKSHIFT;
240	max_bs = highbit64(txh->txh_tx->tx_objset->os_recordsize) - 1;
241	min_ibs = DN_MIN_INDBLKSHIFT;
242	max_ibs = DN_MAX_INDBLKSHIFT;
243
244	if (dn) {
245		uint64_t history[DN_MAX_LEVELS];
246		int nlvls = dn->dn_nlevels;
247		int delta;
248
249		/*
250		 * For i/o error checking, read the first and last level-0
251		 * blocks (if they are not aligned), and all the level-1 blocks.
252		 */
253		if (dn->dn_maxblkid == 0) {
254			delta = dn->dn_datablksz;
255			start = (off < dn->dn_datablksz) ? 0 : 1;
256			end = (off+len <= dn->dn_datablksz) ? 0 : 1;
257			if (start == 0 && (off > 0 || len < dn->dn_datablksz)) {
258				err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
259				if (err)
260					goto out;
261				delta -= off;
262			}
263		} else {
264			zio_t *zio = zio_root(dn->dn_objset->os_spa,
265			    NULL, NULL, ZIO_FLAG_CANFAIL);
266
267			/* first level-0 block */
268			start = off >> dn->dn_datablkshift;
269			if (P2PHASE(off, dn->dn_datablksz) ||
270			    len < dn->dn_datablksz) {
271				err = dmu_tx_check_ioerr(zio, dn, 0, start);
272				if (err)
273					goto out;
274			}
275
276			/* last level-0 block */
277			end = (off+len-1) >> dn->dn_datablkshift;
278			if (end != start && end <= dn->dn_maxblkid &&
279			    P2PHASE(off+len, dn->dn_datablksz)) {
280				err = dmu_tx_check_ioerr(zio, dn, 0, end);
281				if (err)
282					goto out;
283			}
284
285			/* level-1 blocks */
286			if (nlvls > 1) {
287				int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
288				for (i = (start>>shft)+1; i < end>>shft; i++) {
289					err = dmu_tx_check_ioerr(zio, dn, 1, i);
290					if (err)
291						goto out;
292				}
293			}
294
295			err = zio_wait(zio);
296			if (err)
297				goto out;
298			delta = P2NPHASE(off, dn->dn_datablksz);
299		}
300
301		min_ibs = max_ibs = dn->dn_indblkshift;
302		if (dn->dn_maxblkid > 0) {
303			/*
304			 * The blocksize can't change,
305			 * so we can make a more precise estimate.
306			 */
307			ASSERT(dn->dn_datablkshift != 0);
308			min_bs = max_bs = dn->dn_datablkshift;
309		} else {
310			/*
311			 * The blocksize can increase up to the recordsize,
312			 * or if it is already more than the recordsize,
313			 * up to the next power of 2.
314			 */
315			min_bs = highbit64(dn->dn_datablksz - 1);
316			max_bs = MAX(max_bs, highbit64(dn->dn_datablksz - 1));
317		}
318
319		/*
320		 * If this write is not off the end of the file
321		 * we need to account for overwrites/unref.
322		 */
323		if (start <= dn->dn_maxblkid) {
324			for (int l = 0; l < DN_MAX_LEVELS; l++)
325				history[l] = -1ULL;
326		}
327		while (start <= dn->dn_maxblkid) {
328			dmu_buf_impl_t *db;
329
330			rw_enter(&dn->dn_struct_rwlock, RW_READER);
331			err = dbuf_hold_impl(dn, 0, start,
332			    FALSE, FALSE, FTAG, &db);
333			rw_exit(&dn->dn_struct_rwlock);
334
335			if (err) {
336				txh->txh_tx->tx_err = err;
337				return;
338			}
339
340			dmu_tx_count_twig(txh, dn, db, 0, start, B_FALSE,
341			    history);
342			dbuf_rele(db, FTAG);
343			if (++start > end) {
344				/*
345				 * Account for new indirects appearing
346				 * before this IO gets assigned into a txg.
347				 */
348				bits = 64 - min_bs;
349				epbs = min_ibs - SPA_BLKPTRSHIFT;
350				for (bits -= epbs * (nlvls - 1);
351				    bits >= 0; bits -= epbs) {
352					(void) refcount_add_many(
353					    &txh->txh_fudge,
354					    1ULL << max_ibs, FTAG);
355				}
356				goto out;
357			}
358			off += delta;
359			if (len >= delta)
360				len -= delta;
361			delta = dn->dn_datablksz;
362		}
363	}
364
365	/*
366	 * 'end' is the last thing we will access, not one past.
367	 * This way we won't overflow when accessing the last byte.
368	 */
369	start = P2ALIGN(off, 1ULL << max_bs);
370	end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1;
371	(void) refcount_add_many(&txh->txh_space_towrite,
372	    end - start + 1, FTAG);
373
374	start >>= min_bs;
375	end >>= min_bs;
376
377	epbs = min_ibs - SPA_BLKPTRSHIFT;
378
379	/*
380	 * The object contains at most 2^(64 - min_bs) blocks,
381	 * and each indirect level maps 2^epbs.
382	 */
383	for (bits = 64 - min_bs; bits >= 0; bits -= epbs) {
384		start >>= epbs;
385		end >>= epbs;
386		ASSERT3U(end, >=, start);
387		(void) refcount_add_many(&txh->txh_space_towrite,
388		    (end - start + 1) << max_ibs, FTAG);
389		if (start != 0) {
390			/*
391			 * We also need a new blkid=0 indirect block
392			 * to reference any existing file data.
393			 */
394			(void) refcount_add_many(&txh->txh_space_towrite,
395			    1ULL << max_ibs, FTAG);
396		}
397	}
398
399out:
400	if (refcount_count(&txh->txh_space_towrite) +
401	    refcount_count(&txh->txh_space_tooverwrite) >
402	    2 * DMU_MAX_ACCESS)
403		err = SET_ERROR(EFBIG);
404
405	if (err)
406		txh->txh_tx->tx_err = err;
407}
408
409static void
410dmu_tx_count_dnode(dmu_tx_hold_t *txh)
411{
412	dnode_t *dn = txh->txh_dnode;
413	dnode_t *mdn = DMU_META_DNODE(txh->txh_tx->tx_objset);
414	uint64_t space = mdn->dn_datablksz +
415	    ((uint64_t)(mdn->dn_nlevels-1) << mdn->dn_indblkshift);
416
417	if (dn && dn->dn_dbuf->db_blkptr &&
418	    dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
419	    dn->dn_dbuf->db_blkptr, dn->dn_dbuf->db_blkptr->blk_birth)) {
420		(void) refcount_add_many(&txh->txh_space_tooverwrite,
421		    space, FTAG);
422		(void) refcount_add_many(&txh->txh_space_tounref, space, FTAG);
423	} else {
424		(void) refcount_add_many(&txh->txh_space_towrite, space, FTAG);
425		if (dn && dn->dn_dbuf->db_blkptr) {
426			(void) refcount_add_many(&txh->txh_space_tounref,
427			    space, FTAG);
428		}
429	}
430}
431
432void
433dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
434{
435	dmu_tx_hold_t *txh;
436
437	ASSERT(tx->tx_txg == 0);
438	ASSERT(len < DMU_MAX_ACCESS);
439	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
440
441	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
442	    object, THT_WRITE, off, len);
443	if (txh == NULL)
444		return;
445
446	dmu_tx_count_write(txh, off, len);
447	dmu_tx_count_dnode(txh);
448}
449
450static void
451dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
452{
453	uint64_t blkid, nblks, lastblk;
454	uint64_t space = 0, unref = 0, skipped = 0;
455	dnode_t *dn = txh->txh_dnode;
456	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
457	spa_t *spa = txh->txh_tx->tx_pool->dp_spa;
458	int epbs;
459	uint64_t l0span = 0, nl1blks = 0;
460
461	if (dn->dn_nlevels == 0)
462		return;
463
464	/*
465	 * The struct_rwlock protects us against dn_nlevels
466	 * changing, in case (against all odds) we manage to dirty &
467	 * sync out the changes after we check for being dirty.
468	 * Also, dbuf_hold_impl() wants us to have the struct_rwlock.
469	 */
470	rw_enter(&dn->dn_struct_rwlock, RW_READER);
471	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
472	if (dn->dn_maxblkid == 0) {
473		if (off == 0 && len >= dn->dn_datablksz) {
474			blkid = 0;
475			nblks = 1;
476		} else {
477			rw_exit(&dn->dn_struct_rwlock);
478			return;
479		}
480	} else {
481		blkid = off >> dn->dn_datablkshift;
482		nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift;
483
484		if (blkid > dn->dn_maxblkid) {
485			rw_exit(&dn->dn_struct_rwlock);
486			return;
487		}
488		if (blkid + nblks > dn->dn_maxblkid)
489			nblks = dn->dn_maxblkid - blkid + 1;
490
491	}
492	l0span = nblks;    /* save for later use to calc level > 1 overhead */
493	if (dn->dn_nlevels == 1) {
494		int i;
495		for (i = 0; i < nblks; i++) {
496			blkptr_t *bp = dn->dn_phys->dn_blkptr;
497			ASSERT3U(blkid + i, <, dn->dn_nblkptr);
498			bp += blkid + i;
499			if (dsl_dataset_block_freeable(ds, bp, bp->blk_birth)) {
500				dprintf_bp(bp, "can free old%s", "");
501				space += bp_get_dsize(spa, bp);
502			}
503			unref += BP_GET_ASIZE(bp);
504		}
505		nl1blks = 1;
506		nblks = 0;
507	}
508
509	lastblk = blkid + nblks - 1;
510	while (nblks) {
511		dmu_buf_impl_t *dbuf;
512		uint64_t ibyte, new_blkid;
513		int epb = 1 << epbs;
514		int err, i, blkoff, tochk;
515		blkptr_t *bp;
516
517		ibyte = blkid << dn->dn_datablkshift;
518		err = dnode_next_offset(dn,
519		    DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0);
520		new_blkid = ibyte >> dn->dn_datablkshift;
521		if (err == ESRCH) {
522			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
523			break;
524		}
525		if (err) {
526			txh->txh_tx->tx_err = err;
527			break;
528		}
529		if (new_blkid > lastblk) {
530			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
531			break;
532		}
533
534		if (new_blkid > blkid) {
535			ASSERT((new_blkid >> epbs) > (blkid >> epbs));
536			skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1;
537			nblks -= new_blkid - blkid;
538			blkid = new_blkid;
539		}
540		blkoff = P2PHASE(blkid, epb);
541		tochk = MIN(epb - blkoff, nblks);
542
543		err = dbuf_hold_impl(dn, 1, blkid >> epbs,
544		    FALSE, FALSE, FTAG, &dbuf);
545		if (err) {
546			txh->txh_tx->tx_err = err;
547			break;
548		}
549
550		(void) refcount_add_many(&txh->txh_memory_tohold,
551		    dbuf->db.db_size, FTAG);
552
553		/*
554		 * We don't check memory_tohold against DMU_MAX_ACCESS because
555		 * memory_tohold is an over-estimation (especially the >L1
556		 * indirect blocks), so it could fail.  Callers should have
557		 * already verified that they will not be holding too much
558		 * memory.
559		 */
560
561		err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL);
562		if (err != 0) {
563			txh->txh_tx->tx_err = err;
564			dbuf_rele(dbuf, FTAG);
565			break;
566		}
567
568		bp = dbuf->db.db_data;
569		bp += blkoff;
570
571		for (i = 0; i < tochk; i++) {
572			if (dsl_dataset_block_freeable(ds, &bp[i],
573			    bp[i].blk_birth)) {
574				dprintf_bp(&bp[i], "can free old%s", "");
575				space += bp_get_dsize(spa, &bp[i]);
576			}
577			unref += BP_GET_ASIZE(bp);
578		}
579		dbuf_rele(dbuf, FTAG);
580
581		++nl1blks;
582		blkid += tochk;
583		nblks -= tochk;
584	}
585	rw_exit(&dn->dn_struct_rwlock);
586
587	/*
588	 * Add in memory requirements of higher-level indirects.
589	 * This assumes a worst-possible scenario for dn_nlevels and a
590	 * worst-possible distribution of l1-blocks over the region to free.
591	 */
592	{
593		uint64_t blkcnt = 1 + ((l0span >> epbs) >> epbs);
594		int level = 2;
595		/*
596		 * Here we don't use DN_MAX_LEVEL, but calculate it with the
597		 * given datablkshift and indblkshift. This makes the
598		 * difference between 19 and 8 on large files.
599		 */
600		int maxlevel = 2 + (DN_MAX_OFFSET_SHIFT - dn->dn_datablkshift) /
601		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
602
603		while (level++ < maxlevel) {
604			(void) refcount_add_many(&txh->txh_memory_tohold,
605			    MAX(MIN(blkcnt, nl1blks), 1) << dn->dn_indblkshift,
606			    FTAG);
607			blkcnt = 1 + (blkcnt >> epbs);
608		}
609	}
610
611	/* account for new level 1 indirect blocks that might show up */
612	if (skipped > 0) {
613		(void) refcount_add_many(&txh->txh_fudge,
614		    skipped << dn->dn_indblkshift, FTAG);
615		skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs);
616		(void) refcount_add_many(&txh->txh_memory_tohold,
617		    skipped << dn->dn_indblkshift, FTAG);
618	}
619	(void) refcount_add_many(&txh->txh_space_tofree, space, FTAG);
620	(void) refcount_add_many(&txh->txh_space_tounref, unref, FTAG);
621}
622
623/*
624 * This function marks the transaction as being a "net free".  The end
625 * result is that refquotas will be disabled for this transaction, and
626 * this transaction will be able to use half of the pool space overhead
627 * (see dsl_pool_adjustedsize()).  Therefore this function should only
628 * be called for transactions that we expect will not cause a net increase
629 * in the amount of space used (but it's OK if that is occasionally not true).
630 */
631void
632dmu_tx_mark_netfree(dmu_tx_t *tx)
633{
634	dmu_tx_hold_t *txh;
635
636	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
637	    DMU_NEW_OBJECT, THT_FREE, 0, 0);
638
639	/*
640	 * Pretend that this operation will free 1GB of space.  This
641	 * should be large enough to cancel out the largest write.
642	 * We don't want to use something like UINT64_MAX, because that would
643	 * cause overflows when doing math with these values (e.g. in
644	 * dmu_tx_try_assign()).
645	 */
646	(void) refcount_add_many(&txh->txh_space_tofree,
647	    1024 * 1024 * 1024, FTAG);
648	(void) refcount_add_many(&txh->txh_space_tounref,
649	    1024 * 1024 * 1024, FTAG);
650}
651
652void
653dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
654{
655	dmu_tx_hold_t *txh;
656	dnode_t *dn;
657	int err;
658	zio_t *zio;
659
660	ASSERT(tx->tx_txg == 0);
661
662	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
663	    object, THT_FREE, off, len);
664	if (txh == NULL)
665		return;
666	dn = txh->txh_dnode;
667	dmu_tx_count_dnode(txh);
668
669	if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz)
670		return;
671	if (len == DMU_OBJECT_END)
672		len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off;
673
674
675	/*
676	 * For i/o error checking, we read the first and last level-0
677	 * blocks if they are not aligned, and all the level-1 blocks.
678	 *
679	 * Note:  dbuf_free_range() assumes that we have not instantiated
680	 * any level-0 dbufs that will be completely freed.  Therefore we must
681	 * exercise care to not read or count the first and last blocks
682	 * if they are blocksize-aligned.
683	 */
684	if (dn->dn_datablkshift == 0) {
685		if (off != 0 || len < dn->dn_datablksz)
686			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
687	} else {
688		/* first block will be modified if it is not aligned */
689		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
690			dmu_tx_count_write(txh, off, 1);
691		/* last block will be modified if it is not aligned */
692		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
693			dmu_tx_count_write(txh, off+len, 1);
694	}
695
696	/*
697	 * Check level-1 blocks.
698	 */
699	if (dn->dn_nlevels > 1) {
700		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
701		    SPA_BLKPTRSHIFT;
702		uint64_t start = off >> shift;
703		uint64_t end = (off + len) >> shift;
704
705		ASSERT(dn->dn_indblkshift != 0);
706
707		/*
708		 * dnode_reallocate() can result in an object with indirect
709		 * blocks having an odd data block size.  In this case,
710		 * just check the single block.
711		 */
712		if (dn->dn_datablkshift == 0)
713			start = end = 0;
714
715		zio = zio_root(tx->tx_pool->dp_spa,
716		    NULL, NULL, ZIO_FLAG_CANFAIL);
717		for (uint64_t i = start; i <= end; i++) {
718			uint64_t ibyte = i << shift;
719			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
720			i = ibyte >> shift;
721			if (err == ESRCH || i > end)
722				break;
723			if (err) {
724				tx->tx_err = err;
725				return;
726			}
727
728			err = dmu_tx_check_ioerr(zio, dn, 1, i);
729			if (err) {
730				tx->tx_err = err;
731				return;
732			}
733		}
734		err = zio_wait(zio);
735		if (err) {
736			tx->tx_err = err;
737			return;
738		}
739	}
740
741	dmu_tx_count_free(txh, off, len);
742}
743
744void
745dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
746{
747	dmu_tx_hold_t *txh;
748	dnode_t *dn;
749	int err;
750
751	ASSERT(tx->tx_txg == 0);
752
753	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
754	    object, THT_ZAP, add, (uintptr_t)name);
755	if (txh == NULL)
756		return;
757	dn = txh->txh_dnode;
758
759	dmu_tx_count_dnode(txh);
760
761	if (dn == NULL) {
762		/*
763		 * We will be able to fit a new object's entries into one leaf
764		 * block.  So there will be at most 2 blocks total,
765		 * including the header block.
766		 */
767		dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift);
768		return;
769	}
770
771	ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
772
773	if (dn->dn_maxblkid == 0 && !add) {
774		blkptr_t *bp;
775
776		/*
777		 * If there is only one block  (i.e. this is a micro-zap)
778		 * and we are not adding anything, the accounting is simple.
779		 */
780		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
781		if (err) {
782			tx->tx_err = err;
783			return;
784		}
785
786		/*
787		 * Use max block size here, since we don't know how much
788		 * the size will change between now and the dbuf dirty call.
789		 */
790		bp = &dn->dn_phys->dn_blkptr[0];
791		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
792		    bp, bp->blk_birth)) {
793			(void) refcount_add_many(&txh->txh_space_tooverwrite,
794			    MZAP_MAX_BLKSZ, FTAG);
795		} else {
796			(void) refcount_add_many(&txh->txh_space_towrite,
797			    MZAP_MAX_BLKSZ, FTAG);
798		}
799		if (!BP_IS_HOLE(bp)) {
800			(void) refcount_add_many(&txh->txh_space_tounref,
801			    MZAP_MAX_BLKSZ, FTAG);
802		}
803		return;
804	}
805
806	if (dn->dn_maxblkid > 0 && name) {
807		/*
808		 * access the name in this fat-zap so that we'll check
809		 * for i/o errors to the leaf blocks, etc.
810		 */
811		err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
812		if (err == EIO) {
813			tx->tx_err = err;
814			return;
815		}
816	}
817
818	err = zap_count_write_by_dnode(dn, name, add,
819	    &txh->txh_space_towrite, &txh->txh_space_tooverwrite);
820
821	/*
822	 * If the modified blocks are scattered to the four winds,
823	 * we'll have to modify an indirect twig for each.  We can make
824	 * modifications at up to 3 locations:
825	 *  - header block at the beginning of the object
826	 *  - target leaf block
827	 *  - end of the object, where we might need to write:
828	 *	- a new leaf block if the target block needs to be split
829	 *	- the new pointer table, if it is growing
830	 *	- the new cookie table, if it is growing
831	 */
832	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
833	dsl_dataset_phys_t *ds_phys =
834	    dsl_dataset_phys(dn->dn_objset->os_dsl_dataset);
835	for (int lvl = 1; lvl < dn->dn_nlevels; lvl++) {
836		uint64_t num_indirects = 1 + (dn->dn_maxblkid >> (epbs * lvl));
837		uint64_t spc = MIN(3, num_indirects) << dn->dn_indblkshift;
838		if (ds_phys->ds_prev_snap_obj != 0) {
839			(void) refcount_add_many(&txh->txh_space_towrite,
840			    spc, FTAG);
841		} else {
842			(void) refcount_add_many(&txh->txh_space_tooverwrite,
843			    spc, FTAG);
844		}
845	}
846}
847
848void
849dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
850{
851	dmu_tx_hold_t *txh;
852
853	ASSERT(tx->tx_txg == 0);
854
855	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
856	    object, THT_BONUS, 0, 0);
857	if (txh)
858		dmu_tx_count_dnode(txh);
859}
860
861void
862dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
863{
864	dmu_tx_hold_t *txh;
865	ASSERT(tx->tx_txg == 0);
866
867	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
868	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
869
870	(void) refcount_add_many(&txh->txh_space_towrite, space, FTAG);
871}
872
873int
874dmu_tx_holds(dmu_tx_t *tx, uint64_t object)
875{
876	dmu_tx_hold_t *txh;
877	int holds = 0;
878
879	/*
880	 * By asserting that the tx is assigned, we're counting the
881	 * number of dn_tx_holds, which is the same as the number of
882	 * dn_holds.  Otherwise, we'd be counting dn_holds, but
883	 * dn_tx_holds could be 0.
884	 */
885	ASSERT(tx->tx_txg != 0);
886
887	/* if (tx->tx_anyobj == TRUE) */
888		/* return (0); */
889
890	for (txh = list_head(&tx->tx_holds); txh;
891	    txh = list_next(&tx->tx_holds, txh)) {
892		if (txh->txh_dnode && txh->txh_dnode->dn_object == object)
893			holds++;
894	}
895
896	return (holds);
897}
898
899#ifdef ZFS_DEBUG
900void
901dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
902{
903	dmu_tx_hold_t *txh;
904	int match_object = FALSE, match_offset = FALSE;
905	dnode_t *dn;
906
907	DB_DNODE_ENTER(db);
908	dn = DB_DNODE(db);
909	ASSERT(tx->tx_txg != 0);
910	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
911	ASSERT3U(dn->dn_object, ==, db->db.db_object);
912
913	if (tx->tx_anyobj) {
914		DB_DNODE_EXIT(db);
915		return;
916	}
917
918	/* XXX No checking on the meta dnode for now */
919	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
920		DB_DNODE_EXIT(db);
921		return;
922	}
923
924	for (txh = list_head(&tx->tx_holds); txh;
925	    txh = list_next(&tx->tx_holds, txh)) {
926		ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg);
927		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
928			match_object = TRUE;
929		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
930			int datablkshift = dn->dn_datablkshift ?
931			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
932			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
933			int shift = datablkshift + epbs * db->db_level;
934			uint64_t beginblk = shift >= 64 ? 0 :
935			    (txh->txh_arg1 >> shift);
936			uint64_t endblk = shift >= 64 ? 0 :
937			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
938			uint64_t blkid = db->db_blkid;
939
940			/* XXX txh_arg2 better not be zero... */
941
942			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
943			    txh->txh_type, beginblk, endblk);
944
945			switch (txh->txh_type) {
946			case THT_WRITE:
947				if (blkid >= beginblk && blkid <= endblk)
948					match_offset = TRUE;
949				/*
950				 * We will let this hold work for the bonus
951				 * or spill buffer so that we don't need to
952				 * hold it when creating a new object.
953				 */
954				if (blkid == DMU_BONUS_BLKID ||
955				    blkid == DMU_SPILL_BLKID)
956					match_offset = TRUE;
957				/*
958				 * They might have to increase nlevels,
959				 * thus dirtying the new TLIBs.  Or the
960				 * might have to change the block size,
961				 * thus dirying the new lvl=0 blk=0.
962				 */
963				if (blkid == 0)
964					match_offset = TRUE;
965				break;
966			case THT_FREE:
967				/*
968				 * We will dirty all the level 1 blocks in
969				 * the free range and perhaps the first and
970				 * last level 0 block.
971				 */
972				if (blkid >= beginblk && (blkid <= endblk ||
973				    txh->txh_arg2 == DMU_OBJECT_END))
974					match_offset = TRUE;
975				break;
976			case THT_SPILL:
977				if (blkid == DMU_SPILL_BLKID)
978					match_offset = TRUE;
979				break;
980			case THT_BONUS:
981				if (blkid == DMU_BONUS_BLKID)
982					match_offset = TRUE;
983				break;
984			case THT_ZAP:
985				match_offset = TRUE;
986				break;
987			case THT_NEWOBJECT:
988				match_object = TRUE;
989				break;
990			default:
991				ASSERT(!"bad txh_type");
992			}
993		}
994		if (match_object && match_offset) {
995			DB_DNODE_EXIT(db);
996			return;
997		}
998	}
999	DB_DNODE_EXIT(db);
1000	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
1001	    (u_longlong_t)db->db.db_object, db->db_level,
1002	    (u_longlong_t)db->db_blkid);
1003}
1004#endif
1005
1006/*
1007 * If we can't do 10 iops, something is wrong.  Let us go ahead
1008 * and hit zfs_dirty_data_max.
1009 */
1010hrtime_t zfs_delay_max_ns = MSEC2NSEC(100);
1011int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
1012
1013/*
1014 * We delay transactions when we've determined that the backend storage
1015 * isn't able to accommodate the rate of incoming writes.
1016 *
1017 * If there is already a transaction waiting, we delay relative to when
1018 * that transaction finishes waiting.  This way the calculated min_time
1019 * is independent of the number of threads concurrently executing
1020 * transactions.
1021 *
1022 * If we are the only waiter, wait relative to when the transaction
1023 * started, rather than the current time.  This credits the transaction for
1024 * "time already served", e.g. reading indirect blocks.
1025 *
1026 * The minimum time for a transaction to take is calculated as:
1027 *     min_time = scale * (dirty - min) / (max - dirty)
1028 *     min_time is then capped at zfs_delay_max_ns.
1029 *
1030 * The delay has two degrees of freedom that can be adjusted via tunables.
1031 * The percentage of dirty data at which we start to delay is defined by
1032 * zfs_delay_min_dirty_percent. This should typically be at or above
1033 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
1034 * delay after writing at full speed has failed to keep up with the incoming
1035 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
1036 * speaking, this variable determines the amount of delay at the midpoint of
1037 * the curve.
1038 *
1039 * delay
1040 *  10ms +-------------------------------------------------------------*+
1041 *       |                                                             *|
1042 *   9ms +                                                             *+
1043 *       |                                                             *|
1044 *   8ms +                                                             *+
1045 *       |                                                            * |
1046 *   7ms +                                                            * +
1047 *       |                                                            * |
1048 *   6ms +                                                            * +
1049 *       |                                                            * |
1050 *   5ms +                                                           *  +
1051 *       |                                                           *  |
1052 *   4ms +                                                           *  +
1053 *       |                                                           *  |
1054 *   3ms +                                                          *   +
1055 *       |                                                          *   |
1056 *   2ms +                                              (midpoint) *    +
1057 *       |                                                  |    **     |
1058 *   1ms +                                                  v ***       +
1059 *       |             zfs_delay_scale ---------->     ********         |
1060 *     0 +-------------------------------------*********----------------+
1061 *       0%                    <- zfs_dirty_data_max ->               100%
1062 *
1063 * Note that since the delay is added to the outstanding time remaining on the
1064 * most recent transaction, the delay is effectively the inverse of IOPS.
1065 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
1066 * was chosen such that small changes in the amount of accumulated dirty data
1067 * in the first 3/4 of the curve yield relatively small differences in the
1068 * amount of delay.
1069 *
1070 * The effects can be easier to understand when the amount of delay is
1071 * represented on a log scale:
1072 *
1073 * delay
1074 * 100ms +-------------------------------------------------------------++
1075 *       +                                                              +
1076 *       |                                                              |
1077 *       +                                                             *+
1078 *  10ms +                                                             *+
1079 *       +                                                           ** +
1080 *       |                                              (midpoint)  **  |
1081 *       +                                                  |     **    +
1082 *   1ms +                                                  v ****      +
1083 *       +             zfs_delay_scale ---------->        *****         +
1084 *       |                                             ****             |
1085 *       +                                          ****                +
1086 * 100us +                                        **                    +
1087 *       +                                       *                      +
1088 *       |                                      *                       |
1089 *       +                                     *                        +
1090 *  10us +                                     *                        +
1091 *       +                                                              +
1092 *       |                                                              |
1093 *       +                                                              +
1094 *       +--------------------------------------------------------------+
1095 *       0%                    <- zfs_dirty_data_max ->               100%
1096 *
1097 * Note here that only as the amount of dirty data approaches its limit does
1098 * the delay start to increase rapidly. The goal of a properly tuned system
1099 * should be to keep the amount of dirty data out of that range by first
1100 * ensuring that the appropriate limits are set for the I/O scheduler to reach
1101 * optimal throughput on the backend storage, and then by changing the value
1102 * of zfs_delay_scale to increase the steepness of the curve.
1103 */
1104static void
1105dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
1106{
1107	dsl_pool_t *dp = tx->tx_pool;
1108	uint64_t delay_min_bytes =
1109	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
1110	hrtime_t wakeup, min_tx_time, now;
1111
1112	if (dirty <= delay_min_bytes)
1113		return;
1114
1115	/*
1116	 * The caller has already waited until we are under the max.
1117	 * We make them pass us the amount of dirty data so we don't
1118	 * have to handle the case of it being >= the max, which could
1119	 * cause a divide-by-zero if it's == the max.
1120	 */
1121	ASSERT3U(dirty, <, zfs_dirty_data_max);
1122
1123	now = gethrtime();
1124	min_tx_time = zfs_delay_scale *
1125	    (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
1126	if (now > tx->tx_start + min_tx_time)
1127		return;
1128
1129	min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
1130
1131	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
1132	    uint64_t, min_tx_time);
1133
1134	mutex_enter(&dp->dp_lock);
1135	wakeup = MAX(tx->tx_start + min_tx_time,
1136	    dp->dp_last_wakeup + min_tx_time);
1137	dp->dp_last_wakeup = wakeup;
1138	mutex_exit(&dp->dp_lock);
1139
1140#ifdef _KERNEL
1141#ifdef illumos
1142	mutex_enter(&curthread->t_delay_lock);
1143	while (cv_timedwait_hires(&curthread->t_delay_cv,
1144	    &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns,
1145	    CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0)
1146		continue;
1147	mutex_exit(&curthread->t_delay_lock);
1148#endif
1149#ifdef __FreeBSD__
1150	pause_sbt("dmu_tx_delay", wakeup * SBT_1NS,
1151	    zfs_delay_resolution_ns * SBT_1NS, C_ABSOLUTE);
1152#endif
1153#ifdef __NetBSD__
1154	int timo = (wakeup - now) * hz / 1000000000;
1155
1156	if (timo < 0)
1157		return;
1158
1159	if (timo == 0)
1160		timo = 1;
1161	kpause("dmu_tx_delay", false, timo, NULL);
1162#endif
1163#else
1164	hrtime_t delta = wakeup - gethrtime();
1165	struct timespec ts;
1166	ts.tv_sec = delta / NANOSEC;
1167	ts.tv_nsec = delta % NANOSEC;
1168	(void) nanosleep(&ts, NULL);
1169#endif
1170}
1171
1172static int
1173dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
1174{
1175	dmu_tx_hold_t *txh;
1176	spa_t *spa = tx->tx_pool->dp_spa;
1177	uint64_t memory, asize, fsize, usize;
1178	uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge;
1179
1180	ASSERT0(tx->tx_txg);
1181
1182	if (tx->tx_err)
1183		return (tx->tx_err);
1184
1185	if (spa_suspended(spa)) {
1186		/*
1187		 * If the user has indicated a blocking failure mode
1188		 * then return ERESTART which will block in dmu_tx_wait().
1189		 * Otherwise, return EIO so that an error can get
1190		 * propagated back to the VOP calls.
1191		 *
1192		 * Note that we always honor the txg_how flag regardless
1193		 * of the failuremode setting.
1194		 */
1195		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
1196		    txg_how != TXG_WAIT)
1197			return (SET_ERROR(EIO));
1198
1199		return (SET_ERROR(ERESTART));
1200	}
1201
1202	if (!tx->tx_waited &&
1203	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
1204		tx->tx_wait_dirty = B_TRUE;
1205		return (SET_ERROR(ERESTART));
1206	}
1207
1208	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
1209	tx->tx_needassign_txh = NULL;
1210
1211	/*
1212	 * NB: No error returns are allowed after txg_hold_open, but
1213	 * before processing the dnode holds, due to the
1214	 * dmu_tx_unassign() logic.
1215	 */
1216
1217	towrite = tofree = tooverwrite = tounref = tohold = fudge = 0;
1218	for (txh = list_head(&tx->tx_holds); txh;
1219	    txh = list_next(&tx->tx_holds, txh)) {
1220		dnode_t *dn = txh->txh_dnode;
1221		if (dn != NULL) {
1222			mutex_enter(&dn->dn_mtx);
1223			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
1224				mutex_exit(&dn->dn_mtx);
1225				tx->tx_needassign_txh = txh;
1226				return (SET_ERROR(ERESTART));
1227			}
1228			if (dn->dn_assigned_txg == 0)
1229				dn->dn_assigned_txg = tx->tx_txg;
1230			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1231			(void) refcount_add(&dn->dn_tx_holds, tx);
1232			mutex_exit(&dn->dn_mtx);
1233		}
1234		towrite += refcount_count(&txh->txh_space_towrite);
1235		tofree += refcount_count(&txh->txh_space_tofree);
1236		tooverwrite += refcount_count(&txh->txh_space_tooverwrite);
1237		tounref += refcount_count(&txh->txh_space_tounref);
1238		tohold += refcount_count(&txh->txh_memory_tohold);
1239		fudge += refcount_count(&txh->txh_fudge);
1240	}
1241
1242	/*
1243	 * If a snapshot has been taken since we made our estimates,
1244	 * assume that we won't be able to free or overwrite anything.
1245	 */
1246	if (tx->tx_objset &&
1247	    dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) >
1248	    tx->tx_lastsnap_txg) {
1249		towrite += tooverwrite;
1250		tooverwrite = tofree = 0;
1251	}
1252
1253	/* needed allocation: worst-case estimate of write space */
1254	asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite);
1255	/* freed space estimate: worst-case overwrite + free estimate */
1256	fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree;
1257	/* convert unrefd space to worst-case estimate */
1258	usize = spa_get_asize(tx->tx_pool->dp_spa, tounref);
1259	/* calculate memory footprint estimate */
1260	memory = towrite + tooverwrite + tohold;
1261
1262#ifdef ZFS_DEBUG
1263	/*
1264	 * Add in 'tohold' to account for our dirty holds on this memory
1265	 * XXX - the "fudge" factor is to account for skipped blocks that
1266	 * we missed because dnode_next_offset() misses in-core-only blocks.
1267	 */
1268	tx->tx_space_towrite = asize +
1269	    spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge);
1270	tx->tx_space_tofree = tofree;
1271	tx->tx_space_tooverwrite = tooverwrite;
1272	tx->tx_space_tounref = tounref;
1273#endif
1274
1275	if (tx->tx_dir && asize != 0) {
1276		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
1277		    asize, fsize, usize, &tx->tx_tempreserve_cookie, tx);
1278		if (err)
1279			return (err);
1280	}
1281
1282	return (0);
1283}
1284
1285static void
1286dmu_tx_unassign(dmu_tx_t *tx)
1287{
1288	dmu_tx_hold_t *txh;
1289
1290	if (tx->tx_txg == 0)
1291		return;
1292
1293	txg_rele_to_quiesce(&tx->tx_txgh);
1294
1295	/*
1296	 * Walk the transaction's hold list, removing the hold on the
1297	 * associated dnode, and notifying waiters if the refcount drops to 0.
1298	 */
1299	for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh;
1300	    txh = list_next(&tx->tx_holds, txh)) {
1301		dnode_t *dn = txh->txh_dnode;
1302
1303		if (dn == NULL)
1304			continue;
1305		mutex_enter(&dn->dn_mtx);
1306		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1307
1308		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1309			dn->dn_assigned_txg = 0;
1310			cv_broadcast(&dn->dn_notxholds);
1311		}
1312		mutex_exit(&dn->dn_mtx);
1313	}
1314
1315	txg_rele_to_sync(&tx->tx_txgh);
1316
1317	tx->tx_lasttried_txg = tx->tx_txg;
1318	tx->tx_txg = 0;
1319}
1320
1321/*
1322 * Assign tx to a transaction group.  txg_how can be one of:
1323 *
1324 * (1)	TXG_WAIT.  If the current open txg is full, waits until there's
1325 *	a new one.  This should be used when you're not holding locks.
1326 *	It will only fail if we're truly out of space (or over quota).
1327 *
1328 * (2)	TXG_NOWAIT.  If we can't assign into the current open txg without
1329 *	blocking, returns immediately with ERESTART.  This should be used
1330 *	whenever you're holding locks.  On an ERESTART error, the caller
1331 *	should drop locks, do a dmu_tx_wait(tx), and try again.
1332 *
1333 * (3)  TXG_WAITED.  Like TXG_NOWAIT, but indicates that dmu_tx_wait()
1334 *      has already been called on behalf of this operation (though
1335 *      most likely on a different tx).
1336 */
1337int
1338dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
1339{
1340	int err;
1341
1342	ASSERT(tx->tx_txg == 0);
1343	ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT ||
1344	    txg_how == TXG_WAITED);
1345	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1346
1347	/* If we might wait, we must not hold the config lock. */
1348	ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));
1349
1350	if (txg_how == TXG_WAITED)
1351		tx->tx_waited = B_TRUE;
1352
1353	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1354		dmu_tx_unassign(tx);
1355
1356		if (err != ERESTART || txg_how != TXG_WAIT)
1357			return (err);
1358
1359		dmu_tx_wait(tx);
1360	}
1361
1362	txg_rele_to_quiesce(&tx->tx_txgh);
1363
1364	return (0);
1365}
1366
1367void
1368dmu_tx_wait(dmu_tx_t *tx)
1369{
1370	spa_t *spa = tx->tx_pool->dp_spa;
1371	dsl_pool_t *dp = tx->tx_pool;
1372
1373	ASSERT(tx->tx_txg == 0);
1374	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1375
1376	if (tx->tx_wait_dirty) {
1377		/*
1378		 * dmu_tx_try_assign() has determined that we need to wait
1379		 * because we've consumed much or all of the dirty buffer
1380		 * space.
1381		 */
1382		mutex_enter(&dp->dp_lock);
1383		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1384			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1385		uint64_t dirty = dp->dp_dirty_total;
1386		mutex_exit(&dp->dp_lock);
1387
1388		dmu_tx_delay(tx, dirty);
1389
1390		tx->tx_wait_dirty = B_FALSE;
1391
1392		/*
1393		 * Note: setting tx_waited only has effect if the caller
1394		 * used TX_WAIT.  Otherwise they are going to destroy
1395		 * this tx and try again.  The common case, zfs_write(),
1396		 * uses TX_WAIT.
1397		 */
1398		tx->tx_waited = B_TRUE;
1399	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1400		/*
1401		 * If the pool is suspended we need to wait until it
1402		 * is resumed.  Note that it's possible that the pool
1403		 * has become active after this thread has tried to
1404		 * obtain a tx.  If that's the case then tx_lasttried_txg
1405		 * would not have been set.
1406		 */
1407		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1408	} else if (tx->tx_needassign_txh) {
1409		/*
1410		 * A dnode is assigned to the quiescing txg.  Wait for its
1411		 * transaction to complete.
1412		 */
1413		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1414
1415		mutex_enter(&dn->dn_mtx);
1416		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1417			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1418		mutex_exit(&dn->dn_mtx);
1419		tx->tx_needassign_txh = NULL;
1420	} else {
1421		txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
1422	}
1423}
1424
1425void
1426dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta)
1427{
1428#ifdef ZFS_DEBUG
1429	if (tx->tx_dir == NULL || delta == 0)
1430		return;
1431
1432	if (delta > 0) {
1433/* FreeBSD r318821, illumos 7793 ztest fails assertion in dmu_tx_willuse_space
1434		ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=,
1435		    tx->tx_space_towrite);
1436*/
1437		(void) refcount_add_many(&tx->tx_space_written, delta, NULL);
1438	} else {
1439		(void) refcount_add_many(&tx->tx_space_freed, -delta, NULL);
1440	}
1441#endif
1442}
1443
1444static void
1445dmu_tx_destroy(dmu_tx_t *tx)
1446{
1447	dmu_tx_hold_t *txh;
1448
1449	while ((txh = list_head(&tx->tx_holds)) != NULL) {
1450		dnode_t *dn = txh->txh_dnode;
1451
1452		list_remove(&tx->tx_holds, txh);
1453		refcount_destroy_many(&txh->txh_space_towrite,
1454		    refcount_count(&txh->txh_space_towrite));
1455		refcount_destroy_many(&txh->txh_space_tofree,
1456		    refcount_count(&txh->txh_space_tofree));
1457		refcount_destroy_many(&txh->txh_space_tooverwrite,
1458		    refcount_count(&txh->txh_space_tooverwrite));
1459		refcount_destroy_many(&txh->txh_space_tounref,
1460		    refcount_count(&txh->txh_space_tounref));
1461		refcount_destroy_many(&txh->txh_memory_tohold,
1462		    refcount_count(&txh->txh_memory_tohold));
1463		refcount_destroy_many(&txh->txh_fudge,
1464		    refcount_count(&txh->txh_fudge));
1465		kmem_free(txh, sizeof (dmu_tx_hold_t));
1466		if (dn != NULL)
1467			dnode_rele(dn, tx);
1468	}
1469
1470	list_destroy(&tx->tx_callbacks);
1471	list_destroy(&tx->tx_holds);
1472#ifdef ZFS_DEBUG
1473	refcount_destroy_many(&tx->tx_space_written,
1474	    refcount_count(&tx->tx_space_written));
1475	refcount_destroy_many(&tx->tx_space_freed,
1476	    refcount_count(&tx->tx_space_freed));
1477#endif
1478	kmem_free(tx, sizeof (dmu_tx_t));
1479}
1480
1481void
1482dmu_tx_commit(dmu_tx_t *tx)
1483{
1484	ASSERT(tx->tx_txg != 0);
1485
1486	/*
1487	 * Go through the transaction's hold list and remove holds on
1488	 * associated dnodes, notifying waiters if no holds remain.
1489	 */
1490	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1491	    txh = list_next(&tx->tx_holds, txh)) {
1492		dnode_t *dn = txh->txh_dnode;
1493
1494		if (dn == NULL)
1495			continue;
1496
1497		mutex_enter(&dn->dn_mtx);
1498		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1499
1500		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1501			dn->dn_assigned_txg = 0;
1502			cv_broadcast(&dn->dn_notxholds);
1503		}
1504		mutex_exit(&dn->dn_mtx);
1505	}
1506
1507	if (tx->tx_tempreserve_cookie)
1508		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1509
1510	if (!list_is_empty(&tx->tx_callbacks))
1511		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1512
1513	if (tx->tx_anyobj == FALSE)
1514		txg_rele_to_sync(&tx->tx_txgh);
1515
1516#ifdef ZFS_DEBUG
1517	dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n",
1518	    tx->tx_space_towrite, refcount_count(&tx->tx_space_written),
1519	    tx->tx_space_tofree, refcount_count(&tx->tx_space_freed));
1520#endif
1521	dmu_tx_destroy(tx);
1522}
1523
1524void
1525dmu_tx_abort(dmu_tx_t *tx)
1526{
1527	ASSERT(tx->tx_txg == 0);
1528
1529	/*
1530	 * Call any registered callbacks with an error code.
1531	 */
1532	if (!list_is_empty(&tx->tx_callbacks))
1533		dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1534
1535	dmu_tx_destroy(tx);
1536}
1537
1538uint64_t
1539dmu_tx_get_txg(dmu_tx_t *tx)
1540{
1541	ASSERT(tx->tx_txg != 0);
1542	return (tx->tx_txg);
1543}
1544
1545dsl_pool_t *
1546dmu_tx_pool(dmu_tx_t *tx)
1547{
1548	ASSERT(tx->tx_pool != NULL);
1549	return (tx->tx_pool);
1550}
1551
1552
1553void
1554dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1555{
1556	dmu_tx_callback_t *dcb;
1557
1558	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1559
1560	dcb->dcb_func = func;
1561	dcb->dcb_data = data;
1562
1563	list_insert_tail(&tx->tx_callbacks, dcb);
1564}
1565
1566/*
1567 * Call all the commit callbacks on a list, with a given error code.
1568 */
1569void
1570dmu_tx_do_callbacks(list_t *cb_list, int error)
1571{
1572	dmu_tx_callback_t *dcb;
1573
1574	while ((dcb = list_head(cb_list)) != NULL) {
1575		list_remove(cb_list, dcb);
1576		dcb->dcb_func(dcb->dcb_data, error);
1577		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1578	}
1579}
1580
1581/*
1582 * Interface to hold a bunch of attributes.
1583 * used for creating new files.
1584 * attrsize is the total size of all attributes
1585 * to be added during object creation
1586 *
1587 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1588 */
1589
1590/*
1591 * hold necessary attribute name for attribute registration.
1592 * should be a very rare case where this is needed.  If it does
1593 * happen it would only happen on the first write to the file system.
1594 */
1595static void
1596dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1597{
1598	int i;
1599
1600	if (!sa->sa_need_attr_registration)
1601		return;
1602
1603	for (i = 0; i != sa->sa_num_attrs; i++) {
1604		if (!sa->sa_attr_table[i].sa_registered) {
1605			if (sa->sa_reg_attr_obj)
1606				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1607				    B_TRUE, sa->sa_attr_table[i].sa_name);
1608			else
1609				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1610				    B_TRUE, sa->sa_attr_table[i].sa_name);
1611		}
1612	}
1613}
1614
1615
1616void
1617dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1618{
1619	dnode_t *dn;
1620	dmu_tx_hold_t *txh;
1621
1622	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1623	    THT_SPILL, 0, 0);
1624
1625	dn = txh->txh_dnode;
1626
1627	if (dn == NULL)
1628		return;
1629
1630	/* If blkptr doesn't exist then add space to towrite */
1631	if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
1632		(void) refcount_add_many(&txh->txh_space_towrite,
1633		    SPA_OLD_MAXBLOCKSIZE, FTAG);
1634	} else {
1635		blkptr_t *bp;
1636
1637		bp = &dn->dn_phys->dn_spill;
1638		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
1639		    bp, bp->blk_birth)) {
1640			(void) refcount_add_many(&txh->txh_space_tooverwrite,
1641			    SPA_OLD_MAXBLOCKSIZE, FTAG);
1642		} else {
1643			(void) refcount_add_many(&txh->txh_space_towrite,
1644			    SPA_OLD_MAXBLOCKSIZE, FTAG);
1645		}
1646		if (!BP_IS_HOLE(bp)) {
1647			(void) refcount_add_many(&txh->txh_space_tounref,
1648			    SPA_OLD_MAXBLOCKSIZE, FTAG);
1649		}
1650	}
1651}
1652
1653void
1654dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1655{
1656	sa_os_t *sa = tx->tx_objset->os_sa;
1657
1658	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1659
1660	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1661		return;
1662
1663	if (tx->tx_objset->os_sa->sa_layout_attr_obj)
1664		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1665	else {
1666		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1667		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1668		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1669		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1670	}
1671
1672	dmu_tx_sa_registration_hold(sa, tx);
1673
1674	if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)
1675		return;
1676
1677	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1678	    THT_SPILL, 0, 0);
1679}
1680
1681/*
1682 * Hold SA attribute
1683 *
1684 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1685 *
1686 * variable_size is the total size of all variable sized attributes
1687 * passed to this function.  It is not the total size of all
1688 * variable size attributes that *may* exist on this object.
1689 */
1690void
1691dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1692{
1693	uint64_t object;
1694	sa_os_t *sa = tx->tx_objset->os_sa;
1695
1696	ASSERT(hdl != NULL);
1697
1698	object = sa_handle_object(hdl);
1699
1700	dmu_tx_hold_bonus(tx, object);
1701
1702	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1703		return;
1704
1705	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1706	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1707		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1708		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1709		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1710		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1711	}
1712
1713	dmu_tx_sa_registration_hold(sa, tx);
1714
1715	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1716		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1717
1718	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1719		ASSERT(tx->tx_txg == 0);
1720		dmu_tx_hold_spill(tx, object);
1721	} else {
1722		dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1723		dnode_t *dn;
1724
1725		DB_DNODE_ENTER(db);
1726		dn = DB_DNODE(db);
1727		if (dn->dn_have_spill) {
1728			ASSERT(tx->tx_txg == 0);
1729			dmu_tx_hold_spill(tx, object);
1730		}
1731		DB_DNODE_EXIT(db);
1732	}
1733}
1734