1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * Given several files containing CTF data, merge and uniquify that data into
30 * a single CTF section in an output file.
31 *
32 * Merges can proceed independently.  As such, we perform the merges in parallel
33 * using a worker thread model.  A given glob of CTF data (either all of the CTF
34 * data from a single input file, or the result of one or more merges) can only
35 * be involved in a single merge at any given time, so the process decreases in
36 * parallelism, especially towards the end, as more and more files are
37 * consolidated, finally resulting in a single merge of two large CTF graphs.
38 * Unfortunately, the last merge is also the slowest, as the two graphs being
39 * merged are each the product of merges of half of the input files.
40 *
41 * The algorithm consists of two phases, described in detail below.  The first
42 * phase entails the merging of CTF data in groups of eight.  The second phase
43 * takes the results of Phase I, and merges them two at a time.  This disparity
44 * is due to an observation that the merge time increases at least quadratically
45 * with the size of the CTF data being merged.  As such, merges of CTF graphs
46 * newly read from input files are much faster than merges of CTF graphs that
47 * are themselves the results of prior merges.
48 *
49 * A further complication is the need to ensure the repeatability of CTF merges.
50 * That is, a merge should produce the same output every time, given the same
51 * input.  In both phases, this consistency requirement is met by imposing an
52 * ordering on the merge process, thus ensuring that a given set of input files
53 * are merged in the same order every time.
54 *
55 *   Phase I
56 *
57 *   The main thread reads the input files one by one, transforming the CTF
58 *   data they contain into tdata structures.  When a given file has been read
59 *   and parsed, it is placed on the work queue for retrieval by worker threads.
60 *
61 *   Central to Phase I is the Work In Progress (wip) array, which is used to
62 *   merge batches of files in a predictable order.  Files are read by the main
63 *   thread, and are merged into wip array elements in round-robin order.  When
64 *   the number of files merged into a given array slot equals the batch size,
65 *   the merged CTF graph in that array is added to the done slot in order by
66 *   array slot.
67 *
68 *   For example, consider a case where we have five input files, a batch size
69 *   of two, a wip array size of two, and two worker threads (T1 and T2).
70 *
71 *    1. The wip array elements are assigned initial batch numbers 0 and 1.
72 *    2. T1 reads an input file from the input queue (wq_queue).  This is the
73 *       first input file, so it is placed into wip[0].  The second file is
74 *       similarly read and placed into wip[1].  The wip array slots now contain
75 *       one file each (wip_nmerged == 1).
76 *    3. T1 reads the third input file, which it merges into wip[0].  The
77 *       number of files in wip[0] is equal to the batch size.
78 *    4. T2 reads the fourth input file, which it merges into wip[1].  wip[1]
79 *       is now full too.
80 *    5. T2 attempts to place the contents of wip[1] on the done queue
81 *       (wq_done_queue), but it can't, since the batch ID for wip[1] is 1.
82 *       Batch 0 needs to be on the done queue before batch 1 can be added, so
83 *       T2 blocks on wip[1]'s cv.
84 *    6. T1 attempts to place the contents of wip[0] on the done queue, and
85 *       succeeds, updating wq_lastdonebatch to 0.  It clears wip[0], and sets
86 *       its batch ID to 2.  T1 then signals wip[1]'s cv to awaken T2.
87 *    7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that
88 *       batch 1 can now be added.  It adds wip[1] to the done queue, clears
89 *       wip[1], and sets its batch ID to 3.  It signals wip[0]'s cv, and
90 *       restarts.
91 *
92 *   The above process continues until all input files have been consumed.  At
93 *   this point, a pair of barriers are used to allow a single thread to move
94 *   any partial batches from the wip array to the done array in batch ID order.
95 *   When this is complete, wq_done_queue is moved to wq_queue, and Phase II
96 *   begins.
97 *
98 *	Locking Semantics (Phase I)
99 *
100 *	The input queue (wq_queue) and the done queue (wq_done_queue) are
101 *	protected by separate mutexes - wq_queue_lock and wq_done_queue.  wip
102 *	array slots are protected by their own mutexes, which must be grabbed
103 *	before releasing the input queue lock.  The wip array lock is dropped
104 *	when the thread restarts the loop.  If the array slot was full, the
105 *	array lock will be held while the slot contents are added to the done
106 *	queue.  The done queue lock is used to protect the wip slot cv's.
107 *
108 *	The pow number is protected by the queue lock.  The master batch ID
109 *	and last completed batch (wq_lastdonebatch) counters are protected *in
110 *	Phase I* by the done queue lock.
111 *
112 *   Phase II
113 *
114 *   When Phase II begins, the queue consists of the merged batches from the
115 *   first phase.  Assume we have five batches:
116 *
117 *	Q:	a b c d e
118 *
119 *   Using the same batch ID mechanism we used in Phase I, but without the wip
120 *   array, worker threads remove two entries at a time from the beginning of
121 *   the queue.  These two entries are merged, and are added back to the tail
122 *   of the queue, as follows:
123 *
124 *	Q:	a b c d e	# start
125 *	Q:	c d e ab	# a, b removed, merged, added to end
126 *	Q:	e ab cd		# c, d removed, merged, added to end
127 *	Q:	cd eab		# e, ab removed, merged, added to end
128 *	Q:	cdeab		# cd, eab removed, merged, added to end
129 *
130 *   When one entry remains on the queue, with no merges outstanding, Phase II
131 *   finishes.  We pre-determine the stopping point by pre-calculating the
132 *   number of nodes that will appear on the list.  In the example above, the
133 *   number (wq_ninqueue) is 9.  When ninqueue is 1, we conclude Phase II by
134 *   signaling the main thread via wq_done_cv.
135 *
136 *	Locking Semantics (Phase II)
137 *
138 *	The queue (wq_queue), ninqueue, and the master batch ID and last
139 *	completed batch counters are protected by wq_queue_lock.  The done
140 *	queue and corresponding lock are unused in Phase II as is the wip array.
141 *
142 *   Uniquification
143 *
144 *   We want the CTF data that goes into a given module to be as small as
145 *   possible.  For example, we don't want it to contain any type data that may
146 *   be present in another common module.  As such, after creating the master
147 *   tdata_t for a given module, we can, if requested by the user, uniquify it
148 *   against the tdata_t from another module (genunix in the case of the SunOS
149 *   kernel).  We perform a merge between the tdata_t for this module and the
150 *   tdata_t from genunix.  Nodes found in this module that are not present in
151 *   genunix are added to a third tdata_t - the uniquified tdata_t.
152 *
153 *   Additive Merges
154 *
155 *   In some cases, for example if we are issuing a new version of a common
156 *   module in a patch, we need to make sure that the CTF data already present
157 *   in that module does not change.  Changes to this data would void the CTF
158 *   data in any module that uniquified against the common module.  To preserve
159 *   the existing data, we can perform what is known as an additive merge.  In
160 *   this case, a final uniquification is performed against the CTF data in the
161 *   previous version of the module.  The result will be the placement of new
162 *   and changed data after the existing data, thus preserving the existing type
163 *   ID space.
164 *
165 *   Saving the result
166 *
167 *   When the merges are complete, the resulting tdata_t is placed into the
168 *   output file, replacing the .SUNW_ctf section (if any) already in that file.
169 *
170 * The person who changes the merging thread code in this file without updating
171 * this comment will not live to see the stock hit five.
172 */
173
174#if HAVE_NBTOOL_CONFIG_H
175# include "nbtool_config.h"
176#endif
177
178#include <stdio.h>
179#include <stdlib.h>
180#ifndef _NETBSD_SOURCE
181#define _NETBSD_SOURCE /* XXX TBD fix this */
182#include <unistd.h>
183#undef _NETBSD_SOURCE
184#else
185#include <unistd.h>
186#endif
187#include <pthread.h>
188#include <assert.h>
189#ifdef illumos
190#include <synch.h>
191#endif
192#include <signal.h>
193#include <libgen.h>
194#include <string.h>
195#include <errno.h>
196#ifdef illumos
197#include <alloca.h>
198#endif
199#include <sys/param.h>
200#include <sys/types.h>
201#include <sys/mman.h>
202#ifdef illumos
203#include <sys/sysconf.h>
204#endif
205
206#include "ctf_headers.h"
207#include "ctftools.h"
208#include "ctfmerge.h"
209#include "traverse.h"
210#include "memory.h"
211#include "fifo.h"
212#include "barrier.h"
213
214#pragma init(bigheap)
215
216#define	MERGE_PHASE1_BATCH_SIZE		8
217#define	MERGE_PHASE1_MAX_SLOTS		5
218#define	MERGE_INPUT_THROTTLE_LEN	10
219
220const char *progname;
221static char *outfile = NULL;
222static char *tmpname = NULL;
223static int dynsym;
224int debug_level = DEBUG_LEVEL;
225#ifdef illumos
226static size_t maxpgsize = 0x400000;
227#endif
228
229
230static void
231usage(void)
232{
233	(void) fprintf(stderr,
234	    "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n"
235	    "       %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n"
236	    "       %*s [-g] [-D uniqlabel] file ...\n"
237	    "       %s [-fgstv] -l label | -L labelenv -o outfile -w withfile "
238	    "file ...\n"
239	    "       %s [-g] -c srcfile destfile\n"
240	    "\n"
241	    "  Note: if -L labelenv is specified and labelenv is not set in\n"
242	    "  the environment, a default value is used.\n",
243	    progname, progname, (int)strlen(progname), " ",
244	    progname, progname);
245}
246
247#ifdef illumos
248static void
249bigheap(void)
250{
251	size_t big, *size;
252	int sizes;
253	struct memcntl_mha mha;
254
255	/*
256	 * First, get the available pagesizes.
257	 */
258	if ((sizes = getpagesizes(NULL, 0)) == -1)
259		return;
260
261	if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL)
262		return;
263
264	if (getpagesizes(size, sizes) == -1)
265		return;
266
267	while (size[sizes - 1] > maxpgsize)
268		sizes--;
269
270	/* set big to the largest allowed page size */
271	big = size[sizes - 1];
272	if (big & (big - 1)) {
273		/*
274		 * The largest page size is not a power of two for some
275		 * inexplicable reason; return.
276		 */
277		return;
278	}
279
280	/*
281	 * Now, align our break to the largest page size.
282	 */
283	if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0)
284		return;
285
286	/*
287	 * set the preferred page size for the heap
288	 */
289	mha.mha_cmd = MHA_MAPSIZE_BSSBRK;
290	mha.mha_flags = 0;
291	mha.mha_pagesize = big;
292
293	(void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0);
294}
295#endif
296
297static void
298finalize_phase_one(workqueue_t *wq)
299{
300	int startslot, i;
301
302	/*
303	 * wip slots are cleared out only when maxbatchsz td's have been merged
304	 * into them.  We're not guaranteed that the number of files we're
305	 * merging is a multiple of maxbatchsz, so there will be some partial
306	 * groups in the wip array.  Move them to the done queue in batch ID
307	 * order, starting with the slot containing the next batch that would
308	 * have been placed on the done queue, followed by the others.
309	 * One thread will be doing this while the others wait at the barrier
310	 * back in worker_thread(), so we don't need to worry about pesky things
311	 * like locks.
312	 */
313
314	for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) {
315		if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) {
316			startslot = i;
317			break;
318		}
319	}
320
321	assert(startslot != -1);
322
323	for (i = startslot; i < startslot + wq->wq_nwipslots; i++) {
324		int slotnum = i % wq->wq_nwipslots;
325		wip_t *wipslot = &wq->wq_wip[slotnum];
326
327		if (wipslot->wip_td != NULL) {
328			debug(2, "clearing slot %d (%d) (saving %d)\n",
329			    slotnum, i, wipslot->wip_nmerged);
330		} else
331			debug(2, "clearing slot %d (%d)\n", slotnum, i);
332
333		if (wipslot->wip_td != NULL) {
334			fifo_add(wq->wq_donequeue, wipslot->wip_td);
335			wq->wq_wip[slotnum].wip_td = NULL;
336		}
337	}
338
339	wq->wq_lastdonebatch = wq->wq_next_batchid++;
340
341	debug(2, "phase one done: donequeue has %d items\n",
342	    fifo_len(wq->wq_donequeue));
343}
344
345static void
346init_phase_two(workqueue_t *wq)
347{
348	int num;
349
350	/*
351	 * We're going to continually merge the first two entries on the queue,
352	 * placing the result on the end, until there's nothing left to merge.
353	 * At that point, everything will have been merged into one.  The
354	 * initial value of ninqueue needs to be equal to the total number of
355	 * entries that will show up on the queue, both at the start of the
356	 * phase and as generated by merges during the phase.
357	 */
358	wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue);
359	while (num != 1) {
360		wq->wq_ninqueue += num / 2;
361		num = num / 2 + num % 2;
362	}
363
364	/*
365	 * Move the done queue to the work queue.  We won't be using the done
366	 * queue in phase 2.
367	 */
368	assert(fifo_len(wq->wq_queue) == 0);
369	fifo_free(wq->wq_queue, NULL);
370	wq->wq_queue = wq->wq_donequeue;
371}
372
373static void
374wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum)
375{
376	if ((errno = pthread_mutex_lock(&wq->wq_donequeue_lock)) != 0)
377		terminate("%s: pthread_mutex_lock(wq_donequeue_lock)",
378		    __func__);
379
380	while (wq->wq_lastdonebatch + 1 < slot->wip_batchid) {
381		if ((errno = pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock)) != 0)
382			terminate("%s: pthread_cond_wait(wip_cv,wq_donequeue_lock)",
383			    __func__);
384	}
385	assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid);
386
387	fifo_add(wq->wq_donequeue, slot->wip_td);
388	wq->wq_lastdonebatch++;
389	const int nextslot = (slotnum + 1) % wq->wq_nwipslots;
390	if ((errno = pthread_cond_signal(&wq->wq_wip[nextslot].wip_cv)) != 0)
391		terminate("%s: pthread_cond_signal(wq_wip[%d].wip_cv)",
392		    __func__, nextslot);
393
394	/* reset the slot for next use */
395	slot->wip_td = NULL;
396	slot->wip_batchid = wq->wq_next_batchid++;
397
398	if ((errno = pthread_mutex_unlock(&wq->wq_donequeue_lock)) != 0)
399		terminate("%s: pthread_mutex_unlock(wq_donequeue_lock)",
400		    __func__);
401}
402
403static void
404wip_add_work(wip_t *slot, tdata_t *pow)
405{
406	if (slot->wip_td == NULL) {
407		slot->wip_td = pow;
408		slot->wip_nmerged = 1;
409	} else {
410		debug(2, "0x%jx: merging %p into %p\n",
411		    (uintmax_t)(uintptr_t)pthread_self(),
412		    (void *)pow, (void *)slot->wip_td);
413
414		merge_into_master(pow, slot->wip_td, NULL, 0);
415		tdata_free(pow);
416
417		slot->wip_nmerged++;
418	}
419}
420
421static void
422worker_runphase1(workqueue_t *wq)
423{
424	wip_t *wipslot;
425	tdata_t *pow;
426	int wipslotnum, pownum;
427
428	for (;;) {
429		if ((errno = pthread_mutex_lock(&wq->wq_queue_lock)) != 0)
430			terminate("%s: pthread_mutex_lock(wq_queue_lock)",
431			    __func__);
432
433		while (fifo_empty(wq->wq_queue)) {
434			if (wq->wq_nomorefiles == 1) {
435				if ((errno = pthread_cond_broadcast(&wq->wq_work_avail)) != 0)
436					terminate("%s: pthread_cond_broadcast(wq_work_avail)",
437					    __func__);
438				if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0)
439					terminate("%s: pthread_mutex_unlock(wq_queue_lock)",
440					    __func__);
441
442				/* on to phase 2 ... */
443				return;
444			}
445
446			if ((errno = pthread_cond_wait(&wq->wq_work_avail,
447			    &wq->wq_queue_lock)) != 0)
448				terminate("%s: pthread_cond_wait(wq_work_avail,wq_queue_lock)",
449				    __func__);
450		}
451
452		/* there's work to be done! */
453		pow = fifo_remove(wq->wq_queue);
454		pownum = wq->wq_nextpownum++;
455		if ((errno = pthread_cond_broadcast(&wq->wq_work_removed)) != 0)
456			terminate("%s: pthread_cond_broadcast(wq_work_removed)",
457			    __func__);
458
459		assert(pow != NULL);
460
461		/* merge it into the right slot */
462		wipslotnum = pownum % wq->wq_nwipslots;
463		wipslot = &wq->wq_wip[wipslotnum];
464
465		if ((errno = pthread_mutex_lock(&wipslot->wip_lock)) != 0)
466			terminate("%s: pthread_mutex_lock(wip_lock)", __func__);
467
468		if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0)
469			terminate("%s: pthread_mutex_unlock(wq_queue_lock)",
470			    __func__);
471
472		wip_add_work(wipslot, pow);
473
474		if (wipslot->wip_nmerged == wq->wq_maxbatchsz)
475			wip_save_work(wq, wipslot, wipslotnum);
476
477		if ((errno = pthread_mutex_unlock(&wipslot->wip_lock)) != 0)
478			terminate("%s: pthread_mutex_unlock(wip_lock)",
479			    __func__);
480	}
481}
482
483static void
484worker_runphase2(workqueue_t *wq)
485{
486	tdata_t *pow1, *pow2;
487	int batchid;
488
489	for (;;) {
490		if ((errno = pthread_mutex_lock(&wq->wq_queue_lock)) != 0)
491			terminate("%s: pthread_mutex_lock(wq_queue_lock)",
492			    __func__);
493
494		if (wq->wq_ninqueue == 1) {
495			if ((errno = pthread_cond_broadcast(&wq->wq_work_avail)) != 0)
496			    terminate("%s: pthread_cond_broadcast(wq_work_avail)",
497				__func__);
498			if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0)
499				terminate("%s: pthread_mutex_unlock(wq_queue_lock)",
500				    __func__);
501
502			debug(2, "0x%jx: entering p2 completion barrier\n",
503			    (uintmax_t)(uintptr_t)pthread_self());
504			if (barrier_wait(&wq->wq_bar1)) {
505				if ((errno = pthread_mutex_lock(&wq->wq_queue_lock)) != 0)
506					terminate("%s: pthread_mutex_lock(wq_queue_lock)",
507					    __func__);
508				wq->wq_alldone = 1;
509				if ((errno = pthread_cond_signal(&wq->wq_alldone_cv)) != 0)
510					terminate("%s: pthread_cond_signal(wq_alldone_cv)",
511					    __func__);
512				if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0)
513					terminate("%s: pthread_mutex_unlock(wq_queue_lock)",
514					    __func__);
515			}
516
517			return;
518		}
519
520		if (fifo_len(wq->wq_queue) < 2) {
521			if ((errno = pthread_cond_wait(&wq->wq_work_avail,
522			    &wq->wq_queue_lock)) != 0)
523				terminate("%s: pthread_cond_wait(wq_work_avail,wq_queue_lock)",
524				    __func__);
525			if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0)
526				terminate("%s: pthread_mutex_unlock(wq_queue_lock)",
527				    __func__);
528			continue;
529		}
530
531		/* there's work to be done! */
532		pow1 = fifo_remove(wq->wq_queue);
533		pow2 = fifo_remove(wq->wq_queue);
534		wq->wq_ninqueue -= 2;
535
536		batchid = wq->wq_next_batchid++;
537
538		if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0)
539			terminate("%s: pthread_mutex_unlock(wq_queue_lock)",
540			    __func__);
541
542		debug(2, "0x%jx: merging %p into %p\n",
543		    (uintmax_t)(uintptr_t)pthread_self(),
544		    (void *)pow1, (void *)pow2);
545		merge_into_master(pow1, pow2, NULL, 0);
546		tdata_free(pow1);
547
548		/*
549		 * merging is complete.  place at the tail of the queue in
550		 * proper order.
551		 */
552		if ((errno = pthread_mutex_lock(&wq->wq_queue_lock)) != 0)
553			terminate("%s: pthread_mutex_lock(wq_queue_lock)",
554			    __func__);
555		while (wq->wq_lastdonebatch + 1 != batchid) {
556			if ((errno = pthread_cond_wait(&wq->wq_done_cv,
557			    &wq->wq_queue_lock)) != 0)
558				terminate("%s: pthread_cond_wait(wq_done_cv,wq_queue_lock)",
559				    __func__);
560		}
561
562		wq->wq_lastdonebatch = batchid;
563
564		fifo_add(wq->wq_queue, pow2);
565		debug(2, "0x%jx: added %p to queue, len now %d, ninqueue %d\n",
566		    (uintmax_t)(uintptr_t)pthread_self(), (void *)pow2,
567		    fifo_len(wq->wq_queue), wq->wq_ninqueue);
568		if ((errno = pthread_cond_broadcast(&wq->wq_done_cv)) != 0)
569			terminate("%s: pthread_cond_broadcast(wq_done_cv)",
570			    __func__);
571		if ((errno = pthread_cond_signal(&wq->wq_work_avail)) != 0)
572			terminate("%s: pthread_cond_signal(wq_work_avail)",
573			    __func__);
574		if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0)
575			terminate("%s: pthread_mutex_unlock(wq_queue_lock)",
576			    __func__);
577	}
578}
579
580/*
581 * Main loop for worker threads.
582 */
583static void *
584worker_thread(void *v)
585{
586	workqueue_t *wq = v;
587	worker_runphase1(wq);
588
589	debug(2, "0x%jx: entering first barrier\n",
590	    (uintmax_t)(uintptr_t)pthread_self());
591
592	if (barrier_wait(&wq->wq_bar1)) {
593
594		debug(2, "0x%jx: doing work in first barrier\n",
595		    (uintmax_t)(uintptr_t)pthread_self());
596
597		finalize_phase_one(wq);
598
599		init_phase_two(wq);
600
601		debug(2, "0x%jx: ninqueue is %d, %d on queue\n",
602		    (uintmax_t)(uintptr_t)pthread_self(),
603		    wq->wq_ninqueue, fifo_len(wq->wq_queue));
604	}
605
606	debug(2, "0x%jx: entering second barrier\n",
607	    (uintmax_t)(uintptr_t)pthread_self());
608
609	(void) barrier_wait(&wq->wq_bar2);
610
611	debug(2, "0x%jx: phase 1 complete\n",
612	    (uintmax_t)(uintptr_t)pthread_self());
613
614	worker_runphase2(wq);
615	return NULL;
616}
617
618/*
619 * Pass a tdata_t tree, built from an input file, off to the work queue for
620 * consumption by worker threads.
621 */
622static int
623merge_ctf_cb(tdata_t *td, char *name, void *arg)
624{
625	workqueue_t *wq = arg;
626
627	debug(3, "Adding tdata %p for processing\n", (void *)td);
628
629	if ((errno = pthread_mutex_lock(&wq->wq_queue_lock)) != 0)
630		terminate("%s: pthread_mutex_lock(wq_queue_lock)", __func__);
631	while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) {
632		debug(2, "Throttling input (len = %d, throttle = %d)\n",
633		    fifo_len(wq->wq_queue), wq->wq_ithrottle);
634		if ((errno = pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock)) != 0)
635			terminate("%s: pthread_cond_wait(wq_work_removed,wq_queue_lock)",
636			    __func__);
637	}
638
639	fifo_add(wq->wq_queue, td);
640	debug(1, "Thread 0x%jx announcing %s\n",
641	    (uintmax_t)(uintptr_t)pthread_self(), name);
642	if ((errno = pthread_cond_broadcast(&wq->wq_work_avail)) != 0)
643		terminate("%s: pthread_cond_broadcast(wq_work_avail)", __func__);
644	if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0)
645		terminate("%s: pthread_mutex_unlock(wq_queue_lock)", __func__);
646
647	return (1);
648}
649
650/*
651 * This program is intended to be invoked from a Makefile, as part of the build.
652 * As such, in the event of a failure or user-initiated interrupt (^C), we need
653 * to ensure that a subsequent re-make will cause ctfmerge to be executed again.
654 * Unfortunately, ctfmerge will usually be invoked directly after (and as part
655 * of the same Makefile rule as) a link, and will operate on the linked file
656 * in place.  If we merely exit upon receipt of a SIGINT, a subsequent make
657 * will notice that the *linked* file is newer than the object files, and thus
658 * will not reinvoke ctfmerge.  The only way to ensure that a subsequent make
659 * reinvokes ctfmerge, is to remove the file to which we are adding CTF
660 * data (confusingly named the output file).  This means that the link will need
661 * to happen again, but links are generally fast, and we can't allow the merge
662 * to be skipped.
663 *
664 * Another possibility would be to block SIGINT entirely - to always run to
665 * completion.  The run time of ctfmerge can, however, be measured in minutes
666 * in some cases, so this is not a valid option.
667 */
668static void __dead
669handle_sig(int sig)
670{
671	terminate("Caught signal %d - exiting\n", sig);
672}
673
674static void
675terminate_cleanup(void)
676{
677	int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1;
678
679	if (tmpname != NULL && dounlink)
680		unlink(tmpname);
681
682	if (outfile == NULL)
683		return;
684
685#if !defined (__FreeBSD__) && !(defined(__NetBSD__) || HAVE_NBTOOL_CONFIG_H)
686	if (dounlink) {
687		fprintf(stderr, "Removing %s\n", outfile);
688		unlink(outfile);
689	}
690#endif
691}
692
693static void
694copy_ctf_data(char *srcfile, char *destfile, int keep_stabs)
695{
696	tdata_t *srctd;
697
698	if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0)
699		terminate("No CTF data found in source file %s\n", srcfile);
700
701	tmpname = mktmpname(destfile, ".ctf");
702	write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | CTF_SWAP_BYTES | keep_stabs);
703	if (rename(tmpname, destfile) != 0) {
704		terminate("Couldn't rename temp file %s to %s", tmpname,
705		    destfile);
706	}
707	free(tmpname);
708	tdata_free(srctd);
709}
710
711static void
712wq_init(workqueue_t *wq, int nfiles)
713{
714	int throttle, nslots, i;
715	const char *e;
716
717	if (getenv("CTFMERGE_MAX_SLOTS"))
718		nslots = atoi(getenv("CTFMERGE_MAX_SLOTS"));
719	else
720		nslots = MERGE_PHASE1_MAX_SLOTS;
721
722	if (getenv("CTFMERGE_PHASE1_BATCH_SIZE"))
723		wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE"));
724	else
725		wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE;
726
727	nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) /
728	    wq->wq_maxbatchsz);
729
730	wq->wq_wip = xcalloc(sizeof (wip_t) * nslots);
731	wq->wq_nwipslots = nslots;
732	e = getenv("CTFMERGE_NUM_THREADS");
733	if (e) {
734		wq->wq_nthreads = atoi(e);
735	} else {
736#ifdef _SC_NPROCESSORS_ONLN
737		wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2,
738		    nslots);
739#else
740		wq->wq_nthreads = 2;
741#endif
742	}
743	wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads);
744
745	e = getenv("CTFMERGE_INPUT_THROTTLE");
746	throttle = e ? atoi(e) : MERGE_INPUT_THROTTLE_LEN;
747	wq->wq_ithrottle = throttle * wq->wq_nthreads;
748
749	debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots,
750	    wq->wq_nthreads);
751
752	wq->wq_next_batchid = 0;
753
754	for (i = 0; i < nslots; i++) {
755		if ((errno = pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL)) != 0)
756			terminate("%s: pthread_mutex_init(wip[%d].wip_lock",
757			    __func__, i);
758		if ((errno = pthread_cond_init(&wq->wq_wip[i].wip_cv, NULL)) != 0)
759			terminate("%s: pthread_cond_init(wip[%d].wip_cv",
760			    __func__, i);
761		wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++;
762	}
763
764	if ((errno = pthread_mutex_init(&wq->wq_queue_lock, NULL)) != 0)
765		terminate("%s: pthread_mutex_init(wq_queue_lock)", __func__);
766	wq->wq_queue = fifo_new();
767	if ((errno = pthread_cond_init(&wq->wq_work_avail, NULL)) != 0)
768		terminate("%s: pthread_cond_init(wq_work_avail)", __func__);
769	if ((errno = pthread_cond_init(&wq->wq_work_removed, NULL)) != 0)
770		terminate("%s: pthread_cond_init(wq_work_removed", __func__);
771	wq->wq_ninqueue = nfiles;
772	wq->wq_nextpownum = 0;
773
774	if ((errno = pthread_mutex_init(&wq->wq_donequeue_lock, NULL)) != 0)
775		terminate("%s: pthread_mutex_init(wq_donequeue_lock)", __func__);
776	wq->wq_donequeue = fifo_new();
777	wq->wq_lastdonebatch = -1;
778
779	if ((errno = pthread_cond_init(&wq->wq_done_cv, NULL)) != 0)
780		terminate("%s: pthread_cond_init(wq_done_cv)", __func__);
781
782	if ((errno = pthread_cond_init(&wq->wq_alldone_cv, NULL)) != 0)
783		terminate("%s: pthread_cond_init(wq_alldone_cv)", __func__);
784	wq->wq_alldone = 0;
785
786	barrier_init(&wq->wq_bar1, wq->wq_nthreads);
787	barrier_init(&wq->wq_bar2, wq->wq_nthreads);
788
789	wq->wq_nomorefiles = 0;
790}
791
792static void
793start_threads(workqueue_t *wq)
794{
795	sigset_t sets;
796	int i;
797
798	sigemptyset(&sets);
799	sigaddset(&sets, SIGINT);
800	sigaddset(&sets, SIGQUIT);
801	sigaddset(&sets, SIGTERM);
802	if ((errno = pthread_sigmask(SIG_BLOCK, &sets, NULL)) != 0)
803		terminate("%s: pthread_sigmask(SIG_BLOCK)", __func__);
804
805	for (i = 0; i < wq->wq_nthreads; i++) {
806		if ((errno = pthread_create(&wq->wq_thread[i], NULL, worker_thread, wq)) != 0)
807			terminate("%s: pthread_create(wq_thread[%d]",
808			    __func__, i);
809	}
810
811#ifdef illumos
812	sigset(SIGINT, handle_sig);
813	sigset(SIGQUIT, handle_sig);
814	sigset(SIGTERM, handle_sig);
815#else
816	signal(SIGINT, handle_sig);
817	signal(SIGQUIT, handle_sig);
818	signal(SIGTERM, handle_sig);
819#endif
820	if ((errno = pthread_sigmask(SIG_UNBLOCK, &sets, NULL)) != 0)
821		terminate("%s: pthread_sigmask(SIG_UNBLOCK)", __func__);
822}
823
824static void
825join_threads(workqueue_t *wq)
826{
827	int i;
828
829	for (i = 0; i < wq->wq_nthreads; i++) {
830		if ((errno = pthread_join(wq->wq_thread[i], NULL)) != 0)
831			terminate("%s: pthread_join(wq_thread[%d]",
832			    __func__, i);
833	}
834}
835
836static int
837strcompare(const void *p1, const void *p2)
838{
839	const char *s1 = *((const char * const *)p1);
840	const char *s2 = *((const char * const *)p2);
841
842	return (strcmp(s1, s2));
843}
844
845/*
846 * Core work queue structure; passed to worker threads on thread creation
847 * as the main point of coordination.  Allocate as a static structure; we
848 * could have put this into a local variable in main, but passing a pointer
849 * into your stack to another thread is fragile at best and leads to some
850 * hard-to-debug failure modes.
851 */
852static workqueue_t wq;
853
854int
855main(int argc, char **argv)
856{
857	tdata_t *mstrtd, *savetd;
858	char *uniqfile = NULL, *uniqlabel = NULL;
859	char *withfile = NULL;
860	char *label = NULL;
861	char **ifiles, **tifiles;
862	int verbose = 0, docopy = 0;
863	int write_fuzzy_match = 0;
864	int keep_stabs = 0;
865	int require_ctf = 0;
866	int nifiles, nielems;
867	int c, i, idx, tidx, err;
868
869	progname = basename(argv[0]);
870
871	if (getenv("CTFMERGE_DEBUG_LEVEL"))
872		debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL"));
873
874	err = 0;
875	while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) {
876		switch (c) {
877		case 'c':
878			docopy = 1;
879			break;
880		case 'd':
881			/* Uniquify against `uniqfile' */
882			uniqfile = optarg;
883			break;
884		case 'D':
885			/* Uniquify against label `uniqlabel' in `uniqfile' */
886			uniqlabel = optarg;
887			break;
888		case 'f':
889			write_fuzzy_match = CTF_FUZZY_MATCH;
890			break;
891		case 'g':
892			keep_stabs = CTF_KEEP_STABS;
893			break;
894		case 'l':
895			/* Label merged types with `label' */
896			label = optarg;
897			break;
898		case 'L':
899			/* Label merged types with getenv(`label`) */
900			if ((label = getenv(optarg)) == NULL)
901				label = __UNCONST(CTF_DEFAULT_LABEL);
902			break;
903		case 'o':
904			/* Place merged types in CTF section in `outfile' */
905			outfile = optarg;
906			break;
907		case 't':
908			/* Insist *all* object files built from C have CTF */
909			require_ctf = 1;
910			break;
911		case 'v':
912			/* More debugging information */
913			verbose = 1;
914			break;
915		case 'w':
916			/* Additive merge with data from `withfile' */
917			withfile = optarg;
918			break;
919		case 's':
920			/* use the dynsym rather than the symtab */
921			dynsym = CTF_USE_DYNSYM;
922			break;
923		default:
924			usage();
925			exit(2);
926		}
927	}
928
929	/* Validate arguments */
930	if (docopy) {
931		if (uniqfile != NULL || uniqlabel != NULL || label != NULL ||
932		    outfile != NULL || withfile != NULL || dynsym != 0)
933			err++;
934
935		if (argc - optind != 2)
936			err++;
937	} else {
938		if (uniqfile != NULL && withfile != NULL)
939			err++;
940
941		if (uniqlabel != NULL && uniqfile == NULL)
942			err++;
943
944		if (outfile == NULL || label == NULL)
945			err++;
946
947		if (argc - optind == 0)
948			err++;
949	}
950
951	if (err) {
952		usage();
953		exit(2);
954	}
955
956	if (getenv("STRIPSTABS_KEEP_STABS") != NULL)
957		keep_stabs = CTF_KEEP_STABS;
958
959	if (uniqfile && access(uniqfile, R_OK) != 0) {
960		warning("Uniquification file %s couldn't be opened and "
961		    "will be ignored.\n", uniqfile);
962		uniqfile = NULL;
963	}
964	if (withfile && access(withfile, R_OK) != 0) {
965		warning("With file %s couldn't be opened and will be "
966		    "ignored.\n", withfile);
967		withfile = NULL;
968	}
969	if (outfile && access(outfile, R_OK|W_OK) != 0)
970		terminate("Cannot open output file %s for r/w", outfile);
971
972	/*
973	 * This is ugly, but we don't want to have to have a separate tool
974	 * (yet) just for copying an ELF section with our specific requirements,
975	 * so we shoe-horn a copier into ctfmerge.
976	 */
977	if (docopy) {
978		copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs);
979
980		exit(0);
981	}
982
983	set_terminate_cleanup(terminate_cleanup);
984
985	/* Sort the input files and strip out duplicates */
986	nifiles = argc - optind;
987	ifiles = xmalloc(sizeof (char *) * nifiles);
988	tifiles = xmalloc(sizeof (char *) * nifiles);
989
990	for (i = 0; i < nifiles; i++)
991		tifiles[i] = argv[optind + i];
992	qsort(tifiles, nifiles, sizeof (char *), strcompare);
993
994	ifiles[0] = tifiles[0];
995	for (idx = 0, tidx = 1; tidx < nifiles; tidx++) {
996		if (strcmp(ifiles[idx], tifiles[tidx]) != 0)
997			ifiles[++idx] = tifiles[tidx];
998	}
999	nifiles = idx + 1;
1000
1001	/* Make sure they all exist */
1002	if ((nielems = count_files(ifiles, nifiles)) < 0)
1003		terminate("Some input files were inaccessible\n");
1004
1005	/* Prepare for the merge */
1006	wq_init(&wq, nielems);
1007
1008	start_threads(&wq);
1009
1010	/*
1011	 * Start the merge
1012	 *
1013	 * We're reading everything from each of the object files, so we
1014	 * don't need to specify labels.
1015	 */
1016	if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb,
1017	    &wq, require_ctf) == 0) {
1018		/*
1019		 * If we're verifying that C files have CTF, it's safe to
1020		 * assume that in this case, we're building only from assembly
1021		 * inputs.
1022		 */
1023		if (require_ctf)
1024			exit(0);
1025		terminate("No ctf sections found to merge\n");
1026	}
1027
1028	if ((errno = pthread_mutex_lock(&wq.wq_queue_lock)) != 0)
1029		terminate("%s: pthread_mutex_lock(wq_queue_lock)", __func__);
1030	wq.wq_nomorefiles = 1;
1031	if ((errno = pthread_cond_broadcast(&wq.wq_work_avail)) != 0)
1032		terminate("%s: pthread_cond_broadcast(wq_work_avail)", __func__);
1033	if ((errno = pthread_mutex_unlock(&wq.wq_queue_lock)) != 0)
1034		terminate("%s: pthread_mutex_unlock(wq_queue_lock)", __func__);
1035
1036	if ((errno = pthread_mutex_lock(&wq.wq_queue_lock)) != 0)
1037		terminate("%s: pthread_mutex_lock(wq_queue_lock)", __func__);
1038	while (wq.wq_alldone == 0) {
1039		if ((errno = pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock)) != 0)
1040			terminate("%s: pthread_cond_wait(wq_alldone_cv,wq_queue_lock)",
1041			    __func__);
1042	}
1043	if ((errno = pthread_mutex_unlock(&wq.wq_queue_lock)) != 0)
1044		terminate("%s: pthread_mutex_unlock(wq_queue_lock)", __func__);
1045
1046	join_threads(&wq);
1047
1048	/*
1049	 * All requested files have been merged, with the resulting tree in
1050	 * mstrtd.  savetd is the tree that will be placed into the output file.
1051	 *
1052	 * Regardless of whether we're doing a normal uniquification or an
1053	 * additive merge, we need a type tree that has been uniquified
1054	 * against uniqfile or withfile, as appropriate.
1055	 *
1056	 * If we're doing a uniquification, we stuff the resulting tree into
1057	 * outfile.  Otherwise, we add the tree to the tree already in withfile.
1058	 */
1059	assert(fifo_len(wq.wq_queue) == 1);
1060	mstrtd = fifo_remove(wq.wq_queue);
1061
1062	if (verbose || debug_level) {
1063		debug(2, "Statistics for td %p\n", (void *)mstrtd);
1064
1065		iidesc_stats(mstrtd->td_iihash);
1066	}
1067
1068	if (uniqfile != NULL || withfile != NULL) {
1069		char *reffile, *reflabel = NULL;
1070		tdata_t *reftd;
1071
1072		if (uniqfile != NULL) {
1073			reffile = uniqfile;
1074			reflabel = uniqlabel;
1075		} else
1076			reffile = withfile;
1077
1078		if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb,
1079		    &reftd, require_ctf) == 0) {
1080			terminate("No CTF data found in reference file %s\n",
1081			    reffile);
1082		}
1083
1084		savetd = tdata_new();
1085
1086		if (CTF_TYPE_ISCHILD(reftd->td_nextid))
1087			terminate("No room for additional types in master\n");
1088
1089		savetd->td_nextid = withfile ? reftd->td_nextid :
1090		    CTF_INDEX_TO_TYPE(1, TRUE);
1091		merge_into_master(mstrtd, reftd, savetd, 0);
1092
1093		tdata_label_add(savetd, label, CTF_LABEL_LASTIDX);
1094
1095		if (withfile) {
1096			/*
1097			 * savetd holds the new data to be added to the withfile
1098			 */
1099			tdata_t *withtd = reftd;
1100
1101			tdata_merge(withtd, savetd);
1102
1103			savetd = withtd;
1104		} else {
1105			char uniqname[MAXPATHLEN];
1106			labelent_t *parle;
1107
1108			parle = tdata_label_top(reftd);
1109
1110			savetd->td_parlabel = xstrdup(parle->le_name);
1111
1112			strncpy(uniqname, reffile, sizeof (uniqname));
1113			uniqname[MAXPATHLEN - 1] = '\0';
1114			savetd->td_parname = xstrdup(basename(uniqname));
1115		}
1116
1117	} else {
1118		/*
1119		 * No post processing.  Write the merged tree as-is into the
1120		 * output file.
1121		 */
1122		tdata_label_free(mstrtd);
1123		tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX);
1124
1125		savetd = mstrtd;
1126	}
1127
1128	tmpname = mktmpname(outfile, ".ctf");
1129	write_ctf(savetd, outfile, tmpname,
1130	    CTF_COMPRESS | CTF_SWAP_BYTES | write_fuzzy_match | dynsym | keep_stabs);
1131	if (rename(tmpname, outfile) != 0)
1132		terminate("Couldn't rename output temp file %s", tmpname);
1133	free(tmpname);
1134
1135	return (0);
1136}
1137