1/*	$NetBSD: base64.c,v 1.3 2021/08/14 16:14:58 christos Exp $	*/
2
3/* base64.c -- routines to encode/decode base64 data */
4/* $OpenLDAP$ */
5/* This work is part of OpenLDAP Software <http://www.openldap.org/>.
6 *
7 * Copyright 1998-2021 The OpenLDAP Foundation.
8 * Portions Copyright 1998-2003 Kurt D. Zeilenga.
9 * Portions Copyright 1995 IBM Corporation.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted only as authorized by the OpenLDAP
14 * Public License.
15 *
16 * A copy of this license is available in the file LICENSE in the
17 * top-level directory of the distribution or, alternatively, at
18 * <http://www.OpenLDAP.org/license.html>.
19 */
20/* Portions Copyright (c) 1996, 1998 by Internet Software Consortium.
21 *
22 * Permission to use, copy, modify, and distribute this software for any
23 * purpose with or without fee is hereby granted, provided that the above
24 * copyright notice and this permission notice appear in all copies.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS
27 * ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES
28 * OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE
29 * CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
30 * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
31 * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
32 * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
33 * SOFTWARE.
34 */
35/* This work is based upon Base64 routines (developed by IBM) found
36 * Berkeley Internet Name Daemon (BIND) as distributed by ISC.  They
37 * were adapted for inclusion in OpenLDAP Software by Kurt D. Zeilenga.
38 */
39
40#include <sys/cdefs.h>
41__RCSID("$NetBSD: base64.c,v 1.3 2021/08/14 16:14:58 christos Exp $");
42
43#include "portable.h"
44
45#include <ac/assert.h>
46#include <ac/stdlib.h>
47#include <ac/ctype.h>
48#include <ac/string.h>
49
50/* include socket.h to get sys/types.h and/or winsock2.h */
51#include <ac/socket.h>
52
53#include "lutil.h"
54
55static const char Base64[] =
56	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
57static const char Pad64 = '=';
58
59/* (From RFC1521 and draft-ietf-dnssec-secext-03.txt)
60   The following encoding technique is taken from RFC 1521 by Borenstein
61   and Freed.  It is reproduced here in a slightly edited form for
62   convenience.
63
64   A 65-character subset of US-ASCII is used, enabling 6 bits to be
65   represented per printable character. (The extra 65th character, "=",
66   is used to signify a special processing function.)
67
68   The encoding process represents 24-bit groups of input bits as output
69   strings of 4 encoded characters. Proceeding from left to right, a
70   24-bit input group is formed by concatenating 3 8-bit input groups.
71   These 24 bits are then treated as 4 concatenated 6-bit groups, each
72   of which is translated into a single digit in the base64 alphabet.
73
74   Each 6-bit group is used as an index into an array of 64 printable
75   characters. The character referenced by the index is placed in the
76   output string.
77
78                         Table 1: The Base64 Alphabet
79
80      Value Encoding  Value Encoding  Value Encoding  Value Encoding
81          0 A            17 R            34 i            51 z
82          1 B            18 S            35 j            52 0
83          2 C            19 T            36 k            53 1
84          3 D            20 U            37 l            54 2
85          4 E            21 V            38 m            55 3
86          5 F            22 W            39 n            56 4
87          6 G            23 X            40 o            57 5
88          7 H            24 Y            41 p            58 6
89          8 I            25 Z            42 q            59 7
90          9 J            26 a            43 r            60 8
91         10 K            27 b            44 s            61 9
92         11 L            28 c            45 t            62 +
93         12 M            29 d            46 u            63 /
94         13 N            30 e            47 v
95         14 O            31 f            48 w         (pad) =
96         15 P            32 g            49 x
97         16 Q            33 h            50 y
98
99   Special processing is performed if fewer than 24 bits are available
100   at the end of the data being encoded.  A full encoding quantum is
101   always completed at the end of a quantity.  When fewer than 24 input
102   bits are available in an input group, zero bits are added (on the
103   right) to form an integral number of 6-bit groups.  Padding at the
104   end of the data is performed using the '=' character.
105
106   Since all base64 input is an integral number of octets, only the
107         -------------------------------------------------
108   following cases can arise:
109
110       (1) the final quantum of encoding input is an integral
111           multiple of 24 bits; here, the final unit of encoded
112	   output will be an integral multiple of 4 characters
113	   with no "=" padding,
114       (2) the final quantum of encoding input is exactly 8 bits;
115           here, the final unit of encoded output will be two
116	   characters followed by two "=" padding characters, or
117       (3) the final quantum of encoding input is exactly 16 bits;
118           here, the final unit of encoded output will be three
119	   characters followed by one "=" padding character.
120   */
121
122int
123lutil_b64_ntop(
124	u_char const *src,
125	size_t srclength,
126	char *target,
127	size_t targsize)
128{
129	size_t datalength = 0;
130	u_char input[3];
131	u_char output[4];
132	size_t i;
133
134	while (2 < srclength) {
135		input[0] = *src++;
136		input[1] = *src++;
137		input[2] = *src++;
138		srclength -= 3;
139
140		output[0] = input[0] >> 2;
141		output[1] = ((input[0] & 0x03) << 4) + (input[1] >> 4);
142		output[2] = ((input[1] & 0x0f) << 2) + (input[2] >> 6);
143		output[3] = input[2] & 0x3f;
144		assert(output[0] < 64);
145		assert(output[1] < 64);
146		assert(output[2] < 64);
147		assert(output[3] < 64);
148
149		if (datalength + 4 > targsize)
150			return (-1);
151		target[datalength++] = Base64[output[0]];
152		target[datalength++] = Base64[output[1]];
153		target[datalength++] = Base64[output[2]];
154		target[datalength++] = Base64[output[3]];
155	}
156
157	/* Now we worry about padding. */
158	if (0 != srclength) {
159		/* Get what's left. */
160		input[0] = input[1] = input[2] = '\0';
161		for (i = 0; i < srclength; i++)
162			input[i] = *src++;
163
164		output[0] = input[0] >> 2;
165		output[1] = ((input[0] & 0x03) << 4) + (input[1] >> 4);
166		output[2] = ((input[1] & 0x0f) << 2) + (input[2] >> 6);
167		assert(output[0] < 64);
168		assert(output[1] < 64);
169		assert(output[2] < 64);
170
171		if (datalength + 4 > targsize)
172			return (-1);
173		target[datalength++] = Base64[output[0]];
174		target[datalength++] = Base64[output[1]];
175		if (srclength == 1)
176			target[datalength++] = Pad64;
177		else
178			target[datalength++] = Base64[output[2]];
179		target[datalength++] = Pad64;
180	}
181	if (datalength >= targsize)
182		return (-1);
183	target[datalength] = '\0';	/* Returned value doesn't count \0. */
184	return (datalength);
185}
186
187/* skips all whitespace anywhere.
188   converts characters, four at a time, starting at (or after)
189   src from base - 64 numbers into three 8 bit bytes in the target area.
190   it returns the number of data bytes stored at the target, or -1 on error.
191 */
192
193int
194lutil_b64_pton(
195	char const *src,
196	u_char *target,
197	size_t targsize)
198{
199	int tarindex, state, ch;
200	char *pos;
201
202	state = 0;
203	tarindex = 0;
204
205	while ((ch = *src++) != '\0') {
206		if (isascii(ch) && isspace(ch))	/* Skip whitespace anywhere. */
207			continue;
208
209		if (ch == Pad64)
210			break;
211
212		pos = strchr(Base64, ch);
213		if (pos == 0) 		/* A non-base64 character. */
214			return (-1);
215
216		switch (state) {
217		case 0:
218			if (target) {
219				if ((size_t)tarindex >= targsize)
220					return (-1);
221				target[tarindex] = (pos - Base64) << 2;
222			}
223			state = 1;
224			break;
225		case 1:
226			if (target) {
227				if ((size_t)tarindex + 1 >= targsize)
228					return (-1);
229				target[tarindex]   |=  (pos - Base64) >> 4;
230				target[tarindex+1]  = ((pos - Base64) & 0x0f)
231							<< 4 ;
232			}
233			tarindex++;
234			state = 2;
235			break;
236		case 2:
237			if (target) {
238				if ((size_t)tarindex + 1 >= targsize)
239					return (-1);
240				target[tarindex]   |=  (pos - Base64) >> 2;
241				target[tarindex+1]  = ((pos - Base64) & 0x03)
242							<< 6;
243			}
244			tarindex++;
245			state = 3;
246			break;
247		case 3:
248			if (target) {
249				if ((size_t)tarindex >= targsize)
250					return (-1);
251				target[tarindex] |= (pos - Base64);
252			}
253			tarindex++;
254			state = 0;
255			break;
256		default:
257			abort();
258		}
259	}
260
261	/*
262	 * We are done decoding Base-64 chars.  Let's see if we ended
263	 * on a byte boundary, and/or with erroneous trailing characters.
264	 */
265
266	if (ch == Pad64) {		/* We got a pad char. */
267		ch = *src++;		/* Skip it, get next. */
268		switch (state) {
269		case 0:		/* Invalid = in first position */
270		case 1:		/* Invalid = in second position */
271			return (-1);
272
273		case 2:		/* Valid, means one byte of info */
274			/* Skip any number of spaces. */
275			for ((void)NULL; ch != '\0'; ch = *src++)
276				if (! (isascii(ch) && isspace(ch)))
277					break;
278			/* Make sure there is another trailing = sign. */
279			if (ch != Pad64)
280				return (-1);
281			ch = *src++;		/* Skip the = */
282			/* Fall through to "single trailing =" case. */
283			/* FALLTHROUGH */
284
285		case 3:		/* Valid, means two bytes of info */
286			/*
287			 * We know this char is an =.  Is there anything but
288			 * whitespace after it?
289			 */
290			for ((void)NULL; ch != '\0'; ch = *src++)
291				if (! (isascii(ch) && isspace(ch)))
292					return (-1);
293
294			/*
295			 * Now make sure for cases 2 and 3 that the "extra"
296			 * bits that slopped past the last full byte were
297			 * zeros.  If we don't check them, they become a
298			 * subliminal channel.
299			 */
300			if (target && target[tarindex] != 0)
301				return (-1);
302		}
303	} else {
304		/*
305		 * We ended by seeing the end of the string.  Make sure we
306		 * have no partial bytes lying around.
307		 */
308		if (state != 0)
309			return (-1);
310	}
311
312	return (tarindex);
313}
314