1/*	$NetBSD: key.c,v 1.4 2014/01/26 21:43:45 christos Exp $ */
2/*-
3 * Copyright (c) 1991, 1993, 1994
4 *	The Regents of the University of California.  All rights reserved.
5 * Copyright (c) 1991, 1993, 1994, 1995, 1996
6 *	Keith Bostic.  All rights reserved.
7 *
8 * See the LICENSE file for redistribution information.
9 */
10
11#include "config.h"
12
13#include <sys/cdefs.h>
14#if 0
15#ifndef lint
16static const char sccsid[] = "Id: key.c,v 10.48 2001/06/25 15:19:10 skimo Exp  (Berkeley) Date: 2001/06/25 15:19:10 ";
17#endif /* not lint */
18#else
19__RCSID("$NetBSD: key.c,v 1.4 2014/01/26 21:43:45 christos Exp $");
20#endif
21
22#include <sys/types.h>
23#include <sys/queue.h>
24#include <sys/time.h>
25
26#include <bitstring.h>
27#include <ctype.h>
28#include <errno.h>
29#include <limits.h>
30#include <locale.h>
31#include <stdio.h>
32#include <stdlib.h>
33#include <string.h>
34#include <unistd.h>
35
36#include "common.h"
37#include "../vi/vi.h"
38
39static int	v_event_append __P((SCR *, EVENT *));
40static int	v_event_grow __P((SCR *, int));
41static int	v_key_cmp __P((const void *, const void *));
42static void	v_keyval __P((SCR *, int, scr_keyval_t));
43static void	v_sync __P((SCR *, int));
44
45/*
46 * !!!
47 * Historic vi always used:
48 *
49 *	^D: autoindent deletion
50 *	^H: last character deletion
51 *	^W: last word deletion
52 *	^Q: quote the next character (if not used in flow control).
53 *	^V: quote the next character
54 *
55 * regardless of the user's choices for these characters.  The user's erase
56 * and kill characters worked in addition to these characters.  Nvi wires
57 * down the above characters, but in addition permits the VEOF, VERASE, VKILL
58 * and VWERASE characters described by the user's termios structure.
59 *
60 * Ex was not consistent with this scheme, as it historically ran in tty
61 * cooked mode.  This meant that the scroll command and autoindent erase
62 * characters were mapped to the user's EOF character, and the character
63 * and word deletion characters were the user's tty character and word
64 * deletion characters.  This implementation makes it all consistent, as
65 * described above for vi.
66 *
67 * !!!
68 * This means that all screens share a special key set.
69 */
70KEYLIST keylist[] = {
71	{K_BACKSLASH,	  '\\'},	/*  \ */
72	{K_CARAT,	   '^'},	/*  ^ */
73	{K_CNTRLD,	'\004'},	/* ^D */
74	{K_CNTRLR,	'\022'},	/* ^R */
75	{K_CNTRLT,	'\024'},	/* ^T */
76	{K_CNTRLZ,	'\032'},	/* ^Z */
77	{K_COLON,	   ':'},	/*  : */
78	{K_CR,		  '\r'},	/* \r */
79	{K_ESCAPE,	'\033'},	/* ^[ */
80	{K_FORMFEED,	  '\f'},	/* \f */
81	{K_HEXCHAR,	'\030'},	/* ^X */
82	{K_NL,		  '\n'},	/* \n */
83	{K_RIGHTBRACE,	   '}'},	/*  } */
84	{K_RIGHTPAREN,	   ')'},	/*  ) */
85	{K_TAB,		  '\t'},	/* \t */
86	{K_VERASE,	  '\b'},	/* \b */
87	{K_VKILL,	'\025'},	/* ^U */
88	{K_VLNEXT,	'\021'},	/* ^Q */
89	{K_VLNEXT,	'\026'},	/* ^V */
90	{K_VWERASE,	'\027'},	/* ^W */
91	{K_ZERO,	   '0'},	/*  0 */
92
93#define	ADDITIONAL_CHARACTERS	4
94	{K_NOTUSED, 0},			/* VEOF, VERASE, VKILL, VWERASE */
95	{K_NOTUSED, 0},
96	{K_NOTUSED, 0},
97	{K_NOTUSED, 0},
98};
99static int nkeylist =
100    (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
101
102/*
103 * v_key_init --
104 *	Initialize the special key lookup table.
105 *
106 * PUBLIC: int v_key_init __P((SCR *));
107 */
108int
109v_key_init(SCR *sp)
110{
111	int ch;
112	GS *gp;
113	KEYLIST *kp;
114	int cnt;
115
116	gp = sp->gp;
117
118	/*
119	 * XXX
120	 * 8-bit only, for now.  Recompilation should get you any 8-bit
121	 * character set, as long as nul isn't a character.
122	 */
123	(void)setlocale(LC_ALL, "");
124#if __linux__
125	/*
126	 * In libc 4.5.26, setlocale(LC_ALL, ""), doesn't setup the table
127	 * for ctype(3c) correctly.  This bug is fixed in libc 4.6.x.
128	 *
129	 * This code works around this problem for libc 4.5.x users.
130	 * Note that this code is harmless if you're using libc 4.6.x.
131	 */
132	(void)setlocale(LC_CTYPE, "");
133#endif
134	v_key_ilookup(sp);
135
136	v_keyval(sp, K_CNTRLD, KEY_VEOF);
137	v_keyval(sp, K_VERASE, KEY_VERASE);
138	v_keyval(sp, K_VKILL, KEY_VKILL);
139	v_keyval(sp, K_VWERASE, KEY_VWERASE);
140
141	/* Sort the special key list. */
142	qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
143
144	/* Initialize the fast lookup table. */
145	for (kp = keylist, cnt = nkeylist; cnt--; ++kp)
146		gp->special_key[kp->ch] = kp->value;
147
148	/* Find a non-printable character to use as a message separator. */
149	for (ch = 1; ch <= UCHAR_MAX; ++ch)
150		if (!isprint(ch)) {
151			gp->noprint = ch;
152			break;
153		}
154	if (ch != gp->noprint) {
155		msgq(sp, M_ERR, "079|No non-printable character found");
156		return (1);
157	}
158	return (0);
159}
160
161/*
162 * v_keyval --
163 *	Set key values.
164 *
165 * We've left some open slots in the keylist table, and if these values exist,
166 * we put them into place.  Note, they may reset (or duplicate) values already
167 * in the table, so we check for that first.
168 */
169static void
170v_keyval(SCR *sp, int val, scr_keyval_t name)
171{
172	KEYLIST *kp;
173	CHAR_T ch;
174	int dne;
175
176	/* Get the key's value from the screen. */
177	if (sp->gp->scr_keyval(sp, name, &ch, &dne))
178		return;
179	if (dne)
180		return;
181
182	/* Check for duplication. */
183	for (kp = keylist; kp->value != K_NOTUSED; ++kp)
184		if (kp->ch == ch) {
185			kp->value = val;
186			return;
187		}
188
189	/* Add a new entry. */
190	if (kp->value == K_NOTUSED) {
191		keylist[nkeylist].ch = ch;
192		keylist[nkeylist].value = val;
193		++nkeylist;
194	}
195}
196
197/*
198 * v_key_ilookup --
199 *	Build the fast-lookup key display array.
200 *
201 * PUBLIC: void v_key_ilookup __P((SCR *));
202 */
203void
204v_key_ilookup(SCR *sp)
205{
206	UCHAR_T ch;
207	unsigned char *p, *t;
208	GS *gp;
209	size_t len;
210
211	for (gp = sp->gp, ch = 0;; ++ch) {
212		for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
213		    len = gp->cname[ch].len = sp->clen; len--;)
214			*p++ = *t++;
215		if (ch == MAX_FAST_KEY)
216			break;
217	}
218}
219
220/*
221 * v_key_len --
222 *	Return the length of the string that will display the key.
223 *	This routine is the backup for the KEY_LEN() macro.
224 *
225 * PUBLIC: size_t v_key_len __P((SCR *, ARG_CHAR_T));
226 */
227size_t
228v_key_len(SCR *sp, ARG_CHAR_T ch)
229{
230	(void)v_key_name(sp, ch);
231	return (sp->clen);
232}
233
234/*
235 * v_key_name --
236 *	Return the string that will display the key.  This routine
237 *	is the backup for the KEY_NAME() macro.
238 *
239 * PUBLIC: u_char *v_key_name __P((SCR *, ARG_CHAR_T));
240 */
241u_char *
242v_key_name(SCR *sp, ARG_CHAR_T ach)
243{
244	static const char hexdigit[] = "0123456789abcdef";
245	static const char octdigit[] = "01234567";
246	int ch;
247	size_t len, i;
248	const char *chp;
249
250	if (INTISWIDE(ach))
251		goto vis;
252	ch = (unsigned char)ach;
253
254	/* See if the character was explicitly declared printable or not. */
255	if ((chp = O_STR(sp, O_PRINT)) != NULL)
256		for (; *chp != '\0'; ++chp)
257			if (*chp == ch)
258				goto pr;
259	if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
260		for (; *chp != '\0'; ++chp)
261			if (*chp == ch)
262				goto nopr;
263
264	/*
265	 * Historical (ARPA standard) mappings.  Printable characters are left
266	 * alone.  Control characters less than 0x20 are represented as '^'
267	 * followed by the character offset from the '@' character in the ASCII
268	 * character set.  Del (0x7f) is represented as '^' followed by '?'.
269	 *
270	 * XXX
271	 * The following code depends on the current locale being identical to
272	 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f).  I'm
273	 * told that this is a reasonable assumption...
274	 *
275	 * XXX
276	 * This code will only work with CHAR_T's that are multiples of 8-bit
277	 * bytes.
278	 *
279	 * XXX
280	 * NB: There's an assumption here that all printable characters take
281	 * up a single column on the screen.  This is not always correct.
282	 */
283	if (isprint(ch)) {
284pr:		sp->cname[0] = ch;
285		len = 1;
286		goto done;
287	}
288nopr:	if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
289		sp->cname[0] = '^';
290		sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
291		len = 2;
292		goto done;
293	}
294vis:	for (i = 1; i <= sizeof(CHAR_T); ++i)
295		if ((ach >> i * CHAR_BIT) == 0)
296			break;
297	ch = (ach >> --i * CHAR_BIT) & UCHAR_MAX;
298	if (O_ISSET(sp, O_OCTAL)) {
299		sp->cname[0] = '\\';
300		sp->cname[1] = octdigit[(ch & 0300) >> 6];
301		sp->cname[2] = octdigit[(ch &  070) >> 3];
302		sp->cname[3] = octdigit[ ch &   07      ];
303	} else {
304		sp->cname[0] = '\\';
305		sp->cname[1] = 'x';
306		sp->cname[2] = hexdigit[(ch & 0xf0) >> 4];
307		sp->cname[3] = hexdigit[ ch & 0x0f      ];
308	}
309	len = 4;
310done:	sp->cname[sp->clen = len] = '\0';
311	return (sp->cname);
312}
313
314/*
315 * v_key_val --
316 *	Fill in the value for a key.  This routine is the backup
317 *	for the KEY_VAL() macro.
318 *
319 * PUBLIC: e_key_t v_key_val __P((SCR *, ARG_CHAR_T));
320 */
321e_key_t
322v_key_val(SCR *sp, ARG_CHAR_T ch)
323{
324	KEYLIST k, *kp;
325
326	k.ch = ch;
327	kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
328	return (kp == NULL ? K_NOTUSED : kp->value);
329}
330
331/*
332 * v_event_push --
333 *	Push events/keys onto the front of the buffer.
334 *
335 * There is a single input buffer in ex/vi.  Characters are put onto the
336 * end of the buffer by the terminal input routines, and pushed onto the
337 * front of the buffer by various other functions in ex/vi.  Each key has
338 * an associated flag value, which indicates if it has already been quoted,
339 * and if it is the result of a mapping or an abbreviation.
340 *
341 * PUBLIC: int v_event_push __P((SCR *, EVENT *, const CHAR_T *, size_t, u_int));
342 */
343int
344v_event_push(SCR *sp, EVENT *p_evp, const CHAR_T *p_s, size_t nitems, u_int flags)
345
346	             			/* Push event. */
347	            			/* Push characters. */
348	              			/* Number of items to push. */
349	            			/* CH_* flags. */
350{
351	EVENT *evp;
352	WIN *wp;
353	size_t total;
354
355	/* If we have room, stuff the items into the buffer. */
356	wp = sp->wp;
357	if (nitems <= wp->i_next ||
358	    (wp->i_event != NULL && wp->i_cnt == 0 && nitems <= wp->i_nelem)) {
359		if (wp->i_cnt != 0)
360			wp->i_next -= nitems;
361		goto copy;
362	}
363
364	/*
365	 * If there are currently items in the queue, shift them up,
366	 * leaving some extra room.  Get enough space plus a little
367	 * extra.
368	 */
369#define	TERM_PUSH_SHIFT	30
370	total = wp->i_cnt + wp->i_next + nitems + TERM_PUSH_SHIFT;
371	if (total >= wp->i_nelem && v_event_grow(sp, MAX(total, 64)))
372		return (1);
373	if (wp->i_cnt)
374		MEMMOVE(wp->i_event + TERM_PUSH_SHIFT + nitems,
375		    wp->i_event + wp->i_next, wp->i_cnt);
376	wp->i_next = TERM_PUSH_SHIFT;
377
378	/* Put the new items into the queue. */
379copy:	wp->i_cnt += nitems;
380	for (evp = wp->i_event + wp->i_next; nitems--; ++evp) {
381		if (p_evp != NULL)
382			*evp = *p_evp++;
383		else {
384			evp->e_event = E_CHARACTER;
385			evp->e_c = *p_s++;
386			evp->e_value = KEY_VAL(sp, evp->e_c);
387			FL_INIT(evp->e_flags, flags);
388		}
389	}
390	return (0);
391}
392
393/*
394 * v_event_append --
395 *	Append events onto the tail of the buffer.
396 */
397static int
398v_event_append(SCR *sp, EVENT *argp)
399{
400	CHAR_T *s;			/* Characters. */
401	EVENT *evp;
402	WIN *wp;
403	size_t nevents;			/* Number of events. */
404
405	/* Grow the buffer as necessary. */
406	nevents = argp->e_event == E_STRING ? argp->e_len : 1;
407	wp = sp->wp;
408	if (wp->i_event == NULL ||
409	    nevents > wp->i_nelem - (wp->i_next + wp->i_cnt))
410		v_event_grow(sp, MAX(nevents, 64));
411	evp = wp->i_event + wp->i_next + wp->i_cnt;
412	wp->i_cnt += nevents;
413
414	/* Transform strings of characters into single events. */
415	if (argp->e_event == E_STRING)
416		for (s = argp->e_csp; nevents--; ++evp) {
417			evp->e_event = E_CHARACTER;
418			evp->e_c = *s++;
419			evp->e_value = KEY_VAL(sp, evp->e_c);
420			evp->e_flags = 0;
421		}
422	else
423		*evp = *argp;
424	return (0);
425}
426
427/* Remove events from the queue. */
428#define	QREM(len) {							\
429	if ((wp->i_cnt -= len) == 0)					\
430		wp->i_next = 0;						\
431	else								\
432		wp->i_next += len;					\
433}
434
435/*
436 * v_event_get --
437 *	Return the next event.
438 *
439 * !!!
440 * The flag EC_NODIGIT probably needs some explanation.  First, the idea of
441 * mapping keys is that one or more keystrokes act like a function key.
442 * What's going on is that vi is reading a number, and the character following
443 * the number may or may not be mapped (EC_MAPCOMMAND).  For example, if the
444 * user is entering the z command, a valid command is "z40+", and we don't want
445 * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
446 * into "z40xxx".  However, if the user enters "35x", we want to put all of the
447 * characters through the mapping code.
448 *
449 * Historical practice is a bit muddled here.  (Surprise!)  It always permitted
450 * mapping digits as long as they weren't the first character of the map, e.g.
451 * ":map ^A1 xxx" was okay.  It also permitted the mapping of the digits 1-9
452 * (the digit 0 was a special case as it doesn't indicate the start of a count)
453 * as the first character of the map, but then ignored those mappings.  While
454 * it's probably stupid to map digits, vi isn't your mother.
455 *
456 * The way this works is that the EC_MAPNODIGIT causes term_key to return the
457 * end-of-digit without "looking" at the next character, i.e. leaving it as the
458 * user entered it.  Presumably, the next term_key call will tell us how the
459 * user wants it handled.
460 *
461 * There is one more complication.  Users might map keys to digits, and, as
462 * it's described above, the commands:
463 *
464 *	:map g 1G
465 *	d2g
466 *
467 * would return the keys "d2<end-of-digits>1G", when the user probably wanted
468 * "d21<end-of-digits>G".  So, if a map starts off with a digit we continue as
469 * before, otherwise, we pretend we haven't mapped the character, and return
470 * <end-of-digits>.
471 *
472 * Now that that's out of the way, let's talk about Energizer Bunny macros.
473 * It's easy to create macros that expand to a loop, e.g. map x 3x.  It's
474 * fairly easy to detect this example, because it's all internal to term_key.
475 * If we're expanding a macro and it gets big enough, at some point we can
476 * assume it's looping and kill it.  The examples that are tough are the ones
477 * where the parser is involved, e.g. map x "ayyx"byy.  We do an expansion
478 * on 'x', and get "ayyx"byy.  We then return the first 4 characters, and then
479 * find the looping macro again.  There is no way that we can detect this
480 * without doing a full parse of the command, because the character that might
481 * cause the loop (in this case 'x') may be a literal character, e.g. the map
482 * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
483 *
484 * Historic vi tried to detect looping macros by disallowing obvious cases in
485 * the map command, maps that that ended with the same letter as they started
486 * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
487 * too many times before keys were returned to the command parser.  It didn't
488 * get many (most?) of the tricky cases right, however, and it was certainly
489 * possible to create macros that ran forever.  And, even if it did figure out
490 * what was going on, the user was usually tossed into ex mode.  Finally, any
491 * changes made before vi realized that the macro was recursing were left in
492 * place.  We recover gracefully, but the only recourse the user has in an
493 * infinite macro loop is to interrupt.
494 *
495 * !!!
496 * It is historic practice that mapping characters to themselves as the first
497 * part of the mapped string was legal, and did not cause infinite loops, i.e.
498 * ":map! { {^M^T" and ":map n nz." were known to work.  The initial, matching
499 * characters were returned instead of being remapped.
500 *
501 * !!!
502 * It is also historic practice that the macro "map ] ]]^" caused a single ]
503 * keypress to behave as the command ]] (the ^ got the map past the vi check
504 * for "tail recursion").  Conversely, the mapping "map n nn^" went recursive.
505 * What happened was that, in the historic vi, maps were expanded as the keys
506 * were retrieved, but not all at once and not centrally.  So, the keypress ]
507 * pushed ]]^ on the stack, and then the first ] from the stack was passed to
508 * the ]] command code.  The ]] command then retrieved a key without entering
509 * the mapping code.  This could bite us anytime a user has a map that depends
510 * on secondary keys NOT being mapped.  I can't see any possible way to make
511 * this work in here without the complete abandonment of Rationality Itself.
512 *
513 * XXX
514 * The final issue is recovery.  It would be possible to undo all of the work
515 * that was done by the macro if we entered a record into the log so that we
516 * knew when the macro started, and, in fact, this might be worth doing at some
517 * point.  Given that this might make the log grow unacceptably (consider that
518 * cursor keys are done with maps), for now we leave any changes made in place.
519 *
520 * PUBLIC: int v_event_get __P((SCR *, EVENT *, int, u_int32_t));
521 */
522int
523v_event_get(SCR *sp, EVENT *argp, int timeout, u_int32_t flags)
524{
525	EVENT *evp, ev;
526	GS *gp;
527	SEQ *qp;
528	int init_nomap, ispartial, istimeout, remap_cnt;
529	WIN *wp;
530
531	gp = sp->gp;
532	wp = sp->wp;
533
534	/* If simply checking for interrupts, argp may be NULL. */
535	if (argp == NULL)
536		argp = &ev;
537
538retry:	istimeout = remap_cnt = 0;
539
540	/*
541	 * If the queue isn't empty and we're timing out for characters,
542	 * return immediately.
543	 */
544	if (wp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
545		return (0);
546
547	/*
548	 * If the queue is empty, we're checking for interrupts, or we're
549	 * timing out for characters, get more events.
550	 */
551	if (wp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
552		/*
553		 * If we're reading new characters, check any scripting
554		 * windows for input.
555		 */
556		if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
557			return (1);
558loop:		if (gp->scr_event(sp, argp,
559		    LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
560			return (1);
561		switch (argp->e_event) {
562		case E_ERR:
563		case E_SIGHUP:
564		case E_SIGTERM:
565			/*
566			 * Fatal conditions cause the file to be synced to
567			 * disk immediately.
568			 */
569			v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
570			    (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
571			return (1);
572		case E_TIMEOUT:
573			istimeout = 1;
574			break;
575		case E_INTERRUPT:
576			/* Set the global interrupt flag. */
577			F_SET(sp->gp, G_INTERRUPTED);
578
579			/*
580			 * If the caller was interested in interrupts, return
581			 * immediately.
582			 */
583			if (LF_ISSET(EC_INTERRUPT))
584				return (0);
585			goto append;
586		default:
587append:			if (v_event_append(sp, argp))
588				return (1);
589			break;
590		}
591	}
592
593	/*
594	 * If the caller was only interested in interrupts or timeouts, return
595	 * immediately.  (We may have gotten characters, and that's okay, they
596	 * were queued up for later use.)
597	 */
598	if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
599		return (0);
600
601newmap:	evp = &wp->i_event[wp->i_next];
602
603	/*
604	 * If the next event in the queue isn't a character event, return
605	 * it, we're done.
606	 */
607	if (evp->e_event != E_CHARACTER) {
608		*argp = *evp;
609		QREM(1);
610		return (0);
611	}
612
613	/*
614	 * If the key isn't mappable because:
615	 *
616	 *	+ ... the timeout has expired
617	 *	+ ... it's not a mappable key
618	 *	+ ... neither the command or input map flags are set
619	 *	+ ... there are no maps that can apply to it
620	 *
621	 * return it forthwith.
622	 */
623	if (istimeout || FL_ISSET(evp->e_flags, CH_NOMAP) ||
624	    !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
625	    ((evp->e_c & ~MAX_BIT_SEQ) == 0 &&
626	    !bit_test(gp->seqb, evp->e_c)))
627		goto nomap;
628
629	/* Search the map. */
630	qp = seq_find(sp, NULL, evp, NULL, wp->i_cnt,
631	    LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
632
633	/*
634	 * If get a partial match, get more characters and retry the map.
635	 * If time out without further characters, return the characters
636	 * unmapped.
637	 *
638	 * !!!
639	 * <escape> characters are a problem.  Cursor keys start with <escape>
640	 * characters, so there's almost always a map in place that begins with
641	 * an <escape> character.  If we timeout <escape> keys in the same way
642	 * that we timeout other keys, the user will get a noticeable pause as
643	 * they enter <escape> to terminate input mode.  If key timeout is set
644	 * for a slow link, users will get an even longer pause.  Nvi used to
645	 * simply timeout <escape> characters at 1/10th of a second, but this
646	 * loses over PPP links where the latency is greater than 100Ms.
647	 */
648	if (ispartial) {
649		if (O_ISSET(sp, O_TIMEOUT))
650			timeout = (evp->e_value == K_ESCAPE ?
651			    O_VAL(sp, O_ESCAPETIME) :
652			    O_VAL(sp, O_KEYTIME)) * 100;
653		else
654			timeout = 0;
655		goto loop;
656	}
657
658	/* If no map, return the character. */
659	if (qp == NULL) {
660nomap:		if (!ISDIGIT(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
661			goto not_digit;
662		*argp = *evp;
663		QREM(1);
664		return (0);
665	}
666
667	/*
668	 * If looking for the end of a digit string, and the first character
669	 * of the map is it, pretend we haven't seen the character.
670	 */
671	if (LF_ISSET(EC_MAPNODIGIT) &&
672	    qp->output != NULL && !ISDIGIT(qp->output[0])) {
673not_digit:	argp->e_c = CH_NOT_DIGIT;
674		argp->e_value = K_NOTUSED;
675		argp->e_event = E_CHARACTER;
676		FL_INIT(argp->e_flags, 0);
677		return (0);
678	}
679
680	/* Find out if the initial segments are identical. */
681	init_nomap = !e_memcmp(qp->output, &wp->i_event[wp->i_next], qp->ilen);
682
683	/* Delete the mapped characters from the queue. */
684	QREM(qp->ilen);
685
686	/* If keys mapped to nothing, go get more. */
687	if (qp->output == NULL)
688		goto retry;
689
690	/* If remapping characters... */
691	if (O_ISSET(sp, O_REMAP)) {
692		/*
693		 * Periodically check for interrupts.  Always check the first
694		 * time through, because it's possible to set up a map that
695		 * will return a character every time, but will expand to more,
696		 * e.g. "map! a aaaa" will always return a 'a', but we'll never
697		 * get anywhere useful.
698		 */
699		if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
700		    (gp->scr_event(sp, &ev,
701		    EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
702			F_SET(sp->gp, G_INTERRUPTED);
703			argp->e_event = E_INTERRUPT;
704			return (0);
705		}
706
707		/*
708		 * If an initial part of the characters mapped, they are not
709		 * further remapped -- return the first one.  Push the rest
710		 * of the characters, or all of the characters if no initial
711		 * part mapped, back on the queue.
712		 */
713		if (init_nomap) {
714			if (v_event_push(sp, NULL, qp->output + qp->ilen,
715			    qp->olen - qp->ilen, CH_MAPPED))
716				return (1);
717			if (v_event_push(sp, NULL,
718			    qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
719				return (1);
720			evp = &wp->i_event[wp->i_next];
721			goto nomap;
722		}
723		if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
724			return (1);
725		goto newmap;
726	}
727
728	/* Else, push the characters on the queue and return one. */
729	if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
730		return (1);
731
732	goto nomap;
733}
734
735/*
736 * v_sync --
737 *	Walk the screen lists, sync'ing files to their backup copies.
738 */
739static void
740v_sync(SCR *sp, int flags)
741{
742	GS *gp;
743	WIN *wp;
744
745	gp = sp->gp;
746	TAILQ_FOREACH(wp, &gp->dq, q)
747		TAILQ_FOREACH(sp, &wp->scrq, q)
748			rcv_sync(sp, flags);
749	TAILQ_FOREACH(sp, &gp->hq, q)
750		rcv_sync(sp, flags);
751}
752
753/*
754 * v_event_err --
755 *	Unexpected event.
756 *
757 * PUBLIC: void v_event_err __P((SCR *, EVENT *));
758 */
759void
760v_event_err(SCR *sp, EVENT *evp)
761{
762	switch (evp->e_event) {
763	case E_CHARACTER:
764		msgq(sp, M_ERR, "276|Unexpected character event");
765		break;
766	case E_EOF:
767		msgq(sp, M_ERR, "277|Unexpected end-of-file event");
768		break;
769	case E_INTERRUPT:
770		msgq(sp, M_ERR, "279|Unexpected interrupt event");
771		break;
772	case E_IPCOMMAND:
773		msgq(sp, M_ERR, "318|Unexpected command or input");
774		break;
775	case E_REPAINT:
776		msgq(sp, M_ERR, "281|Unexpected repaint event");
777		break;
778	case E_STRING:
779		msgq(sp, M_ERR, "285|Unexpected string event");
780		break;
781	case E_TIMEOUT:
782		msgq(sp, M_ERR, "286|Unexpected timeout event");
783		break;
784	case E_WRESIZE:
785		msgq(sp, M_ERR, "316|Unexpected resize event");
786		break;
787
788	/*
789	 * Theoretically, none of these can occur, as they're handled at the
790	 * top editor level.
791	 */
792	case E_ERR:
793	case E_SIGHUP:
794	case E_SIGTERM:
795	default:
796		abort();
797	}
798}
799
800/*
801 * v_event_flush --
802 *	Flush any flagged keys, returning if any keys were flushed.
803 *
804 * PUBLIC: int v_event_flush __P((SCR *, u_int));
805 */
806int
807v_event_flush(SCR *sp, u_int flags)
808{
809	WIN *wp;
810	int rval;
811
812	for (rval = 0, wp = sp->wp; wp->i_cnt != 0 &&
813	    FL_ISSET(wp->i_event[wp->i_next].e_flags, flags); rval = 1)
814		QREM(1);
815	return (rval);
816}
817
818/*
819 * v_event_grow --
820 *	Grow the terminal queue.
821 */
822static int
823v_event_grow(SCR *sp, int add)
824{
825	WIN *wp;
826	size_t new_nelem, olen;
827
828	wp = sp->wp;
829	new_nelem = wp->i_nelem + add;
830	olen = wp->i_nelem * sizeof(wp->i_event[0]);
831	BINC_RET(sp, EVENT, wp->i_event, olen, new_nelem * sizeof(EVENT));
832	wp->i_nelem = olen / sizeof(wp->i_event[0]);
833	return (0);
834}
835
836/*
837 * v_key_cmp --
838 *	Compare two keys for sorting.
839 */
840static int
841v_key_cmp(const void *ap, const void *bp)
842{
843	return (((const KEYLIST *)ap)->ch - ((const KEYLIST *)bp)->ch);
844}
845