1//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass identifies expensive constants to hoist and coalesces them to
10// better prepare it for SelectionDAG-based code generation. This works around
11// the limitations of the basic-block-at-a-time approach.
12//
13// First it scans all instructions for integer constants and calculates its
14// cost. If the constant can be folded into the instruction (the cost is
15// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16// consider it expensive and leave it alone. This is the default behavior and
17// the default implementation of getIntImmCostInst will always return TCC_Free.
18//
19// If the cost is more than TCC_BASIC, then the integer constant can't be folded
20// into the instruction and it might be beneficial to hoist the constant.
21// Similar constants are coalesced to reduce register pressure and
22// materialization code.
23//
24// When a constant is hoisted, it is also hidden behind a bitcast to force it to
25// be live-out of the basic block. Otherwise the constant would be just
26// duplicated and each basic block would have its own copy in the SelectionDAG.
27// The SelectionDAG recognizes such constants as opaque and doesn't perform
28// certain transformations on them, which would create a new expensive constant.
29//
30// This optimization is only applied to integer constants in instructions and
31// simple (this means not nested) constant cast expressions. For example:
32// %0 = load i64* inttoptr (i64 big_constant to i64*)
33//===----------------------------------------------------------------------===//
34
35#include "llvm/Transforms/Scalar/ConstantHoisting.h"
36#include "llvm/ADT/APInt.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/None.h"
39#include "llvm/ADT/Optional.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/Analysis/BlockFrequencyInfo.h"
44#include "llvm/Analysis/ProfileSummaryInfo.h"
45#include "llvm/Analysis/TargetTransformInfo.h"
46#include "llvm/IR/BasicBlock.h"
47#include "llvm/IR/Constants.h"
48#include "llvm/IR/DebugInfoMetadata.h"
49#include "llvm/IR/Dominators.h"
50#include "llvm/IR/Function.h"
51#include "llvm/IR/InstrTypes.h"
52#include "llvm/IR/Instruction.h"
53#include "llvm/IR/Instructions.h"
54#include "llvm/IR/IntrinsicInst.h"
55#include "llvm/IR/Value.h"
56#include "llvm/InitializePasses.h"
57#include "llvm/Pass.h"
58#include "llvm/Support/BlockFrequency.h"
59#include "llvm/Support/Casting.h"
60#include "llvm/Support/CommandLine.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/raw_ostream.h"
63#include "llvm/Transforms/Scalar.h"
64#include "llvm/Transforms/Utils/Local.h"
65#include "llvm/Transforms/Utils/SizeOpts.h"
66#include <algorithm>
67#include <cassert>
68#include <cstdint>
69#include <iterator>
70#include <tuple>
71#include <utility>
72
73using namespace llvm;
74using namespace consthoist;
75
76#define DEBUG_TYPE "consthoist"
77
78STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
79STATISTIC(NumConstantsRebased, "Number of constants rebased");
80
81static cl::opt<bool> ConstHoistWithBlockFrequency(
82    "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
83    cl::desc("Enable the use of the block frequency analysis to reduce the "
84             "chance to execute const materialization more frequently than "
85             "without hoisting."));
86
87static cl::opt<bool> ConstHoistGEP(
88    "consthoist-gep", cl::init(false), cl::Hidden,
89    cl::desc("Try hoisting constant gep expressions"));
90
91static cl::opt<unsigned>
92MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
93    cl::desc("Do not rebase if number of dependent constants of a Base is less "
94             "than this number."),
95    cl::init(0), cl::Hidden);
96
97namespace {
98
99/// The constant hoisting pass.
100class ConstantHoistingLegacyPass : public FunctionPass {
101public:
102  static char ID; // Pass identification, replacement for typeid
103
104  ConstantHoistingLegacyPass() : FunctionPass(ID) {
105    initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
106  }
107
108  bool runOnFunction(Function &Fn) override;
109
110  StringRef getPassName() const override { return "Constant Hoisting"; }
111
112  void getAnalysisUsage(AnalysisUsage &AU) const override {
113    AU.setPreservesCFG();
114    if (ConstHoistWithBlockFrequency)
115      AU.addRequired<BlockFrequencyInfoWrapperPass>();
116    AU.addRequired<DominatorTreeWrapperPass>();
117    AU.addRequired<ProfileSummaryInfoWrapperPass>();
118    AU.addRequired<TargetTransformInfoWrapperPass>();
119  }
120
121private:
122  ConstantHoistingPass Impl;
123};
124
125} // end anonymous namespace
126
127char ConstantHoistingLegacyPass::ID = 0;
128
129INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
130                      "Constant Hoisting", false, false)
131INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
132INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
133INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
134INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
136                    "Constant Hoisting", false, false)
137
138FunctionPass *llvm::createConstantHoistingPass() {
139  return new ConstantHoistingLegacyPass();
140}
141
142/// Perform the constant hoisting optimization for the given function.
143bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
144  if (skipFunction(Fn))
145    return false;
146
147  LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
148  LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
149
150  bool MadeChange =
151      Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
152                   getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
153                   ConstHoistWithBlockFrequency
154                       ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
155                       : nullptr,
156                   Fn.getEntryBlock(),
157                   &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
158
159  if (MadeChange) {
160    LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
161                      << Fn.getName() << '\n');
162    LLVM_DEBUG(dbgs() << Fn);
163  }
164  LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
165
166  return MadeChange;
167}
168
169/// Find the constant materialization insertion point.
170Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
171                                                   unsigned Idx) const {
172  // If the operand is a cast instruction, then we have to materialize the
173  // constant before the cast instruction.
174  if (Idx != ~0U) {
175    Value *Opnd = Inst->getOperand(Idx);
176    if (auto CastInst = dyn_cast<Instruction>(Opnd))
177      if (CastInst->isCast())
178        return CastInst;
179  }
180
181  // The simple and common case. This also includes constant expressions.
182  if (!isa<PHINode>(Inst) && !Inst->isEHPad())
183    return Inst;
184
185  // We can't insert directly before a phi node or an eh pad. Insert before
186  // the terminator of the incoming or dominating block.
187  assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
188  BasicBlock *InsertionBlock = nullptr;
189  if (Idx != ~0U && isa<PHINode>(Inst)) {
190    InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
191    if (!InsertionBlock->isEHPad()) {
192      return InsertionBlock->getTerminator();
193    }
194  } else {
195    InsertionBlock = Inst->getParent();
196  }
197
198  // This must be an EH pad. Iterate over immediate dominators until we find a
199  // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
200  // and terminators.
201  auto *IDom = DT->getNode(InsertionBlock)->getIDom();
202  while (IDom->getBlock()->isEHPad()) {
203    assert(Entry != IDom->getBlock() && "eh pad in entry block");
204    IDom = IDom->getIDom();
205  }
206
207  return IDom->getBlock()->getTerminator();
208}
209
210/// Given \p BBs as input, find another set of BBs which collectively
211/// dominates \p BBs and have the minimal sum of frequencies. Return the BB
212/// set found in \p BBs.
213static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
214                                 BasicBlock *Entry,
215                                 SetVector<BasicBlock *> &BBs) {
216  assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
217  // Nodes on the current path to the root.
218  SmallPtrSet<BasicBlock *, 8> Path;
219  // Candidates includes any block 'BB' in set 'BBs' that is not strictly
220  // dominated by any other blocks in set 'BBs', and all nodes in the path
221  // in the dominator tree from Entry to 'BB'.
222  SmallPtrSet<BasicBlock *, 16> Candidates;
223  for (auto BB : BBs) {
224    // Ignore unreachable basic blocks.
225    if (!DT.isReachableFromEntry(BB))
226      continue;
227    Path.clear();
228    // Walk up the dominator tree until Entry or another BB in BBs
229    // is reached. Insert the nodes on the way to the Path.
230    BasicBlock *Node = BB;
231    // The "Path" is a candidate path to be added into Candidates set.
232    bool isCandidate = false;
233    do {
234      Path.insert(Node);
235      if (Node == Entry || Candidates.count(Node)) {
236        isCandidate = true;
237        break;
238      }
239      assert(DT.getNode(Node)->getIDom() &&
240             "Entry doens't dominate current Node");
241      Node = DT.getNode(Node)->getIDom()->getBlock();
242    } while (!BBs.count(Node));
243
244    // If isCandidate is false, Node is another Block in BBs dominating
245    // current 'BB'. Drop the nodes on the Path.
246    if (!isCandidate)
247      continue;
248
249    // Add nodes on the Path into Candidates.
250    Candidates.insert(Path.begin(), Path.end());
251  }
252
253  // Sort the nodes in Candidates in top-down order and save the nodes
254  // in Orders.
255  unsigned Idx = 0;
256  SmallVector<BasicBlock *, 16> Orders;
257  Orders.push_back(Entry);
258  while (Idx != Orders.size()) {
259    BasicBlock *Node = Orders[Idx++];
260    for (auto ChildDomNode : DT.getNode(Node)->children()) {
261      if (Candidates.count(ChildDomNode->getBlock()))
262        Orders.push_back(ChildDomNode->getBlock());
263    }
264  }
265
266  // Visit Orders in bottom-up order.
267  using InsertPtsCostPair =
268      std::pair<SetVector<BasicBlock *>, BlockFrequency>;
269
270  // InsertPtsMap is a map from a BB to the best insertion points for the
271  // subtree of BB (subtree not including the BB itself).
272  DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
273  InsertPtsMap.reserve(Orders.size() + 1);
274  for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
275    BasicBlock *Node = *RIt;
276    bool NodeInBBs = BBs.count(Node);
277    auto &InsertPts = InsertPtsMap[Node].first;
278    BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
279
280    // Return the optimal insert points in BBs.
281    if (Node == Entry) {
282      BBs.clear();
283      if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
284          (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
285        BBs.insert(Entry);
286      else
287        BBs.insert(InsertPts.begin(), InsertPts.end());
288      break;
289    }
290
291    BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
292    // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
293    // will update its parent's ParentInsertPts and ParentPtsFreq.
294    auto &ParentInsertPts = InsertPtsMap[Parent].first;
295    BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
296    // Choose to insert in Node or in subtree of Node.
297    // Don't hoist to EHPad because we may not find a proper place to insert
298    // in EHPad.
299    // If the total frequency of InsertPts is the same as the frequency of the
300    // target Node, and InsertPts contains more than one nodes, choose hoisting
301    // to reduce code size.
302    if (NodeInBBs ||
303        (!Node->isEHPad() &&
304         (InsertPtsFreq > BFI.getBlockFreq(Node) ||
305          (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
306      ParentInsertPts.insert(Node);
307      ParentPtsFreq += BFI.getBlockFreq(Node);
308    } else {
309      ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
310      ParentPtsFreq += InsertPtsFreq;
311    }
312  }
313}
314
315/// Find an insertion point that dominates all uses.
316SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
317    const ConstantInfo &ConstInfo) const {
318  assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
319  // Collect all basic blocks.
320  SetVector<BasicBlock *> BBs;
321  SetVector<Instruction *> InsertPts;
322  for (auto const &RCI : ConstInfo.RebasedConstants)
323    for (auto const &U : RCI.Uses)
324      BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
325
326  if (BBs.count(Entry)) {
327    InsertPts.insert(&Entry->front());
328    return InsertPts;
329  }
330
331  if (BFI) {
332    findBestInsertionSet(*DT, *BFI, Entry, BBs);
333    for (auto BB : BBs) {
334      BasicBlock::iterator InsertPt = BB->begin();
335      for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
336        ;
337      InsertPts.insert(&*InsertPt);
338    }
339    return InsertPts;
340  }
341
342  while (BBs.size() >= 2) {
343    BasicBlock *BB, *BB1, *BB2;
344    BB1 = BBs.pop_back_val();
345    BB2 = BBs.pop_back_val();
346    BB = DT->findNearestCommonDominator(BB1, BB2);
347    if (BB == Entry) {
348      InsertPts.insert(&Entry->front());
349      return InsertPts;
350    }
351    BBs.insert(BB);
352  }
353  assert((BBs.size() == 1) && "Expected only one element.");
354  Instruction &FirstInst = (*BBs.begin())->front();
355  InsertPts.insert(findMatInsertPt(&FirstInst));
356  return InsertPts;
357}
358
359/// Record constant integer ConstInt for instruction Inst at operand
360/// index Idx.
361///
362/// The operand at index Idx is not necessarily the constant integer itself. It
363/// could also be a cast instruction or a constant expression that uses the
364/// constant integer.
365void ConstantHoistingPass::collectConstantCandidates(
366    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
367    ConstantInt *ConstInt) {
368  InstructionCost Cost;
369  // Ask the target about the cost of materializing the constant for the given
370  // instruction and operand index.
371  if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
372    Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
373                                    ConstInt->getValue(), ConstInt->getType(),
374                                    TargetTransformInfo::TCK_SizeAndLatency);
375  else
376    Cost = TTI->getIntImmCostInst(
377        Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
378        TargetTransformInfo::TCK_SizeAndLatency, Inst);
379
380  // Ignore cheap integer constants.
381  if (Cost > TargetTransformInfo::TCC_Basic) {
382    ConstCandMapType::iterator Itr;
383    bool Inserted;
384    ConstPtrUnionType Cand = ConstInt;
385    std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
386    if (Inserted) {
387      ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
388      Itr->second = ConstIntCandVec.size() - 1;
389    }
390    ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
391    LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
392                   << "Collect constant " << *ConstInt << " from " << *Inst
393                   << " with cost " << Cost << '\n';
394               else dbgs() << "Collect constant " << *ConstInt
395                           << " indirectly from " << *Inst << " via "
396                           << *Inst->getOperand(Idx) << " with cost " << Cost
397                           << '\n';);
398  }
399}
400
401/// Record constant GEP expression for instruction Inst at operand index Idx.
402void ConstantHoistingPass::collectConstantCandidates(
403    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
404    ConstantExpr *ConstExpr) {
405  // TODO: Handle vector GEPs
406  if (ConstExpr->getType()->isVectorTy())
407    return;
408
409  GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
410  if (!BaseGV)
411    return;
412
413  // Get offset from the base GV.
414  PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
415  IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
416  APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
417  auto *GEPO = cast<GEPOperator>(ConstExpr);
418  if (!GEPO->accumulateConstantOffset(*DL, Offset))
419    return;
420
421  if (!Offset.isIntN(32))
422    return;
423
424  // A constant GEP expression that has a GlobalVariable as base pointer is
425  // usually lowered to a load from constant pool. Such operation is unlikely
426  // to be cheaper than compute it by <Base + Offset>, which can be lowered to
427  // an ADD instruction or folded into Load/Store instruction.
428  InstructionCost Cost =
429      TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy,
430                             TargetTransformInfo::TCK_SizeAndLatency, Inst);
431  ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
432  ConstCandMapType::iterator Itr;
433  bool Inserted;
434  ConstPtrUnionType Cand = ConstExpr;
435  std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
436  if (Inserted) {
437    ExprCandVec.push_back(ConstantCandidate(
438        ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
439        ConstExpr));
440    Itr->second = ExprCandVec.size() - 1;
441  }
442  ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
443}
444
445/// Check the operand for instruction Inst at index Idx.
446void ConstantHoistingPass::collectConstantCandidates(
447    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
448  Value *Opnd = Inst->getOperand(Idx);
449
450  // Visit constant integers.
451  if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
452    collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
453    return;
454  }
455
456  // Visit cast instructions that have constant integers.
457  if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
458    // Only visit cast instructions, which have been skipped. All other
459    // instructions should have already been visited.
460    if (!CastInst->isCast())
461      return;
462
463    if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
464      // Pretend the constant is directly used by the instruction and ignore
465      // the cast instruction.
466      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
467      return;
468    }
469  }
470
471  // Visit constant expressions that have constant integers.
472  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
473    // Handle constant gep expressions.
474    if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing())
475      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
476
477    // Only visit constant cast expressions.
478    if (!ConstExpr->isCast())
479      return;
480
481    if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
482      // Pretend the constant is directly used by the instruction and ignore
483      // the constant expression.
484      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
485      return;
486    }
487  }
488}
489
490/// Scan the instruction for expensive integer constants and record them
491/// in the constant candidate vector.
492void ConstantHoistingPass::collectConstantCandidates(
493    ConstCandMapType &ConstCandMap, Instruction *Inst) {
494  // Skip all cast instructions. They are visited indirectly later on.
495  if (Inst->isCast())
496    return;
497
498  // Scan all operands.
499  for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
500    // The cost of materializing the constants (defined in
501    // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
502    // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
503    // So it's safe for us to collect constant candidates from all
504    // IntrinsicInsts.
505    if (canReplaceOperandWithVariable(Inst, Idx)) {
506      collectConstantCandidates(ConstCandMap, Inst, Idx);
507    }
508  } // end of for all operands
509}
510
511/// Collect all integer constants in the function that cannot be folded
512/// into an instruction itself.
513void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
514  ConstCandMapType ConstCandMap;
515  for (BasicBlock &BB : Fn) {
516    // Ignore unreachable basic blocks.
517    if (!DT->isReachableFromEntry(&BB))
518      continue;
519    for (Instruction &Inst : BB)
520      collectConstantCandidates(ConstCandMap, &Inst);
521  }
522}
523
524// This helper function is necessary to deal with values that have different
525// bit widths (APInt Operator- does not like that). If the value cannot be
526// represented in uint64 we return an "empty" APInt. This is then interpreted
527// as the value is not in range.
528static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
529  Optional<APInt> Res = None;
530  unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
531                V1.getBitWidth() : V2.getBitWidth();
532  uint64_t LimVal1 = V1.getLimitedValue();
533  uint64_t LimVal2 = V2.getLimitedValue();
534
535  if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
536    return Res;
537
538  uint64_t Diff = LimVal1 - LimVal2;
539  return APInt(BW, Diff, true);
540}
541
542// From a list of constants, one needs to picked as the base and the other
543// constants will be transformed into an offset from that base constant. The
544// question is which we can pick best? For example, consider these constants
545// and their number of uses:
546//
547//  Constants| 2 | 4 | 12 | 42 |
548//  NumUses  | 3 | 2 |  8 |  7 |
549//
550// Selecting constant 12 because it has the most uses will generate negative
551// offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
552// offsets lead to less optimal code generation, then there might be better
553// solutions. Suppose immediates in the range of 0..35 are most optimally
554// supported by the architecture, then selecting constant 2 is most optimal
555// because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
556// range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
557// have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
558// selecting the base constant the range of the offsets is a very important
559// factor too that we take into account here. This algorithm calculates a total
560// costs for selecting a constant as the base and substract the costs if
561// immediates are out of range. It has quadratic complexity, so we call this
562// function only when we're optimising for size and there are less than 100
563// constants, we fall back to the straightforward algorithm otherwise
564// which does not do all the offset calculations.
565unsigned
566ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
567                                           ConstCandVecType::iterator E,
568                                           ConstCandVecType::iterator &MaxCostItr) {
569  unsigned NumUses = 0;
570
571  bool OptForSize = Entry->getParent()->hasOptSize() ||
572                    llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI,
573                                                PGSOQueryType::IRPass);
574  if (!OptForSize || std::distance(S,E) > 100) {
575    for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
576      NumUses += ConstCand->Uses.size();
577      if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
578        MaxCostItr = ConstCand;
579    }
580    return NumUses;
581  }
582
583  LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
584  InstructionCost MaxCost = -1;
585  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
586    auto Value = ConstCand->ConstInt->getValue();
587    Type *Ty = ConstCand->ConstInt->getType();
588    InstructionCost Cost = 0;
589    NumUses += ConstCand->Uses.size();
590    LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
591                      << "\n");
592
593    for (auto User : ConstCand->Uses) {
594      unsigned Opcode = User.Inst->getOpcode();
595      unsigned OpndIdx = User.OpndIdx;
596      Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
597                                     TargetTransformInfo::TCK_SizeAndLatency);
598      LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
599
600      for (auto C2 = S; C2 != E; ++C2) {
601        Optional<APInt> Diff = calculateOffsetDiff(
602                                   C2->ConstInt->getValue(),
603                                   ConstCand->ConstInt->getValue());
604        if (Diff) {
605          const InstructionCost ImmCosts =
606              TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
607          Cost -= ImmCosts;
608          LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
609                            << "has penalty: " << ImmCosts << "\n"
610                            << "Adjusted cost: " << Cost << "\n");
611        }
612      }
613    }
614    LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
615    if (Cost > MaxCost) {
616      MaxCost = Cost;
617      MaxCostItr = ConstCand;
618      LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
619                        << "\n");
620    }
621  }
622  return NumUses;
623}
624
625/// Find the base constant within the given range and rebase all other
626/// constants with respect to the base constant.
627void ConstantHoistingPass::findAndMakeBaseConstant(
628    ConstCandVecType::iterator S, ConstCandVecType::iterator E,
629    SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
630  auto MaxCostItr = S;
631  unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
632
633  // Don't hoist constants that have only one use.
634  if (NumUses <= 1)
635    return;
636
637  ConstantInt *ConstInt = MaxCostItr->ConstInt;
638  ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
639  ConstantInfo ConstInfo;
640  ConstInfo.BaseInt = ConstInt;
641  ConstInfo.BaseExpr = ConstExpr;
642  Type *Ty = ConstInt->getType();
643
644  // Rebase the constants with respect to the base constant.
645  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
646    APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
647    Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
648    Type *ConstTy =
649        ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
650    ConstInfo.RebasedConstants.push_back(
651      RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
652  }
653  ConstInfoVec.push_back(std::move(ConstInfo));
654}
655
656/// Finds and combines constant candidates that can be easily
657/// rematerialized with an add from a common base constant.
658void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
659  // If BaseGV is nullptr, find base among candidate constant integers;
660  // Otherwise find base among constant GEPs that share the same BaseGV.
661  ConstCandVecType &ConstCandVec = BaseGV ?
662      ConstGEPCandMap[BaseGV] : ConstIntCandVec;
663  ConstInfoVecType &ConstInfoVec = BaseGV ?
664      ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
665
666  // Sort the constants by value and type. This invalidates the mapping!
667  llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
668                                     const ConstantCandidate &RHS) {
669    if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
670      return LHS.ConstInt->getType()->getBitWidth() <
671             RHS.ConstInt->getType()->getBitWidth();
672    return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
673  });
674
675  // Simple linear scan through the sorted constant candidate vector for viable
676  // merge candidates.
677  auto MinValItr = ConstCandVec.begin();
678  for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
679       CC != E; ++CC) {
680    if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
681      Type *MemUseValTy = nullptr;
682      for (auto &U : CC->Uses) {
683        auto *UI = U.Inst;
684        if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
685          MemUseValTy = LI->getType();
686          break;
687        } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
688          // Make sure the constant is used as pointer operand of the StoreInst.
689          if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
690            MemUseValTy = SI->getValueOperand()->getType();
691            break;
692          }
693        }
694      }
695
696      // Check if the constant is in range of an add with immediate.
697      APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
698      if ((Diff.getBitWidth() <= 64) &&
699          TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
700          // Check if Diff can be used as offset in addressing mode of the user
701          // memory instruction.
702          (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
703           /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
704           /*HasBaseReg*/true, /*Scale*/0)))
705        continue;
706    }
707    // We either have now a different constant type or the constant is not in
708    // range of an add with immediate anymore.
709    findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
710    // Start a new base constant search.
711    MinValItr = CC;
712  }
713  // Finalize the last base constant search.
714  findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
715}
716
717/// Updates the operand at Idx in instruction Inst with the result of
718///        instruction Mat. If the instruction is a PHI node then special
719///        handling for duplicate values form the same incoming basic block is
720///        required.
721/// \return The update will always succeed, but the return value indicated if
722///         Mat was used for the update or not.
723static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
724  if (auto PHI = dyn_cast<PHINode>(Inst)) {
725    // Check if any previous operand of the PHI node has the same incoming basic
726    // block. This is a very odd case that happens when the incoming basic block
727    // has a switch statement. In this case use the same value as the previous
728    // operand(s), otherwise we will fail verification due to different values.
729    // The values are actually the same, but the variable names are different
730    // and the verifier doesn't like that.
731    BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
732    for (unsigned i = 0; i < Idx; ++i) {
733      if (PHI->getIncomingBlock(i) == IncomingBB) {
734        Value *IncomingVal = PHI->getIncomingValue(i);
735        Inst->setOperand(Idx, IncomingVal);
736        return false;
737      }
738    }
739  }
740
741  Inst->setOperand(Idx, Mat);
742  return true;
743}
744
745/// Emit materialization code for all rebased constants and update their
746/// users.
747void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
748                                             Constant *Offset,
749                                             Type *Ty,
750                                             const ConstantUser &ConstUser) {
751  Instruction *Mat = Base;
752
753  // The same offset can be dereferenced to different types in nested struct.
754  if (!Offset && Ty && Ty != Base->getType())
755    Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
756
757  if (Offset) {
758    Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
759                                               ConstUser.OpndIdx);
760    if (Ty) {
761      // Constant being rebased is a ConstantExpr.
762      PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
763          cast<PointerType>(Ty)->getAddressSpace());
764      Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
765      Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base,
766          Offset, "mat_gep", InsertionPt);
767      Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
768    } else
769      // Constant being rebased is a ConstantInt.
770      Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
771                                 "const_mat", InsertionPt);
772
773    LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
774                      << " + " << *Offset << ") in BB "
775                      << Mat->getParent()->getName() << '\n'
776                      << *Mat << '\n');
777    Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
778  }
779  Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
780
781  // Visit constant integer.
782  if (isa<ConstantInt>(Opnd)) {
783    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
784    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
785      Mat->eraseFromParent();
786    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
787    return;
788  }
789
790  // Visit cast instruction.
791  if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
792    assert(CastInst->isCast() && "Expected an cast instruction!");
793    // Check if we already have visited this cast instruction before to avoid
794    // unnecessary cloning.
795    Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
796    if (!ClonedCastInst) {
797      ClonedCastInst = CastInst->clone();
798      ClonedCastInst->setOperand(0, Mat);
799      ClonedCastInst->insertAfter(CastInst);
800      // Use the same debug location as the original cast instruction.
801      ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
802      LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
803                        << "To               : " << *ClonedCastInst << '\n');
804    }
805
806    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
807    updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
808    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
809    return;
810  }
811
812  // Visit constant expression.
813  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
814    if (ConstExpr->isGEPWithNoNotionalOverIndexing()) {
815      // Operand is a ConstantGEP, replace it.
816      updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
817      return;
818    }
819
820    // Aside from constant GEPs, only constant cast expressions are collected.
821    assert(ConstExpr->isCast() && "ConstExpr should be a cast");
822    Instruction *ConstExprInst = ConstExpr->getAsInstruction();
823    ConstExprInst->setOperand(0, Mat);
824    ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
825                                                ConstUser.OpndIdx));
826
827    // Use the same debug location as the instruction we are about to update.
828    ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
829
830    LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
831                      << "From              : " << *ConstExpr << '\n');
832    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
833    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
834      ConstExprInst->eraseFromParent();
835      if (Offset)
836        Mat->eraseFromParent();
837    }
838    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
839    return;
840  }
841}
842
843/// Hoist and hide the base constant behind a bitcast and emit
844/// materialization code for derived constants.
845bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
846  bool MadeChange = false;
847  SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
848      BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
849  for (auto const &ConstInfo : ConstInfoVec) {
850    SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
851    // We can have an empty set if the function contains unreachable blocks.
852    if (IPSet.empty())
853      continue;
854
855    unsigned UsesNum = 0;
856    unsigned ReBasesNum = 0;
857    unsigned NotRebasedNum = 0;
858    for (Instruction *IP : IPSet) {
859      // First, collect constants depending on this IP of the base.
860      unsigned Uses = 0;
861      using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
862      SmallVector<RebasedUse, 4> ToBeRebased;
863      for (auto const &RCI : ConstInfo.RebasedConstants) {
864        for (auto const &U : RCI.Uses) {
865          Uses++;
866          BasicBlock *OrigMatInsertBB =
867              findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
868          // If Base constant is to be inserted in multiple places,
869          // generate rebase for U using the Base dominating U.
870          if (IPSet.size() == 1 ||
871              DT->dominates(IP->getParent(), OrigMatInsertBB))
872            ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
873        }
874      }
875      UsesNum = Uses;
876
877      // If only few constants depend on this IP of base, skip rebasing,
878      // assuming the base and the rebased have the same materialization cost.
879      if (ToBeRebased.size() < MinNumOfDependentToRebase) {
880        NotRebasedNum += ToBeRebased.size();
881        continue;
882      }
883
884      // Emit an instance of the base at this IP.
885      Instruction *Base = nullptr;
886      // Hoist and hide the base constant behind a bitcast.
887      if (ConstInfo.BaseExpr) {
888        assert(BaseGV && "A base constant expression must have an base GV");
889        Type *Ty = ConstInfo.BaseExpr->getType();
890        Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
891      } else {
892        IntegerType *Ty = ConstInfo.BaseInt->getType();
893        Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
894      }
895
896      Base->setDebugLoc(IP->getDebugLoc());
897
898      LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
899                        << ") to BB " << IP->getParent()->getName() << '\n'
900                        << *Base << '\n');
901
902      // Emit materialization code for rebased constants depending on this IP.
903      for (auto const &R : ToBeRebased) {
904        Constant *Off = std::get<0>(R);
905        Type *Ty = std::get<1>(R);
906        ConstantUser U = std::get<2>(R);
907        emitBaseConstants(Base, Off, Ty, U);
908        ReBasesNum++;
909        // Use the same debug location as the last user of the constant.
910        Base->setDebugLoc(DILocation::getMergedLocation(
911            Base->getDebugLoc(), U.Inst->getDebugLoc()));
912      }
913      assert(!Base->use_empty() && "The use list is empty!?");
914      assert(isa<Instruction>(Base->user_back()) &&
915             "All uses should be instructions.");
916    }
917    (void)UsesNum;
918    (void)ReBasesNum;
919    (void)NotRebasedNum;
920    // Expect all uses are rebased after rebase is done.
921    assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
922           "Not all uses are rebased");
923
924    NumConstantsHoisted++;
925
926    // Base constant is also included in ConstInfo.RebasedConstants, so
927    // deduct 1 from ConstInfo.RebasedConstants.size().
928    NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
929
930    MadeChange = true;
931  }
932  return MadeChange;
933}
934
935/// Check all cast instructions we made a copy of and remove them if they
936/// have no more users.
937void ConstantHoistingPass::deleteDeadCastInst() const {
938  for (auto const &I : ClonedCastMap)
939    if (I.first->use_empty())
940      I.first->eraseFromParent();
941}
942
943/// Optimize expensive integer constants in the given function.
944bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
945                                   DominatorTree &DT, BlockFrequencyInfo *BFI,
946                                   BasicBlock &Entry, ProfileSummaryInfo *PSI) {
947  this->TTI = &TTI;
948  this->DT = &DT;
949  this->BFI = BFI;
950  this->DL = &Fn.getParent()->getDataLayout();
951  this->Ctx = &Fn.getContext();
952  this->Entry = &Entry;
953  this->PSI = PSI;
954  // Collect all constant candidates.
955  collectConstantCandidates(Fn);
956
957  // Combine constants that can be easily materialized with an add from a common
958  // base constant.
959  if (!ConstIntCandVec.empty())
960    findBaseConstants(nullptr);
961  for (const auto &MapEntry : ConstGEPCandMap)
962    if (!MapEntry.second.empty())
963      findBaseConstants(MapEntry.first);
964
965  // Finally hoist the base constant and emit materialization code for dependent
966  // constants.
967  bool MadeChange = false;
968  if (!ConstIntInfoVec.empty())
969    MadeChange = emitBaseConstants(nullptr);
970  for (const auto &MapEntry : ConstGEPInfoMap)
971    if (!MapEntry.second.empty())
972      MadeChange |= emitBaseConstants(MapEntry.first);
973
974
975  // Cleanup dead instructions.
976  deleteDeadCastInst();
977
978  cleanup();
979
980  return MadeChange;
981}
982
983PreservedAnalyses ConstantHoistingPass::run(Function &F,
984                                            FunctionAnalysisManager &AM) {
985  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
986  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
987  auto BFI = ConstHoistWithBlockFrequency
988                 ? &AM.getResult<BlockFrequencyAnalysis>(F)
989                 : nullptr;
990  auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
991  auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
992  if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
993    return PreservedAnalyses::all();
994
995  PreservedAnalyses PA;
996  PA.preserveSet<CFGAnalyses>();
997  return PA;
998}
999