1//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file defines ObjC ARC optimizations. ARC stands for Automatic
11/// Reference Counting and is a system for managing reference counts for objects
12/// in Objective C.
13///
14/// The optimizations performed include elimination of redundant, partially
15/// redundant, and inconsequential reference count operations, elimination of
16/// redundant weak pointer operations, and numerous minor simplifications.
17///
18/// WARNING: This file knows about certain library functions. It recognizes them
19/// by name, and hardwires knowledge of their semantics.
20///
21/// WARNING: This file knows about how certain Objective-C library functions are
22/// used. Naive LLVM IR transformations which would otherwise be
23/// behavior-preserving may break these assumptions.
24//
25//===----------------------------------------------------------------------===//
26
27#include "ARCRuntimeEntryPoints.h"
28#include "BlotMapVector.h"
29#include "DependencyAnalysis.h"
30#include "ObjCARC.h"
31#include "ProvenanceAnalysis.h"
32#include "PtrState.h"
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/None.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/Analysis/AliasAnalysis.h"
40#include "llvm/Analysis/EHPersonalities.h"
41#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
42#include "llvm/Analysis/ObjCARCAnalysisUtils.h"
43#include "llvm/Analysis/ObjCARCInstKind.h"
44#include "llvm/Analysis/ObjCARCUtil.h"
45#include "llvm/IR/BasicBlock.h"
46#include "llvm/IR/CFG.h"
47#include "llvm/IR/Constant.h"
48#include "llvm/IR/Constants.h"
49#include "llvm/IR/DerivedTypes.h"
50#include "llvm/IR/Function.h"
51#include "llvm/IR/GlobalVariable.h"
52#include "llvm/IR/InstIterator.h"
53#include "llvm/IR/InstrTypes.h"
54#include "llvm/IR/Instruction.h"
55#include "llvm/IR/Instructions.h"
56#include "llvm/IR/LLVMContext.h"
57#include "llvm/IR/Metadata.h"
58#include "llvm/IR/Type.h"
59#include "llvm/IR/User.h"
60#include "llvm/IR/Value.h"
61#include "llvm/InitializePasses.h"
62#include "llvm/Pass.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/Debug.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/raw_ostream.h"
69#include "llvm/Transforms/ObjCARC.h"
70#include <cassert>
71#include <iterator>
72#include <utility>
73
74using namespace llvm;
75using namespace llvm::objcarc;
76
77#define DEBUG_TYPE "objc-arc-opts"
78
79static cl::opt<unsigned> MaxPtrStates("arc-opt-max-ptr-states",
80    cl::Hidden,
81    cl::desc("Maximum number of ptr states the optimizer keeps track of"),
82    cl::init(4095));
83
84/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
85/// @{
86
87/// This is similar to GetRCIdentityRoot but it stops as soon
88/// as it finds a value with multiple uses.
89static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
90  // ConstantData (like ConstantPointerNull and UndefValue) is used across
91  // modules.  It's never a single-use value.
92  if (isa<ConstantData>(Arg))
93    return nullptr;
94
95  if (Arg->hasOneUse()) {
96    if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
97      return FindSingleUseIdentifiedObject(BC->getOperand(0));
98    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
99      if (GEP->hasAllZeroIndices())
100        return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
101    if (IsForwarding(GetBasicARCInstKind(Arg)))
102      return FindSingleUseIdentifiedObject(
103               cast<CallInst>(Arg)->getArgOperand(0));
104    if (!IsObjCIdentifiedObject(Arg))
105      return nullptr;
106    return Arg;
107  }
108
109  // If we found an identifiable object but it has multiple uses, but they are
110  // trivial uses, we can still consider this to be a single-use value.
111  if (IsObjCIdentifiedObject(Arg)) {
112    for (const User *U : Arg->users())
113      if (!U->use_empty() || GetRCIdentityRoot(U) != Arg)
114         return nullptr;
115
116    return Arg;
117  }
118
119  return nullptr;
120}
121
122/// @}
123///
124/// \defgroup ARCOpt ARC Optimization.
125/// @{
126
127// TODO: On code like this:
128//
129// objc_retain(%x)
130// stuff_that_cannot_release()
131// objc_autorelease(%x)
132// stuff_that_cannot_release()
133// objc_retain(%x)
134// stuff_that_cannot_release()
135// objc_autorelease(%x)
136//
137// The second retain and autorelease can be deleted.
138
139// TODO: It should be possible to delete
140// objc_autoreleasePoolPush and objc_autoreleasePoolPop
141// pairs if nothing is actually autoreleased between them. Also, autorelease
142// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
143// after inlining) can be turned into plain release calls.
144
145// TODO: Critical-edge splitting. If the optimial insertion point is
146// a critical edge, the current algorithm has to fail, because it doesn't
147// know how to split edges. It should be possible to make the optimizer
148// think in terms of edges, rather than blocks, and then split critical
149// edges on demand.
150
151// TODO: OptimizeSequences could generalized to be Interprocedural.
152
153// TODO: Recognize that a bunch of other objc runtime calls have
154// non-escaping arguments and non-releasing arguments, and may be
155// non-autoreleasing.
156
157// TODO: Sink autorelease calls as far as possible. Unfortunately we
158// usually can't sink them past other calls, which would be the main
159// case where it would be useful.
160
161// TODO: The pointer returned from objc_loadWeakRetained is retained.
162
163// TODO: Delete release+retain pairs (rare).
164
165STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
166STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
167STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
168STATISTIC(NumRets,        "Number of return value forwarding "
169                          "retain+autoreleases eliminated");
170STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
171STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
172#ifndef NDEBUG
173STATISTIC(NumRetainsBeforeOpt,
174          "Number of retains before optimization");
175STATISTIC(NumReleasesBeforeOpt,
176          "Number of releases before optimization");
177STATISTIC(NumRetainsAfterOpt,
178          "Number of retains after optimization");
179STATISTIC(NumReleasesAfterOpt,
180          "Number of releases after optimization");
181#endif
182
183namespace {
184
185  /// Per-BasicBlock state.
186  class BBState {
187    /// The number of unique control paths from the entry which can reach this
188    /// block.
189    unsigned TopDownPathCount = 0;
190
191    /// The number of unique control paths to exits from this block.
192    unsigned BottomUpPathCount = 0;
193
194    /// The top-down traversal uses this to record information known about a
195    /// pointer at the bottom of each block.
196    BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown;
197
198    /// The bottom-up traversal uses this to record information known about a
199    /// pointer at the top of each block.
200    BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp;
201
202    /// Effective predecessors of the current block ignoring ignorable edges and
203    /// ignored backedges.
204    SmallVector<BasicBlock *, 2> Preds;
205
206    /// Effective successors of the current block ignoring ignorable edges and
207    /// ignored backedges.
208    SmallVector<BasicBlock *, 2> Succs;
209
210  public:
211    static const unsigned OverflowOccurredValue;
212
213    BBState() = default;
214
215    using top_down_ptr_iterator = decltype(PerPtrTopDown)::iterator;
216    using const_top_down_ptr_iterator = decltype(PerPtrTopDown)::const_iterator;
217
218    top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
219    top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
220    const_top_down_ptr_iterator top_down_ptr_begin() const {
221      return PerPtrTopDown.begin();
222    }
223    const_top_down_ptr_iterator top_down_ptr_end() const {
224      return PerPtrTopDown.end();
225    }
226    bool hasTopDownPtrs() const {
227      return !PerPtrTopDown.empty();
228    }
229
230    unsigned top_down_ptr_list_size() const {
231      return std::distance(top_down_ptr_begin(), top_down_ptr_end());
232    }
233
234    using bottom_up_ptr_iterator = decltype(PerPtrBottomUp)::iterator;
235    using const_bottom_up_ptr_iterator =
236        decltype(PerPtrBottomUp)::const_iterator;
237
238    bottom_up_ptr_iterator bottom_up_ptr_begin() {
239      return PerPtrBottomUp.begin();
240    }
241    bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
242    const_bottom_up_ptr_iterator bottom_up_ptr_begin() const {
243      return PerPtrBottomUp.begin();
244    }
245    const_bottom_up_ptr_iterator bottom_up_ptr_end() const {
246      return PerPtrBottomUp.end();
247    }
248    bool hasBottomUpPtrs() const {
249      return !PerPtrBottomUp.empty();
250    }
251
252    unsigned bottom_up_ptr_list_size() const {
253      return std::distance(bottom_up_ptr_begin(), bottom_up_ptr_end());
254    }
255
256    /// Mark this block as being an entry block, which has one path from the
257    /// entry by definition.
258    void SetAsEntry() { TopDownPathCount = 1; }
259
260    /// Mark this block as being an exit block, which has one path to an exit by
261    /// definition.
262    void SetAsExit()  { BottomUpPathCount = 1; }
263
264    /// Attempt to find the PtrState object describing the top down state for
265    /// pointer Arg. Return a new initialized PtrState describing the top down
266    /// state for Arg if we do not find one.
267    TopDownPtrState &getPtrTopDownState(const Value *Arg) {
268      return PerPtrTopDown[Arg];
269    }
270
271    /// Attempt to find the PtrState object describing the bottom up state for
272    /// pointer Arg. Return a new initialized PtrState describing the bottom up
273    /// state for Arg if we do not find one.
274    BottomUpPtrState &getPtrBottomUpState(const Value *Arg) {
275      return PerPtrBottomUp[Arg];
276    }
277
278    /// Attempt to find the PtrState object describing the bottom up state for
279    /// pointer Arg.
280    bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) {
281      return PerPtrBottomUp.find(Arg);
282    }
283
284    void clearBottomUpPointers() {
285      PerPtrBottomUp.clear();
286    }
287
288    void clearTopDownPointers() {
289      PerPtrTopDown.clear();
290    }
291
292    void InitFromPred(const BBState &Other);
293    void InitFromSucc(const BBState &Other);
294    void MergePred(const BBState &Other);
295    void MergeSucc(const BBState &Other);
296
297    /// Compute the number of possible unique paths from an entry to an exit
298    /// which pass through this block. This is only valid after both the
299    /// top-down and bottom-up traversals are complete.
300    ///
301    /// Returns true if overflow occurred. Returns false if overflow did not
302    /// occur.
303    bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
304      if (TopDownPathCount == OverflowOccurredValue ||
305          BottomUpPathCount == OverflowOccurredValue)
306        return true;
307      unsigned long long Product =
308        (unsigned long long)TopDownPathCount*BottomUpPathCount;
309      // Overflow occurred if any of the upper bits of Product are set or if all
310      // the lower bits of Product are all set.
311      return (Product >> 32) ||
312             ((PathCount = Product) == OverflowOccurredValue);
313    }
314
315    // Specialized CFG utilities.
316    using edge_iterator = SmallVectorImpl<BasicBlock *>::const_iterator;
317
318    edge_iterator pred_begin() const { return Preds.begin(); }
319    edge_iterator pred_end() const { return Preds.end(); }
320    edge_iterator succ_begin() const { return Succs.begin(); }
321    edge_iterator succ_end() const { return Succs.end(); }
322
323    void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
324    void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
325
326    bool isExit() const { return Succs.empty(); }
327  };
328
329} // end anonymous namespace
330
331const unsigned BBState::OverflowOccurredValue = 0xffffffff;
332
333namespace llvm {
334
335raw_ostream &operator<<(raw_ostream &OS,
336                        BBState &BBState) LLVM_ATTRIBUTE_UNUSED;
337
338} // end namespace llvm
339
340void BBState::InitFromPred(const BBState &Other) {
341  PerPtrTopDown = Other.PerPtrTopDown;
342  TopDownPathCount = Other.TopDownPathCount;
343}
344
345void BBState::InitFromSucc(const BBState &Other) {
346  PerPtrBottomUp = Other.PerPtrBottomUp;
347  BottomUpPathCount = Other.BottomUpPathCount;
348}
349
350/// The top-down traversal uses this to merge information about predecessors to
351/// form the initial state for a new block.
352void BBState::MergePred(const BBState &Other) {
353  if (TopDownPathCount == OverflowOccurredValue)
354    return;
355
356  // Other.TopDownPathCount can be 0, in which case it is either dead or a
357  // loop backedge. Loop backedges are special.
358  TopDownPathCount += Other.TopDownPathCount;
359
360  // In order to be consistent, we clear the top down pointers when by adding
361  // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
362  // has not occurred.
363  if (TopDownPathCount == OverflowOccurredValue) {
364    clearTopDownPointers();
365    return;
366  }
367
368  // Check for overflow. If we have overflow, fall back to conservative
369  // behavior.
370  if (TopDownPathCount < Other.TopDownPathCount) {
371    TopDownPathCount = OverflowOccurredValue;
372    clearTopDownPointers();
373    return;
374  }
375
376  // For each entry in the other set, if our set has an entry with the same key,
377  // merge the entries. Otherwise, copy the entry and merge it with an empty
378  // entry.
379  for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end();
380       MI != ME; ++MI) {
381    auto Pair = PerPtrTopDown.insert(*MI);
382    Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second,
383                             /*TopDown=*/true);
384  }
385
386  // For each entry in our set, if the other set doesn't have an entry with the
387  // same key, force it to merge with an empty entry.
388  for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI)
389    if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
390      MI->second.Merge(TopDownPtrState(), /*TopDown=*/true);
391}
392
393/// The bottom-up traversal uses this to merge information about successors to
394/// form the initial state for a new block.
395void BBState::MergeSucc(const BBState &Other) {
396  if (BottomUpPathCount == OverflowOccurredValue)
397    return;
398
399  // Other.BottomUpPathCount can be 0, in which case it is either dead or a
400  // loop backedge. Loop backedges are special.
401  BottomUpPathCount += Other.BottomUpPathCount;
402
403  // In order to be consistent, we clear the top down pointers when by adding
404  // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
405  // has not occurred.
406  if (BottomUpPathCount == OverflowOccurredValue) {
407    clearBottomUpPointers();
408    return;
409  }
410
411  // Check for overflow. If we have overflow, fall back to conservative
412  // behavior.
413  if (BottomUpPathCount < Other.BottomUpPathCount) {
414    BottomUpPathCount = OverflowOccurredValue;
415    clearBottomUpPointers();
416    return;
417  }
418
419  // For each entry in the other set, if our set has an entry with the
420  // same key, merge the entries. Otherwise, copy the entry and merge
421  // it with an empty entry.
422  for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end();
423       MI != ME; ++MI) {
424    auto Pair = PerPtrBottomUp.insert(*MI);
425    Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second,
426                             /*TopDown=*/false);
427  }
428
429  // For each entry in our set, if the other set doesn't have an entry
430  // with the same key, force it to merge with an empty entry.
431  for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME;
432       ++MI)
433    if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
434      MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false);
435}
436
437raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) {
438  // Dump the pointers we are tracking.
439  OS << "    TopDown State:\n";
440  if (!BBInfo.hasTopDownPtrs()) {
441    LLVM_DEBUG(dbgs() << "        NONE!\n");
442  } else {
443    for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end();
444         I != E; ++I) {
445      const PtrState &P = I->second;
446      OS << "        Ptr: " << *I->first
447         << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
448         << "\n            ImpreciseRelease: "
449           << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
450         << "            HasCFGHazards:    "
451           << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
452         << "            KnownPositive:    "
453           << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
454         << "            Seq:              "
455         << P.GetSeq() << "\n";
456    }
457  }
458
459  OS << "    BottomUp State:\n";
460  if (!BBInfo.hasBottomUpPtrs()) {
461    LLVM_DEBUG(dbgs() << "        NONE!\n");
462  } else {
463    for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end();
464         I != E; ++I) {
465      const PtrState &P = I->second;
466      OS << "        Ptr: " << *I->first
467         << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
468         << "\n            ImpreciseRelease: "
469           << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
470         << "            HasCFGHazards:    "
471           << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
472         << "            KnownPositive:    "
473           << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
474         << "            Seq:              "
475         << P.GetSeq() << "\n";
476    }
477  }
478
479  return OS;
480}
481
482namespace {
483
484  /// The main ARC optimization pass.
485class ObjCARCOpt {
486  bool Changed;
487  bool CFGChanged;
488  ProvenanceAnalysis PA;
489
490  /// A cache of references to runtime entry point constants.
491  ARCRuntimeEntryPoints EP;
492
493  /// A cache of MDKinds that can be passed into other functions to propagate
494  /// MDKind identifiers.
495  ARCMDKindCache MDKindCache;
496
497  BundledRetainClaimRVs *BundledInsts = nullptr;
498
499  /// A flag indicating whether the optimization that removes or moves
500  /// retain/release pairs should be performed.
501  bool DisableRetainReleasePairing = false;
502
503  /// Flags which determine whether each of the interesting runtime functions
504  /// is in fact used in the current function.
505  unsigned UsedInThisFunction;
506
507  bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
508  void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
509                                 ARCInstKind &Class);
510  void OptimizeIndividualCalls(Function &F);
511
512  /// Optimize an individual call, optionally passing the
513  /// GetArgRCIdentityRoot if it has already been computed.
514  void OptimizeIndividualCallImpl(
515      Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
516      Instruction *Inst, ARCInstKind Class, const Value *Arg);
517
518  /// Try to optimize an AutoreleaseRV with a RetainRV or ClaimRV.  If the
519  /// optimization occurs, returns true to indicate that the caller should
520  /// assume the instructions are dead.
521  bool OptimizeInlinedAutoreleaseRVCall(
522      Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
523      Instruction *Inst, const Value *&Arg, ARCInstKind Class,
524      Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg);
525
526  void CheckForCFGHazards(const BasicBlock *BB,
527                          DenseMap<const BasicBlock *, BBState> &BBStates,
528                          BBState &MyStates) const;
529  bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB,
530                                BlotMapVector<Value *, RRInfo> &Retains,
531                                BBState &MyStates);
532  bool VisitBottomUp(BasicBlock *BB,
533                     DenseMap<const BasicBlock *, BBState> &BBStates,
534                     BlotMapVector<Value *, RRInfo> &Retains);
535  bool VisitInstructionTopDown(Instruction *Inst,
536                               DenseMap<Value *, RRInfo> &Releases,
537                               BBState &MyStates);
538  bool VisitTopDown(BasicBlock *BB,
539                    DenseMap<const BasicBlock *, BBState> &BBStates,
540                    DenseMap<Value *, RRInfo> &Releases);
541  bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates,
542             BlotMapVector<Value *, RRInfo> &Retains,
543             DenseMap<Value *, RRInfo> &Releases);
544
545  void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
546                 BlotMapVector<Value *, RRInfo> &Retains,
547                 DenseMap<Value *, RRInfo> &Releases,
548                 SmallVectorImpl<Instruction *> &DeadInsts, Module *M);
549
550  bool PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates,
551                                BlotMapVector<Value *, RRInfo> &Retains,
552                                DenseMap<Value *, RRInfo> &Releases, Module *M,
553                                Instruction *Retain,
554                                SmallVectorImpl<Instruction *> &DeadInsts,
555                                RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
556                                Value *Arg, bool KnownSafe,
557                                bool &AnyPairsCompletelyEliminated);
558
559  bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
560                            BlotMapVector<Value *, RRInfo> &Retains,
561                            DenseMap<Value *, RRInfo> &Releases, Module *M);
562
563  void OptimizeWeakCalls(Function &F);
564
565  bool OptimizeSequences(Function &F);
566
567  void OptimizeReturns(Function &F);
568
569#ifndef NDEBUG
570  void GatherStatistics(Function &F, bool AfterOptimization = false);
571#endif
572
573  public:
574    void init(Module &M);
575    bool run(Function &F, AAResults &AA);
576    void releaseMemory();
577    bool hasCFGChanged() const { return CFGChanged; }
578};
579
580/// The main ARC optimization pass.
581class ObjCARCOptLegacyPass : public FunctionPass {
582public:
583  ObjCARCOptLegacyPass() : FunctionPass(ID) {
584    initializeObjCARCOptLegacyPassPass(*PassRegistry::getPassRegistry());
585  }
586  void getAnalysisUsage(AnalysisUsage &AU) const override;
587  bool doInitialization(Module &M) override {
588    OCAO.init(M);
589    return false;
590  }
591  bool runOnFunction(Function &F) override {
592    return OCAO.run(F, getAnalysis<AAResultsWrapperPass>().getAAResults());
593  }
594  void releaseMemory() override { OCAO.releaseMemory(); }
595  static char ID;
596
597private:
598  ObjCARCOpt OCAO;
599};
600} // end anonymous namespace
601
602char ObjCARCOptLegacyPass::ID = 0;
603
604INITIALIZE_PASS_BEGIN(ObjCARCOptLegacyPass, "objc-arc", "ObjC ARC optimization",
605                      false, false)
606INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
607INITIALIZE_PASS_END(ObjCARCOptLegacyPass, "objc-arc", "ObjC ARC optimization",
608                    false, false)
609
610Pass *llvm::createObjCARCOptPass() { return new ObjCARCOptLegacyPass(); }
611
612void ObjCARCOptLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
613  AU.addRequired<ObjCARCAAWrapperPass>();
614  AU.addRequired<AAResultsWrapperPass>();
615}
616
617/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
618/// not a return value.
619bool
620ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
621  // Check for the argument being from an immediately preceding call or invoke.
622  const Value *Arg = GetArgRCIdentityRoot(RetainRV);
623  if (const Instruction *Call = dyn_cast<CallBase>(Arg)) {
624    if (Call->getParent() == RetainRV->getParent()) {
625      BasicBlock::const_iterator I(Call);
626      ++I;
627      while (IsNoopInstruction(&*I))
628        ++I;
629      if (&*I == RetainRV)
630        return false;
631    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
632      BasicBlock *RetainRVParent = RetainRV->getParent();
633      if (II->getNormalDest() == RetainRVParent) {
634        BasicBlock::const_iterator I = RetainRVParent->begin();
635        while (IsNoopInstruction(&*I))
636          ++I;
637        if (&*I == RetainRV)
638          return false;
639      }
640    }
641  }
642
643  assert(!BundledInsts->contains(RetainRV) &&
644         "a bundled retainRV's argument should be a call");
645
646  // Turn it to a plain objc_retain.
647  Changed = true;
648  ++NumPeeps;
649
650  LLVM_DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
651                       "objc_retain since the operand is not a return value.\n"
652                       "Old = "
653                    << *RetainRV << "\n");
654
655  Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain);
656  cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
657
658  LLVM_DEBUG(dbgs() << "New = " << *RetainRV << "\n");
659
660  return false;
661}
662
663bool ObjCARCOpt::OptimizeInlinedAutoreleaseRVCall(
664    Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
665    Instruction *Inst, const Value *&Arg, ARCInstKind Class,
666    Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg) {
667  if (BundledInsts->contains(Inst))
668    return false;
669
670  // Must be in the same basic block.
671  assert(Inst->getParent() == AutoreleaseRV->getParent());
672
673  // Must operate on the same root.
674  Arg = GetArgRCIdentityRoot(Inst);
675  AutoreleaseRVArg = GetArgRCIdentityRoot(AutoreleaseRV);
676  if (Arg != AutoreleaseRVArg) {
677    // If there isn't an exact match, check if we have equivalent PHIs.
678    const PHINode *PN = dyn_cast<PHINode>(Arg);
679    if (!PN)
680      return false;
681
682    SmallVector<const Value *, 4> ArgUsers;
683    getEquivalentPHIs(*PN, ArgUsers);
684    if (!llvm::is_contained(ArgUsers, AutoreleaseRVArg))
685      return false;
686  }
687
688  // Okay, this is a match.  Merge them.
689  ++NumPeeps;
690  LLVM_DEBUG(dbgs() << "Found inlined objc_autoreleaseReturnValue '"
691                    << *AutoreleaseRV << "' paired with '" << *Inst << "'\n");
692
693  // Delete the RV pair, starting with the AutoreleaseRV.
694  AutoreleaseRV->replaceAllUsesWith(
695      cast<CallInst>(AutoreleaseRV)->getArgOperand(0));
696  Changed = true;
697  EraseInstruction(AutoreleaseRV);
698  if (Class == ARCInstKind::RetainRV) {
699    // AutoreleaseRV and RetainRV cancel out.  Delete the RetainRV.
700    Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
701    EraseInstruction(Inst);
702    return true;
703  }
704
705  // ClaimRV is a frontend peephole for RetainRV + Release.  Since the
706  // AutoreleaseRV and RetainRV cancel out, replace the ClaimRV with a Release.
707  assert(Class == ARCInstKind::ClaimRV);
708  Value *CallArg = cast<CallInst>(Inst)->getArgOperand(0);
709  CallInst *Release = CallInst::Create(
710      EP.get(ARCRuntimeEntryPointKind::Release), CallArg, "", Inst);
711  assert(IsAlwaysTail(ARCInstKind::ClaimRV) &&
712         "Expected ClaimRV to be safe to tail call");
713  Release->setTailCall();
714  Inst->replaceAllUsesWith(CallArg);
715  EraseInstruction(Inst);
716
717  // Run the normal optimizations on Release.
718  OptimizeIndividualCallImpl(F, BlockColors, Release, ARCInstKind::Release,
719                             Arg);
720  return true;
721}
722
723/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
724/// used as a return value.
725void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F,
726                                           Instruction *AutoreleaseRV,
727                                           ARCInstKind &Class) {
728  // Check for a return of the pointer value.
729  const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV);
730
731  // If the argument is ConstantPointerNull or UndefValue, its other users
732  // aren't actually interesting to look at.
733  if (isa<ConstantData>(Ptr))
734    return;
735
736  SmallVector<const Value *, 2> Users;
737  Users.push_back(Ptr);
738
739  // Add PHIs that are equivalent to Ptr to Users.
740  if (const PHINode *PN = dyn_cast<PHINode>(Ptr))
741    getEquivalentPHIs(*PN, Users);
742
743  do {
744    Ptr = Users.pop_back_val();
745    for (const User *U : Ptr->users()) {
746      if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV)
747        return;
748      if (isa<BitCastInst>(U))
749        Users.push_back(U);
750    }
751  } while (!Users.empty());
752
753  Changed = true;
754  ++NumPeeps;
755
756  LLVM_DEBUG(
757      dbgs() << "Transforming objc_autoreleaseReturnValue => "
758                "objc_autorelease since its operand is not used as a return "
759                "value.\n"
760                "Old = "
761             << *AutoreleaseRV << "\n");
762
763  CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
764  Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease);
765  AutoreleaseRVCI->setCalledFunction(NewDecl);
766  AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
767  Class = ARCInstKind::Autorelease;
768
769  LLVM_DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
770}
771
772namespace {
773Instruction *
774CloneCallInstForBB(CallInst &CI, BasicBlock &BB,
775                   const DenseMap<BasicBlock *, ColorVector> &BlockColors) {
776  SmallVector<OperandBundleDef, 1> OpBundles;
777  for (unsigned I = 0, E = CI.getNumOperandBundles(); I != E; ++I) {
778    auto Bundle = CI.getOperandBundleAt(I);
779    // Funclets will be reassociated in the future.
780    if (Bundle.getTagID() == LLVMContext::OB_funclet)
781      continue;
782    OpBundles.emplace_back(Bundle);
783  }
784
785  if (!BlockColors.empty()) {
786    const ColorVector &CV = BlockColors.find(&BB)->second;
787    assert(CV.size() == 1 && "non-unique color for block!");
788    Instruction *EHPad = CV.front()->getFirstNonPHI();
789    if (EHPad->isEHPad())
790      OpBundles.emplace_back("funclet", EHPad);
791  }
792
793  return CallInst::Create(&CI, OpBundles);
794}
795}
796
797/// Visit each call, one at a time, and make simplifications without doing any
798/// additional analysis.
799void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
800  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
801  // Reset all the flags in preparation for recomputing them.
802  UsedInThisFunction = 0;
803
804  DenseMap<BasicBlock *, ColorVector> BlockColors;
805  if (F.hasPersonalityFn() &&
806      isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
807    BlockColors = colorEHFunclets(F);
808
809  // Store any delayed AutoreleaseRV intrinsics, so they can be easily paired
810  // with RetainRV and ClaimRV.
811  Instruction *DelayedAutoreleaseRV = nullptr;
812  const Value *DelayedAutoreleaseRVArg = nullptr;
813  auto setDelayedAutoreleaseRV = [&](Instruction *AutoreleaseRV) {
814    assert(!DelayedAutoreleaseRV || !AutoreleaseRV);
815    DelayedAutoreleaseRV = AutoreleaseRV;
816    DelayedAutoreleaseRVArg = nullptr;
817  };
818  auto optimizeDelayedAutoreleaseRV = [&]() {
819    if (!DelayedAutoreleaseRV)
820      return;
821    OptimizeIndividualCallImpl(F, BlockColors, DelayedAutoreleaseRV,
822                               ARCInstKind::AutoreleaseRV,
823                               DelayedAutoreleaseRVArg);
824    setDelayedAutoreleaseRV(nullptr);
825  };
826  auto shouldDelayAutoreleaseRV = [&](Instruction *NonARCInst) {
827    // Nothing to delay, but we may as well skip the logic below.
828    if (!DelayedAutoreleaseRV)
829      return true;
830
831    // If we hit the end of the basic block we're not going to find an RV-pair.
832    // Stop delaying.
833    if (NonARCInst->isTerminator())
834      return false;
835
836    // Given the frontend rules for emitting AutoreleaseRV, RetainRV, and
837    // ClaimRV, it's probably safe to skip over even opaque function calls
838    // here since OptimizeInlinedAutoreleaseRVCall will confirm that they
839    // have the same RCIdentityRoot.  However, what really matters is
840    // skipping instructions or intrinsics that the inliner could leave behind;
841    // be conservative for now and don't skip over opaque calls, which could
842    // potentially include other ARC calls.
843    auto *CB = dyn_cast<CallBase>(NonARCInst);
844    if (!CB)
845      return true;
846    return CB->getIntrinsicID() != Intrinsic::not_intrinsic;
847  };
848
849  // Visit all objc_* calls in F.
850  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
851    Instruction *Inst = &*I++;
852
853    if (auto *CI = dyn_cast<CallInst>(Inst))
854      if (objcarc::hasAttachedCallOpBundle(CI)) {
855        BundledInsts->insertRVCall(&*I, CI);
856        Changed = true;
857      }
858
859    ARCInstKind Class = GetBasicARCInstKind(Inst);
860
861    // Skip this loop if this instruction isn't itself an ARC intrinsic.
862    const Value *Arg = nullptr;
863    switch (Class) {
864    default:
865      optimizeDelayedAutoreleaseRV();
866      break;
867    case ARCInstKind::CallOrUser:
868    case ARCInstKind::User:
869    case ARCInstKind::None:
870      // This is a non-ARC instruction.  If we're delaying an AutoreleaseRV,
871      // check if it's safe to skip over it; if not, optimize the AutoreleaseRV
872      // now.
873      if (!shouldDelayAutoreleaseRV(Inst))
874        optimizeDelayedAutoreleaseRV();
875      continue;
876    case ARCInstKind::AutoreleaseRV:
877      optimizeDelayedAutoreleaseRV();
878      setDelayedAutoreleaseRV(Inst);
879      continue;
880    case ARCInstKind::RetainRV:
881    case ARCInstKind::ClaimRV:
882      if (DelayedAutoreleaseRV) {
883        // We have a potential RV pair.  Check if they cancel out.
884        if (OptimizeInlinedAutoreleaseRVCall(F, BlockColors, Inst, Arg, Class,
885                                             DelayedAutoreleaseRV,
886                                             DelayedAutoreleaseRVArg)) {
887          setDelayedAutoreleaseRV(nullptr);
888          continue;
889        }
890        optimizeDelayedAutoreleaseRV();
891      }
892      break;
893    }
894
895    OptimizeIndividualCallImpl(F, BlockColors, Inst, Class, Arg);
896  }
897
898  // Catch the final delayed AutoreleaseRV.
899  optimizeDelayedAutoreleaseRV();
900}
901
902/// This function returns true if the value is inert. An ObjC ARC runtime call
903/// taking an inert operand can be safely deleted.
904static bool isInertARCValue(Value *V, SmallPtrSet<Value *, 1> &VisitedPhis) {
905  V = V->stripPointerCasts();
906
907  if (IsNullOrUndef(V))
908    return true;
909
910  // See if this is a global attribute annotated with an 'objc_arc_inert'.
911  if (auto *GV = dyn_cast<GlobalVariable>(V))
912    if (GV->hasAttribute("objc_arc_inert"))
913      return true;
914
915  if (auto PN = dyn_cast<PHINode>(V)) {
916    // Ignore this phi if it has already been discovered.
917    if (!VisitedPhis.insert(PN).second)
918      return true;
919    // Look through phis's operands.
920    for (Value *Opnd : PN->incoming_values())
921      if (!isInertARCValue(Opnd, VisitedPhis))
922        return false;
923    return true;
924  }
925
926  return false;
927}
928
929void ObjCARCOpt::OptimizeIndividualCallImpl(
930    Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
931    Instruction *Inst, ARCInstKind Class, const Value *Arg) {
932  LLVM_DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
933
934  // We can delete this call if it takes an inert value.
935  SmallPtrSet<Value *, 1> VisitedPhis;
936
937  if (BundledInsts->contains(Inst)) {
938    UsedInThisFunction |= 1 << unsigned(Class);
939    return;
940  }
941
942  if (IsNoopOnGlobal(Class))
943    if (isInertARCValue(Inst->getOperand(0), VisitedPhis)) {
944      if (!Inst->getType()->isVoidTy())
945        Inst->replaceAllUsesWith(Inst->getOperand(0));
946      Inst->eraseFromParent();
947      Changed = true;
948      return;
949    }
950
951  switch (Class) {
952  default:
953    break;
954
955  // Delete no-op casts. These function calls have special semantics, but
956  // the semantics are entirely implemented via lowering in the front-end,
957  // so by the time they reach the optimizer, they are just no-op calls
958  // which return their argument.
959  //
960  // There are gray areas here, as the ability to cast reference-counted
961  // pointers to raw void* and back allows code to break ARC assumptions,
962  // however these are currently considered to be unimportant.
963  case ARCInstKind::NoopCast:
964    Changed = true;
965    ++NumNoops;
966    LLVM_DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
967    EraseInstruction(Inst);
968    return;
969
970  // If the pointer-to-weak-pointer is null, it's undefined behavior.
971  case ARCInstKind::StoreWeak:
972  case ARCInstKind::LoadWeak:
973  case ARCInstKind::LoadWeakRetained:
974  case ARCInstKind::InitWeak:
975  case ARCInstKind::DestroyWeak: {
976    CallInst *CI = cast<CallInst>(Inst);
977    if (IsNullOrUndef(CI->getArgOperand(0))) {
978      Changed = true;
979      Type *Ty = CI->getArgOperand(0)->getType();
980      new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
981                    Constant::getNullValue(Ty), CI);
982      Value *NewValue = UndefValue::get(CI->getType());
983      LLVM_DEBUG(
984          dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
985                    "\nOld = "
986                 << *CI << "\nNew = " << *NewValue << "\n");
987      CI->replaceAllUsesWith(NewValue);
988      CI->eraseFromParent();
989      return;
990    }
991    break;
992  }
993  case ARCInstKind::CopyWeak:
994  case ARCInstKind::MoveWeak: {
995    CallInst *CI = cast<CallInst>(Inst);
996    if (IsNullOrUndef(CI->getArgOperand(0)) ||
997        IsNullOrUndef(CI->getArgOperand(1))) {
998      Changed = true;
999      Type *Ty = CI->getArgOperand(0)->getType();
1000      new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
1001                    Constant::getNullValue(Ty), CI);
1002
1003      Value *NewValue = UndefValue::get(CI->getType());
1004      LLVM_DEBUG(
1005          dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
1006                    "\nOld = "
1007                 << *CI << "\nNew = " << *NewValue << "\n");
1008
1009      CI->replaceAllUsesWith(NewValue);
1010      CI->eraseFromParent();
1011      return;
1012    }
1013    break;
1014  }
1015  case ARCInstKind::RetainRV:
1016    if (OptimizeRetainRVCall(F, Inst))
1017      return;
1018    break;
1019  case ARCInstKind::AutoreleaseRV:
1020    OptimizeAutoreleaseRVCall(F, Inst, Class);
1021    break;
1022  }
1023
1024  // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
1025  if (IsAutorelease(Class) && Inst->use_empty()) {
1026    CallInst *Call = cast<CallInst>(Inst);
1027    const Value *Arg = Call->getArgOperand(0);
1028    Arg = FindSingleUseIdentifiedObject(Arg);
1029    if (Arg) {
1030      Changed = true;
1031      ++NumAutoreleases;
1032
1033      // Create the declaration lazily.
1034      LLVMContext &C = Inst->getContext();
1035
1036      Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
1037      CallInst *NewCall =
1038          CallInst::Create(Decl, Call->getArgOperand(0), "", Call);
1039      NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease),
1040                           MDNode::get(C, None));
1041
1042      LLVM_DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
1043                           "since x is otherwise unused.\nOld: "
1044                        << *Call << "\nNew: " << *NewCall << "\n");
1045
1046      EraseInstruction(Call);
1047      Inst = NewCall;
1048      Class = ARCInstKind::Release;
1049    }
1050  }
1051
1052  // For functions which can never be passed stack arguments, add
1053  // a tail keyword.
1054  if (IsAlwaysTail(Class) && !cast<CallInst>(Inst)->isNoTailCall()) {
1055    Changed = true;
1056    LLVM_DEBUG(
1057        dbgs() << "Adding tail keyword to function since it can never be "
1058                  "passed stack args: "
1059               << *Inst << "\n");
1060    cast<CallInst>(Inst)->setTailCall();
1061  }
1062
1063  // Ensure that functions that can never have a "tail" keyword due to the
1064  // semantics of ARC truly do not do so.
1065  if (IsNeverTail(Class)) {
1066    Changed = true;
1067    LLVM_DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst
1068                      << "\n");
1069    cast<CallInst>(Inst)->setTailCall(false);
1070  }
1071
1072  // Set nounwind as needed.
1073  if (IsNoThrow(Class)) {
1074    Changed = true;
1075    LLVM_DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
1076                      << "\n");
1077    cast<CallInst>(Inst)->setDoesNotThrow();
1078  }
1079
1080  // Note: This catches instructions unrelated to ARC.
1081  if (!IsNoopOnNull(Class)) {
1082    UsedInThisFunction |= 1 << unsigned(Class);
1083    return;
1084  }
1085
1086  // If we haven't already looked up the root, look it up now.
1087  if (!Arg)
1088    Arg = GetArgRCIdentityRoot(Inst);
1089
1090  // ARC calls with null are no-ops. Delete them.
1091  if (IsNullOrUndef(Arg)) {
1092    Changed = true;
1093    ++NumNoops;
1094    LLVM_DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst
1095                      << "\n");
1096    EraseInstruction(Inst);
1097    return;
1098  }
1099
1100  // Keep track of which of retain, release, autorelease, and retain_block
1101  // are actually present in this function.
1102  UsedInThisFunction |= 1 << unsigned(Class);
1103
1104  // If Arg is a PHI, and one or more incoming values to the
1105  // PHI are null, and the call is control-equivalent to the PHI, and there
1106  // are no relevant side effects between the PHI and the call, and the call
1107  // is not a release that doesn't have the clang.imprecise_release tag, the
1108  // call could be pushed up to just those paths with non-null incoming
1109  // values. For now, don't bother splitting critical edges for this.
1110  if (Class == ARCInstKind::Release &&
1111      !Inst->getMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease)))
1112    return;
1113
1114  SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
1115  Worklist.push_back(std::make_pair(Inst, Arg));
1116  do {
1117    std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
1118    Inst = Pair.first;
1119    Arg = Pair.second;
1120
1121    const PHINode *PN = dyn_cast<PHINode>(Arg);
1122    if (!PN)
1123      continue;
1124
1125    // Determine if the PHI has any null operands, or any incoming
1126    // critical edges.
1127    bool HasNull = false;
1128    bool HasCriticalEdges = false;
1129    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1130      Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i));
1131      if (IsNullOrUndef(Incoming))
1132        HasNull = true;
1133      else if (PN->getIncomingBlock(i)->getTerminator()->getNumSuccessors() !=
1134               1) {
1135        HasCriticalEdges = true;
1136        break;
1137      }
1138    }
1139    // If we have null operands and no critical edges, optimize.
1140    if (HasCriticalEdges)
1141      continue;
1142    if (!HasNull)
1143      continue;
1144
1145    Instruction *DepInst = nullptr;
1146
1147    // Check that there is nothing that cares about the reference
1148    // count between the call and the phi.
1149    switch (Class) {
1150    case ARCInstKind::Retain:
1151    case ARCInstKind::RetainBlock:
1152      // These can always be moved up.
1153      break;
1154    case ARCInstKind::Release:
1155      // These can't be moved across things that care about the retain
1156      // count.
1157      DepInst = findSingleDependency(NeedsPositiveRetainCount, Arg,
1158                                     Inst->getParent(), Inst, PA);
1159      break;
1160    case ARCInstKind::Autorelease:
1161      // These can't be moved across autorelease pool scope boundaries.
1162      DepInst = findSingleDependency(AutoreleasePoolBoundary, Arg,
1163                                     Inst->getParent(), Inst, PA);
1164      break;
1165    case ARCInstKind::ClaimRV:
1166    case ARCInstKind::RetainRV:
1167    case ARCInstKind::AutoreleaseRV:
1168      // Don't move these; the RV optimization depends on the autoreleaseRV
1169      // being tail called, and the retainRV being immediately after a call
1170      // (which might still happen if we get lucky with codegen layout, but
1171      // it's not worth taking the chance).
1172      continue;
1173    default:
1174      llvm_unreachable("Invalid dependence flavor");
1175    }
1176
1177    if (DepInst != PN)
1178      continue;
1179
1180    Changed = true;
1181    ++NumPartialNoops;
1182    // Clone the call into each predecessor that has a non-null value.
1183    CallInst *CInst = cast<CallInst>(Inst);
1184    Type *ParamTy = CInst->getArgOperand(0)->getType();
1185    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1186      Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i));
1187      if (IsNullOrUndef(Incoming))
1188        continue;
1189      Value *Op = PN->getIncomingValue(i);
1190      Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
1191      CallInst *Clone = cast<CallInst>(
1192          CloneCallInstForBB(*CInst, *InsertPos->getParent(), BlockColors));
1193      if (Op->getType() != ParamTy)
1194        Op = new BitCastInst(Op, ParamTy, "", InsertPos);
1195      Clone->setArgOperand(0, Op);
1196      Clone->insertBefore(InsertPos);
1197
1198      LLVM_DEBUG(dbgs() << "Cloning " << *CInst << "\n"
1199                                                   "And inserting clone at "
1200                        << *InsertPos << "\n");
1201      Worklist.push_back(std::make_pair(Clone, Incoming));
1202    }
1203    // Erase the original call.
1204    LLVM_DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
1205    EraseInstruction(CInst);
1206  } while (!Worklist.empty());
1207}
1208
1209/// If we have a top down pointer in the S_Use state, make sure that there are
1210/// no CFG hazards by checking the states of various bottom up pointers.
1211static void CheckForUseCFGHazard(const Sequence SuccSSeq,
1212                                 const bool SuccSRRIKnownSafe,
1213                                 TopDownPtrState &S,
1214                                 bool &SomeSuccHasSame,
1215                                 bool &AllSuccsHaveSame,
1216                                 bool &NotAllSeqEqualButKnownSafe,
1217                                 bool &ShouldContinue) {
1218  switch (SuccSSeq) {
1219  case S_CanRelease: {
1220    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
1221      S.ClearSequenceProgress();
1222      break;
1223    }
1224    S.SetCFGHazardAfflicted(true);
1225    ShouldContinue = true;
1226    break;
1227  }
1228  case S_Use:
1229    SomeSuccHasSame = true;
1230    break;
1231  case S_Stop:
1232  case S_MovableRelease:
1233    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
1234      AllSuccsHaveSame = false;
1235    else
1236      NotAllSeqEqualButKnownSafe = true;
1237    break;
1238  case S_Retain:
1239    llvm_unreachable("bottom-up pointer in retain state!");
1240  case S_None:
1241    llvm_unreachable("This should have been handled earlier.");
1242  }
1243}
1244
1245/// If we have a Top Down pointer in the S_CanRelease state, make sure that
1246/// there are no CFG hazards by checking the states of various bottom up
1247/// pointers.
1248static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
1249                                        const bool SuccSRRIKnownSafe,
1250                                        TopDownPtrState &S,
1251                                        bool &SomeSuccHasSame,
1252                                        bool &AllSuccsHaveSame,
1253                                        bool &NotAllSeqEqualButKnownSafe) {
1254  switch (SuccSSeq) {
1255  case S_CanRelease:
1256    SomeSuccHasSame = true;
1257    break;
1258  case S_Stop:
1259  case S_MovableRelease:
1260  case S_Use:
1261    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
1262      AllSuccsHaveSame = false;
1263    else
1264      NotAllSeqEqualButKnownSafe = true;
1265    break;
1266  case S_Retain:
1267    llvm_unreachable("bottom-up pointer in retain state!");
1268  case S_None:
1269    llvm_unreachable("This should have been handled earlier.");
1270  }
1271}
1272
1273/// Check for critical edges, loop boundaries, irreducible control flow, or
1274/// other CFG structures where moving code across the edge would result in it
1275/// being executed more.
1276void
1277ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
1278                               DenseMap<const BasicBlock *, BBState> &BBStates,
1279                               BBState &MyStates) const {
1280  // If any top-down local-use or possible-dec has a succ which is earlier in
1281  // the sequence, forget it.
1282  for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end();
1283       I != E; ++I) {
1284    TopDownPtrState &S = I->second;
1285    const Sequence Seq = I->second.GetSeq();
1286
1287    // We only care about S_Retain, S_CanRelease, and S_Use.
1288    if (Seq == S_None)
1289      continue;
1290
1291    // Make sure that if extra top down states are added in the future that this
1292    // code is updated to handle it.
1293    assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
1294           "Unknown top down sequence state.");
1295
1296    const Value *Arg = I->first;
1297    bool SomeSuccHasSame = false;
1298    bool AllSuccsHaveSame = true;
1299    bool NotAllSeqEqualButKnownSafe = false;
1300
1301    for (const BasicBlock *Succ : successors(BB)) {
1302      // If VisitBottomUp has pointer information for this successor, take
1303      // what we know about it.
1304      const DenseMap<const BasicBlock *, BBState>::iterator BBI =
1305          BBStates.find(Succ);
1306      assert(BBI != BBStates.end());
1307      const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
1308      const Sequence SuccSSeq = SuccS.GetSeq();
1309
1310      // If bottom up, the pointer is in an S_None state, clear the sequence
1311      // progress since the sequence in the bottom up state finished
1312      // suggesting a mismatch in between retains/releases. This is true for
1313      // all three cases that we are handling here: S_Retain, S_Use, and
1314      // S_CanRelease.
1315      if (SuccSSeq == S_None) {
1316        S.ClearSequenceProgress();
1317        continue;
1318      }
1319
1320      // If we have S_Use or S_CanRelease, perform our check for cfg hazard
1321      // checks.
1322      const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
1323
1324      // *NOTE* We do not use Seq from above here since we are allowing for
1325      // S.GetSeq() to change while we are visiting basic blocks.
1326      switch(S.GetSeq()) {
1327      case S_Use: {
1328        bool ShouldContinue = false;
1329        CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
1330                             AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
1331                             ShouldContinue);
1332        if (ShouldContinue)
1333          continue;
1334        break;
1335      }
1336      case S_CanRelease:
1337        CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
1338                                    SomeSuccHasSame, AllSuccsHaveSame,
1339                                    NotAllSeqEqualButKnownSafe);
1340        break;
1341      case S_Retain:
1342      case S_None:
1343      case S_Stop:
1344      case S_MovableRelease:
1345        break;
1346      }
1347    }
1348
1349    // If the state at the other end of any of the successor edges
1350    // matches the current state, require all edges to match. This
1351    // guards against loops in the middle of a sequence.
1352    if (SomeSuccHasSame && !AllSuccsHaveSame) {
1353      S.ClearSequenceProgress();
1354    } else if (NotAllSeqEqualButKnownSafe) {
1355      // If we would have cleared the state foregoing the fact that we are known
1356      // safe, stop code motion. This is because whether or not it is safe to
1357      // remove RR pairs via KnownSafe is an orthogonal concept to whether we
1358      // are allowed to perform code motion.
1359      S.SetCFGHazardAfflicted(true);
1360    }
1361  }
1362}
1363
1364bool ObjCARCOpt::VisitInstructionBottomUp(
1365    Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains,
1366    BBState &MyStates) {
1367  bool NestingDetected = false;
1368  ARCInstKind Class = GetARCInstKind(Inst);
1369  const Value *Arg = nullptr;
1370
1371  LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n");
1372
1373  switch (Class) {
1374  case ARCInstKind::Release: {
1375    Arg = GetArgRCIdentityRoot(Inst);
1376
1377    BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1378    NestingDetected |= S.InitBottomUp(MDKindCache, Inst);
1379    break;
1380  }
1381  case ARCInstKind::RetainBlock:
1382    // In OptimizeIndividualCalls, we have strength reduced all optimizable
1383    // objc_retainBlocks to objc_retains. Thus at this point any
1384    // objc_retainBlocks that we see are not optimizable.
1385    break;
1386  case ARCInstKind::Retain:
1387  case ARCInstKind::RetainRV: {
1388    Arg = GetArgRCIdentityRoot(Inst);
1389    BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1390    if (S.MatchWithRetain()) {
1391      // Don't do retain+release tracking for ARCInstKind::RetainRV, because
1392      // it's better to let it remain as the first instruction after a call.
1393      if (Class != ARCInstKind::RetainRV) {
1394        LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n");
1395        Retains[Inst] = S.GetRRInfo();
1396      }
1397      S.ClearSequenceProgress();
1398    }
1399    // A retain moving bottom up can be a use.
1400    break;
1401  }
1402  case ARCInstKind::AutoreleasepoolPop:
1403    // Conservatively, clear MyStates for all known pointers.
1404    MyStates.clearBottomUpPointers();
1405    return NestingDetected;
1406  case ARCInstKind::AutoreleasepoolPush:
1407  case ARCInstKind::None:
1408    // These are irrelevant.
1409    return NestingDetected;
1410  default:
1411    break;
1412  }
1413
1414  // Consider any other possible effects of this instruction on each
1415  // pointer being tracked.
1416  for (auto MI = MyStates.bottom_up_ptr_begin(),
1417            ME = MyStates.bottom_up_ptr_end();
1418       MI != ME; ++MI) {
1419    const Value *Ptr = MI->first;
1420    if (Ptr == Arg)
1421      continue; // Handled above.
1422    BottomUpPtrState &S = MI->second;
1423
1424    if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
1425      continue;
1426
1427    S.HandlePotentialUse(BB, Inst, Ptr, PA, Class);
1428  }
1429
1430  return NestingDetected;
1431}
1432
1433bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
1434                               DenseMap<const BasicBlock *, BBState> &BBStates,
1435                               BlotMapVector<Value *, RRInfo> &Retains) {
1436  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
1437
1438  bool NestingDetected = false;
1439  BBState &MyStates = BBStates[BB];
1440
1441  // Merge the states from each successor to compute the initial state
1442  // for the current block.
1443  BBState::edge_iterator SI(MyStates.succ_begin()),
1444                         SE(MyStates.succ_end());
1445  if (SI != SE) {
1446    const BasicBlock *Succ = *SI;
1447    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
1448    assert(I != BBStates.end());
1449    MyStates.InitFromSucc(I->second);
1450    ++SI;
1451    for (; SI != SE; ++SI) {
1452      Succ = *SI;
1453      I = BBStates.find(Succ);
1454      assert(I != BBStates.end());
1455      MyStates.MergeSucc(I->second);
1456    }
1457  }
1458
1459  LLVM_DEBUG(dbgs() << "Before:\n"
1460                    << BBStates[BB] << "\n"
1461                    << "Performing Dataflow:\n");
1462
1463  // Visit all the instructions, bottom-up.
1464  for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
1465    Instruction *Inst = &*std::prev(I);
1466
1467    // Invoke instructions are visited as part of their successors (below).
1468    if (isa<InvokeInst>(Inst))
1469      continue;
1470
1471    LLVM_DEBUG(dbgs() << "    Visiting " << *Inst << "\n");
1472
1473    NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
1474
1475    // Bail out if the number of pointers being tracked becomes too large so
1476    // that this pass can complete in a reasonable amount of time.
1477    if (MyStates.bottom_up_ptr_list_size() > MaxPtrStates) {
1478      DisableRetainReleasePairing = true;
1479      return false;
1480    }
1481  }
1482
1483  // If there's a predecessor with an invoke, visit the invoke as if it were
1484  // part of this block, since we can't insert code after an invoke in its own
1485  // block, and we don't want to split critical edges.
1486  for (BBState::edge_iterator PI(MyStates.pred_begin()),
1487       PE(MyStates.pred_end()); PI != PE; ++PI) {
1488    BasicBlock *Pred = *PI;
1489    if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
1490      NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
1491  }
1492
1493  LLVM_DEBUG(dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n");
1494
1495  return NestingDetected;
1496}
1497
1498bool
1499ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
1500                                    DenseMap<Value *, RRInfo> &Releases,
1501                                    BBState &MyStates) {
1502  bool NestingDetected = false;
1503  ARCInstKind Class = GetARCInstKind(Inst);
1504  const Value *Arg = nullptr;
1505
1506  LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n");
1507
1508  switch (Class) {
1509  case ARCInstKind::RetainBlock:
1510    // In OptimizeIndividualCalls, we have strength reduced all optimizable
1511    // objc_retainBlocks to objc_retains. Thus at this point any
1512    // objc_retainBlocks that we see are not optimizable. We need to break since
1513    // a retain can be a potential use.
1514    break;
1515  case ARCInstKind::Retain:
1516  case ARCInstKind::RetainRV: {
1517    Arg = GetArgRCIdentityRoot(Inst);
1518    TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1519    NestingDetected |= S.InitTopDown(Class, Inst);
1520    // A retain can be a potential use; proceed to the generic checking
1521    // code below.
1522    break;
1523  }
1524  case ARCInstKind::Release: {
1525    Arg = GetArgRCIdentityRoot(Inst);
1526    TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1527    // Try to form a tentative pair in between this release instruction and the
1528    // top down pointers that we are tracking.
1529    if (S.MatchWithRelease(MDKindCache, Inst)) {
1530      // If we succeed, copy S's RRInfo into the Release -> {Retain Set
1531      // Map}. Then we clear S.
1532      LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n");
1533      Releases[Inst] = S.GetRRInfo();
1534      S.ClearSequenceProgress();
1535    }
1536    break;
1537  }
1538  case ARCInstKind::AutoreleasepoolPop:
1539    // Conservatively, clear MyStates for all known pointers.
1540    MyStates.clearTopDownPointers();
1541    return false;
1542  case ARCInstKind::AutoreleasepoolPush:
1543  case ARCInstKind::None:
1544    // These can not be uses of
1545    return false;
1546  default:
1547    break;
1548  }
1549
1550  // Consider any other possible effects of this instruction on each
1551  // pointer being tracked.
1552  for (auto MI = MyStates.top_down_ptr_begin(),
1553            ME = MyStates.top_down_ptr_end();
1554       MI != ME; ++MI) {
1555    const Value *Ptr = MI->first;
1556    if (Ptr == Arg)
1557      continue; // Handled above.
1558    TopDownPtrState &S = MI->second;
1559    if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class, *BundledInsts))
1560      continue;
1561
1562    S.HandlePotentialUse(Inst, Ptr, PA, Class);
1563  }
1564
1565  return NestingDetected;
1566}
1567
1568bool
1569ObjCARCOpt::VisitTopDown(BasicBlock *BB,
1570                         DenseMap<const BasicBlock *, BBState> &BBStates,
1571                         DenseMap<Value *, RRInfo> &Releases) {
1572  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
1573  bool NestingDetected = false;
1574  BBState &MyStates = BBStates[BB];
1575
1576  // Merge the states from each predecessor to compute the initial state
1577  // for the current block.
1578  BBState::edge_iterator PI(MyStates.pred_begin()),
1579                         PE(MyStates.pred_end());
1580  if (PI != PE) {
1581    const BasicBlock *Pred = *PI;
1582    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
1583    assert(I != BBStates.end());
1584    MyStates.InitFromPred(I->second);
1585    ++PI;
1586    for (; PI != PE; ++PI) {
1587      Pred = *PI;
1588      I = BBStates.find(Pred);
1589      assert(I != BBStates.end());
1590      MyStates.MergePred(I->second);
1591    }
1592  }
1593
1594  // Check that BB and MyStates have the same number of predecessors. This
1595  // prevents retain calls that live outside a loop from being moved into the
1596  // loop.
1597  if (!BB->hasNPredecessors(MyStates.pred_end() - MyStates.pred_begin()))
1598    for (auto I = MyStates.top_down_ptr_begin(),
1599              E = MyStates.top_down_ptr_end();
1600         I != E; ++I)
1601      I->second.SetCFGHazardAfflicted(true);
1602
1603  LLVM_DEBUG(dbgs() << "Before:\n"
1604                    << BBStates[BB] << "\n"
1605                    << "Performing Dataflow:\n");
1606
1607  // Visit all the instructions, top-down.
1608  for (Instruction &Inst : *BB) {
1609    LLVM_DEBUG(dbgs() << "    Visiting " << Inst << "\n");
1610
1611    NestingDetected |= VisitInstructionTopDown(&Inst, Releases, MyStates);
1612
1613    // Bail out if the number of pointers being tracked becomes too large so
1614    // that this pass can complete in a reasonable amount of time.
1615    if (MyStates.top_down_ptr_list_size() > MaxPtrStates) {
1616      DisableRetainReleasePairing = true;
1617      return false;
1618    }
1619  }
1620
1621  LLVM_DEBUG(dbgs() << "\nState Before Checking for CFG Hazards:\n"
1622                    << BBStates[BB] << "\n\n");
1623  CheckForCFGHazards(BB, BBStates, MyStates);
1624  LLVM_DEBUG(dbgs() << "Final State:\n" << BBStates[BB] << "\n");
1625  return NestingDetected;
1626}
1627
1628static void
1629ComputePostOrders(Function &F,
1630                  SmallVectorImpl<BasicBlock *> &PostOrder,
1631                  SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
1632                  unsigned NoObjCARCExceptionsMDKind,
1633                  DenseMap<const BasicBlock *, BBState> &BBStates) {
1634  /// The visited set, for doing DFS walks.
1635  SmallPtrSet<BasicBlock *, 16> Visited;
1636
1637  // Do DFS, computing the PostOrder.
1638  SmallPtrSet<BasicBlock *, 16> OnStack;
1639  SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
1640
1641  // Functions always have exactly one entry block, and we don't have
1642  // any other block that we treat like an entry block.
1643  BasicBlock *EntryBB = &F.getEntryBlock();
1644  BBState &MyStates = BBStates[EntryBB];
1645  MyStates.SetAsEntry();
1646  Instruction *EntryTI = EntryBB->getTerminator();
1647  SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
1648  Visited.insert(EntryBB);
1649  OnStack.insert(EntryBB);
1650  do {
1651  dfs_next_succ:
1652    BasicBlock *CurrBB = SuccStack.back().first;
1653    succ_iterator SE(CurrBB->getTerminator(), false);
1654
1655    while (SuccStack.back().second != SE) {
1656      BasicBlock *SuccBB = *SuccStack.back().second++;
1657      if (Visited.insert(SuccBB).second) {
1658        SuccStack.push_back(
1659            std::make_pair(SuccBB, succ_iterator(SuccBB->getTerminator())));
1660        BBStates[CurrBB].addSucc(SuccBB);
1661        BBState &SuccStates = BBStates[SuccBB];
1662        SuccStates.addPred(CurrBB);
1663        OnStack.insert(SuccBB);
1664        goto dfs_next_succ;
1665      }
1666
1667      if (!OnStack.count(SuccBB)) {
1668        BBStates[CurrBB].addSucc(SuccBB);
1669        BBStates[SuccBB].addPred(CurrBB);
1670      }
1671    }
1672    OnStack.erase(CurrBB);
1673    PostOrder.push_back(CurrBB);
1674    SuccStack.pop_back();
1675  } while (!SuccStack.empty());
1676
1677  Visited.clear();
1678
1679  // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
1680  // Functions may have many exits, and there also blocks which we treat
1681  // as exits due to ignored edges.
1682  SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
1683  for (BasicBlock &ExitBB : F) {
1684    BBState &MyStates = BBStates[&ExitBB];
1685    if (!MyStates.isExit())
1686      continue;
1687
1688    MyStates.SetAsExit();
1689
1690    PredStack.push_back(std::make_pair(&ExitBB, MyStates.pred_begin()));
1691    Visited.insert(&ExitBB);
1692    while (!PredStack.empty()) {
1693    reverse_dfs_next_succ:
1694      BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
1695      while (PredStack.back().second != PE) {
1696        BasicBlock *BB = *PredStack.back().second++;
1697        if (Visited.insert(BB).second) {
1698          PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
1699          goto reverse_dfs_next_succ;
1700        }
1701      }
1702      ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
1703    }
1704  }
1705}
1706
1707// Visit the function both top-down and bottom-up.
1708bool ObjCARCOpt::Visit(Function &F,
1709                       DenseMap<const BasicBlock *, BBState> &BBStates,
1710                       BlotMapVector<Value *, RRInfo> &Retains,
1711                       DenseMap<Value *, RRInfo> &Releases) {
1712  // Use reverse-postorder traversals, because we magically know that loops
1713  // will be well behaved, i.e. they won't repeatedly call retain on a single
1714  // pointer without doing a release. We can't use the ReversePostOrderTraversal
1715  // class here because we want the reverse-CFG postorder to consider each
1716  // function exit point, and we want to ignore selected cycle edges.
1717  SmallVector<BasicBlock *, 16> PostOrder;
1718  SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
1719  ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
1720                    MDKindCache.get(ARCMDKindID::NoObjCARCExceptions),
1721                    BBStates);
1722
1723  // Use reverse-postorder on the reverse CFG for bottom-up.
1724  bool BottomUpNestingDetected = false;
1725  for (BasicBlock *BB : llvm::reverse(ReverseCFGPostOrder)) {
1726    BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains);
1727    if (DisableRetainReleasePairing)
1728      return false;
1729  }
1730
1731  // Use reverse-postorder for top-down.
1732  bool TopDownNestingDetected = false;
1733  for (BasicBlock *BB : llvm::reverse(PostOrder)) {
1734    TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases);
1735    if (DisableRetainReleasePairing)
1736      return false;
1737  }
1738
1739  return TopDownNestingDetected && BottomUpNestingDetected;
1740}
1741
1742/// Move the calls in RetainsToMove and ReleasesToMove.
1743void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove,
1744                           RRInfo &ReleasesToMove,
1745                           BlotMapVector<Value *, RRInfo> &Retains,
1746                           DenseMap<Value *, RRInfo> &Releases,
1747                           SmallVectorImpl<Instruction *> &DeadInsts,
1748                           Module *M) {
1749  Type *ArgTy = Arg->getType();
1750  Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
1751
1752  LLVM_DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
1753
1754  // Insert the new retain and release calls.
1755  for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) {
1756    Value *MyArg = ArgTy == ParamTy ? Arg :
1757                   new BitCastInst(Arg, ParamTy, "", InsertPt);
1758    Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1759    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1760    Call->setDoesNotThrow();
1761    Call->setTailCall();
1762
1763    LLVM_DEBUG(dbgs() << "Inserting new Retain: " << *Call
1764                      << "\n"
1765                         "At insertion point: "
1766                      << *InsertPt << "\n");
1767  }
1768  for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) {
1769    Value *MyArg = ArgTy == ParamTy ? Arg :
1770                   new BitCastInst(Arg, ParamTy, "", InsertPt);
1771    Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
1772    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1773    // Attach a clang.imprecise_release metadata tag, if appropriate.
1774    if (MDNode *M = ReleasesToMove.ReleaseMetadata)
1775      Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M);
1776    Call->setDoesNotThrow();
1777    if (ReleasesToMove.IsTailCallRelease)
1778      Call->setTailCall();
1779
1780    LLVM_DEBUG(dbgs() << "Inserting new Release: " << *Call
1781                      << "\n"
1782                         "At insertion point: "
1783                      << *InsertPt << "\n");
1784  }
1785
1786  // Delete the original retain and release calls.
1787  for (Instruction *OrigRetain : RetainsToMove.Calls) {
1788    Retains.blot(OrigRetain);
1789    DeadInsts.push_back(OrigRetain);
1790    LLVM_DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
1791  }
1792  for (Instruction *OrigRelease : ReleasesToMove.Calls) {
1793    Releases.erase(OrigRelease);
1794    DeadInsts.push_back(OrigRelease);
1795    LLVM_DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
1796  }
1797}
1798
1799bool ObjCARCOpt::PairUpRetainsAndReleases(
1800    DenseMap<const BasicBlock *, BBState> &BBStates,
1801    BlotMapVector<Value *, RRInfo> &Retains,
1802    DenseMap<Value *, RRInfo> &Releases, Module *M,
1803    Instruction *Retain,
1804    SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove,
1805    RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe,
1806    bool &AnyPairsCompletelyEliminated) {
1807  // If a pair happens in a region where it is known that the reference count
1808  // is already incremented, we can similarly ignore possible decrements unless
1809  // we are dealing with a retainable object with multiple provenance sources.
1810  bool KnownSafeTD = true, KnownSafeBU = true;
1811  bool CFGHazardAfflicted = false;
1812
1813  // Connect the dots between the top-down-collected RetainsToMove and
1814  // bottom-up-collected ReleasesToMove to form sets of related calls.
1815  // This is an iterative process so that we connect multiple releases
1816  // to multiple retains if needed.
1817  unsigned OldDelta = 0;
1818  unsigned NewDelta = 0;
1819  unsigned OldCount = 0;
1820  unsigned NewCount = 0;
1821  bool FirstRelease = true;
1822  for (SmallVector<Instruction *, 4> NewRetains{Retain};;) {
1823    SmallVector<Instruction *, 4> NewReleases;
1824    for (Instruction *NewRetain : NewRetains) {
1825      auto It = Retains.find(NewRetain);
1826      assert(It != Retains.end());
1827      const RRInfo &NewRetainRRI = It->second;
1828      KnownSafeTD &= NewRetainRRI.KnownSafe;
1829      CFGHazardAfflicted |= NewRetainRRI.CFGHazardAfflicted;
1830      for (Instruction *NewRetainRelease : NewRetainRRI.Calls) {
1831        auto Jt = Releases.find(NewRetainRelease);
1832        if (Jt == Releases.end())
1833          return false;
1834        const RRInfo &NewRetainReleaseRRI = Jt->second;
1835
1836        // If the release does not have a reference to the retain as well,
1837        // something happened which is unaccounted for. Do not do anything.
1838        //
1839        // This can happen if we catch an additive overflow during path count
1840        // merging.
1841        if (!NewRetainReleaseRRI.Calls.count(NewRetain))
1842          return false;
1843
1844        if (ReleasesToMove.Calls.insert(NewRetainRelease).second) {
1845          // If we overflow when we compute the path count, don't remove/move
1846          // anything.
1847          const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
1848          unsigned PathCount = BBState::OverflowOccurredValue;
1849          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1850            return false;
1851          assert(PathCount != BBState::OverflowOccurredValue &&
1852                 "PathCount at this point can not be "
1853                 "OverflowOccurredValue.");
1854          OldDelta -= PathCount;
1855
1856          // Merge the ReleaseMetadata and IsTailCallRelease values.
1857          if (FirstRelease) {
1858            ReleasesToMove.ReleaseMetadata =
1859              NewRetainReleaseRRI.ReleaseMetadata;
1860            ReleasesToMove.IsTailCallRelease =
1861              NewRetainReleaseRRI.IsTailCallRelease;
1862            FirstRelease = false;
1863          } else {
1864            if (ReleasesToMove.ReleaseMetadata !=
1865                NewRetainReleaseRRI.ReleaseMetadata)
1866              ReleasesToMove.ReleaseMetadata = nullptr;
1867            if (ReleasesToMove.IsTailCallRelease !=
1868                NewRetainReleaseRRI.IsTailCallRelease)
1869              ReleasesToMove.IsTailCallRelease = false;
1870          }
1871
1872          // Collect the optimal insertion points.
1873          if (!KnownSafe)
1874            for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) {
1875              if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) {
1876                // If we overflow when we compute the path count, don't
1877                // remove/move anything.
1878                const BBState &RIPBBState = BBStates[RIP->getParent()];
1879                PathCount = BBState::OverflowOccurredValue;
1880                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1881                  return false;
1882                assert(PathCount != BBState::OverflowOccurredValue &&
1883                       "PathCount at this point can not be "
1884                       "OverflowOccurredValue.");
1885                NewDelta -= PathCount;
1886              }
1887            }
1888          NewReleases.push_back(NewRetainRelease);
1889        }
1890      }
1891    }
1892    NewRetains.clear();
1893    if (NewReleases.empty()) break;
1894
1895    // Back the other way.
1896    for (Instruction *NewRelease : NewReleases) {
1897      auto It = Releases.find(NewRelease);
1898      assert(It != Releases.end());
1899      const RRInfo &NewReleaseRRI = It->second;
1900      KnownSafeBU &= NewReleaseRRI.KnownSafe;
1901      CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
1902      for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) {
1903        auto Jt = Retains.find(NewReleaseRetain);
1904        if (Jt == Retains.end())
1905          return false;
1906        const RRInfo &NewReleaseRetainRRI = Jt->second;
1907
1908        // If the retain does not have a reference to the release as well,
1909        // something happened which is unaccounted for. Do not do anything.
1910        //
1911        // This can happen if we catch an additive overflow during path count
1912        // merging.
1913        if (!NewReleaseRetainRRI.Calls.count(NewRelease))
1914          return false;
1915
1916        if (RetainsToMove.Calls.insert(NewReleaseRetain).second) {
1917          // If we overflow when we compute the path count, don't remove/move
1918          // anything.
1919          const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
1920          unsigned PathCount = BBState::OverflowOccurredValue;
1921          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1922            return false;
1923          assert(PathCount != BBState::OverflowOccurredValue &&
1924                 "PathCount at this point can not be "
1925                 "OverflowOccurredValue.");
1926          OldDelta += PathCount;
1927          OldCount += PathCount;
1928
1929          // Collect the optimal insertion points.
1930          if (!KnownSafe)
1931            for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) {
1932              if (RetainsToMove.ReverseInsertPts.insert(RIP).second) {
1933                // If we overflow when we compute the path count, don't
1934                // remove/move anything.
1935                const BBState &RIPBBState = BBStates[RIP->getParent()];
1936
1937                PathCount = BBState::OverflowOccurredValue;
1938                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1939                  return false;
1940                assert(PathCount != BBState::OverflowOccurredValue &&
1941                       "PathCount at this point can not be "
1942                       "OverflowOccurredValue.");
1943                NewDelta += PathCount;
1944                NewCount += PathCount;
1945              }
1946            }
1947          NewRetains.push_back(NewReleaseRetain);
1948        }
1949      }
1950    }
1951    if (NewRetains.empty()) break;
1952  }
1953
1954  // We can only remove pointers if we are known safe in both directions.
1955  bool UnconditionallySafe = KnownSafeTD && KnownSafeBU;
1956  if (UnconditionallySafe) {
1957    RetainsToMove.ReverseInsertPts.clear();
1958    ReleasesToMove.ReverseInsertPts.clear();
1959    NewCount = 0;
1960  } else {
1961    // Determine whether the new insertion points we computed preserve the
1962    // balance of retain and release calls through the program.
1963    // TODO: If the fully aggressive solution isn't valid, try to find a
1964    // less aggressive solution which is.
1965    if (NewDelta != 0)
1966      return false;
1967
1968    // At this point, we are not going to remove any RR pairs, but we still are
1969    // able to move RR pairs. If one of our pointers is afflicted with
1970    // CFGHazards, we cannot perform such code motion so exit early.
1971    const bool WillPerformCodeMotion =
1972        !RetainsToMove.ReverseInsertPts.empty() ||
1973        !ReleasesToMove.ReverseInsertPts.empty();
1974    if (CFGHazardAfflicted && WillPerformCodeMotion)
1975      return false;
1976  }
1977
1978  // Determine whether the original call points are balanced in the retain and
1979  // release calls through the program. If not, conservatively don't touch
1980  // them.
1981  // TODO: It's theoretically possible to do code motion in this case, as
1982  // long as the existing imbalances are maintained.
1983  if (OldDelta != 0)
1984    return false;
1985
1986  Changed = true;
1987  assert(OldCount != 0 && "Unreachable code?");
1988  NumRRs += OldCount - NewCount;
1989  // Set to true if we completely removed any RR pairs.
1990  AnyPairsCompletelyEliminated = NewCount == 0;
1991
1992  // We can move calls!
1993  return true;
1994}
1995
1996/// Identify pairings between the retains and releases, and delete and/or move
1997/// them.
1998bool ObjCARCOpt::PerformCodePlacement(
1999    DenseMap<const BasicBlock *, BBState> &BBStates,
2000    BlotMapVector<Value *, RRInfo> &Retains,
2001    DenseMap<Value *, RRInfo> &Releases, Module *M) {
2002  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
2003
2004  bool AnyPairsCompletelyEliminated = false;
2005  SmallVector<Instruction *, 8> DeadInsts;
2006
2007  // Visit each retain.
2008  for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
2009                                                      E = Retains.end();
2010       I != E; ++I) {
2011    Value *V = I->first;
2012    if (!V) continue; // blotted
2013
2014    Instruction *Retain = cast<Instruction>(V);
2015
2016    LLVM_DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
2017
2018    Value *Arg = GetArgRCIdentityRoot(Retain);
2019
2020    // If the object being released is in static or stack storage, we know it's
2021    // not being managed by ObjC reference counting, so we can delete pairs
2022    // regardless of what possible decrements or uses lie between them.
2023    bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
2024
2025    // A constant pointer can't be pointing to an object on the heap. It may
2026    // be reference-counted, but it won't be deleted.
2027    if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
2028      if (const GlobalVariable *GV =
2029            dyn_cast<GlobalVariable>(
2030              GetRCIdentityRoot(LI->getPointerOperand())))
2031        if (GV->isConstant())
2032          KnownSafe = true;
2033
2034    // Connect the dots between the top-down-collected RetainsToMove and
2035    // bottom-up-collected ReleasesToMove to form sets of related calls.
2036    RRInfo RetainsToMove, ReleasesToMove;
2037
2038    bool PerformMoveCalls = PairUpRetainsAndReleases(
2039        BBStates, Retains, Releases, M, Retain, DeadInsts,
2040        RetainsToMove, ReleasesToMove, Arg, KnownSafe,
2041        AnyPairsCompletelyEliminated);
2042
2043    if (PerformMoveCalls) {
2044      // Ok, everything checks out and we're all set. Let's move/delete some
2045      // code!
2046      MoveCalls(Arg, RetainsToMove, ReleasesToMove,
2047                Retains, Releases, DeadInsts, M);
2048    }
2049  }
2050
2051  // Now that we're done moving everything, we can delete the newly dead
2052  // instructions, as we no longer need them as insert points.
2053  while (!DeadInsts.empty())
2054    EraseInstruction(DeadInsts.pop_back_val());
2055
2056  return AnyPairsCompletelyEliminated;
2057}
2058
2059/// Weak pointer optimizations.
2060void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
2061  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
2062
2063  // First, do memdep-style RLE and S2L optimizations. We can't use memdep
2064  // itself because it uses AliasAnalysis and we need to do provenance
2065  // queries instead.
2066  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2067    Instruction *Inst = &*I++;
2068
2069    LLVM_DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
2070
2071    ARCInstKind Class = GetBasicARCInstKind(Inst);
2072    if (Class != ARCInstKind::LoadWeak &&
2073        Class != ARCInstKind::LoadWeakRetained)
2074      continue;
2075
2076    // Delete objc_loadWeak calls with no users.
2077    if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) {
2078      Inst->eraseFromParent();
2079      Changed = true;
2080      continue;
2081    }
2082
2083    // TODO: For now, just look for an earlier available version of this value
2084    // within the same block. Theoretically, we could do memdep-style non-local
2085    // analysis too, but that would want caching. A better approach would be to
2086    // use the technique that EarlyCSE uses.
2087    inst_iterator Current = std::prev(I);
2088    BasicBlock *CurrentBB = &*Current.getBasicBlockIterator();
2089    for (BasicBlock::iterator B = CurrentBB->begin(),
2090                              J = Current.getInstructionIterator();
2091         J != B; --J) {
2092      Instruction *EarlierInst = &*std::prev(J);
2093      ARCInstKind EarlierClass = GetARCInstKind(EarlierInst);
2094      switch (EarlierClass) {
2095      case ARCInstKind::LoadWeak:
2096      case ARCInstKind::LoadWeakRetained: {
2097        // If this is loading from the same pointer, replace this load's value
2098        // with that one.
2099        CallInst *Call = cast<CallInst>(Inst);
2100        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2101        Value *Arg = Call->getArgOperand(0);
2102        Value *EarlierArg = EarlierCall->getArgOperand(0);
2103        switch (PA.getAA()->alias(Arg, EarlierArg)) {
2104        case AliasResult::MustAlias:
2105          Changed = true;
2106          // If the load has a builtin retain, insert a plain retain for it.
2107          if (Class == ARCInstKind::LoadWeakRetained) {
2108            Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
2109            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
2110            CI->setTailCall();
2111          }
2112          // Zap the fully redundant load.
2113          Call->replaceAllUsesWith(EarlierCall);
2114          Call->eraseFromParent();
2115          goto clobbered;
2116        case AliasResult::MayAlias:
2117        case AliasResult::PartialAlias:
2118          goto clobbered;
2119        case AliasResult::NoAlias:
2120          break;
2121        }
2122        break;
2123      }
2124      case ARCInstKind::StoreWeak:
2125      case ARCInstKind::InitWeak: {
2126        // If this is storing to the same pointer and has the same size etc.
2127        // replace this load's value with the stored value.
2128        CallInst *Call = cast<CallInst>(Inst);
2129        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2130        Value *Arg = Call->getArgOperand(0);
2131        Value *EarlierArg = EarlierCall->getArgOperand(0);
2132        switch (PA.getAA()->alias(Arg, EarlierArg)) {
2133        case AliasResult::MustAlias:
2134          Changed = true;
2135          // If the load has a builtin retain, insert a plain retain for it.
2136          if (Class == ARCInstKind::LoadWeakRetained) {
2137            Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
2138            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
2139            CI->setTailCall();
2140          }
2141          // Zap the fully redundant load.
2142          Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
2143          Call->eraseFromParent();
2144          goto clobbered;
2145        case AliasResult::MayAlias:
2146        case AliasResult::PartialAlias:
2147          goto clobbered;
2148        case AliasResult::NoAlias:
2149          break;
2150        }
2151        break;
2152      }
2153      case ARCInstKind::MoveWeak:
2154      case ARCInstKind::CopyWeak:
2155        // TOOD: Grab the copied value.
2156        goto clobbered;
2157      case ARCInstKind::AutoreleasepoolPush:
2158      case ARCInstKind::None:
2159      case ARCInstKind::IntrinsicUser:
2160      case ARCInstKind::User:
2161        // Weak pointers are only modified through the weak entry points
2162        // (and arbitrary calls, which could call the weak entry points).
2163        break;
2164      default:
2165        // Anything else could modify the weak pointer.
2166        goto clobbered;
2167      }
2168    }
2169  clobbered:;
2170  }
2171
2172  // Then, for each destroyWeak with an alloca operand, check to see if
2173  // the alloca and all its users can be zapped.
2174  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2175    Instruction *Inst = &*I++;
2176    ARCInstKind Class = GetBasicARCInstKind(Inst);
2177    if (Class != ARCInstKind::DestroyWeak)
2178      continue;
2179
2180    CallInst *Call = cast<CallInst>(Inst);
2181    Value *Arg = Call->getArgOperand(0);
2182    if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
2183      for (User *U : Alloca->users()) {
2184        const Instruction *UserInst = cast<Instruction>(U);
2185        switch (GetBasicARCInstKind(UserInst)) {
2186        case ARCInstKind::InitWeak:
2187        case ARCInstKind::StoreWeak:
2188        case ARCInstKind::DestroyWeak:
2189          continue;
2190        default:
2191          goto done;
2192        }
2193      }
2194      Changed = true;
2195      for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
2196        CallInst *UserInst = cast<CallInst>(*UI++);
2197        switch (GetBasicARCInstKind(UserInst)) {
2198        case ARCInstKind::InitWeak:
2199        case ARCInstKind::StoreWeak:
2200          // These functions return their second argument.
2201          UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
2202          break;
2203        case ARCInstKind::DestroyWeak:
2204          // No return value.
2205          break;
2206        default:
2207          llvm_unreachable("alloca really is used!");
2208        }
2209        UserInst->eraseFromParent();
2210      }
2211      Alloca->eraseFromParent();
2212    done:;
2213    }
2214  }
2215}
2216
2217/// Identify program paths which execute sequences of retains and releases which
2218/// can be eliminated.
2219bool ObjCARCOpt::OptimizeSequences(Function &F) {
2220  // Releases, Retains - These are used to store the results of the main flow
2221  // analysis. These use Value* as the key instead of Instruction* so that the
2222  // map stays valid when we get around to rewriting code and calls get
2223  // replaced by arguments.
2224  DenseMap<Value *, RRInfo> Releases;
2225  BlotMapVector<Value *, RRInfo> Retains;
2226
2227  // This is used during the traversal of the function to track the
2228  // states for each identified object at each block.
2229  DenseMap<const BasicBlock *, BBState> BBStates;
2230
2231  // Analyze the CFG of the function, and all instructions.
2232  bool NestingDetected = Visit(F, BBStates, Retains, Releases);
2233
2234  if (DisableRetainReleasePairing)
2235    return false;
2236
2237  // Transform.
2238  bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
2239                                                           Releases,
2240                                                           F.getParent());
2241
2242  return AnyPairsCompletelyEliminated && NestingDetected;
2243}
2244
2245/// Check if there is a dependent call earlier that does not have anything in
2246/// between the Retain and the call that can affect the reference count of their
2247/// shared pointer argument. Note that Retain need not be in BB.
2248static CallInst *HasSafePathToPredecessorCall(const Value *Arg,
2249                                              Instruction *Retain,
2250                                              ProvenanceAnalysis &PA) {
2251  auto *Call = dyn_cast_or_null<CallInst>(findSingleDependency(
2252      CanChangeRetainCount, Arg, Retain->getParent(), Retain, PA));
2253
2254  // Check that the pointer is the return value of the call.
2255  if (!Call || Arg != Call)
2256    return nullptr;
2257
2258  // Check that the call is a regular call.
2259  ARCInstKind Class = GetBasicARCInstKind(Call);
2260  return Class == ARCInstKind::CallOrUser || Class == ARCInstKind::Call
2261             ? Call
2262             : nullptr;
2263}
2264
2265/// Find a dependent retain that precedes the given autorelease for which there
2266/// is nothing in between the two instructions that can affect the ref count of
2267/// Arg.
2268static CallInst *
2269FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
2270                                  Instruction *Autorelease,
2271                                  ProvenanceAnalysis &PA) {
2272  auto *Retain = dyn_cast_or_null<CallInst>(
2273      findSingleDependency(CanChangeRetainCount, Arg, BB, Autorelease, PA));
2274
2275  // Check that we found a retain with the same argument.
2276  if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) ||
2277      GetArgRCIdentityRoot(Retain) != Arg) {
2278    return nullptr;
2279  }
2280
2281  return Retain;
2282}
2283
2284/// Look for an ``autorelease'' instruction dependent on Arg such that there are
2285/// no instructions dependent on Arg that need a positive ref count in between
2286/// the autorelease and the ret.
2287static CallInst *
2288FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
2289                                       ReturnInst *Ret,
2290                                       ProvenanceAnalysis &PA) {
2291  SmallPtrSet<Instruction *, 4> DepInsts;
2292  auto *Autorelease = dyn_cast_or_null<CallInst>(
2293      findSingleDependency(NeedsPositiveRetainCount, Arg, BB, Ret, PA));
2294
2295  if (!Autorelease)
2296    return nullptr;
2297  ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease);
2298  if (!IsAutorelease(AutoreleaseClass))
2299    return nullptr;
2300  if (GetArgRCIdentityRoot(Autorelease) != Arg)
2301    return nullptr;
2302
2303  return Autorelease;
2304}
2305
2306/// Look for this pattern:
2307/// \code
2308///    %call = call i8* @something(...)
2309///    %2 = call i8* @objc_retain(i8* %call)
2310///    %3 = call i8* @objc_autorelease(i8* %2)
2311///    ret i8* %3
2312/// \endcode
2313/// And delete the retain and autorelease.
2314void ObjCARCOpt::OptimizeReturns(Function &F) {
2315  if (!F.getReturnType()->isPointerTy())
2316    return;
2317
2318  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
2319
2320  for (BasicBlock &BB: F) {
2321    ReturnInst *Ret = dyn_cast<ReturnInst>(&BB.back());
2322    if (!Ret)
2323      continue;
2324
2325    LLVM_DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
2326
2327    const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0));
2328
2329    // Look for an ``autorelease'' instruction that is a predecessor of Ret and
2330    // dependent on Arg such that there are no instructions dependent on Arg
2331    // that need a positive ref count in between the autorelease and Ret.
2332    CallInst *Autorelease =
2333        FindPredecessorAutoreleaseWithSafePath(Arg, &BB, Ret, PA);
2334
2335    if (!Autorelease)
2336      continue;
2337
2338    CallInst *Retain = FindPredecessorRetainWithSafePath(
2339        Arg, Autorelease->getParent(), Autorelease, PA);
2340
2341    if (!Retain)
2342      continue;
2343
2344    // Check that there is nothing that can affect the reference count
2345    // between the retain and the call.  Note that Retain need not be in BB.
2346    CallInst *Call = HasSafePathToPredecessorCall(Arg, Retain, PA);
2347
2348    // Don't remove retainRV/autoreleaseRV pairs if the call isn't a tail call.
2349    if (!Call ||
2350        (!Call->isTailCall() &&
2351         GetBasicARCInstKind(Retain) == ARCInstKind::RetainRV &&
2352         GetBasicARCInstKind(Autorelease) == ARCInstKind::AutoreleaseRV))
2353      continue;
2354
2355    // If so, we can zap the retain and autorelease.
2356    Changed = true;
2357    ++NumRets;
2358    LLVM_DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " << *Autorelease
2359                      << "\n");
2360    BundledInsts->eraseInst(Retain);
2361    EraseInstruction(Autorelease);
2362  }
2363}
2364
2365#ifndef NDEBUG
2366void
2367ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
2368  Statistic &NumRetains =
2369      AfterOptimization ? NumRetainsAfterOpt : NumRetainsBeforeOpt;
2370  Statistic &NumReleases =
2371      AfterOptimization ? NumReleasesAfterOpt : NumReleasesBeforeOpt;
2372
2373  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2374    Instruction *Inst = &*I++;
2375    switch (GetBasicARCInstKind(Inst)) {
2376    default:
2377      break;
2378    case ARCInstKind::Retain:
2379      ++NumRetains;
2380      break;
2381    case ARCInstKind::Release:
2382      ++NumReleases;
2383      break;
2384    }
2385  }
2386}
2387#endif
2388
2389void ObjCARCOpt::init(Module &M) {
2390  if (!EnableARCOpts)
2391    return;
2392
2393  // Intuitively, objc_retain and others are nocapture, however in practice
2394  // they are not, because they return their argument value. And objc_release
2395  // calls finalizers which can have arbitrary side effects.
2396  MDKindCache.init(&M);
2397
2398  // Initialize our runtime entry point cache.
2399  EP.init(&M);
2400}
2401
2402bool ObjCARCOpt::run(Function &F, AAResults &AA) {
2403  if (!EnableARCOpts)
2404    return false;
2405
2406  Changed = CFGChanged = false;
2407  BundledRetainClaimRVs BRV(EP, false);
2408  BundledInsts = &BRV;
2409
2410  LLVM_DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName()
2411                    << " >>>"
2412                       "\n");
2413
2414  std::pair<bool, bool> R = BundledInsts->insertAfterInvokes(F, nullptr);
2415  Changed |= R.first;
2416  CFGChanged |= R.second;
2417
2418  PA.setAA(&AA);
2419
2420#ifndef NDEBUG
2421  if (AreStatisticsEnabled()) {
2422    GatherStatistics(F, false);
2423  }
2424#endif
2425
2426  // This pass performs several distinct transformations. As a compile-time aid
2427  // when compiling code that isn't ObjC, skip these if the relevant ObjC
2428  // library functions aren't declared.
2429
2430  // Preliminary optimizations. This also computes UsedInThisFunction.
2431  OptimizeIndividualCalls(F);
2432
2433  // Optimizations for weak pointers.
2434  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) |
2435                            (1 << unsigned(ARCInstKind::LoadWeakRetained)) |
2436                            (1 << unsigned(ARCInstKind::StoreWeak)) |
2437                            (1 << unsigned(ARCInstKind::InitWeak)) |
2438                            (1 << unsigned(ARCInstKind::CopyWeak)) |
2439                            (1 << unsigned(ARCInstKind::MoveWeak)) |
2440                            (1 << unsigned(ARCInstKind::DestroyWeak))))
2441    OptimizeWeakCalls(F);
2442
2443  // Optimizations for retain+release pairs.
2444  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) |
2445                            (1 << unsigned(ARCInstKind::RetainRV)) |
2446                            (1 << unsigned(ARCInstKind::RetainBlock))))
2447    if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release)))
2448      // Run OptimizeSequences until it either stops making changes or
2449      // no retain+release pair nesting is detected.
2450      while (OptimizeSequences(F)) {}
2451
2452  // Optimizations if objc_autorelease is used.
2453  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) |
2454                            (1 << unsigned(ARCInstKind::AutoreleaseRV))))
2455    OptimizeReturns(F);
2456
2457  // Gather statistics after optimization.
2458#ifndef NDEBUG
2459  if (AreStatisticsEnabled()) {
2460    GatherStatistics(F, true);
2461  }
2462#endif
2463
2464  LLVM_DEBUG(dbgs() << "\n");
2465
2466  return Changed;
2467}
2468
2469void ObjCARCOpt::releaseMemory() {
2470  PA.clear();
2471}
2472
2473/// @}
2474///
2475
2476PreservedAnalyses ObjCARCOptPass::run(Function &F,
2477                                      FunctionAnalysisManager &AM) {
2478  ObjCARCOpt OCAO;
2479  OCAO.init(*F.getParent());
2480
2481  bool Changed = OCAO.run(F, AM.getResult<AAManager>(F));
2482  bool CFGChanged = OCAO.hasCFGChanged();
2483  if (Changed) {
2484    PreservedAnalyses PA;
2485    if (!CFGChanged)
2486      PA.preserveSet<CFGAnalyses>();
2487    return PA;
2488  }
2489  return PreservedAnalyses::all();
2490}
2491