1//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the interfaces that Hexagon uses to lower LLVM code
10// into a selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "HexagonISelLowering.h"
15#include "Hexagon.h"
16#include "HexagonMachineFunctionInfo.h"
17#include "HexagonRegisterInfo.h"
18#include "HexagonSubtarget.h"
19#include "HexagonTargetMachine.h"
20#include "HexagonTargetObjectFile.h"
21#include "llvm/ADT/APInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringSwitch.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/CodeGen/SelectionDAG.h"
32#include "llvm/CodeGen/TargetCallingConv.h"
33#include "llvm/CodeGen/ValueTypes.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/CallingConv.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/DerivedTypes.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/GlobalValue.h"
40#include "llvm/IR/InlineAsm.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/IR/IntrinsicInst.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/IntrinsicsHexagon.h"
45#include "llvm/IR/Module.h"
46#include "llvm/IR/Type.h"
47#include "llvm/IR/Value.h"
48#include "llvm/MC/MCRegisterInfo.h"
49#include "llvm/Support/Casting.h"
50#include "llvm/Support/CodeGen.h"
51#include "llvm/Support/CommandLine.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/Support/ErrorHandling.h"
54#include "llvm/Support/MathExtras.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Target/TargetMachine.h"
57#include <algorithm>
58#include <cassert>
59#include <cstddef>
60#include <cstdint>
61#include <limits>
62#include <utility>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "hexagon-lowering"
67
68static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
69  cl::init(true), cl::Hidden,
70  cl::desc("Control jump table emission on Hexagon target"));
71
72static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
73  cl::Hidden, cl::ZeroOrMore, cl::init(false),
74  cl::desc("Enable Hexagon SDNode scheduling"));
75
76static cl::opt<bool> EnableFastMath("ffast-math",
77  cl::Hidden, cl::ZeroOrMore, cl::init(false),
78  cl::desc("Enable Fast Math processing"));
79
80static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
81  cl::Hidden, cl::ZeroOrMore, cl::init(5),
82  cl::desc("Set minimum jump tables"));
83
84static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
85  cl::Hidden, cl::ZeroOrMore, cl::init(6),
86  cl::desc("Max #stores to inline memcpy"));
87
88static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
89  cl::Hidden, cl::ZeroOrMore, cl::init(4),
90  cl::desc("Max #stores to inline memcpy"));
91
92static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
93  cl::Hidden, cl::ZeroOrMore, cl::init(6),
94  cl::desc("Max #stores to inline memmove"));
95
96static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
97  cl::Hidden, cl::ZeroOrMore, cl::init(4),
98  cl::desc("Max #stores to inline memmove"));
99
100static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
101  cl::Hidden, cl::ZeroOrMore, cl::init(8),
102  cl::desc("Max #stores to inline memset"));
103
104static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
105  cl::Hidden, cl::ZeroOrMore, cl::init(4),
106  cl::desc("Max #stores to inline memset"));
107
108static cl::opt<bool> AlignLoads("hexagon-align-loads",
109  cl::Hidden, cl::init(false),
110  cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
111
112static cl::opt<bool>
113    DisableArgsMinAlignment("hexagon-disable-args-min-alignment", cl::Hidden,
114                            cl::init(false),
115                            cl::desc("Disable minimum alignment of 1 for "
116                                     "arguments passed by value on stack"));
117
118namespace {
119
120  class HexagonCCState : public CCState {
121    unsigned NumNamedVarArgParams = 0;
122
123  public:
124    HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
125                   SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
126                   unsigned NumNamedArgs)
127        : CCState(CC, IsVarArg, MF, locs, C),
128          NumNamedVarArgParams(NumNamedArgs) {}
129    unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
130  };
131
132} // end anonymous namespace
133
134
135// Implement calling convention for Hexagon.
136
137static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
138                       CCValAssign::LocInfo &LocInfo,
139                       ISD::ArgFlagsTy &ArgFlags, CCState &State) {
140  static const MCPhysReg ArgRegs[] = {
141    Hexagon::R0, Hexagon::R1, Hexagon::R2,
142    Hexagon::R3, Hexagon::R4, Hexagon::R5
143  };
144  const unsigned NumArgRegs = array_lengthof(ArgRegs);
145  unsigned RegNum = State.getFirstUnallocated(ArgRegs);
146
147  // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
148  if (RegNum != NumArgRegs && RegNum % 2 == 1)
149    State.AllocateReg(ArgRegs[RegNum]);
150
151  // Always return false here, as this function only makes sure that the first
152  // unallocated register has an even register number and does not actually
153  // allocate a register for the current argument.
154  return false;
155}
156
157#include "HexagonGenCallingConv.inc"
158
159
160SDValue
161HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
162      const {
163  return SDValue();
164}
165
166/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
167/// by "Src" to address "Dst" of size "Size".  Alignment information is
168/// specified by the specific parameter attribute. The copy will be passed as
169/// a byval function parameter.  Sometimes what we are copying is the end of a
170/// larger object, the part that does not fit in registers.
171static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
172                                         SDValue Chain, ISD::ArgFlagsTy Flags,
173                                         SelectionDAG &DAG, const SDLoc &dl) {
174  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
175  return DAG.getMemcpy(
176      Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
177      /*isVolatile=*/false, /*AlwaysInline=*/false,
178      /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
179}
180
181bool
182HexagonTargetLowering::CanLowerReturn(
183    CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
184    const SmallVectorImpl<ISD::OutputArg> &Outs,
185    LLVMContext &Context) const {
186  SmallVector<CCValAssign, 16> RVLocs;
187  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
188
189  if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
190    return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
191  return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
192}
193
194// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
195// passed by value, the function prototype is modified to return void and
196// the value is stored in memory pointed by a pointer passed by caller.
197SDValue
198HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
199                                   bool IsVarArg,
200                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
201                                   const SmallVectorImpl<SDValue> &OutVals,
202                                   const SDLoc &dl, SelectionDAG &DAG) const {
203  // CCValAssign - represent the assignment of the return value to locations.
204  SmallVector<CCValAssign, 16> RVLocs;
205
206  // CCState - Info about the registers and stack slot.
207  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
208                 *DAG.getContext());
209
210  // Analyze return values of ISD::RET
211  if (Subtarget.useHVXOps())
212    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
213  else
214    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
215
216  SDValue Flag;
217  SmallVector<SDValue, 4> RetOps(1, Chain);
218
219  // Copy the result values into the output registers.
220  for (unsigned i = 0; i != RVLocs.size(); ++i) {
221    CCValAssign &VA = RVLocs[i];
222    SDValue Val = OutVals[i];
223
224    switch (VA.getLocInfo()) {
225      default:
226        // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
227        llvm_unreachable("Unknown loc info!");
228      case CCValAssign::Full:
229        break;
230      case CCValAssign::BCvt:
231        Val = DAG.getBitcast(VA.getLocVT(), Val);
232        break;
233      case CCValAssign::SExt:
234        Val = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Val);
235        break;
236      case CCValAssign::ZExt:
237        Val = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Val);
238        break;
239      case CCValAssign::AExt:
240        Val = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Val);
241        break;
242    }
243
244    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Val, Flag);
245
246    // Guarantee that all emitted copies are stuck together with flags.
247    Flag = Chain.getValue(1);
248    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
249  }
250
251  RetOps[0] = Chain;  // Update chain.
252
253  // Add the flag if we have it.
254  if (Flag.getNode())
255    RetOps.push_back(Flag);
256
257  return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
258}
259
260bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
261  // If either no tail call or told not to tail call at all, don't.
262  return CI->isTailCall();
263}
264
265Register HexagonTargetLowering::getRegisterByName(
266      const char* RegName, LLT VT, const MachineFunction &) const {
267  // Just support r19, the linux kernel uses it.
268  Register Reg = StringSwitch<Register>(RegName)
269                     .Case("r0", Hexagon::R0)
270                     .Case("r1", Hexagon::R1)
271                     .Case("r2", Hexagon::R2)
272                     .Case("r3", Hexagon::R3)
273                     .Case("r4", Hexagon::R4)
274                     .Case("r5", Hexagon::R5)
275                     .Case("r6", Hexagon::R6)
276                     .Case("r7", Hexagon::R7)
277                     .Case("r8", Hexagon::R8)
278                     .Case("r9", Hexagon::R9)
279                     .Case("r10", Hexagon::R10)
280                     .Case("r11", Hexagon::R11)
281                     .Case("r12", Hexagon::R12)
282                     .Case("r13", Hexagon::R13)
283                     .Case("r14", Hexagon::R14)
284                     .Case("r15", Hexagon::R15)
285                     .Case("r16", Hexagon::R16)
286                     .Case("r17", Hexagon::R17)
287                     .Case("r18", Hexagon::R18)
288                     .Case("r19", Hexagon::R19)
289                     .Case("r20", Hexagon::R20)
290                     .Case("r21", Hexagon::R21)
291                     .Case("r22", Hexagon::R22)
292                     .Case("r23", Hexagon::R23)
293                     .Case("r24", Hexagon::R24)
294                     .Case("r25", Hexagon::R25)
295                     .Case("r26", Hexagon::R26)
296                     .Case("r27", Hexagon::R27)
297                     .Case("r28", Hexagon::R28)
298                     .Case("r29", Hexagon::R29)
299                     .Case("r30", Hexagon::R30)
300                     .Case("r31", Hexagon::R31)
301                     .Case("r1:0", Hexagon::D0)
302                     .Case("r3:2", Hexagon::D1)
303                     .Case("r5:4", Hexagon::D2)
304                     .Case("r7:6", Hexagon::D3)
305                     .Case("r9:8", Hexagon::D4)
306                     .Case("r11:10", Hexagon::D5)
307                     .Case("r13:12", Hexagon::D6)
308                     .Case("r15:14", Hexagon::D7)
309                     .Case("r17:16", Hexagon::D8)
310                     .Case("r19:18", Hexagon::D9)
311                     .Case("r21:20", Hexagon::D10)
312                     .Case("r23:22", Hexagon::D11)
313                     .Case("r25:24", Hexagon::D12)
314                     .Case("r27:26", Hexagon::D13)
315                     .Case("r29:28", Hexagon::D14)
316                     .Case("r31:30", Hexagon::D15)
317                     .Case("sp", Hexagon::R29)
318                     .Case("fp", Hexagon::R30)
319                     .Case("lr", Hexagon::R31)
320                     .Case("p0", Hexagon::P0)
321                     .Case("p1", Hexagon::P1)
322                     .Case("p2", Hexagon::P2)
323                     .Case("p3", Hexagon::P3)
324                     .Case("sa0", Hexagon::SA0)
325                     .Case("lc0", Hexagon::LC0)
326                     .Case("sa1", Hexagon::SA1)
327                     .Case("lc1", Hexagon::LC1)
328                     .Case("m0", Hexagon::M0)
329                     .Case("m1", Hexagon::M1)
330                     .Case("usr", Hexagon::USR)
331                     .Case("ugp", Hexagon::UGP)
332                     .Case("cs0", Hexagon::CS0)
333                     .Case("cs1", Hexagon::CS1)
334                     .Default(Register());
335  if (Reg)
336    return Reg;
337
338  report_fatal_error("Invalid register name global variable");
339}
340
341/// LowerCallResult - Lower the result values of an ISD::CALL into the
342/// appropriate copies out of appropriate physical registers.  This assumes that
343/// Chain/Glue are the input chain/glue to use, and that TheCall is the call
344/// being lowered. Returns a SDNode with the same number of values as the
345/// ISD::CALL.
346SDValue HexagonTargetLowering::LowerCallResult(
347    SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
348    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
349    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
350    const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
351  // Assign locations to each value returned by this call.
352  SmallVector<CCValAssign, 16> RVLocs;
353
354  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
355                 *DAG.getContext());
356
357  if (Subtarget.useHVXOps())
358    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
359  else
360    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
361
362  // Copy all of the result registers out of their specified physreg.
363  for (unsigned i = 0; i != RVLocs.size(); ++i) {
364    SDValue RetVal;
365    if (RVLocs[i].getValVT() == MVT::i1) {
366      // Return values of type MVT::i1 require special handling. The reason
367      // is that MVT::i1 is associated with the PredRegs register class, but
368      // values of that type are still returned in R0. Generate an explicit
369      // copy into a predicate register from R0, and treat the value of the
370      // predicate register as the call result.
371      auto &MRI = DAG.getMachineFunction().getRegInfo();
372      SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
373                                       MVT::i32, Glue);
374      // FR0 = (Value, Chain, Glue)
375      Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
376      SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
377                                     FR0.getValue(0), FR0.getValue(2));
378      // TPR = (Chain, Glue)
379      // Don't glue this CopyFromReg, because it copies from a virtual
380      // register. If it is glued to the call, InstrEmitter will add it
381      // as an implicit def to the call (EmitMachineNode).
382      RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
383      Glue = TPR.getValue(1);
384      Chain = TPR.getValue(0);
385    } else {
386      RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
387                                  RVLocs[i].getValVT(), Glue);
388      Glue = RetVal.getValue(2);
389      Chain = RetVal.getValue(1);
390    }
391    InVals.push_back(RetVal.getValue(0));
392  }
393
394  return Chain;
395}
396
397/// LowerCall - Functions arguments are copied from virtual regs to
398/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
399SDValue
400HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
401                                 SmallVectorImpl<SDValue> &InVals) const {
402  SelectionDAG &DAG                     = CLI.DAG;
403  SDLoc &dl                             = CLI.DL;
404  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
405  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
406  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
407  SDValue Chain                         = CLI.Chain;
408  SDValue Callee                        = CLI.Callee;
409  CallingConv::ID CallConv              = CLI.CallConv;
410  bool IsVarArg                         = CLI.IsVarArg;
411  bool DoesNotReturn                    = CLI.DoesNotReturn;
412
413  bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
414  MachineFunction &MF = DAG.getMachineFunction();
415  MachineFrameInfo &MFI = MF.getFrameInfo();
416  auto PtrVT = getPointerTy(MF.getDataLayout());
417
418  unsigned NumParams = CLI.CB ? CLI.CB->getFunctionType()->getNumParams() : 0;
419  if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
420    Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
421
422  // Linux ABI treats var-arg calls the same way as regular ones.
423  bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
424
425  // Analyze operands of the call, assigning locations to each operand.
426  SmallVector<CCValAssign, 16> ArgLocs;
427  HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(),
428                        NumParams);
429
430  if (Subtarget.useHVXOps())
431    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
432  else if (DisableArgsMinAlignment)
433    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_Legacy);
434  else
435    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
436
437  if (CLI.IsTailCall) {
438    bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
439    CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
440                        IsVarArg, IsStructRet, StructAttrFlag, Outs,
441                        OutVals, Ins, DAG);
442    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
443      CCValAssign &VA = ArgLocs[i];
444      if (VA.isMemLoc()) {
445        CLI.IsTailCall = false;
446        break;
447      }
448    }
449    LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
450                                         : "Argument must be passed on stack. "
451                                           "Not eligible for Tail Call\n"));
452  }
453  // Get a count of how many bytes are to be pushed on the stack.
454  unsigned NumBytes = CCInfo.getNextStackOffset();
455  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
456  SmallVector<SDValue, 8> MemOpChains;
457
458  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
459  SDValue StackPtr =
460      DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
461
462  bool NeedsArgAlign = false;
463  Align LargestAlignSeen;
464  // Walk the register/memloc assignments, inserting copies/loads.
465  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
466    CCValAssign &VA = ArgLocs[i];
467    SDValue Arg = OutVals[i];
468    ISD::ArgFlagsTy Flags = Outs[i].Flags;
469    // Record if we need > 8 byte alignment on an argument.
470    bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
471    NeedsArgAlign |= ArgAlign;
472
473    // Promote the value if needed.
474    switch (VA.getLocInfo()) {
475      default:
476        // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
477        llvm_unreachable("Unknown loc info!");
478      case CCValAssign::Full:
479        break;
480      case CCValAssign::BCvt:
481        Arg = DAG.getBitcast(VA.getLocVT(), Arg);
482        break;
483      case CCValAssign::SExt:
484        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
485        break;
486      case CCValAssign::ZExt:
487        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
488        break;
489      case CCValAssign::AExt:
490        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
491        break;
492    }
493
494    if (VA.isMemLoc()) {
495      unsigned LocMemOffset = VA.getLocMemOffset();
496      SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
497                                        StackPtr.getValueType());
498      MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
499      if (ArgAlign)
500        LargestAlignSeen = std::max(
501            LargestAlignSeen, Align(VA.getLocVT().getStoreSizeInBits() / 8));
502      if (Flags.isByVal()) {
503        // The argument is a struct passed by value. According to LLVM, "Arg"
504        // is a pointer.
505        MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
506                                                        Flags, DAG, dl));
507      } else {
508        MachinePointerInfo LocPI = MachinePointerInfo::getStack(
509            DAG.getMachineFunction(), LocMemOffset);
510        SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
511        MemOpChains.push_back(S);
512      }
513      continue;
514    }
515
516    // Arguments that can be passed on register must be kept at RegsToPass
517    // vector.
518    if (VA.isRegLoc())
519      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
520  }
521
522  if (NeedsArgAlign && Subtarget.hasV60Ops()) {
523    LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
524    Align VecAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
525    LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
526    MFI.ensureMaxAlignment(LargestAlignSeen);
527  }
528  // Transform all store nodes into one single node because all store
529  // nodes are independent of each other.
530  if (!MemOpChains.empty())
531    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
532
533  SDValue Glue;
534  if (!CLI.IsTailCall) {
535    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
536    Glue = Chain.getValue(1);
537  }
538
539  // Build a sequence of copy-to-reg nodes chained together with token
540  // chain and flag operands which copy the outgoing args into registers.
541  // The Glue is necessary since all emitted instructions must be
542  // stuck together.
543  if (!CLI.IsTailCall) {
544    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
545      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
546                               RegsToPass[i].second, Glue);
547      Glue = Chain.getValue(1);
548    }
549  } else {
550    // For tail calls lower the arguments to the 'real' stack slot.
551    //
552    // Force all the incoming stack arguments to be loaded from the stack
553    // before any new outgoing arguments are stored to the stack, because the
554    // outgoing stack slots may alias the incoming argument stack slots, and
555    // the alias isn't otherwise explicit. This is slightly more conservative
556    // than necessary, because it means that each store effectively depends
557    // on every argument instead of just those arguments it would clobber.
558    //
559    // Do not flag preceding copytoreg stuff together with the following stuff.
560    Glue = SDValue();
561    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
562      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
563                               RegsToPass[i].second, Glue);
564      Glue = Chain.getValue(1);
565    }
566    Glue = SDValue();
567  }
568
569  bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
570  unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
571
572  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
573  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
574  // node so that legalize doesn't hack it.
575  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
576    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
577  } else if (ExternalSymbolSDNode *S =
578             dyn_cast<ExternalSymbolSDNode>(Callee)) {
579    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
580  }
581
582  // Returns a chain & a flag for retval copy to use.
583  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
584  SmallVector<SDValue, 8> Ops;
585  Ops.push_back(Chain);
586  Ops.push_back(Callee);
587
588  // Add argument registers to the end of the list so that they are
589  // known live into the call.
590  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
591    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
592                                  RegsToPass[i].second.getValueType()));
593  }
594
595  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
596  assert(Mask && "Missing call preserved mask for calling convention");
597  Ops.push_back(DAG.getRegisterMask(Mask));
598
599  if (Glue.getNode())
600    Ops.push_back(Glue);
601
602  if (CLI.IsTailCall) {
603    MFI.setHasTailCall();
604    return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
605  }
606
607  // Set this here because we need to know this for "hasFP" in frame lowering.
608  // The target-independent code calls getFrameRegister before setting it, and
609  // getFrameRegister uses hasFP to determine whether the function has FP.
610  MFI.setHasCalls(true);
611
612  unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
613  Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
614  Glue = Chain.getValue(1);
615
616  // Create the CALLSEQ_END node.
617  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
618                             DAG.getIntPtrConstant(0, dl, true), Glue, dl);
619  Glue = Chain.getValue(1);
620
621  // Handle result values, copying them out of physregs into vregs that we
622  // return.
623  return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
624                         InVals, OutVals, Callee);
625}
626
627/// Returns true by value, base pointer and offset pointer and addressing
628/// mode by reference if this node can be combined with a load / store to
629/// form a post-indexed load / store.
630bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
631      SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
632      SelectionDAG &DAG) const {
633  LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
634  if (!LSN)
635    return false;
636  EVT VT = LSN->getMemoryVT();
637  if (!VT.isSimple())
638    return false;
639  bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
640                     VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
641                     VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
642                     VT == MVT::v4i16 || VT == MVT::v8i8 ||
643                     Subtarget.isHVXVectorType(VT.getSimpleVT());
644  if (!IsLegalType)
645    return false;
646
647  if (Op->getOpcode() != ISD::ADD)
648    return false;
649  Base = Op->getOperand(0);
650  Offset = Op->getOperand(1);
651  if (!isa<ConstantSDNode>(Offset.getNode()))
652    return false;
653  AM = ISD::POST_INC;
654
655  int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
656  return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
657}
658
659SDValue
660HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
661  MachineFunction &MF = DAG.getMachineFunction();
662  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
663  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
664  unsigned LR = HRI.getRARegister();
665
666  if ((Op.getOpcode() != ISD::INLINEASM &&
667       Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
668    return Op;
669
670  unsigned NumOps = Op.getNumOperands();
671  if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
672    --NumOps;  // Ignore the flag operand.
673
674  for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
675    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
676    unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
677    ++i;  // Skip the ID value.
678
679    switch (InlineAsm::getKind(Flags)) {
680      default:
681        llvm_unreachable("Bad flags!");
682      case InlineAsm::Kind_RegUse:
683      case InlineAsm::Kind_Imm:
684      case InlineAsm::Kind_Mem:
685        i += NumVals;
686        break;
687      case InlineAsm::Kind_Clobber:
688      case InlineAsm::Kind_RegDef:
689      case InlineAsm::Kind_RegDefEarlyClobber: {
690        for (; NumVals; --NumVals, ++i) {
691          unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
692          if (Reg != LR)
693            continue;
694          HMFI.setHasClobberLR(true);
695          return Op;
696        }
697        break;
698      }
699    }
700  }
701
702  return Op;
703}
704
705// Need to transform ISD::PREFETCH into something that doesn't inherit
706// all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
707// SDNPMayStore.
708SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
709                                             SelectionDAG &DAG) const {
710  SDValue Chain = Op.getOperand(0);
711  SDValue Addr = Op.getOperand(1);
712  // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
713  // if the "reg" is fed by an "add".
714  SDLoc DL(Op);
715  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
716  return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
717}
718
719// Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
720// is marked as having side-effects, while the register read on Hexagon does
721// not have any. TableGen refuses to accept the direct pattern from that node
722// to the A4_tfrcpp.
723SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
724                                                     SelectionDAG &DAG) const {
725  SDValue Chain = Op.getOperand(0);
726  SDLoc dl(Op);
727  SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
728  return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
729}
730
731SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
732      SelectionDAG &DAG) const {
733  SDValue Chain = Op.getOperand(0);
734  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
735  // Lower the hexagon_prefetch builtin to DCFETCH, as above.
736  if (IntNo == Intrinsic::hexagon_prefetch) {
737    SDValue Addr = Op.getOperand(2);
738    SDLoc DL(Op);
739    SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
740    return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
741  }
742  return SDValue();
743}
744
745SDValue
746HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
747                                               SelectionDAG &DAG) const {
748  SDValue Chain = Op.getOperand(0);
749  SDValue Size = Op.getOperand(1);
750  SDValue Align = Op.getOperand(2);
751  SDLoc dl(Op);
752
753  ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
754  assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
755
756  unsigned A = AlignConst->getSExtValue();
757  auto &HFI = *Subtarget.getFrameLowering();
758  // "Zero" means natural stack alignment.
759  if (A == 0)
760    A = HFI.getStackAlign().value();
761
762  LLVM_DEBUG({
763    dbgs () << __func__ << " Align: " << A << " Size: ";
764    Size.getNode()->dump(&DAG);
765    dbgs() << "\n";
766  });
767
768  SDValue AC = DAG.getConstant(A, dl, MVT::i32);
769  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
770  SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
771
772  DAG.ReplaceAllUsesOfValueWith(Op, AA);
773  return AA;
774}
775
776SDValue HexagonTargetLowering::LowerFormalArguments(
777    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
778    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
779    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
780  MachineFunction &MF = DAG.getMachineFunction();
781  MachineFrameInfo &MFI = MF.getFrameInfo();
782  MachineRegisterInfo &MRI = MF.getRegInfo();
783
784  // Linux ABI treats var-arg calls the same way as regular ones.
785  bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
786
787  // Assign locations to all of the incoming arguments.
788  SmallVector<CCValAssign, 16> ArgLocs;
789  HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs,
790                        *DAG.getContext(),
791                        MF.getFunction().getFunctionType()->getNumParams());
792
793  if (Subtarget.useHVXOps())
794    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
795  else if (DisableArgsMinAlignment)
796    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_Legacy);
797  else
798    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
799
800  // For LLVM, in the case when returning a struct by value (>8byte),
801  // the first argument is a pointer that points to the location on caller's
802  // stack where the return value will be stored. For Hexagon, the location on
803  // caller's stack is passed only when the struct size is smaller than (and
804  // equal to) 8 bytes. If not, no address will be passed into callee and
805  // callee return the result direclty through R0/R1.
806  auto NextSingleReg = [] (const TargetRegisterClass &RC, unsigned Reg) {
807    switch (RC.getID()) {
808    case Hexagon::IntRegsRegClassID:
809      return Reg - Hexagon::R0 + 1;
810    case Hexagon::DoubleRegsRegClassID:
811      return (Reg - Hexagon::D0 + 1) * 2;
812    case Hexagon::HvxVRRegClassID:
813      return Reg - Hexagon::V0 + 1;
814    case Hexagon::HvxWRRegClassID:
815      return (Reg - Hexagon::W0 + 1) * 2;
816    }
817    llvm_unreachable("Unexpected register class");
818  };
819
820  auto &HFL = const_cast<HexagonFrameLowering&>(*Subtarget.getFrameLowering());
821  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
822  HFL.FirstVarArgSavedReg = 0;
823  HMFI.setFirstNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
824
825  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
826    CCValAssign &VA = ArgLocs[i];
827    ISD::ArgFlagsTy Flags = Ins[i].Flags;
828    bool ByVal = Flags.isByVal();
829
830    // Arguments passed in registers:
831    // 1. 32- and 64-bit values and HVX vectors are passed directly,
832    // 2. Large structs are passed via an address, and the address is
833    //    passed in a register.
834    if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
835      llvm_unreachable("ByValSize must be bigger than 8 bytes");
836
837    bool InReg = VA.isRegLoc() &&
838                 (!ByVal || (ByVal && Flags.getByValSize() > 8));
839
840    if (InReg) {
841      MVT RegVT = VA.getLocVT();
842      if (VA.getLocInfo() == CCValAssign::BCvt)
843        RegVT = VA.getValVT();
844
845      const TargetRegisterClass *RC = getRegClassFor(RegVT);
846      Register VReg = MRI.createVirtualRegister(RC);
847      SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
848
849      // Treat values of type MVT::i1 specially: they are passed in
850      // registers of type i32, but they need to remain as values of
851      // type i1 for consistency of the argument lowering.
852      if (VA.getValVT() == MVT::i1) {
853        assert(RegVT.getSizeInBits() <= 32);
854        SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
855                                Copy, DAG.getConstant(1, dl, RegVT));
856        Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
857                            ISD::SETNE);
858      } else {
859#ifndef NDEBUG
860        unsigned RegSize = RegVT.getSizeInBits();
861        assert(RegSize == 32 || RegSize == 64 ||
862               Subtarget.isHVXVectorType(RegVT));
863#endif
864      }
865      InVals.push_back(Copy);
866      MRI.addLiveIn(VA.getLocReg(), VReg);
867      HFL.FirstVarArgSavedReg = NextSingleReg(*RC, VA.getLocReg());
868    } else {
869      assert(VA.isMemLoc() && "Argument should be passed in memory");
870
871      // If it's a byval parameter, then we need to compute the
872      // "real" size, not the size of the pointer.
873      unsigned ObjSize = Flags.isByVal()
874                            ? Flags.getByValSize()
875                            : VA.getLocVT().getStoreSizeInBits() / 8;
876
877      // Create the frame index object for this incoming parameter.
878      int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
879      int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
880      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
881
882      if (Flags.isByVal()) {
883        // If it's a pass-by-value aggregate, then do not dereference the stack
884        // location. Instead, we should generate a reference to the stack
885        // location.
886        InVals.push_back(FIN);
887      } else {
888        SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
889                                MachinePointerInfo::getFixedStack(MF, FI, 0));
890        InVals.push_back(L);
891      }
892    }
893  }
894
895  if (IsVarArg && Subtarget.isEnvironmentMusl()) {
896    for (int i = HFL.FirstVarArgSavedReg; i < 6; i++)
897      MRI.addLiveIn(Hexagon::R0+i);
898  }
899
900  if (IsVarArg && Subtarget.isEnvironmentMusl()) {
901    HMFI.setFirstNamedArgFrameIndex(HMFI.getFirstNamedArgFrameIndex() - 1);
902    HMFI.setLastNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
903
904    // Create Frame index for the start of register saved area.
905    int NumVarArgRegs = 6 - HFL.FirstVarArgSavedReg;
906    bool RequiresPadding = (NumVarArgRegs & 1);
907    int RegSaveAreaSizePlusPadding = RequiresPadding
908                                        ? (NumVarArgRegs + 1) * 4
909                                        : NumVarArgRegs * 4;
910
911    if (RegSaveAreaSizePlusPadding > 0) {
912      // The offset to saved register area should be 8 byte aligned.
913      int RegAreaStart = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
914      if (!(RegAreaStart % 8))
915        RegAreaStart = (RegAreaStart + 7) & -8;
916
917      int RegSaveAreaFrameIndex =
918        MFI.CreateFixedObject(RegSaveAreaSizePlusPadding, RegAreaStart, true);
919      HMFI.setRegSavedAreaStartFrameIndex(RegSaveAreaFrameIndex);
920
921      // This will point to the next argument passed via stack.
922      int Offset = RegAreaStart + RegSaveAreaSizePlusPadding;
923      int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
924      HMFI.setVarArgsFrameIndex(FI);
925    } else {
926      // This will point to the next argument passed via stack, when
927      // there is no saved register area.
928      int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
929      int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
930      HMFI.setRegSavedAreaStartFrameIndex(FI);
931      HMFI.setVarArgsFrameIndex(FI);
932    }
933  }
934
935
936  if (IsVarArg && !Subtarget.isEnvironmentMusl()) {
937    // This will point to the next argument passed via stack.
938    int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
939    int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
940    HMFI.setVarArgsFrameIndex(FI);
941  }
942
943  return Chain;
944}
945
946SDValue
947HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
948  // VASTART stores the address of the VarArgsFrameIndex slot into the
949  // memory location argument.
950  MachineFunction &MF = DAG.getMachineFunction();
951  HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
952  SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
953  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
954
955  if (!Subtarget.isEnvironmentMusl()) {
956    return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
957                        MachinePointerInfo(SV));
958  }
959  auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
960  auto &HFL = *Subtarget.getFrameLowering();
961  SDLoc DL(Op);
962  SmallVector<SDValue, 8> MemOps;
963
964  // Get frame index of va_list.
965  SDValue FIN = Op.getOperand(1);
966
967  // If first Vararg register is odd, add 4 bytes to start of
968  // saved register area to point to the first register location.
969  // This is because the saved register area has to be 8 byte aligned.
970  // Incase of an odd start register, there will be 4 bytes of padding in
971  // the beginning of saved register area. If all registers area used up,
972  // the following condition will handle it correctly.
973  SDValue SavedRegAreaStartFrameIndex =
974    DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32);
975
976  auto PtrVT = getPointerTy(DAG.getDataLayout());
977
978  if (HFL.FirstVarArgSavedReg & 1)
979    SavedRegAreaStartFrameIndex =
980      DAG.getNode(ISD::ADD, DL, PtrVT,
981                  DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(),
982                                    MVT::i32),
983                  DAG.getIntPtrConstant(4, DL));
984
985  // Store the saved register area start pointer.
986  SDValue Store =
987    DAG.getStore(Op.getOperand(0), DL,
988                 SavedRegAreaStartFrameIndex,
989                 FIN, MachinePointerInfo(SV));
990  MemOps.push_back(Store);
991
992  // Store saved register area end pointer.
993  FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
994                    FIN, DAG.getIntPtrConstant(4, DL));
995  Store = DAG.getStore(Op.getOperand(0), DL,
996                       DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
997                                         PtrVT),
998                       FIN, MachinePointerInfo(SV, 4));
999  MemOps.push_back(Store);
1000
1001  // Store overflow area pointer.
1002  FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
1003                    FIN, DAG.getIntPtrConstant(4, DL));
1004  Store = DAG.getStore(Op.getOperand(0), DL,
1005                       DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
1006                                         PtrVT),
1007                       FIN, MachinePointerInfo(SV, 8));
1008  MemOps.push_back(Store);
1009
1010  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1011}
1012
1013SDValue
1014HexagonTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
1015  // Assert that the linux ABI is enabled for the current compilation.
1016  assert(Subtarget.isEnvironmentMusl() && "Linux ABI should be enabled");
1017  SDValue Chain = Op.getOperand(0);
1018  SDValue DestPtr = Op.getOperand(1);
1019  SDValue SrcPtr = Op.getOperand(2);
1020  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1021  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1022  SDLoc DL(Op);
1023  // Size of the va_list is 12 bytes as it has 3 pointers. Therefore,
1024  // we need to memcopy 12 bytes from va_list to another similar list.
1025  return DAG.getMemcpy(Chain, DL, DestPtr, SrcPtr,
1026                       DAG.getIntPtrConstant(12, DL), Align(4),
1027                       /*isVolatile*/ false, false, false,
1028                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
1029}
1030
1031SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1032  const SDLoc &dl(Op);
1033  SDValue LHS = Op.getOperand(0);
1034  SDValue RHS = Op.getOperand(1);
1035  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1036  MVT ResTy = ty(Op);
1037  MVT OpTy = ty(LHS);
1038
1039  if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1040    MVT ElemTy = OpTy.getVectorElementType();
1041    assert(ElemTy.isScalarInteger());
1042    MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1043                                  OpTy.getVectorNumElements());
1044    return DAG.getSetCC(dl, ResTy,
1045                        DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
1046                        DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
1047  }
1048
1049  // Treat all other vector types as legal.
1050  if (ResTy.isVector())
1051    return Op;
1052
1053  // Comparisons of short integers should use sign-extend, not zero-extend,
1054  // since we can represent small negative values in the compare instructions.
1055  // The LLVM default is to use zero-extend arbitrarily in these cases.
1056  auto isSExtFree = [this](SDValue N) {
1057    switch (N.getOpcode()) {
1058      case ISD::TRUNCATE: {
1059        // A sign-extend of a truncate of a sign-extend is free.
1060        SDValue Op = N.getOperand(0);
1061        if (Op.getOpcode() != ISD::AssertSext)
1062          return false;
1063        EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
1064        unsigned ThisBW = ty(N).getSizeInBits();
1065        unsigned OrigBW = OrigTy.getSizeInBits();
1066        // The type that was sign-extended to get the AssertSext must be
1067        // narrower than the type of N (so that N has still the same value
1068        // as the original).
1069        return ThisBW >= OrigBW;
1070      }
1071      case ISD::LOAD:
1072        // We have sign-extended loads.
1073        return true;
1074    }
1075    return false;
1076  };
1077
1078  if (OpTy == MVT::i8 || OpTy == MVT::i16) {
1079    ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
1080    bool IsNegative = C && C->getAPIntValue().isNegative();
1081    if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
1082      return DAG.getSetCC(dl, ResTy,
1083                          DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
1084                          DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
1085  }
1086
1087  return SDValue();
1088}
1089
1090SDValue
1091HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
1092  SDValue PredOp = Op.getOperand(0);
1093  SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
1094  MVT OpTy = ty(Op1);
1095  const SDLoc &dl(Op);
1096
1097  if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1098    MVT ElemTy = OpTy.getVectorElementType();
1099    assert(ElemTy.isScalarInteger());
1100    MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1101                                  OpTy.getVectorNumElements());
1102    // Generate (trunc (select (_, sext, sext))).
1103    return DAG.getSExtOrTrunc(
1104              DAG.getSelect(dl, WideTy, PredOp,
1105                            DAG.getSExtOrTrunc(Op1, dl, WideTy),
1106                            DAG.getSExtOrTrunc(Op2, dl, WideTy)),
1107              dl, OpTy);
1108  }
1109
1110  return SDValue();
1111}
1112
1113SDValue
1114HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
1115  EVT ValTy = Op.getValueType();
1116  ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
1117  Constant *CVal = nullptr;
1118  bool isVTi1Type = false;
1119  if (auto *CV = dyn_cast<ConstantVector>(CPN->getConstVal())) {
1120    if (cast<VectorType>(CV->getType())->getElementType()->isIntegerTy(1)) {
1121      IRBuilder<> IRB(CV->getContext());
1122      SmallVector<Constant*, 128> NewConst;
1123      unsigned VecLen = CV->getNumOperands();
1124      assert(isPowerOf2_32(VecLen) &&
1125             "conversion only supported for pow2 VectorSize");
1126      for (unsigned i = 0; i < VecLen; ++i)
1127        NewConst.push_back(IRB.getInt8(CV->getOperand(i)->isZeroValue()));
1128
1129      CVal = ConstantVector::get(NewConst);
1130      isVTi1Type = true;
1131    }
1132  }
1133  Align Alignment = CPN->getAlign();
1134  bool IsPositionIndependent = isPositionIndependent();
1135  unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
1136
1137  unsigned Offset = 0;
1138  SDValue T;
1139  if (CPN->isMachineConstantPoolEntry())
1140    T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Alignment,
1141                                  Offset, TF);
1142  else if (isVTi1Type)
1143    T = DAG.getTargetConstantPool(CVal, ValTy, Alignment, Offset, TF);
1144  else
1145    T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Alignment, Offset,
1146                                  TF);
1147
1148  assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
1149         "Inconsistent target flag encountered");
1150
1151  if (IsPositionIndependent)
1152    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1153  return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1154}
1155
1156SDValue
1157HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1158  EVT VT = Op.getValueType();
1159  int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1160  if (isPositionIndependent()) {
1161    SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1162    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1163  }
1164
1165  SDValue T = DAG.getTargetJumpTable(Idx, VT);
1166  return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1167}
1168
1169SDValue
1170HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1171  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1172  MachineFunction &MF = DAG.getMachineFunction();
1173  MachineFrameInfo &MFI = MF.getFrameInfo();
1174  MFI.setReturnAddressIsTaken(true);
1175
1176  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1177    return SDValue();
1178
1179  EVT VT = Op.getValueType();
1180  SDLoc dl(Op);
1181  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1182  if (Depth) {
1183    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1184    SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1185    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1186                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1187                       MachinePointerInfo());
1188  }
1189
1190  // Return LR, which contains the return address. Mark it an implicit live-in.
1191  unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1192  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1193}
1194
1195SDValue
1196HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1197  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1198  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1199  MFI.setFrameAddressIsTaken(true);
1200
1201  EVT VT = Op.getValueType();
1202  SDLoc dl(Op);
1203  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1204  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1205                                         HRI.getFrameRegister(), VT);
1206  while (Depth--)
1207    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1208                            MachinePointerInfo());
1209  return FrameAddr;
1210}
1211
1212SDValue
1213HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1214  SDLoc dl(Op);
1215  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1216}
1217
1218SDValue
1219HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1220  SDLoc dl(Op);
1221  auto *GAN = cast<GlobalAddressSDNode>(Op);
1222  auto PtrVT = getPointerTy(DAG.getDataLayout());
1223  auto *GV = GAN->getGlobal();
1224  int64_t Offset = GAN->getOffset();
1225
1226  auto &HLOF = *HTM.getObjFileLowering();
1227  Reloc::Model RM = HTM.getRelocationModel();
1228
1229  if (RM == Reloc::Static) {
1230    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1231    const GlobalObject *GO = GV->getBaseObject();
1232    if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1233      return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1234    return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1235  }
1236
1237  bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1238  if (UsePCRel) {
1239    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1240                                            HexagonII::MO_PCREL);
1241    return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1242  }
1243
1244  // Use GOT index.
1245  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1246  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1247  SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1248  return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1249}
1250
1251// Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1252SDValue
1253HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1254  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1255  SDLoc dl(Op);
1256  EVT PtrVT = getPointerTy(DAG.getDataLayout());
1257
1258  Reloc::Model RM = HTM.getRelocationModel();
1259  if (RM == Reloc::Static) {
1260    SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1261    return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1262  }
1263
1264  SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1265  return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1266}
1267
1268SDValue
1269HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1270      const {
1271  EVT PtrVT = getPointerTy(DAG.getDataLayout());
1272  SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1273                                               HexagonII::MO_PCREL);
1274  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1275}
1276
1277SDValue
1278HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1279      GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1280      unsigned char OperandFlags) const {
1281  MachineFunction &MF = DAG.getMachineFunction();
1282  MachineFrameInfo &MFI = MF.getFrameInfo();
1283  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1284  SDLoc dl(GA);
1285  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1286                                           GA->getValueType(0),
1287                                           GA->getOffset(),
1288                                           OperandFlags);
1289  // Create Operands for the call.The Operands should have the following:
1290  // 1. Chain SDValue
1291  // 2. Callee which in this case is the Global address value.
1292  // 3. Registers live into the call.In this case its R0, as we
1293  //    have just one argument to be passed.
1294  // 4. Glue.
1295  // Note: The order is important.
1296
1297  const auto &HRI = *Subtarget.getRegisterInfo();
1298  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1299  assert(Mask && "Missing call preserved mask for calling convention");
1300  SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1301                    DAG.getRegisterMask(Mask), Glue };
1302  Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1303
1304  // Inform MFI that function has calls.
1305  MFI.setAdjustsStack(true);
1306
1307  Glue = Chain.getValue(1);
1308  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1309}
1310
1311//
1312// Lower using the intial executable model for TLS addresses
1313//
1314SDValue
1315HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1316      SelectionDAG &DAG) const {
1317  SDLoc dl(GA);
1318  int64_t Offset = GA->getOffset();
1319  auto PtrVT = getPointerTy(DAG.getDataLayout());
1320
1321  // Get the thread pointer.
1322  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1323
1324  bool IsPositionIndependent = isPositionIndependent();
1325  unsigned char TF =
1326      IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1327
1328  // First generate the TLS symbol address
1329  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1330                                           Offset, TF);
1331
1332  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1333
1334  if (IsPositionIndependent) {
1335    // Generate the GOT pointer in case of position independent code
1336    SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1337
1338    // Add the TLS Symbol address to GOT pointer.This gives
1339    // GOT relative relocation for the symbol.
1340    Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1341  }
1342
1343  // Load the offset value for TLS symbol.This offset is relative to
1344  // thread pointer.
1345  SDValue LoadOffset =
1346      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1347
1348  // Address of the thread local variable is the add of thread
1349  // pointer and the offset of the variable.
1350  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1351}
1352
1353//
1354// Lower using the local executable model for TLS addresses
1355//
1356SDValue
1357HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1358      SelectionDAG &DAG) const {
1359  SDLoc dl(GA);
1360  int64_t Offset = GA->getOffset();
1361  auto PtrVT = getPointerTy(DAG.getDataLayout());
1362
1363  // Get the thread pointer.
1364  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1365  // Generate the TLS symbol address
1366  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1367                                           HexagonII::MO_TPREL);
1368  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1369
1370  // Address of the thread local variable is the add of thread
1371  // pointer and the offset of the variable.
1372  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1373}
1374
1375//
1376// Lower using the general dynamic model for TLS addresses
1377//
1378SDValue
1379HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1380      SelectionDAG &DAG) const {
1381  SDLoc dl(GA);
1382  int64_t Offset = GA->getOffset();
1383  auto PtrVT = getPointerTy(DAG.getDataLayout());
1384
1385  // First generate the TLS symbol address
1386  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1387                                           HexagonII::MO_GDGOT);
1388
1389  // Then, generate the GOT pointer
1390  SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1391
1392  // Add the TLS symbol and the GOT pointer
1393  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1394  SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1395
1396  // Copy over the argument to R0
1397  SDValue InFlag;
1398  Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
1399  InFlag = Chain.getValue(1);
1400
1401  unsigned Flags =
1402      static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
1403          ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1404          : HexagonII::MO_GDPLT;
1405
1406  return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
1407                           Hexagon::R0, Flags);
1408}
1409
1410//
1411// Lower TLS addresses.
1412//
1413// For now for dynamic models, we only support the general dynamic model.
1414//
1415SDValue
1416HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1417      SelectionDAG &DAG) const {
1418  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1419
1420  switch (HTM.getTLSModel(GA->getGlobal())) {
1421    case TLSModel::GeneralDynamic:
1422    case TLSModel::LocalDynamic:
1423      return LowerToTLSGeneralDynamicModel(GA, DAG);
1424    case TLSModel::InitialExec:
1425      return LowerToTLSInitialExecModel(GA, DAG);
1426    case TLSModel::LocalExec:
1427      return LowerToTLSLocalExecModel(GA, DAG);
1428  }
1429  llvm_unreachable("Bogus TLS model");
1430}
1431
1432//===----------------------------------------------------------------------===//
1433// TargetLowering Implementation
1434//===----------------------------------------------------------------------===//
1435
1436HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1437                                             const HexagonSubtarget &ST)
1438    : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1439      Subtarget(ST) {
1440  auto &HRI = *Subtarget.getRegisterInfo();
1441
1442  setPrefLoopAlignment(Align(16));
1443  setMinFunctionAlignment(Align(4));
1444  setPrefFunctionAlignment(Align(16));
1445  setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1446  setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1447  setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1448
1449  setMaxAtomicSizeInBitsSupported(64);
1450  setMinCmpXchgSizeInBits(32);
1451
1452  if (EnableHexSDNodeSched)
1453    setSchedulingPreference(Sched::VLIW);
1454  else
1455    setSchedulingPreference(Sched::Source);
1456
1457  // Limits for inline expansion of memcpy/memmove
1458  MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1459  MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1460  MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1461  MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1462  MaxStoresPerMemset = MaxStoresPerMemsetCL;
1463  MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1464
1465  //
1466  // Set up register classes.
1467  //
1468
1469  addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
1470  addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
1471  addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
1472  addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
1473  addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
1474  addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1475  addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
1476  addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
1477  addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
1478  addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1479  addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1480
1481  addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1482  addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1483
1484  //
1485  // Handling of scalar operations.
1486  //
1487  // All operations default to "legal", except:
1488  // - indexed loads and stores (pre-/post-incremented),
1489  // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1490  //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1491  //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1492  //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1493  // which default to "expand" for at least one type.
1494
1495  // Misc operations.
1496  setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal);
1497  setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal);
1498  setOperationAction(ISD::TRAP,                 MVT::Other, Legal);
1499  setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom);
1500  setOperationAction(ISD::JumpTable,            MVT::i32,   Custom);
1501  setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand);
1502  setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand);
1503  setOperationAction(ISD::INLINEASM,            MVT::Other, Custom);
1504  setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom);
1505  setOperationAction(ISD::PREFETCH,             MVT::Other, Custom);
1506  setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom);
1507  setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom);
1508  setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom);
1509  setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom);
1510  setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom);
1511  setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom);
1512
1513  // Custom legalize GlobalAddress nodes into CONST32.
1514  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1515  setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
1516  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
1517
1518  // Hexagon needs to optimize cases with negative constants.
1519  setOperationAction(ISD::SETCC, MVT::i8,    Custom);
1520  setOperationAction(ISD::SETCC, MVT::i16,   Custom);
1521  setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
1522  setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1523
1524  // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1525  setOperationAction(ISD::VASTART, MVT::Other, Custom);
1526  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
1527  setOperationAction(ISD::VAARG,   MVT::Other, Expand);
1528  if (Subtarget.isEnvironmentMusl())
1529    setOperationAction(ISD::VACOPY, MVT::Other, Custom);
1530  else
1531    setOperationAction(ISD::VACOPY,  MVT::Other, Expand);
1532
1533  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1534  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1535  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1536
1537  if (EmitJumpTables)
1538    setMinimumJumpTableEntries(MinimumJumpTables);
1539  else
1540    setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1541  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1542
1543  for (unsigned LegalIntOp :
1544       {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) {
1545    setOperationAction(LegalIntOp, MVT::i32, Legal);
1546    setOperationAction(LegalIntOp, MVT::i64, Legal);
1547  }
1548
1549  // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1550  // but they only operate on i64.
1551  for (MVT VT : MVT::integer_valuetypes()) {
1552    setOperationAction(ISD::UADDO,    VT, Custom);
1553    setOperationAction(ISD::USUBO,    VT, Custom);
1554    setOperationAction(ISD::SADDO,    VT, Expand);
1555    setOperationAction(ISD::SSUBO,    VT, Expand);
1556    setOperationAction(ISD::ADDCARRY, VT, Expand);
1557    setOperationAction(ISD::SUBCARRY, VT, Expand);
1558  }
1559  setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
1560  setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
1561
1562  setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
1563  setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1564  setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
1565  setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1566
1567  // Popcount can count # of 1s in i64 but returns i32.
1568  setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
1569  setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1570  setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1571  setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1572
1573  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1574  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1575  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1576  setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1577
1578  setOperationAction(ISD::FSHL, MVT::i32, Legal);
1579  setOperationAction(ISD::FSHL, MVT::i64, Legal);
1580  setOperationAction(ISD::FSHR, MVT::i32, Legal);
1581  setOperationAction(ISD::FSHR, MVT::i64, Legal);
1582
1583  for (unsigned IntExpOp :
1584       {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
1585        ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
1586        ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1587        ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1588    for (MVT VT : MVT::integer_valuetypes())
1589      setOperationAction(IntExpOp, VT, Expand);
1590  }
1591
1592  for (unsigned FPExpOp :
1593       {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1594        ISD::FPOW, ISD::FCOPYSIGN}) {
1595    for (MVT VT : MVT::fp_valuetypes())
1596      setOperationAction(FPExpOp, VT, Expand);
1597  }
1598
1599  // No extending loads from i32.
1600  for (MVT VT : MVT::integer_valuetypes()) {
1601    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1602    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1603    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
1604  }
1605  // Turn FP truncstore into trunc + store.
1606  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1607  // Turn FP extload into load/fpextend.
1608  for (MVT VT : MVT::fp_valuetypes())
1609    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1610
1611  // Expand BR_CC and SELECT_CC for all integer and fp types.
1612  for (MVT VT : MVT::integer_valuetypes()) {
1613    setOperationAction(ISD::BR_CC,     VT, Expand);
1614    setOperationAction(ISD::SELECT_CC, VT, Expand);
1615  }
1616  for (MVT VT : MVT::fp_valuetypes()) {
1617    setOperationAction(ISD::BR_CC,     VT, Expand);
1618    setOperationAction(ISD::SELECT_CC, VT, Expand);
1619  }
1620  setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1621
1622  //
1623  // Handling of vector operations.
1624  //
1625
1626  // Set the action for vector operations to "expand", then override it with
1627  // either "custom" or "legal" for specific cases.
1628  static const unsigned VectExpOps[] = {
1629    // Integer arithmetic:
1630    ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV,
1631    ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO,
1632    ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1633    // Logical/bit:
1634    ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
1635    ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,
1636    // Floating point arithmetic/math functions:
1637    ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
1638    ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
1639    ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
1640    ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
1641    ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
1642    ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1643    // Misc:
1644    ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
1645    // Vector:
1646    ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
1647    ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
1648    ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
1649    ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE,
1650    ISD::SPLAT_VECTOR,
1651  };
1652
1653  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1654    for (unsigned VectExpOp : VectExpOps)
1655      setOperationAction(VectExpOp, VT, Expand);
1656
1657    // Expand all extending loads and truncating stores:
1658    for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
1659      if (TargetVT == VT)
1660        continue;
1661      setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1662      setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1663      setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1664      setTruncStoreAction(VT, TargetVT, Expand);
1665    }
1666
1667    // Normalize all inputs to SELECT to be vectors of i32.
1668    if (VT.getVectorElementType() != MVT::i32) {
1669      MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1670      setOperationAction(ISD::SELECT, VT, Promote);
1671      AddPromotedToType(ISD::SELECT, VT, VT32);
1672    }
1673    setOperationAction(ISD::SRA, VT, Custom);
1674    setOperationAction(ISD::SHL, VT, Custom);
1675    setOperationAction(ISD::SRL, VT, Custom);
1676  }
1677
1678  // Extending loads from (native) vectors of i8 into (native) vectors of i16
1679  // are legal.
1680  setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
1681  setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1682  setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1683  setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
1684  setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1685  setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1686
1687  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1688  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1689  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1690
1691  // Types natively supported:
1692  for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1693                       MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1694    setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
1695    setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1696    setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
1697    setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
1698    setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
1699    setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);
1700
1701    setOperationAction(ISD::ADD, NativeVT, Legal);
1702    setOperationAction(ISD::SUB, NativeVT, Legal);
1703    setOperationAction(ISD::MUL, NativeVT, Legal);
1704    setOperationAction(ISD::AND, NativeVT, Legal);
1705    setOperationAction(ISD::OR,  NativeVT, Legal);
1706    setOperationAction(ISD::XOR, NativeVT, Legal);
1707
1708    if (NativeVT.getVectorElementType() != MVT::i1)
1709      setOperationAction(ISD::SPLAT_VECTOR, NativeVT, Legal);
1710  }
1711
1712  for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32}) {
1713    setOperationAction(ISD::SMIN, VT, Legal);
1714    setOperationAction(ISD::SMAX, VT, Legal);
1715    setOperationAction(ISD::UMIN, VT, Legal);
1716    setOperationAction(ISD::UMAX, VT, Legal);
1717  }
1718
1719  // Custom lower unaligned loads.
1720  // Also, for both loads and stores, verify the alignment of the address
1721  // in case it is a compile-time constant. This is a usability feature to
1722  // provide a meaningful error message to users.
1723  for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1724                 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1725    setOperationAction(ISD::LOAD,  VT, Custom);
1726    setOperationAction(ISD::STORE, VT, Custom);
1727  }
1728
1729  // Custom-lower load/stores of boolean vectors.
1730  for (MVT VT : {MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1731    setOperationAction(ISD::LOAD,  VT, Custom);
1732    setOperationAction(ISD::STORE, VT, Custom);
1733  }
1734
1735  for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
1736                 MVT::v2i32}) {
1737    setCondCodeAction(ISD::SETNE,  VT, Expand);
1738    setCondCodeAction(ISD::SETLE,  VT, Expand);
1739    setCondCodeAction(ISD::SETGE,  VT, Expand);
1740    setCondCodeAction(ISD::SETLT,  VT, Expand);
1741    setCondCodeAction(ISD::SETULE, VT, Expand);
1742    setCondCodeAction(ISD::SETUGE, VT, Expand);
1743    setCondCodeAction(ISD::SETULT, VT, Expand);
1744  }
1745
1746  // Custom-lower bitcasts from i8 to v8i1.
1747  setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
1748  setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
1749  setOperationAction(ISD::VSELECT,        MVT::v4i8,  Custom);
1750  setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
1751  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
1752  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1753  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);
1754
1755  // V5+.
1756  setOperationAction(ISD::FMA,  MVT::f64, Expand);
1757  setOperationAction(ISD::FADD, MVT::f64, Expand);
1758  setOperationAction(ISD::FSUB, MVT::f64, Expand);
1759  setOperationAction(ISD::FMUL, MVT::f64, Expand);
1760
1761  setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1762  setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1763
1764  setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
1765  setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
1766  setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1767  setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
1768  setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
1769  setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1770  setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
1771  setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
1772  setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1773  setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
1774  setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
1775  setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1776
1777  // Handling of indexed loads/stores: default is "expand".
1778  //
1779  for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1780                 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1781    setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1782    setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1783  }
1784
1785  // Subtarget-specific operation actions.
1786  //
1787  if (Subtarget.hasV60Ops()) {
1788    setOperationAction(ISD::ROTL, MVT::i32, Legal);
1789    setOperationAction(ISD::ROTL, MVT::i64, Legal);
1790    setOperationAction(ISD::ROTR, MVT::i32, Legal);
1791    setOperationAction(ISD::ROTR, MVT::i64, Legal);
1792  }
1793  if (Subtarget.hasV66Ops()) {
1794    setOperationAction(ISD::FADD, MVT::f64, Legal);
1795    setOperationAction(ISD::FSUB, MVT::f64, Legal);
1796  }
1797  if (Subtarget.hasV67Ops()) {
1798    setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1799    setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1800    setOperationAction(ISD::FMUL,    MVT::f64, Legal);
1801  }
1802
1803  setTargetDAGCombine(ISD::VSELECT);
1804
1805  if (Subtarget.useHVXOps())
1806    initializeHVXLowering();
1807
1808  computeRegisterProperties(&HRI);
1809
1810  //
1811  // Library calls for unsupported operations
1812  //
1813  bool FastMath  = EnableFastMath;
1814
1815  setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1816  setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1817  setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1818  setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1819  setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1820  setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1821  setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1822  setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1823
1824  setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1825  setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1826  setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1827  setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1828  setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1829  setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1830
1831  // This is the only fast library function for sqrtd.
1832  if (FastMath)
1833    setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1834
1835  // Prefix is: nothing  for "slow-math",
1836  //            "fast2_" for V5+ fast-math double-precision
1837  // (actually, keep fast-math and fast-math2 separate for now)
1838  if (FastMath) {
1839    setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1840    setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1841    setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1842    setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1843    setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1844  } else {
1845    setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1846    setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1847    setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1848    setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1849    setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1850  }
1851
1852  if (FastMath)
1853    setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1854  else
1855    setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1856
1857  // These cause problems when the shift amount is non-constant.
1858  setLibcallName(RTLIB::SHL_I128, nullptr);
1859  setLibcallName(RTLIB::SRL_I128, nullptr);
1860  setLibcallName(RTLIB::SRA_I128, nullptr);
1861}
1862
1863const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1864  switch ((HexagonISD::NodeType)Opcode) {
1865  case HexagonISD::ADDC:          return "HexagonISD::ADDC";
1866  case HexagonISD::SUBC:          return "HexagonISD::SUBC";
1867  case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
1868  case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
1869  case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
1870  case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
1871  case HexagonISD::CALL:          return "HexagonISD::CALL";
1872  case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
1873  case HexagonISD::CALLR:         return "HexagonISD::CALLR";
1874  case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
1875  case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
1876  case HexagonISD::CONST32:       return "HexagonISD::CONST32";
1877  case HexagonISD::CP:            return "HexagonISD::CP";
1878  case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
1879  case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
1880  case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
1881  case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
1882  case HexagonISD::INSERT:        return "HexagonISD::INSERT";
1883  case HexagonISD::JT:            return "HexagonISD::JT";
1884  case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG";
1885  case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
1886  case HexagonISD::VASL:          return "HexagonISD::VASL";
1887  case HexagonISD::VASR:          return "HexagonISD::VASR";
1888  case HexagonISD::VLSR:          return "HexagonISD::VLSR";
1889  case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
1890  case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
1891  case HexagonISD::VROR:          return "HexagonISD::VROR";
1892  case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
1893  case HexagonISD::PTRUE:         return "HexagonISD::PTRUE";
1894  case HexagonISD::PFALSE:        return "HexagonISD::PFALSE";
1895  case HexagonISD::D2P:           return "HexagonISD::D2P";
1896  case HexagonISD::P2D:           return "HexagonISD::P2D";
1897  case HexagonISD::V2Q:           return "HexagonISD::V2Q";
1898  case HexagonISD::Q2V:           return "HexagonISD::Q2V";
1899  case HexagonISD::QCAT:          return "HexagonISD::QCAT";
1900  case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
1901  case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
1902  case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
1903  case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
1904  case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
1905  case HexagonISD::VPACKL:        return "HexagonISD::VPACKL";
1906  case HexagonISD::VUNPACK:       return "HexagonISD::VUNPACK";
1907  case HexagonISD::VUNPACKU:      return "HexagonISD::VUNPACKU";
1908  case HexagonISD::ISEL:          return "HexagonISD::ISEL";
1909  case HexagonISD::OP_END:        break;
1910  }
1911  return nullptr;
1912}
1913
1914void
1915HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
1916      unsigned NeedAlign) const {
1917  auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1918  if (!CA)
1919    return;
1920  unsigned Addr = CA->getZExtValue();
1921  unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign;
1922  if (HaveAlign < NeedAlign) {
1923    std::string ErrMsg;
1924    raw_string_ostream O(ErrMsg);
1925    O << "Misaligned constant address: " << format_hex(Addr, 10)
1926      << " has alignment " << HaveAlign
1927      << ", but the memory access requires " << NeedAlign;
1928    if (DebugLoc DL = dl.getDebugLoc())
1929      DL.print(O << ", at ");
1930    report_fatal_error(O.str());
1931  }
1932}
1933
1934// Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
1935// intrinsic.
1936static bool isBrevLdIntrinsic(const Value *Inst) {
1937  unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
1938  return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
1939          ID == Intrinsic::hexagon_L2_loadri_pbr ||
1940          ID == Intrinsic::hexagon_L2_loadrh_pbr ||
1941          ID == Intrinsic::hexagon_L2_loadruh_pbr ||
1942          ID == Intrinsic::hexagon_L2_loadrb_pbr ||
1943          ID == Intrinsic::hexagon_L2_loadrub_pbr);
1944}
1945
1946// Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
1947// instruction. So far we only handle bitcast, extract value and bit reverse
1948// load intrinsic instructions. Should we handle CGEP ?
1949static Value *getBrevLdObject(Value *V) {
1950  if (Operator::getOpcode(V) == Instruction::ExtractValue ||
1951      Operator::getOpcode(V) == Instruction::BitCast)
1952    V = cast<Operator>(V)->getOperand(0);
1953  else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
1954    V = cast<Instruction>(V)->getOperand(0);
1955  return V;
1956}
1957
1958// Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
1959// a back edge. If the back edge comes from the intrinsic itself, the incoming
1960// edge is returned.
1961static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
1962  const BasicBlock *Parent = PN->getParent();
1963  int Idx = -1;
1964  for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1965    BasicBlock *Blk = PN->getIncomingBlock(i);
1966    // Determine if the back edge is originated from intrinsic.
1967    if (Blk == Parent) {
1968      Value *BackEdgeVal = PN->getIncomingValue(i);
1969      Value *BaseVal;
1970      // Loop over till we return the same Value or we hit the IntrBaseVal.
1971      do {
1972        BaseVal = BackEdgeVal;
1973        BackEdgeVal = getBrevLdObject(BackEdgeVal);
1974      } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
1975      // If the getBrevLdObject returns IntrBaseVal, we should return the
1976      // incoming edge.
1977      if (IntrBaseVal == BackEdgeVal)
1978        continue;
1979      Idx = i;
1980      break;
1981    } else // Set the node to incoming edge.
1982      Idx = i;
1983  }
1984  assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
1985  return PN->getIncomingValue(Idx);
1986}
1987
1988// Bit-reverse Load Intrinsic: Figure out the underlying object the base
1989// pointer points to, for the bit-reverse load intrinsic. Setting this to
1990// memoperand might help alias analysis to figure out the dependencies.
1991static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
1992  Value *IntrBaseVal = V;
1993  Value *BaseVal;
1994  // Loop over till we return the same Value, implies we either figure out
1995  // the object or we hit a PHI
1996  do {
1997    BaseVal = V;
1998    V = getBrevLdObject(V);
1999  } while (BaseVal != V);
2000
2001  // Identify the object from PHINode.
2002  if (const PHINode *PN = dyn_cast<PHINode>(V))
2003    return returnEdge(PN, IntrBaseVal);
2004  // For non PHI nodes, the object is the last value returned by getBrevLdObject
2005  else
2006    return V;
2007}
2008
2009/// Given an intrinsic, checks if on the target the intrinsic will need to map
2010/// to a MemIntrinsicNode (touches memory). If this is the case, it returns
2011/// true and store the intrinsic information into the IntrinsicInfo that was
2012/// passed to the function.
2013bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
2014                                               const CallInst &I,
2015                                               MachineFunction &MF,
2016                                               unsigned Intrinsic) const {
2017  switch (Intrinsic) {
2018  case Intrinsic::hexagon_L2_loadrd_pbr:
2019  case Intrinsic::hexagon_L2_loadri_pbr:
2020  case Intrinsic::hexagon_L2_loadrh_pbr:
2021  case Intrinsic::hexagon_L2_loadruh_pbr:
2022  case Intrinsic::hexagon_L2_loadrb_pbr:
2023  case Intrinsic::hexagon_L2_loadrub_pbr: {
2024    Info.opc = ISD::INTRINSIC_W_CHAIN;
2025    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
2026    auto &Cont = I.getCalledFunction()->getParent()->getContext();
2027    // The intrinsic function call is of the form { ElTy, i8* }
2028    // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
2029    // should be derived from ElTy.
2030    Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
2031    Info.memVT = MVT::getVT(ElTy);
2032    llvm::Value *BasePtrVal = I.getOperand(0);
2033    Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
2034    // The offset value comes through Modifier register. For now, assume the
2035    // offset is 0.
2036    Info.offset = 0;
2037    Info.align = DL.getABITypeAlign(Info.memVT.getTypeForEVT(Cont));
2038    Info.flags = MachineMemOperand::MOLoad;
2039    return true;
2040  }
2041  case Intrinsic::hexagon_V6_vgathermw:
2042  case Intrinsic::hexagon_V6_vgathermw_128B:
2043  case Intrinsic::hexagon_V6_vgathermh:
2044  case Intrinsic::hexagon_V6_vgathermh_128B:
2045  case Intrinsic::hexagon_V6_vgathermhw:
2046  case Intrinsic::hexagon_V6_vgathermhw_128B:
2047  case Intrinsic::hexagon_V6_vgathermwq:
2048  case Intrinsic::hexagon_V6_vgathermwq_128B:
2049  case Intrinsic::hexagon_V6_vgathermhq:
2050  case Intrinsic::hexagon_V6_vgathermhq_128B:
2051  case Intrinsic::hexagon_V6_vgathermhwq:
2052  case Intrinsic::hexagon_V6_vgathermhwq_128B: {
2053    const Module &M = *I.getParent()->getParent()->getParent();
2054    Info.opc = ISD::INTRINSIC_W_CHAIN;
2055    Type *VecTy = I.getArgOperand(1)->getType();
2056    Info.memVT = MVT::getVT(VecTy);
2057    Info.ptrVal = I.getArgOperand(0);
2058    Info.offset = 0;
2059    Info.align =
2060        MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
2061    Info.flags = MachineMemOperand::MOLoad |
2062                 MachineMemOperand::MOStore |
2063                 MachineMemOperand::MOVolatile;
2064    return true;
2065  }
2066  default:
2067    break;
2068  }
2069  return false;
2070}
2071
2072bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
2073  return X.getValueType().isScalarInteger(); // 'tstbit'
2074}
2075
2076bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
2077  return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
2078}
2079
2080bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
2081  if (!VT1.isSimple() || !VT2.isSimple())
2082    return false;
2083  return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
2084}
2085
2086bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
2087    const MachineFunction &MF, EVT VT) const {
2088  return isOperationLegalOrCustom(ISD::FMA, VT);
2089}
2090
2091// Should we expand the build vector with shuffles?
2092bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
2093      unsigned DefinedValues) const {
2094  return false;
2095}
2096
2097bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
2098                                               EVT VT) const {
2099  return true;
2100}
2101
2102TargetLoweringBase::LegalizeTypeAction
2103HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
2104  unsigned VecLen = VT.getVectorMinNumElements();
2105  MVT ElemTy = VT.getVectorElementType();
2106
2107  if (VecLen == 1 || VT.isScalableVector())
2108    return TargetLoweringBase::TypeScalarizeVector;
2109
2110  if (Subtarget.useHVXOps()) {
2111    unsigned Action = getPreferredHvxVectorAction(VT);
2112    if (Action != ~0u)
2113      return static_cast<TargetLoweringBase::LegalizeTypeAction>(Action);
2114  }
2115
2116  // Always widen (remaining) vectors of i1.
2117  if (ElemTy == MVT::i1)
2118    return TargetLoweringBase::TypeWidenVector;
2119
2120  return TargetLoweringBase::TypeSplitVector;
2121}
2122
2123std::pair<SDValue, int>
2124HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
2125  if (Addr.getOpcode() == ISD::ADD) {
2126    SDValue Op1 = Addr.getOperand(1);
2127    if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
2128      return { Addr.getOperand(0), CN->getSExtValue() };
2129  }
2130  return { Addr, 0 };
2131}
2132
2133// Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
2134// to select data from, V3 is the permutation.
2135SDValue
2136HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
2137      const {
2138  const auto *SVN = cast<ShuffleVectorSDNode>(Op);
2139  ArrayRef<int> AM = SVN->getMask();
2140  assert(AM.size() <= 8 && "Unexpected shuffle mask");
2141  unsigned VecLen = AM.size();
2142
2143  MVT VecTy = ty(Op);
2144  assert(!Subtarget.isHVXVectorType(VecTy, true) &&
2145         "HVX shuffles should be legal");
2146  assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
2147
2148  SDValue Op0 = Op.getOperand(0);
2149  SDValue Op1 = Op.getOperand(1);
2150  const SDLoc &dl(Op);
2151
2152  // If the inputs are not the same as the output, bail. This is not an
2153  // error situation, but complicates the handling and the default expansion
2154  // (into BUILD_VECTOR) should be adequate.
2155  if (ty(Op0) != VecTy || ty(Op1) != VecTy)
2156    return SDValue();
2157
2158  // Normalize the mask so that the first non-negative index comes from
2159  // the first operand.
2160  SmallVector<int,8> Mask(AM.begin(), AM.end());
2161  unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
2162  if (F == AM.size())
2163    return DAG.getUNDEF(VecTy);
2164  if (AM[F] >= int(VecLen)) {
2165    ShuffleVectorSDNode::commuteMask(Mask);
2166    std::swap(Op0, Op1);
2167  }
2168
2169  // Express the shuffle mask in terms of bytes.
2170  SmallVector<int,8> ByteMask;
2171  unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
2172  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2173    int M = Mask[i];
2174    if (M < 0) {
2175      for (unsigned j = 0; j != ElemBytes; ++j)
2176        ByteMask.push_back(-1);
2177    } else {
2178      for (unsigned j = 0; j != ElemBytes; ++j)
2179        ByteMask.push_back(M*ElemBytes + j);
2180    }
2181  }
2182  assert(ByteMask.size() <= 8);
2183
2184  // All non-undef (non-negative) indexes are well within [0..127], so they
2185  // fit in a single byte. Build two 64-bit words:
2186  // - MaskIdx where each byte is the corresponding index (for non-negative
2187  //   indexes), and 0xFF for negative indexes, and
2188  // - MaskUnd that has 0xFF for each negative index.
2189  uint64_t MaskIdx = 0;
2190  uint64_t MaskUnd = 0;
2191  for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
2192    unsigned S = 8*i;
2193    uint64_t M = ByteMask[i] & 0xFF;
2194    if (M == 0xFF)
2195      MaskUnd |= M << S;
2196    MaskIdx |= M << S;
2197  }
2198
2199  if (ByteMask.size() == 4) {
2200    // Identity.
2201    if (MaskIdx == (0x03020100 | MaskUnd))
2202      return Op0;
2203    // Byte swap.
2204    if (MaskIdx == (0x00010203 | MaskUnd)) {
2205      SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
2206      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
2207      return DAG.getBitcast(VecTy, T1);
2208    }
2209
2210    // Byte packs.
2211    SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
2212                                   typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
2213    if (MaskIdx == (0x06040200 | MaskUnd))
2214      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
2215    if (MaskIdx == (0x07050301 | MaskUnd))
2216      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
2217
2218    SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
2219                                   typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
2220    if (MaskIdx == (0x02000604 | MaskUnd))
2221      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
2222    if (MaskIdx == (0x03010705 | MaskUnd))
2223      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
2224  }
2225
2226  if (ByteMask.size() == 8) {
2227    // Identity.
2228    if (MaskIdx == (0x0706050403020100ull | MaskUnd))
2229      return Op0;
2230    // Byte swap.
2231    if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
2232      SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2233      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2234      return DAG.getBitcast(VecTy, T1);
2235    }
2236
2237    // Halfword picks.
2238    if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2239      return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2240    if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2241      return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2242    if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2243      return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2244    if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2245      return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2246    if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2247      VectorPair P = opSplit(Op0, dl, DAG);
2248      return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2249    }
2250
2251    // Byte packs.
2252    if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2253      return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2254    if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2255      return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2256  }
2257
2258  return SDValue();
2259}
2260
2261// Create a Hexagon-specific node for shifting a vector by an integer.
2262SDValue
2263HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2264      const {
2265  unsigned NewOpc;
2266  switch (Op.getOpcode()) {
2267    case ISD::SHL:
2268      NewOpc = HexagonISD::VASL;
2269      break;
2270    case ISD::SRA:
2271      NewOpc = HexagonISD::VASR;
2272      break;
2273    case ISD::SRL:
2274      NewOpc = HexagonISD::VLSR;
2275      break;
2276    default:
2277      llvm_unreachable("Unexpected shift opcode");
2278  }
2279
2280  SDValue Op0 = Op.getOperand(0);
2281  SDValue Op1 = Op.getOperand(1);
2282  const SDLoc &dl(Op);
2283
2284  switch (Op1.getOpcode()) {
2285    case ISD::BUILD_VECTOR:
2286      if (SDValue S = cast<BuildVectorSDNode>(Op1)->getSplatValue())
2287        return DAG.getNode(NewOpc, dl, ty(Op), Op0, S);
2288      break;
2289    case ISD::SPLAT_VECTOR:
2290      return DAG.getNode(NewOpc, dl, ty(Op), Op0, Op1.getOperand(0));
2291  }
2292  return SDValue();
2293}
2294
2295SDValue
2296HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2297  return getVectorShiftByInt(Op, DAG);
2298}
2299
2300SDValue
2301HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2302  if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2303    return Op;
2304  return SDValue();
2305}
2306
2307SDValue
2308HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2309  MVT ResTy = ty(Op);
2310  SDValue InpV = Op.getOperand(0);
2311  MVT InpTy = ty(InpV);
2312  assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2313  const SDLoc &dl(Op);
2314
2315  // Handle conversion from i8 to v8i1.
2316  if (InpTy == MVT::i8) {
2317    if (ResTy == MVT::v8i1) {
2318      SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2319      SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2320      return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2321    }
2322    return SDValue();
2323  }
2324
2325  return Op;
2326}
2327
2328bool
2329HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2330      MVT VecTy, SelectionDAG &DAG,
2331      MutableArrayRef<ConstantInt*> Consts) const {
2332  MVT ElemTy = VecTy.getVectorElementType();
2333  unsigned ElemWidth = ElemTy.getSizeInBits();
2334  IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2335  bool AllConst = true;
2336
2337  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2338    SDValue V = Values[i];
2339    if (V.isUndef()) {
2340      Consts[i] = ConstantInt::get(IntTy, 0);
2341      continue;
2342    }
2343    // Make sure to always cast to IntTy.
2344    if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2345      const ConstantInt *CI = CN->getConstantIntValue();
2346      Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2347    } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2348      const ConstantFP *CF = CN->getConstantFPValue();
2349      APInt A = CF->getValueAPF().bitcastToAPInt();
2350      Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2351    } else {
2352      AllConst = false;
2353    }
2354  }
2355  return AllConst;
2356}
2357
2358SDValue
2359HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2360                                     MVT VecTy, SelectionDAG &DAG) const {
2361  MVT ElemTy = VecTy.getVectorElementType();
2362  assert(VecTy.getVectorNumElements() == Elem.size());
2363
2364  SmallVector<ConstantInt*,4> Consts(Elem.size());
2365  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2366
2367  unsigned First, Num = Elem.size();
2368  for (First = 0; First != Num; ++First) {
2369    if (!isUndef(Elem[First]))
2370      break;
2371  }
2372  if (First == Num)
2373    return DAG.getUNDEF(VecTy);
2374
2375  if (AllConst &&
2376      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2377    return getZero(dl, VecTy, DAG);
2378
2379  if (ElemTy == MVT::i16) {
2380    assert(Elem.size() == 2);
2381    if (AllConst) {
2382      uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2383                   Consts[1]->getZExtValue() << 16;
2384      return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
2385    }
2386    SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
2387                         {Elem[1], Elem[0]}, DAG);
2388    return DAG.getBitcast(MVT::v2i16, N);
2389  }
2390
2391  if (ElemTy == MVT::i8) {
2392    // First try generating a constant.
2393    if (AllConst) {
2394      int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2395                  (Consts[1]->getZExtValue() & 0xFF) << 8 |
2396                  (Consts[1]->getZExtValue() & 0xFF) << 16 |
2397                  Consts[2]->getZExtValue() << 24;
2398      return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2399    }
2400
2401    // Then try splat.
2402    bool IsSplat = true;
2403    for (unsigned i = First+1; i != Num; ++i) {
2404      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2405        continue;
2406      IsSplat = false;
2407      break;
2408    }
2409    if (IsSplat) {
2410      // Legalize the operand of SPLAT_VECTOR.
2411      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2412      return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2413    }
2414
2415    // Generate
2416    //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2417    //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2418    assert(Elem.size() == 4);
2419    SDValue Vs[4];
2420    for (unsigned i = 0; i != 4; ++i) {
2421      Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2422      Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2423    }
2424    SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2425    SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2426    SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2427    SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2428    SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2429
2430    SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2431    return DAG.getBitcast(MVT::v4i8, R);
2432  }
2433
2434#ifndef NDEBUG
2435  dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
2436#endif
2437  llvm_unreachable("Unexpected vector element type");
2438}
2439
2440SDValue
2441HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2442                                     MVT VecTy, SelectionDAG &DAG) const {
2443  MVT ElemTy = VecTy.getVectorElementType();
2444  assert(VecTy.getVectorNumElements() == Elem.size());
2445
2446  SmallVector<ConstantInt*,8> Consts(Elem.size());
2447  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2448
2449  unsigned First, Num = Elem.size();
2450  for (First = 0; First != Num; ++First) {
2451    if (!isUndef(Elem[First]))
2452      break;
2453  }
2454  if (First == Num)
2455    return DAG.getUNDEF(VecTy);
2456
2457  if (AllConst &&
2458      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2459    return getZero(dl, VecTy, DAG);
2460
2461  // First try splat if possible.
2462  if (ElemTy == MVT::i16) {
2463    bool IsSplat = true;
2464    for (unsigned i = First+1; i != Num; ++i) {
2465      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2466        continue;
2467      IsSplat = false;
2468      break;
2469    }
2470    if (IsSplat) {
2471      // Legalize the operand of SPLAT_VECTOR
2472      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2473      return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2474    }
2475  }
2476
2477  // Then try constant.
2478  if (AllConst) {
2479    uint64_t Val = 0;
2480    unsigned W = ElemTy.getSizeInBits();
2481    uint64_t Mask = (ElemTy == MVT::i8)  ? 0xFFull
2482                  : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
2483    for (unsigned i = 0; i != Num; ++i)
2484      Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2485    SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2486    return DAG.getBitcast(VecTy, V0);
2487  }
2488
2489  // Build two 32-bit vectors and concatenate.
2490  MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2491  SDValue L = (ElemTy == MVT::i32)
2492                ? Elem[0]
2493                : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2494  SDValue H = (ElemTy == MVT::i32)
2495                ? Elem[1]
2496                : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2497  return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
2498}
2499
2500SDValue
2501HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2502                                     const SDLoc &dl, MVT ValTy, MVT ResTy,
2503                                     SelectionDAG &DAG) const {
2504  MVT VecTy = ty(VecV);
2505  assert(!ValTy.isVector() ||
2506         VecTy.getVectorElementType() == ValTy.getVectorElementType());
2507  unsigned VecWidth = VecTy.getSizeInBits();
2508  unsigned ValWidth = ValTy.getSizeInBits();
2509  unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2510  assert((VecWidth % ElemWidth) == 0);
2511  auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);
2512
2513  // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2514  // without any coprocessors).
2515  if (ElemWidth == 1) {
2516    assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
2517    assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2518    // Check if this is an extract of the lowest bit.
2519    if (IdxN) {
2520      // Extracting the lowest bit is a no-op, but it changes the type,
2521      // so it must be kept as an operation to avoid errors related to
2522      // type mismatches.
2523      if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
2524        return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2525    }
2526
2527    // If the value extracted is a single bit, use tstbit.
2528    if (ValWidth == 1) {
2529      SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2530      SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2531      SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2532      return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2533    }
2534
2535    // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2536    // a predicate register. The elements of the vector are repeated
2537    // in the register (if necessary) so that the total number is 8.
2538    // The extracted subvector will need to be expanded in such a way.
2539    unsigned Scale = VecWidth / ValWidth;
2540
2541    // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2542    // position 0.
2543    assert(ty(IdxV) == MVT::i32);
2544    unsigned VecRep = 8 / VecWidth;
2545    SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2546                             DAG.getConstant(8*VecRep, dl, MVT::i32));
2547    SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2548    SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2549    while (Scale > 1) {
2550      // The longest possible subvector is at most 32 bits, so it is always
2551      // contained in the low subregister.
2552      T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
2553      T1 = expandPredicate(T1, dl, DAG);
2554      Scale /= 2;
2555    }
2556
2557    return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2558  }
2559
2560  assert(VecWidth == 32 || VecWidth == 64);
2561
2562  // Cast everything to scalar integer types.
2563  MVT ScalarTy = tyScalar(VecTy);
2564  VecV = DAG.getBitcast(ScalarTy, VecV);
2565
2566  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2567  SDValue ExtV;
2568
2569  if (IdxN) {
2570    unsigned Off = IdxN->getZExtValue() * ElemWidth;
2571    if (VecWidth == 64 && ValWidth == 32) {
2572      assert(Off == 0 || Off == 32);
2573      unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
2574      ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
2575    } else if (Off == 0 && (ValWidth % 8) == 0) {
2576      ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2577    } else {
2578      SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2579      // The return type of EXTRACTU must be the same as the type of the
2580      // input vector.
2581      ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2582                         {VecV, WidthV, OffV});
2583    }
2584  } else {
2585    if (ty(IdxV) != MVT::i32)
2586      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2587    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2588                               DAG.getConstant(ElemWidth, dl, MVT::i32));
2589    ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2590                       {VecV, WidthV, OffV});
2591  }
2592
2593  // Cast ExtV to the requested result type.
2594  ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2595  ExtV = DAG.getBitcast(ResTy, ExtV);
2596  return ExtV;
2597}
2598
2599SDValue
2600HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2601                                    const SDLoc &dl, MVT ValTy,
2602                                    SelectionDAG &DAG) const {
2603  MVT VecTy = ty(VecV);
2604  if (VecTy.getVectorElementType() == MVT::i1) {
2605    MVT ValTy = ty(ValV);
2606    assert(ValTy.getVectorElementType() == MVT::i1);
2607    SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
2608    unsigned VecLen = VecTy.getVectorNumElements();
2609    unsigned Scale = VecLen / ValTy.getVectorNumElements();
2610    assert(Scale > 1);
2611
2612    for (unsigned R = Scale; R > 1; R /= 2) {
2613      ValR = contractPredicate(ValR, dl, DAG);
2614      ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2615                         DAG.getUNDEF(MVT::i32), ValR);
2616    }
2617    // The longest possible subvector is at most 32 bits, so it is always
2618    // contained in the low subregister.
2619    ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);
2620
2621    unsigned ValBytes = 64 / Scale;
2622    SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
2623    SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2624                              DAG.getConstant(8, dl, MVT::i32));
2625    SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2626    SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2627                              {VecR, ValR, Width, Idx});
2628    return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2629  }
2630
2631  unsigned VecWidth = VecTy.getSizeInBits();
2632  unsigned ValWidth = ValTy.getSizeInBits();
2633  assert(VecWidth == 32 || VecWidth == 64);
2634  assert((VecWidth % ValWidth) == 0);
2635
2636  // Cast everything to scalar integer types.
2637  MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2638  // The actual type of ValV may be different than ValTy (which is related
2639  // to the vector type).
2640  unsigned VW = ty(ValV).getSizeInBits();
2641  ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2642  VecV = DAG.getBitcast(ScalarTy, VecV);
2643  if (VW != VecWidth)
2644    ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2645
2646  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2647  SDValue InsV;
2648
2649  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2650    unsigned W = C->getZExtValue() * ValWidth;
2651    SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2652    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2653                       {VecV, ValV, WidthV, OffV});
2654  } else {
2655    if (ty(IdxV) != MVT::i32)
2656      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2657    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2658    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2659                       {VecV, ValV, WidthV, OffV});
2660  }
2661
2662  return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2663}
2664
2665SDValue
2666HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2667                                       SelectionDAG &DAG) const {
2668  assert(ty(Vec32).getSizeInBits() == 32);
2669  if (isUndef(Vec32))
2670    return DAG.getUNDEF(MVT::i64);
2671  return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
2672}
2673
2674SDValue
2675HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2676                                         SelectionDAG &DAG) const {
2677  assert(ty(Vec64).getSizeInBits() == 64);
2678  if (isUndef(Vec64))
2679    return DAG.getUNDEF(MVT::i32);
2680  return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
2681}
2682
2683SDValue
2684HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2685      const {
2686  if (Ty.isVector()) {
2687    assert(Ty.isInteger() && "Only integer vectors are supported here");
2688    unsigned W = Ty.getSizeInBits();
2689    if (W <= 64)
2690      return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2691    return DAG.getNode(ISD::SPLAT_VECTOR, dl, Ty, getZero(dl, MVT::i32, DAG));
2692  }
2693
2694  if (Ty.isInteger())
2695    return DAG.getConstant(0, dl, Ty);
2696  if (Ty.isFloatingPoint())
2697    return DAG.getConstantFP(0.0, dl, Ty);
2698  llvm_unreachable("Invalid type for zero");
2699}
2700
2701SDValue
2702HexagonTargetLowering::appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG)
2703      const {
2704  MVT ValTy = ty(Val);
2705  assert(ValTy.getVectorElementType() == ResTy.getVectorElementType());
2706
2707  unsigned ValLen = ValTy.getVectorNumElements();
2708  unsigned ResLen = ResTy.getVectorNumElements();
2709  if (ValLen == ResLen)
2710    return Val;
2711
2712  const SDLoc &dl(Val);
2713  assert(ValLen < ResLen);
2714  assert(ResLen % ValLen == 0);
2715
2716  SmallVector<SDValue, 4> Concats = {Val};
2717  for (unsigned i = 1, e = ResLen / ValLen; i < e; ++i)
2718    Concats.push_back(DAG.getUNDEF(ValTy));
2719
2720  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, Concats);
2721}
2722
2723SDValue
2724HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2725  MVT VecTy = ty(Op);
2726  unsigned BW = VecTy.getSizeInBits();
2727  const SDLoc &dl(Op);
2728  SmallVector<SDValue,8> Ops;
2729  for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2730    Ops.push_back(Op.getOperand(i));
2731
2732  if (BW == 32)
2733    return buildVector32(Ops, dl, VecTy, DAG);
2734  if (BW == 64)
2735    return buildVector64(Ops, dl, VecTy, DAG);
2736
2737  if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2738    // Check if this is a special case or all-0 or all-1.
2739    bool All0 = true, All1 = true;
2740    for (SDValue P : Ops) {
2741      auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
2742      if (CN == nullptr) {
2743        All0 = All1 = false;
2744        break;
2745      }
2746      uint32_t C = CN->getZExtValue();
2747      All0 &= (C == 0);
2748      All1 &= (C == 1);
2749    }
2750    if (All0)
2751      return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
2752    if (All1)
2753      return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
2754
2755    // For each i1 element in the resulting predicate register, put 1
2756    // shifted by the index of the element into a general-purpose register,
2757    // then or them together and transfer it back into a predicate register.
2758    SDValue Rs[8];
2759    SDValue Z = getZero(dl, MVT::i32, DAG);
2760    // Always produce 8 bits, repeat inputs if necessary.
2761    unsigned Rep = 8 / VecTy.getVectorNumElements();
2762    for (unsigned i = 0; i != 8; ++i) {
2763      SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2764      Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2765    }
2766    for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2767      for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2768        Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2769    }
2770    // Move the value directly to a predicate register.
2771    return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2772  }
2773
2774  return SDValue();
2775}
2776
2777SDValue
2778HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2779                                           SelectionDAG &DAG) const {
2780  MVT VecTy = ty(Op);
2781  const SDLoc &dl(Op);
2782  if (VecTy.getSizeInBits() == 64) {
2783    assert(Op.getNumOperands() == 2);
2784    return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
2785                       Op.getOperand(0));
2786  }
2787
2788  MVT ElemTy = VecTy.getVectorElementType();
2789  if (ElemTy == MVT::i1) {
2790    assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2791    MVT OpTy = ty(Op.getOperand(0));
2792    // Scale is how many times the operands need to be contracted to match
2793    // the representation in the target register.
2794    unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2795    assert(Scale == Op.getNumOperands() && Scale > 1);
2796
2797    // First, convert all bool vectors to integers, then generate pairwise
2798    // inserts to form values of doubled length. Up until there are only
2799    // two values left to concatenate, all of these values will fit in a
2800    // 32-bit integer, so keep them as i32 to use 32-bit inserts.
2801    SmallVector<SDValue,4> Words[2];
2802    unsigned IdxW = 0;
2803
2804    for (SDValue P : Op.getNode()->op_values()) {
2805      SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
2806      for (unsigned R = Scale; R > 1; R /= 2) {
2807        W = contractPredicate(W, dl, DAG);
2808        W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2809                        DAG.getUNDEF(MVT::i32), W);
2810      }
2811      W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
2812      Words[IdxW].push_back(W);
2813    }
2814
2815    while (Scale > 2) {
2816      SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
2817      Words[IdxW ^ 1].clear();
2818
2819      for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
2820        SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
2821        // Insert W1 into W0 right next to the significant bits of W0.
2822        SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2823                                {W0, W1, WidthV, WidthV});
2824        Words[IdxW ^ 1].push_back(T);
2825      }
2826      IdxW ^= 1;
2827      Scale /= 2;
2828    }
2829
2830    // Another sanity check. At this point there should only be two words
2831    // left, and Scale should be 2.
2832    assert(Scale == 2 && Words[IdxW].size() == 2);
2833
2834    SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2835                             Words[IdxW][1], Words[IdxW][0]);
2836    return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
2837  }
2838
2839  return SDValue();
2840}
2841
2842SDValue
2843HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2844                                               SelectionDAG &DAG) const {
2845  SDValue Vec = Op.getOperand(0);
2846  MVT ElemTy = ty(Vec).getVectorElementType();
2847  return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
2848}
2849
2850SDValue
2851HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
2852                                              SelectionDAG &DAG) const {
2853  return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
2854                       ty(Op), ty(Op), DAG);
2855}
2856
2857SDValue
2858HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2859                                              SelectionDAG &DAG) const {
2860  return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
2861                      SDLoc(Op), ty(Op).getVectorElementType(), DAG);
2862}
2863
2864SDValue
2865HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
2866                                             SelectionDAG &DAG) const {
2867  SDValue ValV = Op.getOperand(1);
2868  return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
2869                      SDLoc(Op), ty(ValV), DAG);
2870}
2871
2872bool
2873HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
2874  // Assuming the caller does not have either a signext or zeroext modifier, and
2875  // only one value is accepted, any reasonable truncation is allowed.
2876  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
2877    return false;
2878
2879  // FIXME: in principle up to 64-bit could be made safe, but it would be very
2880  // fragile at the moment: any support for multiple value returns would be
2881  // liable to disallow tail calls involving i64 -> iN truncation in many cases.
2882  return Ty1->getPrimitiveSizeInBits() <= 32;
2883}
2884
2885SDValue
2886HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
2887  MVT Ty = ty(Op);
2888  const SDLoc &dl(Op);
2889  // Lower loads of scalar predicate vectors (v2i1, v4i1, v8i1) to loads of i1
2890  // followed by a TYPECAST.
2891  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2892  bool DoCast = (Ty == MVT::v2i1 || Ty == MVT::v4i1 || Ty == MVT::v8i1);
2893  if (DoCast) {
2894    SDValue NL = DAG.getLoad(
2895        LN->getAddressingMode(), LN->getExtensionType(), MVT::i1, dl,
2896        LN->getChain(), LN->getBasePtr(), LN->getOffset(), LN->getPointerInfo(),
2897        /*MemoryVT*/ MVT::i1, LN->getAlign(), LN->getMemOperand()->getFlags(),
2898        LN->getAAInfo(), LN->getRanges());
2899    LN = cast<LoadSDNode>(NL.getNode());
2900  }
2901
2902  unsigned ClaimAlign = LN->getAlignment();
2903  validateConstPtrAlignment(LN->getBasePtr(), dl, ClaimAlign);
2904  // Call LowerUnalignedLoad for all loads, it recognizes loads that
2905  // don't need extra aligning.
2906  SDValue LU = LowerUnalignedLoad(SDValue(LN, 0), DAG);
2907  if (DoCast) {
2908    SDValue TC = DAG.getNode(HexagonISD::TYPECAST, dl, Ty, LU);
2909    SDValue Ch = cast<LoadSDNode>(LU.getNode())->getChain();
2910    return DAG.getMergeValues({TC, Ch}, dl);
2911  }
2912  return LU;
2913}
2914
2915SDValue
2916HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
2917  const SDLoc &dl(Op);
2918  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
2919  SDValue Val = SN->getValue();
2920  MVT Ty = ty(Val);
2921
2922  bool DoCast = (Ty == MVT::v2i1 || Ty == MVT::v4i1 || Ty == MVT::v8i1);
2923  if (DoCast) {
2924    SDValue TC = DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, Val);
2925    SDValue NS = DAG.getStore(SN->getChain(), dl, TC, SN->getBasePtr(),
2926                              SN->getMemOperand());
2927    if (SN->isIndexed()) {
2928      NS = DAG.getIndexedStore(NS, dl, SN->getBasePtr(), SN->getOffset(),
2929                               SN->getAddressingMode());
2930    }
2931    SN = cast<StoreSDNode>(NS.getNode());
2932  }
2933
2934  unsigned ClaimAlign = SN->getAlignment();
2935  SDValue Ptr = SN->getBasePtr();
2936  validateConstPtrAlignment(Ptr, dl, ClaimAlign);
2937
2938  MVT StoreTy = SN->getMemoryVT().getSimpleVT();
2939  unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy);
2940  if (ClaimAlign < NeedAlign)
2941    return expandUnalignedStore(SN, DAG);
2942  return SDValue(SN, 0);
2943}
2944
2945SDValue
2946HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
2947      const {
2948  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2949  MVT LoadTy = ty(Op);
2950  unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
2951  unsigned HaveAlign = LN->getAlignment();
2952  if (HaveAlign >= NeedAlign)
2953    return Op;
2954
2955  const SDLoc &dl(Op);
2956  const DataLayout &DL = DAG.getDataLayout();
2957  LLVMContext &Ctx = *DAG.getContext();
2958
2959  // If the load aligning is disabled or the load can be broken up into two
2960  // smaller legal loads, do the default (target-independent) expansion.
2961  bool DoDefault = false;
2962  // Handle it in the default way if this is an indexed load.
2963  if (!LN->isUnindexed())
2964    DoDefault = true;
2965
2966  if (!AlignLoads) {
2967    if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
2968                                       *LN->getMemOperand()))
2969      return Op;
2970    DoDefault = true;
2971  }
2972  if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
2973    // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
2974    MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
2975                                : MVT::getVectorVT(MVT::i8, HaveAlign);
2976    DoDefault =
2977        allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
2978  }
2979  if (DoDefault) {
2980    std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
2981    return DAG.getMergeValues({P.first, P.second}, dl);
2982  }
2983
2984  // The code below generates two loads, both aligned as NeedAlign, and
2985  // with the distance of NeedAlign between them. For that to cover the
2986  // bits that need to be loaded (and without overlapping), the size of
2987  // the loads should be equal to NeedAlign. This is true for all loadable
2988  // types, but add an assertion in case something changes in the future.
2989  assert(LoadTy.getSizeInBits() == 8*NeedAlign);
2990
2991  unsigned LoadLen = NeedAlign;
2992  SDValue Base = LN->getBasePtr();
2993  SDValue Chain = LN->getChain();
2994  auto BO = getBaseAndOffset(Base);
2995  unsigned BaseOpc = BO.first.getOpcode();
2996  if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
2997    return Op;
2998
2999  if (BO.second % LoadLen != 0) {
3000    BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
3001                           DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
3002    BO.second -= BO.second % LoadLen;
3003  }
3004  SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
3005      ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
3006                    DAG.getConstant(NeedAlign, dl, MVT::i32))
3007      : BO.first;
3008  SDValue Base0 =
3009      DAG.getMemBasePlusOffset(BaseNoOff, TypeSize::Fixed(BO.second), dl);
3010  SDValue Base1 = DAG.getMemBasePlusOffset(
3011      BaseNoOff, TypeSize::Fixed(BO.second + LoadLen), dl);
3012
3013  MachineMemOperand *WideMMO = nullptr;
3014  if (MachineMemOperand *MMO = LN->getMemOperand()) {
3015    MachineFunction &MF = DAG.getMachineFunction();
3016    WideMMO = MF.getMachineMemOperand(
3017        MMO->getPointerInfo(), MMO->getFlags(), 2 * LoadLen, Align(LoadLen),
3018        MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
3019        MMO->getOrdering(), MMO->getFailureOrdering());
3020  }
3021
3022  SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
3023  SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
3024
3025  SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
3026                                {Load1, Load0, BaseNoOff.getOperand(0)});
3027  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3028                                 Load0.getValue(1), Load1.getValue(1));
3029  SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
3030  return M;
3031}
3032
3033SDValue
3034HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
3035  SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
3036  auto *CY = dyn_cast<ConstantSDNode>(Y);
3037  if (!CY)
3038    return SDValue();
3039
3040  const SDLoc &dl(Op);
3041  SDVTList VTs = Op.getNode()->getVTList();
3042  assert(VTs.NumVTs == 2);
3043  assert(VTs.VTs[1] == MVT::i1);
3044  unsigned Opc = Op.getOpcode();
3045
3046  if (CY) {
3047    uint32_t VY = CY->getZExtValue();
3048    assert(VY != 0 && "This should have been folded");
3049    // X +/- 1
3050    if (VY != 1)
3051      return SDValue();
3052
3053    if (Opc == ISD::UADDO) {
3054      SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
3055      SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
3056                                ISD::SETEQ);
3057      return DAG.getMergeValues({Op, Ov}, dl);
3058    }
3059    if (Opc == ISD::USUBO) {
3060      SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
3061      SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
3062                                DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
3063      return DAG.getMergeValues({Op, Ov}, dl);
3064    }
3065  }
3066
3067  return SDValue();
3068}
3069
3070SDValue
3071HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
3072  const SDLoc &dl(Op);
3073  unsigned Opc = Op.getOpcode();
3074  SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
3075
3076  if (Opc == ISD::ADDCARRY)
3077    return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
3078                       { X, Y, C });
3079
3080  EVT CarryTy = C.getValueType();
3081  SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
3082                             { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
3083  SDValue Out[] = { SubC.getValue(0),
3084                    DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
3085  return DAG.getMergeValues(Out, dl);
3086}
3087
3088SDValue
3089HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
3090  SDValue Chain     = Op.getOperand(0);
3091  SDValue Offset    = Op.getOperand(1);
3092  SDValue Handler   = Op.getOperand(2);
3093  SDLoc dl(Op);
3094  auto PtrVT = getPointerTy(DAG.getDataLayout());
3095
3096  // Mark function as containing a call to EH_RETURN.
3097  HexagonMachineFunctionInfo *FuncInfo =
3098    DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
3099  FuncInfo->setHasEHReturn();
3100
3101  unsigned OffsetReg = Hexagon::R28;
3102
3103  SDValue StoreAddr =
3104      DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
3105                  DAG.getIntPtrConstant(4, dl));
3106  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
3107  Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
3108
3109  // Not needed we already use it as explict input to EH_RETURN.
3110  // MF.getRegInfo().addLiveOut(OffsetReg);
3111
3112  return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
3113}
3114
3115SDValue
3116HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3117  unsigned Opc = Op.getOpcode();
3118
3119  // Handle INLINEASM first.
3120  if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
3121    return LowerINLINEASM(Op, DAG);
3122
3123  if (isHvxOperation(Op.getNode(), DAG)) {
3124    // If HVX lowering returns nothing, try the default lowering.
3125    if (SDValue V = LowerHvxOperation(Op, DAG))
3126      return V;
3127  }
3128
3129  switch (Opc) {
3130    default:
3131#ifndef NDEBUG
3132      Op.getNode()->dumpr(&DAG);
3133      if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
3134        errs() << "Error: check for a non-legal type in this operation\n";
3135#endif
3136      llvm_unreachable("Should not custom lower this!");
3137    case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
3138    case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
3139    case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
3140    case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
3141    case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3142    case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
3143    case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
3144    case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
3145    case ISD::LOAD:                 return LowerLoad(Op, DAG);
3146    case ISD::STORE:                return LowerStore(Op, DAG);
3147    case ISD::UADDO:
3148    case ISD::USUBO:                return LowerUAddSubO(Op, DAG);
3149    case ISD::ADDCARRY:
3150    case ISD::SUBCARRY:             return LowerAddSubCarry(Op, DAG);
3151    case ISD::SRA:
3152    case ISD::SHL:
3153    case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
3154    case ISD::ROTL:                 return LowerROTL(Op, DAG);
3155    case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
3156    case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
3157    case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
3158    case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
3159    case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
3160    case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
3161    case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
3162    case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
3163    case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
3164    case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3165    case ISD::VACOPY:               return LowerVACOPY(Op, DAG);
3166    case ISD::VASTART:              return LowerVASTART(Op, DAG);
3167    case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
3168    case ISD::SETCC:                return LowerSETCC(Op, DAG);
3169    case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
3170    case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3171    case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
3172    case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
3173    case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
3174      break;
3175  }
3176
3177  return SDValue();
3178}
3179
3180void
3181HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
3182                                             SmallVectorImpl<SDValue> &Results,
3183                                             SelectionDAG &DAG) const {
3184  if (isHvxOperation(N, DAG)) {
3185    LowerHvxOperationWrapper(N, Results, DAG);
3186    if (!Results.empty())
3187      return;
3188  }
3189
3190  // We are only custom-lowering stores to verify the alignment of the
3191  // address if it is a compile-time constant. Since a store can be modified
3192  // during type-legalization (the value being stored may need legalization),
3193  // return empty Results here to indicate that we don't really make any
3194  // changes in the custom lowering.
3195  if (N->getOpcode() != ISD::STORE)
3196    return TargetLowering::LowerOperationWrapper(N, Results, DAG);
3197}
3198
3199void
3200HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
3201                                          SmallVectorImpl<SDValue> &Results,
3202                                          SelectionDAG &DAG) const {
3203  if (isHvxOperation(N, DAG)) {
3204    ReplaceHvxNodeResults(N, Results, DAG);
3205    if (!Results.empty())
3206      return;
3207  }
3208
3209  const SDLoc &dl(N);
3210  switch (N->getOpcode()) {
3211    case ISD::SRL:
3212    case ISD::SRA:
3213    case ISD::SHL:
3214      return;
3215    case ISD::BITCAST:
3216      // Handle a bitcast from v8i1 to i8.
3217      if (N->getValueType(0) == MVT::i8) {
3218        if (N->getOperand(0).getValueType() == MVT::v8i1) {
3219          SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
3220                               N->getOperand(0), DAG);
3221          SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
3222          Results.push_back(T);
3223        }
3224      }
3225      break;
3226  }
3227}
3228
3229SDValue
3230HexagonTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
3231      const {
3232  if (isHvxOperation(N, DCI.DAG)) {
3233    if (SDValue V = PerformHvxDAGCombine(N, DCI))
3234      return V;
3235    return SDValue();
3236  }
3237
3238  if (DCI.isBeforeLegalizeOps())
3239    return SDValue();
3240
3241  SDValue Op(N, 0);
3242  const SDLoc &dl(Op);
3243  unsigned Opc = Op.getOpcode();
3244
3245  if (Opc == HexagonISD::P2D) {
3246    SDValue P = Op.getOperand(0);
3247    switch (P.getOpcode()) {
3248      case HexagonISD::PTRUE:
3249        return DCI.DAG.getConstant(-1, dl, ty(Op));
3250      case HexagonISD::PFALSE:
3251        return getZero(dl, ty(Op), DCI.DAG);
3252      default:
3253        break;
3254    }
3255  } else if (Opc == ISD::VSELECT) {
3256    // This is pretty much duplicated in HexagonISelLoweringHVX...
3257    //
3258    // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
3259    SDValue Cond = Op.getOperand(0);
3260    if (Cond->getOpcode() == ISD::XOR) {
3261      SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3262      if (C1->getOpcode() == HexagonISD::PTRUE) {
3263        SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
3264                                       Op.getOperand(2), Op.getOperand(1));
3265        return VSel;
3266      }
3267    }
3268  }
3269
3270  return SDValue();
3271}
3272
3273/// Returns relocation base for the given PIC jumptable.
3274SDValue
3275HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3276                                                SelectionDAG &DAG) const {
3277  int Idx = cast<JumpTableSDNode>(Table)->getIndex();
3278  EVT VT = Table.getValueType();
3279  SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
3280  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
3281}
3282
3283//===----------------------------------------------------------------------===//
3284// Inline Assembly Support
3285//===----------------------------------------------------------------------===//
3286
3287TargetLowering::ConstraintType
3288HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
3289  if (Constraint.size() == 1) {
3290    switch (Constraint[0]) {
3291      case 'q':
3292      case 'v':
3293        if (Subtarget.useHVXOps())
3294          return C_RegisterClass;
3295        break;
3296      case 'a':
3297        return C_RegisterClass;
3298      default:
3299        break;
3300    }
3301  }
3302  return TargetLowering::getConstraintType(Constraint);
3303}
3304
3305std::pair<unsigned, const TargetRegisterClass*>
3306HexagonTargetLowering::getRegForInlineAsmConstraint(
3307    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
3308
3309  if (Constraint.size() == 1) {
3310    switch (Constraint[0]) {
3311    case 'r':   // R0-R31
3312      switch (VT.SimpleTy) {
3313      default:
3314        return {0u, nullptr};
3315      case MVT::i1:
3316      case MVT::i8:
3317      case MVT::i16:
3318      case MVT::i32:
3319      case MVT::f32:
3320        return {0u, &Hexagon::IntRegsRegClass};
3321      case MVT::i64:
3322      case MVT::f64:
3323        return {0u, &Hexagon::DoubleRegsRegClass};
3324      }
3325      break;
3326    case 'a': // M0-M1
3327      if (VT != MVT::i32)
3328        return {0u, nullptr};
3329      return {0u, &Hexagon::ModRegsRegClass};
3330    case 'q': // q0-q3
3331      switch (VT.getSizeInBits()) {
3332      default:
3333        return {0u, nullptr};
3334      case 64:
3335      case 128:
3336        return {0u, &Hexagon::HvxQRRegClass};
3337      }
3338      break;
3339    case 'v': // V0-V31
3340      switch (VT.getSizeInBits()) {
3341      default:
3342        return {0u, nullptr};
3343      case 512:
3344        return {0u, &Hexagon::HvxVRRegClass};
3345      case 1024:
3346        if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
3347          return {0u, &Hexagon::HvxVRRegClass};
3348        return {0u, &Hexagon::HvxWRRegClass};
3349      case 2048:
3350        return {0u, &Hexagon::HvxWRRegClass};
3351      }
3352      break;
3353    default:
3354      return {0u, nullptr};
3355    }
3356  }
3357
3358  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3359}
3360
3361/// isFPImmLegal - Returns true if the target can instruction select the
3362/// specified FP immediate natively. If false, the legalizer will
3363/// materialize the FP immediate as a load from a constant pool.
3364bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
3365                                         bool ForCodeSize) const {
3366  return true;
3367}
3368
3369/// isLegalAddressingMode - Return true if the addressing mode represented by
3370/// AM is legal for this target, for a load/store of the specified type.
3371bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3372                                                  const AddrMode &AM, Type *Ty,
3373                                                  unsigned AS, Instruction *I) const {
3374  if (Ty->isSized()) {
3375    // When LSR detects uses of the same base address to access different
3376    // types (e.g. unions), it will assume a conservative type for these
3377    // uses:
3378    //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
3379    // The type Ty passed here would then be "void". Skip the alignment
3380    // checks, but do not return false right away, since that confuses
3381    // LSR into crashing.
3382    Align A = DL.getABITypeAlign(Ty);
3383    // The base offset must be a multiple of the alignment.
3384    if (!isAligned(A, AM.BaseOffs))
3385      return false;
3386    // The shifted offset must fit in 11 bits.
3387    if (!isInt<11>(AM.BaseOffs >> Log2(A)))
3388      return false;
3389  }
3390
3391  // No global is ever allowed as a base.
3392  if (AM.BaseGV)
3393    return false;
3394
3395  int Scale = AM.Scale;
3396  if (Scale < 0)
3397    Scale = -Scale;
3398  switch (Scale) {
3399  case 0:  // No scale reg, "r+i", "r", or just "i".
3400    break;
3401  default: // No scaled addressing mode.
3402    return false;
3403  }
3404  return true;
3405}
3406
3407/// Return true if folding a constant offset with the given GlobalAddress is
3408/// legal.  It is frequently not legal in PIC relocation models.
3409bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3410      const {
3411  return HTM.getRelocationModel() == Reloc::Static;
3412}
3413
3414/// isLegalICmpImmediate - Return true if the specified immediate is legal
3415/// icmp immediate, that is the target has icmp instructions which can compare
3416/// a register against the immediate without having to materialize the
3417/// immediate into a register.
3418bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3419  return Imm >= -512 && Imm <= 511;
3420}
3421
3422/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3423/// for tail call optimization. Targets which want to do tail call
3424/// optimization should implement this function.
3425bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3426                                 SDValue Callee,
3427                                 CallingConv::ID CalleeCC,
3428                                 bool IsVarArg,
3429                                 bool IsCalleeStructRet,
3430                                 bool IsCallerStructRet,
3431                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
3432                                 const SmallVectorImpl<SDValue> &OutVals,
3433                                 const SmallVectorImpl<ISD::InputArg> &Ins,
3434                                 SelectionDAG& DAG) const {
3435  const Function &CallerF = DAG.getMachineFunction().getFunction();
3436  CallingConv::ID CallerCC = CallerF.getCallingConv();
3437  bool CCMatch = CallerCC == CalleeCC;
3438
3439  // ***************************************************************************
3440  //  Look for obvious safe cases to perform tail call optimization that do not
3441  //  require ABI changes.
3442  // ***************************************************************************
3443
3444  // If this is a tail call via a function pointer, then don't do it!
3445  if (!isa<GlobalAddressSDNode>(Callee) &&
3446      !isa<ExternalSymbolSDNode>(Callee)) {
3447    return false;
3448  }
3449
3450  // Do not optimize if the calling conventions do not match and the conventions
3451  // used are not C or Fast.
3452  if (!CCMatch) {
3453    bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3454    bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3455    // If R & E, then ok.
3456    if (!R || !E)
3457      return false;
3458  }
3459
3460  // Do not tail call optimize vararg calls.
3461  if (IsVarArg)
3462    return false;
3463
3464  // Also avoid tail call optimization if either caller or callee uses struct
3465  // return semantics.
3466  if (IsCalleeStructRet || IsCallerStructRet)
3467    return false;
3468
3469  // In addition to the cases above, we also disable Tail Call Optimization if
3470  // the calling convention code that at least one outgoing argument needs to
3471  // go on the stack. We cannot check that here because at this point that
3472  // information is not available.
3473  return true;
3474}
3475
3476/// Returns the target specific optimal type for load and store operations as
3477/// a result of memset, memcpy, and memmove lowering.
3478///
3479/// If DstAlign is zero that means it's safe to destination alignment can
3480/// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3481/// a need to check it against alignment requirement, probably because the
3482/// source does not need to be loaded. If 'IsMemset' is true, that means it's
3483/// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3484/// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3485/// does not need to be loaded.  It returns EVT::Other if the type should be
3486/// determined using generic target-independent logic.
3487EVT HexagonTargetLowering::getOptimalMemOpType(
3488    const MemOp &Op, const AttributeList &FuncAttributes) const {
3489  if (Op.size() >= 8 && Op.isAligned(Align(8)))
3490    return MVT::i64;
3491  if (Op.size() >= 4 && Op.isAligned(Align(4)))
3492    return MVT::i32;
3493  if (Op.size() >= 2 && Op.isAligned(Align(2)))
3494    return MVT::i16;
3495  return MVT::Other;
3496}
3497
3498bool HexagonTargetLowering::allowsMemoryAccess(
3499    LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
3500    Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
3501  MVT SVT = VT.getSimpleVT();
3502  if (Subtarget.isHVXVectorType(SVT, true))
3503    return allowsHvxMemoryAccess(SVT, Flags, Fast);
3504  return TargetLoweringBase::allowsMemoryAccess(
3505              Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
3506}
3507
3508bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3509    EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
3510    bool *Fast) const {
3511  MVT SVT = VT.getSimpleVT();
3512  if (Subtarget.isHVXVectorType(SVT, true))
3513    return allowsHvxMisalignedMemoryAccesses(SVT, Flags, Fast);
3514  if (Fast)
3515    *Fast = false;
3516  return false;
3517}
3518
3519std::pair<const TargetRegisterClass*, uint8_t>
3520HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3521      MVT VT) const {
3522  if (Subtarget.isHVXVectorType(VT, true)) {
3523    unsigned BitWidth = VT.getSizeInBits();
3524    unsigned VecWidth = Subtarget.getVectorLength() * 8;
3525
3526    if (VT.getVectorElementType() == MVT::i1)
3527      return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3528    if (BitWidth == VecWidth)
3529      return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3530    assert(BitWidth == 2 * VecWidth);
3531    return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3532  }
3533
3534  return TargetLowering::findRepresentativeClass(TRI, VT);
3535}
3536
3537bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3538      ISD::LoadExtType ExtTy, EVT NewVT) const {
3539  // TODO: This may be worth removing. Check regression tests for diffs.
3540  if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3541    return false;
3542
3543  auto *L = cast<LoadSDNode>(Load);
3544  std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3545  // Small-data object, do not shrink.
3546  if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3547    return false;
3548  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3549    auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3550    const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3551    return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3552  }
3553  return true;
3554}
3555
3556Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
3557      AtomicOrdering Ord) const {
3558  BasicBlock *BB = Builder.GetInsertBlock();
3559  Module *M = BB->getParent()->getParent();
3560  auto PT = cast<PointerType>(Addr->getType());
3561  Type *Ty = PT->getElementType();
3562  unsigned SZ = Ty->getPrimitiveSizeInBits();
3563  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3564  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3565                                   : Intrinsic::hexagon_L4_loadd_locked;
3566  Function *Fn = Intrinsic::getDeclaration(M, IntID);
3567
3568  PointerType *NewPtrTy
3569    = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace());
3570  Addr = Builder.CreateBitCast(Addr, NewPtrTy);
3571
3572  Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3573
3574  return Builder.CreateBitCast(Call, Ty);
3575}
3576
3577/// Perform a store-conditional operation to Addr. Return the status of the
3578/// store. This should be 0 if the store succeeded, non-zero otherwise.
3579Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
3580      Value *Val, Value *Addr, AtomicOrdering Ord) const {
3581  BasicBlock *BB = Builder.GetInsertBlock();
3582  Module *M = BB->getParent()->getParent();
3583  Type *Ty = Val->getType();
3584  unsigned SZ = Ty->getPrimitiveSizeInBits();
3585
3586  Type *CastTy = Builder.getIntNTy(SZ);
3587  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3588  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3589                                   : Intrinsic::hexagon_S4_stored_locked;
3590  Function *Fn = Intrinsic::getDeclaration(M, IntID);
3591
3592  unsigned AS = Addr->getType()->getPointerAddressSpace();
3593  Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
3594  Val = Builder.CreateBitCast(Val, CastTy);
3595
3596  Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3597  Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3598  Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3599  return Ext;
3600}
3601
3602TargetLowering::AtomicExpansionKind
3603HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3604  // Do not expand loads and stores that don't exceed 64 bits.
3605  return LI->getType()->getPrimitiveSizeInBits() > 64
3606             ? AtomicExpansionKind::LLOnly
3607             : AtomicExpansionKind::None;
3608}
3609
3610bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3611  // Do not expand loads and stores that don't exceed 64 bits.
3612  return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
3613}
3614
3615TargetLowering::AtomicExpansionKind
3616HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3617    AtomicCmpXchgInst *AI) const {
3618  return AtomicExpansionKind::LLSC;
3619}
3620