1//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the ARM addressing mode implementation stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
14#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
15
16#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/bit.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22
23namespace llvm {
24
25/// ARM_AM - ARM Addressing Mode Stuff
26namespace ARM_AM {
27  enum ShiftOpc {
28    no_shift = 0,
29    asr,
30    lsl,
31    lsr,
32    ror,
33    rrx,
34    uxtw
35  };
36
37  enum AddrOpc {
38    sub = 0,
39    add
40  };
41
42  inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }
43
44  inline const char *getShiftOpcStr(ShiftOpc Op) {
45    switch (Op) {
46    default: llvm_unreachable("Unknown shift opc!");
47    case ARM_AM::asr: return "asr";
48    case ARM_AM::lsl: return "lsl";
49    case ARM_AM::lsr: return "lsr";
50    case ARM_AM::ror: return "ror";
51    case ARM_AM::rrx: return "rrx";
52    case ARM_AM::uxtw: return "uxtw";
53    }
54  }
55
56  inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
57    switch (Op) {
58    default: llvm_unreachable("Unknown shift opc!");
59    case ARM_AM::asr: return 2;
60    case ARM_AM::lsl: return 0;
61    case ARM_AM::lsr: return 1;
62    case ARM_AM::ror: return 3;
63    }
64  }
65
66  enum AMSubMode {
67    bad_am_submode = 0,
68    ia,
69    ib,
70    da,
71    db
72  };
73
74  inline const char *getAMSubModeStr(AMSubMode Mode) {
75    switch (Mode) {
76    default: llvm_unreachable("Unknown addressing sub-mode!");
77    case ARM_AM::ia: return "ia";
78    case ARM_AM::ib: return "ib";
79    case ARM_AM::da: return "da";
80    case ARM_AM::db: return "db";
81    }
82  }
83
84  /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
85  ///
86  inline unsigned rotr32(unsigned Val, unsigned Amt) {
87    assert(Amt < 32 && "Invalid rotate amount");
88    return (Val >> Amt) | (Val << ((32-Amt)&31));
89  }
90
91  /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
92  ///
93  inline unsigned rotl32(unsigned Val, unsigned Amt) {
94    assert(Amt < 32 && "Invalid rotate amount");
95    return (Val << Amt) | (Val >> ((32-Amt)&31));
96  }
97
98  //===--------------------------------------------------------------------===//
99  // Addressing Mode #1: shift_operand with registers
100  //===--------------------------------------------------------------------===//
101  //
102  // This 'addressing mode' is used for arithmetic instructions.  It can
103  // represent things like:
104  //   reg
105  //   reg [asr|lsl|lsr|ror|rrx] reg
106  //   reg [asr|lsl|lsr|ror|rrx] imm
107  //
108  // This is stored three operands [rega, regb, opc].  The first is the base
109  // reg, the second is the shift amount (or reg0 if not present or imm).  The
110  // third operand encodes the shift opcode and the imm if a reg isn't present.
111  //
112  inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
113    return ShOp | (Imm << 3);
114  }
115  inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
116  inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }
117
118  /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
119  /// the 8-bit imm value.
120  inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
121  /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
122  /// the rotate amount.
123  inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }
124
125  /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
126  /// computing the rotate amount to use.  If this immediate value cannot be
127  /// handled with a single shifter-op, determine a good rotate amount that will
128  /// take a maximal chunk of bits out of the immediate.
129  inline unsigned getSOImmValRotate(unsigned Imm) {
130    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
131    // of zero.
132    if ((Imm & ~255U) == 0) return 0;
133
134    // Use CTZ to compute the rotate amount.
135    unsigned TZ = countTrailingZeros(Imm);
136
137    // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
138    // not 9.
139    unsigned RotAmt = TZ & ~1;
140
141    // If we can handle this spread, return it.
142    if ((rotr32(Imm, RotAmt) & ~255U) == 0)
143      return (32-RotAmt)&31;  // HW rotates right, not left.
144
145    // For values like 0xF000000F, we should ignore the low 6 bits, then
146    // retry the hunt.
147    if (Imm & 63U) {
148      unsigned TZ2 = countTrailingZeros(Imm & ~63U);
149      unsigned RotAmt2 = TZ2 & ~1;
150      if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
151        return (32-RotAmt2)&31;  // HW rotates right, not left.
152    }
153
154    // Otherwise, we have no way to cover this span of bits with a single
155    // shifter_op immediate.  Return a chunk of bits that will be useful to
156    // handle.
157    return (32-RotAmt)&31;  // HW rotates right, not left.
158  }
159
160  /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
161  /// into an shifter_operand immediate operand, return the 12-bit encoding for
162  /// it.  If not, return -1.
163  inline int getSOImmVal(unsigned Arg) {
164    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
165    // of zero.
166    if ((Arg & ~255U) == 0) return Arg;
167
168    unsigned RotAmt = getSOImmValRotate(Arg);
169
170    // If this cannot be handled with a single shifter_op, bail out.
171    if (rotr32(~255U, RotAmt) & Arg)
172      return -1;
173
174    // Encode this correctly.
175    return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
176  }
177
178  /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
179  /// or'ing together two SOImmVal's.
180  inline bool isSOImmTwoPartVal(unsigned V) {
181    // If this can be handled with a single shifter_op, bail out.
182    V = rotr32(~255U, getSOImmValRotate(V)) & V;
183    if (V == 0)
184      return false;
185
186    // If this can be handled with two shifter_op's, accept.
187    V = rotr32(~255U, getSOImmValRotate(V)) & V;
188    return V == 0;
189  }
190
191  /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
192  /// return the first chunk of it.
193  inline unsigned getSOImmTwoPartFirst(unsigned V) {
194    return rotr32(255U, getSOImmValRotate(V)) & V;
195  }
196
197  /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
198  /// return the second chunk of it.
199  inline unsigned getSOImmTwoPartSecond(unsigned V) {
200    // Mask out the first hunk.
201    V = rotr32(~255U, getSOImmValRotate(V)) & V;
202
203    // Take what's left.
204    assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
205    return V;
206  }
207
208  /// isSOImmTwoPartValNeg - Return true if the specified value can be obtained
209  /// by two SOImmVal, that -V = First + Second.
210  /// "R+V" can be optimized to (sub (sub R, First), Second).
211  /// "R=V" can be optimized to (sub (mvn R, ~(-First)), Second).
212  inline bool isSOImmTwoPartValNeg(unsigned V) {
213    unsigned First;
214    if (!isSOImmTwoPartVal(-V))
215      return false;
216    // Return false if ~(-First) is not a SoImmval.
217    First = getSOImmTwoPartFirst(-V);
218    First = ~(-First);
219    return !(rotr32(~255U, getSOImmValRotate(First)) & First);
220  }
221
222  /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
223  /// by a left shift. Returns the shift amount to use.
224  inline unsigned getThumbImmValShift(unsigned Imm) {
225    // 8-bit (or less) immediates are trivially immediate operand with a shift
226    // of zero.
227    if ((Imm & ~255U) == 0) return 0;
228
229    // Use CTZ to compute the shift amount.
230    return countTrailingZeros(Imm);
231  }
232
233  /// isThumbImmShiftedVal - Return true if the specified value can be obtained
234  /// by left shifting a 8-bit immediate.
235  inline bool isThumbImmShiftedVal(unsigned V) {
236    // If this can be handled with
237    V = (~255U << getThumbImmValShift(V)) & V;
238    return V == 0;
239  }
240
241  /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
242  /// by a left shift. Returns the shift amount to use.
243  inline unsigned getThumbImm16ValShift(unsigned Imm) {
244    // 16-bit (or less) immediates are trivially immediate operand with a shift
245    // of zero.
246    if ((Imm & ~65535U) == 0) return 0;
247
248    // Use CTZ to compute the shift amount.
249    return countTrailingZeros(Imm);
250  }
251
252  /// isThumbImm16ShiftedVal - Return true if the specified value can be
253  /// obtained by left shifting a 16-bit immediate.
254  inline bool isThumbImm16ShiftedVal(unsigned V) {
255    // If this can be handled with
256    V = (~65535U << getThumbImm16ValShift(V)) & V;
257    return V == 0;
258  }
259
260  /// getThumbImmNonShiftedVal - If V is a value that satisfies
261  /// isThumbImmShiftedVal, return the non-shiftd value.
262  inline unsigned getThumbImmNonShiftedVal(unsigned V) {
263    return V >> getThumbImmValShift(V);
264  }
265
266
267  /// getT2SOImmValSplat - Return the 12-bit encoded representation
268  /// if the specified value can be obtained by splatting the low 8 bits
269  /// into every other byte or every byte of a 32-bit value. i.e.,
270  ///     00000000 00000000 00000000 abcdefgh    control = 0
271  ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
272  ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
273  ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
274  /// Return -1 if none of the above apply.
275  /// See ARM Reference Manual A6.3.2.
276  inline int getT2SOImmValSplatVal(unsigned V) {
277    unsigned u, Vs, Imm;
278    // control = 0
279    if ((V & 0xffffff00) == 0)
280      return V;
281
282    // If the value is zeroes in the first byte, just shift those off
283    Vs = ((V & 0xff) == 0) ? V >> 8 : V;
284    // Any passing value only has 8 bits of payload, splatted across the word
285    Imm = Vs & 0xff;
286    // Likewise, any passing values have the payload splatted into the 3rd byte
287    u = Imm | (Imm << 16);
288
289    // control = 1 or 2
290    if (Vs == u)
291      return (((Vs == V) ? 1 : 2) << 8) | Imm;
292
293    // control = 3
294    if (Vs == (u | (u << 8)))
295      return (3 << 8) | Imm;
296
297    return -1;
298  }
299
300  /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
301  /// specified value is a rotated 8-bit value. Return -1 if no rotation
302  /// encoding is possible.
303  /// See ARM Reference Manual A6.3.2.
304  inline int getT2SOImmValRotateVal(unsigned V) {
305    unsigned RotAmt = countLeadingZeros(V);
306    if (RotAmt >= 24)
307      return -1;
308
309    // If 'Arg' can be handled with a single shifter_op return the value.
310    if ((rotr32(0xff000000U, RotAmt) & V) == V)
311      return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
312
313    return -1;
314  }
315
316  /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
317  /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
318  /// encoding for it.  If not, return -1.
319  /// See ARM Reference Manual A6.3.2.
320  inline int getT2SOImmVal(unsigned Arg) {
321    // If 'Arg' is an 8-bit splat, then get the encoded value.
322    int Splat = getT2SOImmValSplatVal(Arg);
323    if (Splat != -1)
324      return Splat;
325
326    // If 'Arg' can be handled with a single shifter_op return the value.
327    int Rot = getT2SOImmValRotateVal(Arg);
328    if (Rot != -1)
329      return Rot;
330
331    return -1;
332  }
333
334  inline unsigned getT2SOImmValRotate(unsigned V) {
335    if ((V & ~255U) == 0) return 0;
336    // Use CTZ to compute the rotate amount.
337    unsigned RotAmt = countTrailingZeros(V);
338    return (32 - RotAmt) & 31;
339  }
340
341  inline bool isT2SOImmTwoPartVal(unsigned Imm) {
342    unsigned V = Imm;
343    // Passing values can be any combination of splat values and shifter
344    // values. If this can be handled with a single shifter or splat, bail
345    // out. Those should be handled directly, not with a two-part val.
346    if (getT2SOImmValSplatVal(V) != -1)
347      return false;
348    V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
349    if (V == 0)
350      return false;
351
352    // If this can be handled as an immediate, accept.
353    if (getT2SOImmVal(V) != -1) return true;
354
355    // Likewise, try masking out a splat value first.
356    V = Imm;
357    if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
358      V &= ~0xff00ff00U;
359    else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
360      V &= ~0x00ff00ffU;
361    // If what's left can be handled as an immediate, accept.
362    if (getT2SOImmVal(V) != -1) return true;
363
364    // Otherwise, do not accept.
365    return false;
366  }
367
368  inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
369    assert (isT2SOImmTwoPartVal(Imm) &&
370            "Immedate cannot be encoded as two part immediate!");
371    // Try a shifter operand as one part
372    unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
373    // If the rest is encodable as an immediate, then return it.
374    if (getT2SOImmVal(V) != -1) return V;
375
376    // Try masking out a splat value first.
377    if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
378      return Imm & 0xff00ff00U;
379
380    // The other splat is all that's left as an option.
381    assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
382    return Imm & 0x00ff00ffU;
383  }
384
385  inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
386    // Mask out the first hunk
387    Imm ^= getT2SOImmTwoPartFirst(Imm);
388    // Return what's left
389    assert (getT2SOImmVal(Imm) != -1 &&
390            "Unable to encode second part of T2 two part SO immediate");
391    return Imm;
392  }
393
394
395  //===--------------------------------------------------------------------===//
396  // Addressing Mode #2
397  //===--------------------------------------------------------------------===//
398  //
399  // This is used for most simple load/store instructions.
400  //
401  // addrmode2 := reg +/- reg shop imm
402  // addrmode2 := reg +/- imm12
403  //
404  // The first operand is always a Reg.  The second operand is a reg if in
405  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
406  // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
407  // fourth operand 16-17 encodes the index mode.
408  //
409  // If this addressing mode is a frame index (before prolog/epilog insertion
410  // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
411  // with no shift amount for the frame offset.
412  //
413  inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
414                            unsigned IdxMode = 0) {
415    assert(Imm12 < (1 << 12) && "Imm too large!");
416    bool isSub = Opc == sub;
417    return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
418  }
419  inline unsigned getAM2Offset(unsigned AM2Opc) {
420    return AM2Opc & ((1 << 12)-1);
421  }
422  inline AddrOpc getAM2Op(unsigned AM2Opc) {
423    return ((AM2Opc >> 12) & 1) ? sub : add;
424  }
425  inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
426    return (ShiftOpc)((AM2Opc >> 13) & 7);
427  }
428  inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }
429
430  //===--------------------------------------------------------------------===//
431  // Addressing Mode #3
432  //===--------------------------------------------------------------------===//
433  //
434  // This is used for sign-extending loads, and load/store-pair instructions.
435  //
436  // addrmode3 := reg +/- reg
437  // addrmode3 := reg +/- imm8
438  //
439  // The first operand is always a Reg.  The second operand is a reg if in
440  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
441  // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
442  // index mode.
443
444  /// getAM3Opc - This function encodes the addrmode3 opc field.
445  inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
446                            unsigned IdxMode = 0) {
447    bool isSub = Opc == sub;
448    return ((int)isSub << 8) | Offset | (IdxMode << 9);
449  }
450  inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
451  inline AddrOpc getAM3Op(unsigned AM3Opc) {
452    return ((AM3Opc >> 8) & 1) ? sub : add;
453  }
454  inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }
455
456  //===--------------------------------------------------------------------===//
457  // Addressing Mode #4
458  //===--------------------------------------------------------------------===//
459  //
460  // This is used for load / store multiple instructions.
461  //
462  // addrmode4 := reg, <mode>
463  //
464  // The four modes are:
465  //    IA - Increment after
466  //    IB - Increment before
467  //    DA - Decrement after
468  //    DB - Decrement before
469  // For VFP instructions, only the IA and DB modes are valid.
470
471  inline AMSubMode getAM4SubMode(unsigned Mode) {
472    return (AMSubMode)(Mode & 0x7);
473  }
474
475  inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }
476
477  //===--------------------------------------------------------------------===//
478  // Addressing Mode #5
479  //===--------------------------------------------------------------------===//
480  //
481  // This is used for coprocessor instructions, such as FP load/stores.
482  //
483  // addrmode5 := reg +/- imm8*4
484  //
485  // The first operand is always a Reg.  The second operand encodes the
486  // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
487
488  /// getAM5Opc - This function encodes the addrmode5 opc field.
489  inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
490    bool isSub = Opc == sub;
491    return ((int)isSub << 8) | Offset;
492  }
493  inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
494  inline AddrOpc getAM5Op(unsigned AM5Opc) {
495    return ((AM5Opc >> 8) & 1) ? sub : add;
496  }
497
498  //===--------------------------------------------------------------------===//
499  // Addressing Mode #5 FP16
500  //===--------------------------------------------------------------------===//
501  //
502  // This is used for coprocessor instructions, such as 16-bit FP load/stores.
503  //
504  // addrmode5fp16 := reg +/- imm8*2
505  //
506  // The first operand is always a Reg.  The second operand encodes the
507  // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
508
509  /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
510  inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
511    bool isSub = Opc == sub;
512    return ((int)isSub << 8) | Offset;
513  }
514  inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
515    return AM5Opc & 0xFF;
516  }
517  inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
518    return ((AM5Opc >> 8) & 1) ? sub : add;
519  }
520
521  //===--------------------------------------------------------------------===//
522  // Addressing Mode #6
523  //===--------------------------------------------------------------------===//
524  //
525  // This is used for NEON load / store instructions.
526  //
527  // addrmode6 := reg with optional alignment
528  //
529  // This is stored in two operands [regaddr, align].  The first is the
530  // address register.  The second operand is the value of the alignment
531  // specifier in bytes or zero if no explicit alignment.
532  // Valid alignments depend on the specific instruction.
533
534  //===--------------------------------------------------------------------===//
535  // NEON/MVE Modified Immediates
536  //===--------------------------------------------------------------------===//
537  //
538  // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate"
539  // vector operand, where a small immediate encoded in the instruction
540  // specifies a full NEON vector value.  These modified immediates are
541  // represented here as encoded integers.  The low 8 bits hold the immediate
542  // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
543  // the "Cmode" field of the instruction.  The interfaces below treat the
544  // Op and Cmode values as a single 5-bit value.
545
546  inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) {
547    return (OpCmode << 8) | Val;
548  }
549  inline unsigned getVMOVModImmOpCmode(unsigned ModImm) {
550    return (ModImm >> 8) & 0x1f;
551  }
552  inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; }
553
554  /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the
555  /// element value and the element size in bits.  (If the element size is
556  /// smaller than the vector, it is splatted into all the elements.)
557  inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) {
558    unsigned OpCmode = getVMOVModImmOpCmode(ModImm);
559    unsigned Imm8 = getVMOVModImmVal(ModImm);
560    uint64_t Val = 0;
561
562    if (OpCmode == 0xe) {
563      // 8-bit vector elements
564      Val = Imm8;
565      EltBits = 8;
566    } else if ((OpCmode & 0xc) == 0x8) {
567      // 16-bit vector elements
568      unsigned ByteNum = (OpCmode & 0x6) >> 1;
569      Val = Imm8 << (8 * ByteNum);
570      EltBits = 16;
571    } else if ((OpCmode & 0x8) == 0) {
572      // 32-bit vector elements, zero with one byte set
573      unsigned ByteNum = (OpCmode & 0x6) >> 1;
574      Val = Imm8 << (8 * ByteNum);
575      EltBits = 32;
576    } else if ((OpCmode & 0xe) == 0xc) {
577      // 32-bit vector elements, one byte with low bits set
578      unsigned ByteNum = 1 + (OpCmode & 0x1);
579      Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
580      EltBits = 32;
581    } else if (OpCmode == 0x1e) {
582      // 64-bit vector elements
583      for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
584        if ((ModImm >> ByteNum) & 1)
585          Val |= (uint64_t)0xff << (8 * ByteNum);
586      }
587      EltBits = 64;
588    } else {
589      llvm_unreachable("Unsupported VMOV immediate");
590    }
591    return Val;
592  }
593
594  // Generic validation for single-byte immediate (0X00, 00X0, etc).
595  inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
596    assert(Size >= 1 && Size <= 4 && "Invalid size");
597    unsigned count = 0;
598    for (unsigned i = 0; i < Size; ++i) {
599      if (Value & 0xff) count++;
600      Value >>= 8;
601    }
602    return count == 1;
603  }
604
605  /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
606  inline bool isNEONi16splat(unsigned Value) {
607    if (Value > 0xffff)
608      return false;
609    // i16 value with set bits only in one byte X0 or 0X.
610    return Value == 0 || isNEONBytesplat(Value, 2);
611  }
612
613  // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
614  inline unsigned encodeNEONi16splat(unsigned Value) {
615    assert(isNEONi16splat(Value) && "Invalid NEON splat value");
616    if (Value >= 0x100)
617      Value = (Value >> 8) | 0xa00;
618    else
619      Value |= 0x800;
620    return Value;
621  }
622
623  /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
624  inline bool isNEONi32splat(unsigned Value) {
625    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
626    return Value == 0 || isNEONBytesplat(Value, 4);
627  }
628
629  /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
630  inline unsigned encodeNEONi32splat(unsigned Value) {
631    assert(isNEONi32splat(Value) && "Invalid NEON splat value");
632    if (Value >= 0x100 && Value <= 0xff00)
633      Value = (Value >> 8) | 0x200;
634    else if (Value > 0xffff && Value <= 0xff0000)
635      Value = (Value >> 16) | 0x400;
636    else if (Value > 0xffffff)
637      Value = (Value >> 24) | 0x600;
638    return Value;
639  }
640
641  //===--------------------------------------------------------------------===//
642  // Floating-point Immediates
643  //
644  inline float getFPImmFloat(unsigned Imm) {
645    // We expect an 8-bit binary encoding of a floating-point number here.
646
647    uint8_t Sign = (Imm >> 7) & 0x1;
648    uint8_t Exp = (Imm >> 4) & 0x7;
649    uint8_t Mantissa = Imm & 0xf;
650
651    //   8-bit FP    IEEE Float Encoding
652    //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
653    //
654    // where B = NOT(b);
655    uint32_t I = 0;
656    I |= Sign << 31;
657    I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
658    I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
659    I |= (Exp & 0x3) << 23;
660    I |= Mantissa << 19;
661    return bit_cast<float>(I);
662  }
663
664  /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
665  /// floating-point value. If the value cannot be represented as an 8-bit
666  /// floating-point value, then return -1.
667  inline int getFP16Imm(const APInt &Imm) {
668    uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
669    int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
670    int64_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits
671
672    // We can handle 4 bits of mantissa.
673    // mantissa = (16+UInt(e:f:g:h))/16.
674    if (Mantissa & 0x3f)
675      return -1;
676    Mantissa >>= 6;
677
678    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
679    if (Exp < -3 || Exp > 4)
680      return -1;
681    Exp = ((Exp+3) & 0x7) ^ 4;
682
683    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
684  }
685
686  inline int getFP16Imm(const APFloat &FPImm) {
687    return getFP16Imm(FPImm.bitcastToAPInt());
688  }
689
690  /// If this is a FP16Imm encoded as a fp32 value, return the 8-bit encoding
691  /// for it. Otherwise return -1 like getFP16Imm.
692  inline int getFP32FP16Imm(const APInt &Imm) {
693    if (Imm.getActiveBits() > 16)
694      return -1;
695    return ARM_AM::getFP16Imm(Imm.trunc(16));
696  }
697
698  inline int getFP32FP16Imm(const APFloat &FPImm) {
699    return getFP32FP16Imm(FPImm.bitcastToAPInt());
700  }
701
702  /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
703  /// floating-point value. If the value cannot be represented as an 8-bit
704  /// floating-point value, then return -1.
705  inline int getFP32Imm(const APInt &Imm) {
706    uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
707    int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
708    int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
709
710    // We can handle 4 bits of mantissa.
711    // mantissa = (16+UInt(e:f:g:h))/16.
712    if (Mantissa & 0x7ffff)
713      return -1;
714    Mantissa >>= 19;
715    if ((Mantissa & 0xf) != Mantissa)
716      return -1;
717
718    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
719    if (Exp < -3 || Exp > 4)
720      return -1;
721    Exp = ((Exp+3) & 0x7) ^ 4;
722
723    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
724  }
725
726  inline int getFP32Imm(const APFloat &FPImm) {
727    return getFP32Imm(FPImm.bitcastToAPInt());
728  }
729
730  /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
731  /// floating-point value. If the value cannot be represented as an 8-bit
732  /// floating-point value, then return -1.
733  inline int getFP64Imm(const APInt &Imm) {
734    uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
735    int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
736    uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
737
738    // We can handle 4 bits of mantissa.
739    // mantissa = (16+UInt(e:f:g:h))/16.
740    if (Mantissa & 0xffffffffffffULL)
741      return -1;
742    Mantissa >>= 48;
743    if ((Mantissa & 0xf) != Mantissa)
744      return -1;
745
746    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
747    if (Exp < -3 || Exp > 4)
748      return -1;
749    Exp = ((Exp+3) & 0x7) ^ 4;
750
751    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
752  }
753
754  inline int getFP64Imm(const APFloat &FPImm) {
755    return getFP64Imm(FPImm.bitcastToAPInt());
756  }
757
758} // end namespace ARM_AM
759} // end namespace llvm
760
761#endif
762
763