1//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Interface for the implementations of runtime dynamic linker facilities.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
14#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
15
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringMap.h"
18#include "llvm/ADT/Triple.h"
19#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
20#include "llvm/ExecutionEngine/RuntimeDyld.h"
21#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
22#include "llvm/Object/ObjectFile.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/Format.h"
26#include "llvm/Support/Host.h"
27#include "llvm/Support/Mutex.h"
28#include "llvm/Support/SwapByteOrder.h"
29#include <deque>
30#include <map>
31#include <system_error>
32#include <unordered_map>
33
34using namespace llvm;
35using namespace llvm::object;
36
37namespace llvm {
38
39#define UNIMPLEMENTED_RELOC(RelType) \
40  case RelType: \
41    return make_error<RuntimeDyldError>("Unimplemented relocation: " #RelType)
42
43/// SectionEntry - represents a section emitted into memory by the dynamic
44/// linker.
45class SectionEntry {
46  /// Name - section name.
47  std::string Name;
48
49  /// Address - address in the linker's memory where the section resides.
50  uint8_t *Address;
51
52  /// Size - section size. Doesn't include the stubs.
53  size_t Size;
54
55  /// LoadAddress - the address of the section in the target process's memory.
56  /// Used for situations in which JIT-ed code is being executed in the address
57  /// space of a separate process.  If the code executes in the same address
58  /// space where it was JIT-ed, this just equals Address.
59  uint64_t LoadAddress;
60
61  /// StubOffset - used for architectures with stub functions for far
62  /// relocations (like ARM).
63  uintptr_t StubOffset;
64
65  /// The total amount of space allocated for this section.  This includes the
66  /// section size and the maximum amount of space that the stubs can occupy.
67  size_t AllocationSize;
68
69  /// ObjAddress - address of the section in the in-memory object file.  Used
70  /// for calculating relocations in some object formats (like MachO).
71  uintptr_t ObjAddress;
72
73public:
74  SectionEntry(StringRef name, uint8_t *address, size_t size,
75               size_t allocationSize, uintptr_t objAddress)
76      : Name(std::string(name)), Address(address), Size(size),
77        LoadAddress(reinterpret_cast<uintptr_t>(address)), StubOffset(size),
78        AllocationSize(allocationSize), ObjAddress(objAddress) {
79    // AllocationSize is used only in asserts, prevent an "unused private field"
80    // warning:
81    (void)AllocationSize;
82  }
83
84  StringRef getName() const { return Name; }
85
86  uint8_t *getAddress() const { return Address; }
87
88  /// Return the address of this section with an offset.
89  uint8_t *getAddressWithOffset(unsigned OffsetBytes) const {
90    assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
91    return Address + OffsetBytes;
92  }
93
94  size_t getSize() const { return Size; }
95
96  uint64_t getLoadAddress() const { return LoadAddress; }
97  void setLoadAddress(uint64_t LA) { LoadAddress = LA; }
98
99  /// Return the load address of this section with an offset.
100  uint64_t getLoadAddressWithOffset(unsigned OffsetBytes) const {
101    assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
102    return LoadAddress + OffsetBytes;
103  }
104
105  uintptr_t getStubOffset() const { return StubOffset; }
106
107  void advanceStubOffset(unsigned StubSize) {
108    StubOffset += StubSize;
109    assert(StubOffset <= AllocationSize && "Not enough space allocated!");
110  }
111
112  uintptr_t getObjAddress() const { return ObjAddress; }
113};
114
115/// RelocationEntry - used to represent relocations internally in the dynamic
116/// linker.
117class RelocationEntry {
118public:
119  /// SectionID - the section this relocation points to.
120  unsigned SectionID;
121
122  /// Offset - offset into the section.
123  uint64_t Offset;
124
125  /// RelType - relocation type.
126  uint32_t RelType;
127
128  /// Addend - the relocation addend encoded in the instruction itself.  Also
129  /// used to make a relocation section relative instead of symbol relative.
130  int64_t Addend;
131
132  struct SectionPair {
133      uint32_t SectionA;
134      uint32_t SectionB;
135  };
136
137  /// SymOffset - Section offset of the relocation entry's symbol (used for GOT
138  /// lookup).
139  union {
140    uint64_t SymOffset;
141    SectionPair Sections;
142  };
143
144  /// True if this is a PCRel relocation (MachO specific).
145  bool IsPCRel;
146
147  /// The size of this relocation (MachO specific).
148  unsigned Size;
149
150  // ARM (MachO and COFF) specific.
151  bool IsTargetThumbFunc = false;
152
153  RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend)
154      : SectionID(id), Offset(offset), RelType(type), Addend(addend),
155        SymOffset(0), IsPCRel(false), Size(0), IsTargetThumbFunc(false) {}
156
157  RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
158                  uint64_t symoffset)
159      : SectionID(id), Offset(offset), RelType(type), Addend(addend),
160        SymOffset(symoffset), IsPCRel(false), Size(0),
161        IsTargetThumbFunc(false) {}
162
163  RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
164                  bool IsPCRel, unsigned Size)
165      : SectionID(id), Offset(offset), RelType(type), Addend(addend),
166        SymOffset(0), IsPCRel(IsPCRel), Size(Size), IsTargetThumbFunc(false) {}
167
168  RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
169                  unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
170                  uint64_t SectionBOffset, bool IsPCRel, unsigned Size)
171      : SectionID(id), Offset(offset), RelType(type),
172        Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
173        Size(Size), IsTargetThumbFunc(false) {
174    Sections.SectionA = SectionA;
175    Sections.SectionB = SectionB;
176  }
177
178  RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
179                  unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
180                  uint64_t SectionBOffset, bool IsPCRel, unsigned Size,
181                  bool IsTargetThumbFunc)
182      : SectionID(id), Offset(offset), RelType(type),
183        Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
184        Size(Size), IsTargetThumbFunc(IsTargetThumbFunc) {
185    Sections.SectionA = SectionA;
186    Sections.SectionB = SectionB;
187  }
188};
189
190class RelocationValueRef {
191public:
192  unsigned SectionID = 0;
193  uint64_t Offset = 0;
194  int64_t Addend = 0;
195  const char *SymbolName = nullptr;
196  bool IsStubThumb = false;
197
198  inline bool operator==(const RelocationValueRef &Other) const {
199    return SectionID == Other.SectionID && Offset == Other.Offset &&
200           Addend == Other.Addend && SymbolName == Other.SymbolName &&
201           IsStubThumb == Other.IsStubThumb;
202  }
203  inline bool operator<(const RelocationValueRef &Other) const {
204    if (SectionID != Other.SectionID)
205      return SectionID < Other.SectionID;
206    if (Offset != Other.Offset)
207      return Offset < Other.Offset;
208    if (Addend != Other.Addend)
209      return Addend < Other.Addend;
210    if (IsStubThumb != Other.IsStubThumb)
211      return IsStubThumb < Other.IsStubThumb;
212    return SymbolName < Other.SymbolName;
213  }
214};
215
216/// Symbol info for RuntimeDyld.
217class SymbolTableEntry {
218public:
219  SymbolTableEntry() = default;
220
221  SymbolTableEntry(unsigned SectionID, uint64_t Offset, JITSymbolFlags Flags)
222      : Offset(Offset), SectionID(SectionID), Flags(Flags) {}
223
224  unsigned getSectionID() const { return SectionID; }
225  uint64_t getOffset() const { return Offset; }
226  void setOffset(uint64_t NewOffset) { Offset = NewOffset; }
227
228  JITSymbolFlags getFlags() const { return Flags; }
229
230private:
231  uint64_t Offset = 0;
232  unsigned SectionID = 0;
233  JITSymbolFlags Flags = JITSymbolFlags::None;
234};
235
236typedef StringMap<SymbolTableEntry> RTDyldSymbolTable;
237
238class RuntimeDyldImpl {
239  friend class RuntimeDyld::LoadedObjectInfo;
240protected:
241  static const unsigned AbsoluteSymbolSection = ~0U;
242
243  // The MemoryManager to load objects into.
244  RuntimeDyld::MemoryManager &MemMgr;
245
246  // The symbol resolver to use for external symbols.
247  JITSymbolResolver &Resolver;
248
249  // A list of all sections emitted by the dynamic linker.  These sections are
250  // referenced in the code by means of their index in this list - SectionID.
251  // Because references may be kept while the list grows, use a container that
252  // guarantees reference stability.
253  typedef std::deque<SectionEntry> SectionList;
254  SectionList Sections;
255
256  typedef unsigned SID; // Type for SectionIDs
257#define RTDYLD_INVALID_SECTION_ID ((RuntimeDyldImpl::SID)(-1))
258
259  // Keep a map of sections from object file to the SectionID which
260  // references it.
261  typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
262
263  // A global symbol table for symbols from all loaded modules.
264  RTDyldSymbolTable GlobalSymbolTable;
265
266  // Keep a map of common symbols to their info pairs
267  typedef std::vector<SymbolRef> CommonSymbolList;
268
269  // For each symbol, keep a list of relocations based on it. Anytime
270  // its address is reassigned (the JIT re-compiled the function, e.g.),
271  // the relocations get re-resolved.
272  // The symbol (or section) the relocation is sourced from is the Key
273  // in the relocation list where it's stored.
274  typedef SmallVector<RelocationEntry, 64> RelocationList;
275  // Relocations to sections already loaded. Indexed by SectionID which is the
276  // source of the address. The target where the address will be written is
277  // SectionID/Offset in the relocation itself.
278  std::unordered_map<unsigned, RelocationList> Relocations;
279
280  // Relocations to external symbols that are not yet resolved.  Symbols are
281  // external when they aren't found in the global symbol table of all loaded
282  // modules.  This map is indexed by symbol name.
283  StringMap<RelocationList> ExternalSymbolRelocations;
284
285
286  typedef std::map<RelocationValueRef, uintptr_t> StubMap;
287
288  Triple::ArchType Arch;
289  bool IsTargetLittleEndian;
290  bool IsMipsO32ABI;
291  bool IsMipsN32ABI;
292  bool IsMipsN64ABI;
293
294  // True if all sections should be passed to the memory manager, false if only
295  // sections containing relocations should be. Defaults to 'false'.
296  bool ProcessAllSections;
297
298  // This mutex prevents simultaneously loading objects from two different
299  // threads.  This keeps us from having to protect individual data structures
300  // and guarantees that section allocation requests to the memory manager
301  // won't be interleaved between modules.  It is also used in mapSectionAddress
302  // and resolveRelocations to protect write access to internal data structures.
303  //
304  // loadObject may be called on the same thread during the handling of of
305  // processRelocations, and that's OK.  The handling of the relocation lists
306  // is written in such a way as to work correctly if new elements are added to
307  // the end of the list while the list is being processed.
308  sys::Mutex lock;
309
310  using NotifyStubEmittedFunction =
311    RuntimeDyld::NotifyStubEmittedFunction;
312  NotifyStubEmittedFunction NotifyStubEmitted;
313
314  virtual unsigned getMaxStubSize() const = 0;
315  virtual unsigned getStubAlignment() = 0;
316
317  bool HasError;
318  std::string ErrorStr;
319
320  void writeInt16BE(uint8_t *Addr, uint16_t Value) {
321    llvm::support::endian::write<uint16_t, llvm::support::unaligned>(
322        Addr, Value, IsTargetLittleEndian ? support::little : support::big);
323  }
324
325  void writeInt32BE(uint8_t *Addr, uint32_t Value) {
326    llvm::support::endian::write<uint32_t, llvm::support::unaligned>(
327        Addr, Value, IsTargetLittleEndian ? support::little : support::big);
328  }
329
330  void writeInt64BE(uint8_t *Addr, uint64_t Value) {
331    llvm::support::endian::write<uint64_t, llvm::support::unaligned>(
332        Addr, Value, IsTargetLittleEndian ? support::little : support::big);
333  }
334
335  virtual void setMipsABI(const ObjectFile &Obj) {
336    IsMipsO32ABI = false;
337    IsMipsN32ABI = false;
338    IsMipsN64ABI = false;
339  }
340
341  /// Endian-aware read Read the least significant Size bytes from Src.
342  uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const;
343
344  /// Endian-aware write. Write the least significant Size bytes from Value to
345  /// Dst.
346  void writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const;
347
348  /// Generate JITSymbolFlags from a libObject symbol.
349  virtual Expected<JITSymbolFlags> getJITSymbolFlags(const SymbolRef &Sym);
350
351  /// Modify the given target address based on the given symbol flags.
352  /// This can be used by subclasses to tweak addresses based on symbol flags,
353  /// For example: the MachO/ARM target uses it to set the low bit if the target
354  /// is a thumb symbol.
355  virtual uint64_t modifyAddressBasedOnFlags(uint64_t Addr,
356                                             JITSymbolFlags Flags) const {
357    return Addr;
358  }
359
360  /// Given the common symbols discovered in the object file, emit a
361  /// new section for them and update the symbol mappings in the object and
362  /// symbol table.
363  Error emitCommonSymbols(const ObjectFile &Obj,
364                          CommonSymbolList &CommonSymbols, uint64_t CommonSize,
365                          uint32_t CommonAlign);
366
367  /// Emits section data from the object file to the MemoryManager.
368  /// \param IsCode if it's true then allocateCodeSection() will be
369  ///        used for emits, else allocateDataSection() will be used.
370  /// \return SectionID.
371  Expected<unsigned> emitSection(const ObjectFile &Obj,
372                                 const SectionRef &Section,
373                                 bool IsCode);
374
375  /// Find Section in LocalSections. If the secton is not found - emit
376  ///        it and store in LocalSections.
377  /// \param IsCode if it's true then allocateCodeSection() will be
378  ///        used for emmits, else allocateDataSection() will be used.
379  /// \return SectionID.
380  Expected<unsigned> findOrEmitSection(const ObjectFile &Obj,
381                                       const SectionRef &Section, bool IsCode,
382                                       ObjSectionToIDMap &LocalSections);
383
384  // Add a relocation entry that uses the given section.
385  void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID);
386
387  // Add a relocation entry that uses the given symbol.  This symbol may
388  // be found in the global symbol table, or it may be external.
389  void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName);
390
391  /// Emits long jump instruction to Addr.
392  /// \return Pointer to the memory area for emitting target address.
393  uint8_t *createStubFunction(uint8_t *Addr, unsigned AbiVariant = 0);
394
395  /// Resolves relocations from Relocs list with address from Value.
396  void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
397
398  /// A object file specific relocation resolver
399  /// \param RE The relocation to be resolved
400  /// \param Value Target symbol address to apply the relocation action
401  virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0;
402
403  /// Parses one or more object file relocations (some object files use
404  ///        relocation pairs) and stores it to Relocations or SymbolRelocations
405  ///        (this depends on the object file type).
406  /// \return Iterator to the next relocation that needs to be parsed.
407  virtual Expected<relocation_iterator>
408  processRelocationRef(unsigned SectionID, relocation_iterator RelI,
409                       const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID,
410                       StubMap &Stubs) = 0;
411
412  void applyExternalSymbolRelocations(
413      const StringMap<JITEvaluatedSymbol> ExternalSymbolMap);
414
415  /// Resolve relocations to external symbols.
416  Error resolveExternalSymbols();
417
418  // Compute an upper bound of the memory that is required to load all
419  // sections
420  Error computeTotalAllocSize(const ObjectFile &Obj,
421                              uint64_t &CodeSize, uint32_t &CodeAlign,
422                              uint64_t &RODataSize, uint32_t &RODataAlign,
423                              uint64_t &RWDataSize, uint32_t &RWDataAlign);
424
425  // Compute GOT size
426  unsigned computeGOTSize(const ObjectFile &Obj);
427
428  // Compute the stub buffer size required for a section
429  unsigned computeSectionStubBufSize(const ObjectFile &Obj,
430                                     const SectionRef &Section);
431
432  // Implementation of the generic part of the loadObject algorithm.
433  Expected<ObjSectionToIDMap> loadObjectImpl(const object::ObjectFile &Obj);
434
435  // Return size of Global Offset Table (GOT) entry
436  virtual size_t getGOTEntrySize() { return 0; }
437
438  // Return true if the relocation R may require allocating a GOT entry.
439  virtual bool relocationNeedsGot(const RelocationRef &R) const {
440    return false;
441  }
442
443  // Return true if the relocation R may require allocating a stub.
444  virtual bool relocationNeedsStub(const RelocationRef &R) const {
445    return true;    // Conservative answer
446  }
447
448public:
449  RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr,
450                  JITSymbolResolver &Resolver)
451    : MemMgr(MemMgr), Resolver(Resolver),
452      ProcessAllSections(false), HasError(false) {
453  }
454
455  virtual ~RuntimeDyldImpl();
456
457  void setProcessAllSections(bool ProcessAllSections) {
458    this->ProcessAllSections = ProcessAllSections;
459  }
460
461  virtual std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
462  loadObject(const object::ObjectFile &Obj) = 0;
463
464  uint64_t getSectionLoadAddress(unsigned SectionID) const {
465    if (SectionID == AbsoluteSymbolSection)
466      return 0;
467    else
468      return Sections[SectionID].getLoadAddress();
469  }
470
471  uint8_t *getSectionAddress(unsigned SectionID) const {
472    if (SectionID == AbsoluteSymbolSection)
473      return nullptr;
474    else
475      return Sections[SectionID].getAddress();
476  }
477
478  StringRef getSectionContent(unsigned SectionID) const {
479    if (SectionID == AbsoluteSymbolSection)
480      return {};
481    else
482      return StringRef(
483          reinterpret_cast<char *>(Sections[SectionID].getAddress()),
484          Sections[SectionID].getStubOffset() + getMaxStubSize());
485  }
486
487  uint8_t* getSymbolLocalAddress(StringRef Name) const {
488    // FIXME: Just look up as a function for now. Overly simple of course.
489    // Work in progress.
490    RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
491    if (pos == GlobalSymbolTable.end())
492      return nullptr;
493    const auto &SymInfo = pos->second;
494    // Absolute symbols do not have a local address.
495    if (SymInfo.getSectionID() == AbsoluteSymbolSection)
496      return nullptr;
497    return getSectionAddress(SymInfo.getSectionID()) + SymInfo.getOffset();
498  }
499
500  unsigned getSymbolSectionID(StringRef Name) const {
501    auto GSTItr = GlobalSymbolTable.find(Name);
502    if (GSTItr == GlobalSymbolTable.end())
503      return ~0U;
504    return GSTItr->second.getSectionID();
505  }
506
507  JITEvaluatedSymbol getSymbol(StringRef Name) const {
508    // FIXME: Just look up as a function for now. Overly simple of course.
509    // Work in progress.
510    RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
511    if (pos == GlobalSymbolTable.end())
512      return nullptr;
513    const auto &SymEntry = pos->second;
514    uint64_t SectionAddr = 0;
515    if (SymEntry.getSectionID() != AbsoluteSymbolSection)
516      SectionAddr = getSectionLoadAddress(SymEntry.getSectionID());
517    uint64_t TargetAddr = SectionAddr + SymEntry.getOffset();
518
519    // FIXME: Have getSymbol should return the actual address and the client
520    //        modify it based on the flags. This will require clients to be
521    //        aware of the target architecture, which we should build
522    //        infrastructure for.
523    TargetAddr = modifyAddressBasedOnFlags(TargetAddr, SymEntry.getFlags());
524    return JITEvaluatedSymbol(TargetAddr, SymEntry.getFlags());
525  }
526
527  std::map<StringRef, JITEvaluatedSymbol> getSymbolTable() const {
528    std::map<StringRef, JITEvaluatedSymbol> Result;
529
530    for (auto &KV : GlobalSymbolTable) {
531      auto SectionID = KV.second.getSectionID();
532      uint64_t SectionAddr = getSectionLoadAddress(SectionID);
533      Result[KV.first()] =
534        JITEvaluatedSymbol(SectionAddr + KV.second.getOffset(), KV.second.getFlags());
535    }
536
537    return Result;
538  }
539
540  void resolveRelocations();
541
542  void resolveLocalRelocations();
543
544  static void finalizeAsync(
545      std::unique_ptr<RuntimeDyldImpl> This,
546      unique_function<void(object::OwningBinary<object::ObjectFile>,
547                           std::unique_ptr<RuntimeDyld::LoadedObjectInfo>,
548                           Error)>
549          OnEmitted,
550      object::OwningBinary<object::ObjectFile> O,
551      std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info);
552
553  void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
554
555  void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
556
557  // Is the linker in an error state?
558  bool hasError() { return HasError; }
559
560  // Mark the error condition as handled and continue.
561  void clearError() { HasError = false; }
562
563  // Get the error message.
564  StringRef getErrorString() { return ErrorStr; }
565
566  virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0;
567
568  void setNotifyStubEmitted(NotifyStubEmittedFunction NotifyStubEmitted) {
569    this->NotifyStubEmitted = std::move(NotifyStubEmitted);
570  }
571
572  virtual void registerEHFrames();
573
574  void deregisterEHFrames();
575
576  virtual Error finalizeLoad(const ObjectFile &ObjImg,
577                             ObjSectionToIDMap &SectionMap) {
578    return Error::success();
579  }
580};
581
582} // end namespace llvm
583
584#endif
585