1//===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Perform peephole optimizations on the machine code:
10//
11// - Optimize Extensions
12//
13//     Optimization of sign / zero extension instructions. It may be extended to
14//     handle other instructions with similar properties.
15//
16//     On some targets, some instructions, e.g. X86 sign / zero extension, may
17//     leave the source value in the lower part of the result. This optimization
18//     will replace some uses of the pre-extension value with uses of the
19//     sub-register of the results.
20//
21// - Optimize Comparisons
22//
23//     Optimization of comparison instructions. For instance, in this code:
24//
25//       sub r1, 1
26//       cmp r1, 0
27//       bz  L1
28//
29//     If the "sub" instruction all ready sets (or could be modified to set) the
30//     same flag that the "cmp" instruction sets and that "bz" uses, then we can
31//     eliminate the "cmp" instruction.
32//
33//     Another instance, in this code:
34//
35//       sub r1, r3 | sub r1, imm
36//       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37//       bge L1
38//
39//     If the branch instruction can use flag from "sub", then we can replace
40//     "sub" with "subs" and eliminate the "cmp" instruction.
41//
42// - Optimize Loads:
43//
44//     Loads that can be folded into a later instruction. A load is foldable
45//     if it loads to virtual registers and the virtual register defined has
46//     a single use.
47//
48// - Optimize Copies and Bitcast (more generally, target specific copies):
49//
50//     Rewrite copies and bitcasts to avoid cross register bank copies
51//     when possible.
52//     E.g., Consider the following example, where capital and lower
53//     letters denote different register file:
54//     b = copy A <-- cross-bank copy
55//     C = copy b <-- cross-bank copy
56//   =>
57//     b = copy A <-- cross-bank copy
58//     C = copy A <-- same-bank copy
59//
60//     E.g., for bitcast:
61//     b = bitcast A <-- cross-bank copy
62//     C = bitcast b <-- cross-bank copy
63//   =>
64//     b = bitcast A <-- cross-bank copy
65//     C = copy A    <-- same-bank copy
66//===----------------------------------------------------------------------===//
67
68#include "llvm/ADT/DenseMap.h"
69#include "llvm/ADT/Optional.h"
70#include "llvm/ADT/SmallPtrSet.h"
71#include "llvm/ADT/SmallSet.h"
72#include "llvm/ADT/SmallVector.h"
73#include "llvm/ADT/Statistic.h"
74#include "llvm/CodeGen/MachineBasicBlock.h"
75#include "llvm/CodeGen/MachineDominators.h"
76#include "llvm/CodeGen/MachineFunction.h"
77#include "llvm/CodeGen/MachineFunctionPass.h"
78#include "llvm/CodeGen/MachineInstr.h"
79#include "llvm/CodeGen/MachineInstrBuilder.h"
80#include "llvm/CodeGen/MachineLoopInfo.h"
81#include "llvm/CodeGen/MachineOperand.h"
82#include "llvm/CodeGen/MachineRegisterInfo.h"
83#include "llvm/CodeGen/TargetInstrInfo.h"
84#include "llvm/CodeGen/TargetOpcodes.h"
85#include "llvm/CodeGen/TargetRegisterInfo.h"
86#include "llvm/CodeGen/TargetSubtargetInfo.h"
87#include "llvm/InitializePasses.h"
88#include "llvm/MC/LaneBitmask.h"
89#include "llvm/MC/MCInstrDesc.h"
90#include "llvm/Pass.h"
91#include "llvm/Support/CommandLine.h"
92#include "llvm/Support/Debug.h"
93#include "llvm/Support/ErrorHandling.h"
94#include "llvm/Support/raw_ostream.h"
95#include <cassert>
96#include <cstdint>
97#include <memory>
98#include <utility>
99
100using namespace llvm;
101using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
102using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103
104#define DEBUG_TYPE "peephole-opt"
105
106// Optimize Extensions
107static cl::opt<bool>
108Aggressive("aggressive-ext-opt", cl::Hidden,
109           cl::desc("Aggressive extension optimization"));
110
111static cl::opt<bool>
112DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
113                cl::desc("Disable the peephole optimizer"));
114
115/// Specifiy whether or not the value tracking looks through
116/// complex instructions. When this is true, the value tracker
117/// bails on everything that is not a copy or a bitcast.
118static cl::opt<bool>
119DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
120                  cl::desc("Disable advanced copy optimization"));
121
122static cl::opt<bool> DisableNAPhysCopyOpt(
123    "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
124    cl::desc("Disable non-allocatable physical register copy optimization"));
125
126// Limit the number of PHI instructions to process
127// in PeepholeOptimizer::getNextSource.
128static cl::opt<unsigned> RewritePHILimit(
129    "rewrite-phi-limit", cl::Hidden, cl::init(10),
130    cl::desc("Limit the length of PHI chains to lookup"));
131
132// Limit the length of recurrence chain when evaluating the benefit of
133// commuting operands.
134static cl::opt<unsigned> MaxRecurrenceChain(
135    "recurrence-chain-limit", cl::Hidden, cl::init(3),
136    cl::desc("Maximum length of recurrence chain when evaluating the benefit "
137             "of commuting operands"));
138
139
140STATISTIC(NumReuse, "Number of extension results reused");
141STATISTIC(NumCmps, "Number of compares eliminated");
142STATISTIC(NumImmFold, "Number of move immediate folded");
143STATISTIC(NumLoadFold, "Number of loads folded");
144STATISTIC(NumSelects, "Number of selects optimized");
145STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
146STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
147STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
148
149namespace {
150
151  class ValueTrackerResult;
152  class RecurrenceInstr;
153
154  class PeepholeOptimizer : public MachineFunctionPass {
155    const TargetInstrInfo *TII;
156    const TargetRegisterInfo *TRI;
157    MachineRegisterInfo *MRI;
158    MachineDominatorTree *DT;  // Machine dominator tree
159    MachineLoopInfo *MLI;
160
161  public:
162    static char ID; // Pass identification
163
164    PeepholeOptimizer() : MachineFunctionPass(ID) {
165      initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
166    }
167
168    bool runOnMachineFunction(MachineFunction &MF) override;
169
170    void getAnalysisUsage(AnalysisUsage &AU) const override {
171      AU.setPreservesCFG();
172      MachineFunctionPass::getAnalysisUsage(AU);
173      AU.addRequired<MachineLoopInfo>();
174      AU.addPreserved<MachineLoopInfo>();
175      if (Aggressive) {
176        AU.addRequired<MachineDominatorTree>();
177        AU.addPreserved<MachineDominatorTree>();
178      }
179    }
180
181    MachineFunctionProperties getRequiredProperties() const override {
182      return MachineFunctionProperties()
183        .set(MachineFunctionProperties::Property::IsSSA);
184    }
185
186    /// Track Def -> Use info used for rewriting copies.
187    using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
188
189    /// Sequence of instructions that formulate recurrence cycle.
190    using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
191
192  private:
193    bool optimizeCmpInstr(MachineInstr &MI);
194    bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
195                          SmallPtrSetImpl<MachineInstr*> &LocalMIs);
196    bool optimizeSelect(MachineInstr &MI,
197                        SmallPtrSetImpl<MachineInstr *> &LocalMIs);
198    bool optimizeCondBranch(MachineInstr &MI);
199    bool optimizeCoalescableCopy(MachineInstr &MI);
200    bool optimizeUncoalescableCopy(MachineInstr &MI,
201                                   SmallPtrSetImpl<MachineInstr *> &LocalMIs);
202    bool optimizeRecurrence(MachineInstr &PHI);
203    bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
204    bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
205                         DenseMap<Register, MachineInstr *> &ImmDefMIs);
206    bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
207                       DenseMap<Register, MachineInstr *> &ImmDefMIs);
208
209    /// Finds recurrence cycles, but only ones that formulated around
210    /// a def operand and a use operand that are tied. If there is a use
211    /// operand commutable with the tied use operand, find recurrence cycle
212    /// along that operand as well.
213    bool findTargetRecurrence(Register Reg,
214                              const SmallSet<Register, 2> &TargetReg,
215                              RecurrenceCycle &RC);
216
217    /// If copy instruction \p MI is a virtual register copy, track it in
218    /// the set \p CopyMIs. If this virtual register was previously seen as a
219    /// copy, replace the uses of this copy with the previously seen copy's
220    /// destination register.
221    bool foldRedundantCopy(MachineInstr &MI,
222                           DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs);
223
224    /// Is the register \p Reg a non-allocatable physical register?
225    bool isNAPhysCopy(Register Reg);
226
227    /// If copy instruction \p MI is a non-allocatable virtual<->physical
228    /// register copy, track it in the \p NAPhysToVirtMIs map. If this
229    /// non-allocatable physical register was previously copied to a virtual
230    /// registered and hasn't been clobbered, the virt->phys copy can be
231    /// deleted.
232    bool foldRedundantNAPhysCopy(
233        MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs);
234
235    bool isLoadFoldable(MachineInstr &MI,
236                        SmallSet<Register, 16> &FoldAsLoadDefCandidates);
237
238    /// Check whether \p MI is understood by the register coalescer
239    /// but may require some rewriting.
240    bool isCoalescableCopy(const MachineInstr &MI) {
241      // SubregToRegs are not interesting, because they are already register
242      // coalescer friendly.
243      return MI.isCopy() || (!DisableAdvCopyOpt &&
244                             (MI.isRegSequence() || MI.isInsertSubreg() ||
245                              MI.isExtractSubreg()));
246    }
247
248    /// Check whether \p MI is a copy like instruction that is
249    /// not recognized by the register coalescer.
250    bool isUncoalescableCopy(const MachineInstr &MI) {
251      return MI.isBitcast() ||
252             (!DisableAdvCopyOpt &&
253              (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
254               MI.isExtractSubregLike()));
255    }
256
257    MachineInstr &rewriteSource(MachineInstr &CopyLike,
258                                RegSubRegPair Def, RewriteMapTy &RewriteMap);
259  };
260
261  /// Helper class to hold instructions that are inside recurrence cycles.
262  /// The recurrence cycle is formulated around 1) a def operand and its
263  /// tied use operand, or 2) a def operand and a use operand that is commutable
264  /// with another use operand which is tied to the def operand. In the latter
265  /// case, index of the tied use operand and the commutable use operand are
266  /// maintained with CommutePair.
267  class RecurrenceInstr {
268  public:
269    using IndexPair = std::pair<unsigned, unsigned>;
270
271    RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
272    RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
273      : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
274
275    MachineInstr *getMI() const { return MI; }
276    Optional<IndexPair> getCommutePair() const { return CommutePair; }
277
278  private:
279    MachineInstr *MI;
280    Optional<IndexPair> CommutePair;
281  };
282
283  /// Helper class to hold a reply for ValueTracker queries.
284  /// Contains the returned sources for a given search and the instructions
285  /// where the sources were tracked from.
286  class ValueTrackerResult {
287  private:
288    /// Track all sources found by one ValueTracker query.
289    SmallVector<RegSubRegPair, 2> RegSrcs;
290
291    /// Instruction using the sources in 'RegSrcs'.
292    const MachineInstr *Inst = nullptr;
293
294  public:
295    ValueTrackerResult() = default;
296
297    ValueTrackerResult(Register Reg, unsigned SubReg) {
298      addSource(Reg, SubReg);
299    }
300
301    bool isValid() const { return getNumSources() > 0; }
302
303    void setInst(const MachineInstr *I) { Inst = I; }
304    const MachineInstr *getInst() const { return Inst; }
305
306    void clear() {
307      RegSrcs.clear();
308      Inst = nullptr;
309    }
310
311    void addSource(Register SrcReg, unsigned SrcSubReg) {
312      RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
313    }
314
315    void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) {
316      assert(Idx < getNumSources() && "Reg pair source out of index");
317      RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
318    }
319
320    int getNumSources() const { return RegSrcs.size(); }
321
322    RegSubRegPair getSrc(int Idx) const {
323      return RegSrcs[Idx];
324    }
325
326    Register getSrcReg(int Idx) const {
327      assert(Idx < getNumSources() && "Reg source out of index");
328      return RegSrcs[Idx].Reg;
329    }
330
331    unsigned getSrcSubReg(int Idx) const {
332      assert(Idx < getNumSources() && "SubReg source out of index");
333      return RegSrcs[Idx].SubReg;
334    }
335
336    bool operator==(const ValueTrackerResult &Other) const {
337      if (Other.getInst() != getInst())
338        return false;
339
340      if (Other.getNumSources() != getNumSources())
341        return false;
342
343      for (int i = 0, e = Other.getNumSources(); i != e; ++i)
344        if (Other.getSrcReg(i) != getSrcReg(i) ||
345            Other.getSrcSubReg(i) != getSrcSubReg(i))
346          return false;
347      return true;
348    }
349  };
350
351  /// Helper class to track the possible sources of a value defined by
352  /// a (chain of) copy related instructions.
353  /// Given a definition (instruction and definition index), this class
354  /// follows the use-def chain to find successive suitable sources.
355  /// The given source can be used to rewrite the definition into
356  /// def = COPY src.
357  ///
358  /// For instance, let us consider the following snippet:
359  /// v0 =
360  /// v2 = INSERT_SUBREG v1, v0, sub0
361  /// def = COPY v2.sub0
362  ///
363  /// Using a ValueTracker for def = COPY v2.sub0 will give the following
364  /// suitable sources:
365  /// v2.sub0 and v0.
366  /// Then, def can be rewritten into def = COPY v0.
367  class ValueTracker {
368  private:
369    /// The current point into the use-def chain.
370    const MachineInstr *Def = nullptr;
371
372    /// The index of the definition in Def.
373    unsigned DefIdx = 0;
374
375    /// The sub register index of the definition.
376    unsigned DefSubReg;
377
378    /// The register where the value can be found.
379    Register Reg;
380
381    /// MachineRegisterInfo used to perform tracking.
382    const MachineRegisterInfo &MRI;
383
384    /// Optional TargetInstrInfo used to perform some complex tracking.
385    const TargetInstrInfo *TII;
386
387    /// Dispatcher to the right underlying implementation of getNextSource.
388    ValueTrackerResult getNextSourceImpl();
389
390    /// Specialized version of getNextSource for Copy instructions.
391    ValueTrackerResult getNextSourceFromCopy();
392
393    /// Specialized version of getNextSource for Bitcast instructions.
394    ValueTrackerResult getNextSourceFromBitcast();
395
396    /// Specialized version of getNextSource for RegSequence instructions.
397    ValueTrackerResult getNextSourceFromRegSequence();
398
399    /// Specialized version of getNextSource for InsertSubreg instructions.
400    ValueTrackerResult getNextSourceFromInsertSubreg();
401
402    /// Specialized version of getNextSource for ExtractSubreg instructions.
403    ValueTrackerResult getNextSourceFromExtractSubreg();
404
405    /// Specialized version of getNextSource for SubregToReg instructions.
406    ValueTrackerResult getNextSourceFromSubregToReg();
407
408    /// Specialized version of getNextSource for PHI instructions.
409    ValueTrackerResult getNextSourceFromPHI();
410
411  public:
412    /// Create a ValueTracker instance for the value defined by \p Reg.
413    /// \p DefSubReg represents the sub register index the value tracker will
414    /// track. It does not need to match the sub register index used in the
415    /// definition of \p Reg.
416    /// If \p Reg is a physical register, a value tracker constructed with
417    /// this constructor will not find any alternative source.
418    /// Indeed, when \p Reg is a physical register that constructor does not
419    /// know which definition of \p Reg it should track.
420    /// Use the next constructor to track a physical register.
421    ValueTracker(Register Reg, unsigned DefSubReg,
422                 const MachineRegisterInfo &MRI,
423                 const TargetInstrInfo *TII = nullptr)
424        : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
425      if (!Reg.isPhysical()) {
426        Def = MRI.getVRegDef(Reg);
427        DefIdx = MRI.def_begin(Reg).getOperandNo();
428      }
429    }
430
431    /// Following the use-def chain, get the next available source
432    /// for the tracked value.
433    /// \return A ValueTrackerResult containing a set of registers
434    /// and sub registers with tracked values. A ValueTrackerResult with
435    /// an empty set of registers means no source was found.
436    ValueTrackerResult getNextSource();
437  };
438
439} // end anonymous namespace
440
441char PeepholeOptimizer::ID = 0;
442
443char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
444
445INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
446                      "Peephole Optimizations", false, false)
447INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
448INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
449INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
450                    "Peephole Optimizations", false, false)
451
452/// If instruction is a copy-like instruction, i.e. it reads a single register
453/// and writes a single register and it does not modify the source, and if the
454/// source value is preserved as a sub-register of the result, then replace all
455/// reachable uses of the source with the subreg of the result.
456///
457/// Do not generate an EXTRACT that is used only in a debug use, as this changes
458/// the code. Since this code does not currently share EXTRACTs, just ignore all
459/// debug uses.
460bool PeepholeOptimizer::
461optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
462                 SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
463  Register SrcReg, DstReg;
464  unsigned SubIdx;
465  if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
466    return false;
467
468  if (DstReg.isPhysical() || SrcReg.isPhysical())
469    return false;
470
471  if (MRI->hasOneNonDBGUse(SrcReg))
472    // No other uses.
473    return false;
474
475  // Ensure DstReg can get a register class that actually supports
476  // sub-registers. Don't change the class until we commit.
477  const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
478  DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
479  if (!DstRC)
480    return false;
481
482  // The ext instr may be operating on a sub-register of SrcReg as well.
483  // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
484  // register.
485  // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
486  // SrcReg:SubIdx should be replaced.
487  bool UseSrcSubIdx =
488      TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
489
490  // The source has other uses. See if we can replace the other uses with use of
491  // the result of the extension.
492  SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
493  for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
494    ReachedBBs.insert(UI.getParent());
495
496  // Uses that are in the same BB of uses of the result of the instruction.
497  SmallVector<MachineOperand*, 8> Uses;
498
499  // Uses that the result of the instruction can reach.
500  SmallVector<MachineOperand*, 8> ExtendedUses;
501
502  bool ExtendLife = true;
503  for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
504    MachineInstr *UseMI = UseMO.getParent();
505    if (UseMI == &MI)
506      continue;
507
508    if (UseMI->isPHI()) {
509      ExtendLife = false;
510      continue;
511    }
512
513    // Only accept uses of SrcReg:SubIdx.
514    if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
515      continue;
516
517    // It's an error to translate this:
518    //
519    //    %reg1025 = <sext> %reg1024
520    //     ...
521    //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
522    //
523    // into this:
524    //
525    //    %reg1025 = <sext> %reg1024
526    //     ...
527    //    %reg1027 = COPY %reg1025:4
528    //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
529    //
530    // The problem here is that SUBREG_TO_REG is there to assert that an
531    // implicit zext occurs. It doesn't insert a zext instruction. If we allow
532    // the COPY here, it will give us the value after the <sext>, not the
533    // original value of %reg1024 before <sext>.
534    if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
535      continue;
536
537    MachineBasicBlock *UseMBB = UseMI->getParent();
538    if (UseMBB == &MBB) {
539      // Local uses that come after the extension.
540      if (!LocalMIs.count(UseMI))
541        Uses.push_back(&UseMO);
542    } else if (ReachedBBs.count(UseMBB)) {
543      // Non-local uses where the result of the extension is used. Always
544      // replace these unless it's a PHI.
545      Uses.push_back(&UseMO);
546    } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
547      // We may want to extend the live range of the extension result in order
548      // to replace these uses.
549      ExtendedUses.push_back(&UseMO);
550    } else {
551      // Both will be live out of the def MBB anyway. Don't extend live range of
552      // the extension result.
553      ExtendLife = false;
554      break;
555    }
556  }
557
558  if (ExtendLife && !ExtendedUses.empty())
559    // Extend the liveness of the extension result.
560    Uses.append(ExtendedUses.begin(), ExtendedUses.end());
561
562  // Now replace all uses.
563  bool Changed = false;
564  if (!Uses.empty()) {
565    SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
566
567    // Look for PHI uses of the extended result, we don't want to extend the
568    // liveness of a PHI input. It breaks all kinds of assumptions down
569    // stream. A PHI use is expected to be the kill of its source values.
570    for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
571      if (UI.isPHI())
572        PHIBBs.insert(UI.getParent());
573
574    const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
575    for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
576      MachineOperand *UseMO = Uses[i];
577      MachineInstr *UseMI = UseMO->getParent();
578      MachineBasicBlock *UseMBB = UseMI->getParent();
579      if (PHIBBs.count(UseMBB))
580        continue;
581
582      // About to add uses of DstReg, clear DstReg's kill flags.
583      if (!Changed) {
584        MRI->clearKillFlags(DstReg);
585        MRI->constrainRegClass(DstReg, DstRC);
586      }
587
588      Register NewVR = MRI->createVirtualRegister(RC);
589      MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
590                                   TII->get(TargetOpcode::COPY), NewVR)
591        .addReg(DstReg, 0, SubIdx);
592      // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
593      if (UseSrcSubIdx) {
594        Copy->getOperand(0).setSubReg(SubIdx);
595        Copy->getOperand(0).setIsUndef();
596      }
597      UseMO->setReg(NewVR);
598      ++NumReuse;
599      Changed = true;
600    }
601  }
602
603  return Changed;
604}
605
606/// If the instruction is a compare and the previous instruction it's comparing
607/// against already sets (or could be modified to set) the same flag as the
608/// compare, then we can remove the comparison and use the flag from the
609/// previous instruction.
610bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
611  // If this instruction is a comparison against zero and isn't comparing a
612  // physical register, we can try to optimize it.
613  Register SrcReg, SrcReg2;
614  int CmpMask, CmpValue;
615  if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
616      SrcReg.isPhysical() || SrcReg2.isPhysical())
617    return false;
618
619  // Attempt to optimize the comparison instruction.
620  LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI);
621  if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
622    LLVM_DEBUG(dbgs() << "  -> Successfully optimized compare!\n");
623    ++NumCmps;
624    return true;
625  }
626
627  return false;
628}
629
630/// Optimize a select instruction.
631bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
632                            SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
633  unsigned TrueOp = 0;
634  unsigned FalseOp = 0;
635  bool Optimizable = false;
636  SmallVector<MachineOperand, 4> Cond;
637  if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
638    return false;
639  if (!Optimizable)
640    return false;
641  if (!TII->optimizeSelect(MI, LocalMIs))
642    return false;
643  LLVM_DEBUG(dbgs() << "Deleting select: " << MI);
644  MI.eraseFromParent();
645  ++NumSelects;
646  return true;
647}
648
649/// Check if a simpler conditional branch can be generated.
650bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
651  return TII->optimizeCondBranch(MI);
652}
653
654/// Try to find the next source that share the same register file
655/// for the value defined by \p Reg and \p SubReg.
656/// When true is returned, the \p RewriteMap can be used by the client to
657/// retrieve all Def -> Use along the way up to the next source. Any found
658/// Use that is not itself a key for another entry, is the next source to
659/// use. During the search for the next source, multiple sources can be found
660/// given multiple incoming sources of a PHI instruction. In this case, we
661/// look in each PHI source for the next source; all found next sources must
662/// share the same register file as \p Reg and \p SubReg. The client should
663/// then be capable to rewrite all intermediate PHIs to get the next source.
664/// \return False if no alternative sources are available. True otherwise.
665bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
666                                       RewriteMapTy &RewriteMap) {
667  // Do not try to find a new source for a physical register.
668  // So far we do not have any motivating example for doing that.
669  // Thus, instead of maintaining untested code, we will revisit that if
670  // that changes at some point.
671  Register Reg = RegSubReg.Reg;
672  if (Reg.isPhysical())
673    return false;
674  const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
675
676  SmallVector<RegSubRegPair, 4> SrcToLook;
677  RegSubRegPair CurSrcPair = RegSubReg;
678  SrcToLook.push_back(CurSrcPair);
679
680  unsigned PHICount = 0;
681  do {
682    CurSrcPair = SrcToLook.pop_back_val();
683    // As explained above, do not handle physical registers
684    if (Register::isPhysicalRegister(CurSrcPair.Reg))
685      return false;
686
687    ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
688
689    // Follow the chain of copies until we find a more suitable source, a phi
690    // or have to abort.
691    while (true) {
692      ValueTrackerResult Res = ValTracker.getNextSource();
693      // Abort at the end of a chain (without finding a suitable source).
694      if (!Res.isValid())
695        return false;
696
697      // Insert the Def -> Use entry for the recently found source.
698      ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
699      if (CurSrcRes.isValid()) {
700        assert(CurSrcRes == Res && "ValueTrackerResult found must match");
701        // An existent entry with multiple sources is a PHI cycle we must avoid.
702        // Otherwise it's an entry with a valid next source we already found.
703        if (CurSrcRes.getNumSources() > 1) {
704          LLVM_DEBUG(dbgs()
705                     << "findNextSource: found PHI cycle, aborting...\n");
706          return false;
707        }
708        break;
709      }
710      RewriteMap.insert(std::make_pair(CurSrcPair, Res));
711
712      // ValueTrackerResult usually have one source unless it's the result from
713      // a PHI instruction. Add the found PHI edges to be looked up further.
714      unsigned NumSrcs = Res.getNumSources();
715      if (NumSrcs > 1) {
716        PHICount++;
717        if (PHICount >= RewritePHILimit) {
718          LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
719          return false;
720        }
721
722        for (unsigned i = 0; i < NumSrcs; ++i)
723          SrcToLook.push_back(Res.getSrc(i));
724        break;
725      }
726
727      CurSrcPair = Res.getSrc(0);
728      // Do not extend the live-ranges of physical registers as they add
729      // constraints to the register allocator. Moreover, if we want to extend
730      // the live-range of a physical register, unlike SSA virtual register,
731      // we will have to check that they aren't redefine before the related use.
732      if (Register::isPhysicalRegister(CurSrcPair.Reg))
733        return false;
734
735      // Keep following the chain if the value isn't any better yet.
736      const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
737      if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
738                                     CurSrcPair.SubReg))
739        continue;
740
741      // We currently cannot deal with subreg operands on PHI instructions
742      // (see insertPHI()).
743      if (PHICount > 0 && CurSrcPair.SubReg != 0)
744        continue;
745
746      // We found a suitable source, and are done with this chain.
747      break;
748    }
749  } while (!SrcToLook.empty());
750
751  // If we did not find a more suitable source, there is nothing to optimize.
752  return CurSrcPair.Reg != Reg;
753}
754
755/// Insert a PHI instruction with incoming edges \p SrcRegs that are
756/// guaranteed to have the same register class. This is necessary whenever we
757/// successfully traverse a PHI instruction and find suitable sources coming
758/// from its edges. By inserting a new PHI, we provide a rewritten PHI def
759/// suitable to be used in a new COPY instruction.
760static MachineInstr &
761insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
762          const SmallVectorImpl<RegSubRegPair> &SrcRegs,
763          MachineInstr &OrigPHI) {
764  assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
765
766  const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
767  // NewRC is only correct if no subregisters are involved. findNextSource()
768  // should have rejected those cases already.
769  assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
770  Register NewVR = MRI.createVirtualRegister(NewRC);
771  MachineBasicBlock *MBB = OrigPHI.getParent();
772  MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
773                                    TII.get(TargetOpcode::PHI), NewVR);
774
775  unsigned MBBOpIdx = 2;
776  for (const RegSubRegPair &RegPair : SrcRegs) {
777    MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
778    MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
779    // Since we're extended the lifetime of RegPair.Reg, clear the
780    // kill flags to account for that and make RegPair.Reg reaches
781    // the new PHI.
782    MRI.clearKillFlags(RegPair.Reg);
783    MBBOpIdx += 2;
784  }
785
786  return *MIB;
787}
788
789namespace {
790
791/// Interface to query instructions amenable to copy rewriting.
792class Rewriter {
793protected:
794  MachineInstr &CopyLike;
795  unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten.
796public:
797  Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
798  virtual ~Rewriter() {}
799
800  /// Get the next rewritable source (SrcReg, SrcSubReg) and
801  /// the related value that it affects (DstReg, DstSubReg).
802  /// A source is considered rewritable if its register class and the
803  /// register class of the related DstReg may not be register
804  /// coalescer friendly. In other words, given a copy-like instruction
805  /// not all the arguments may be returned at rewritable source, since
806  /// some arguments are none to be register coalescer friendly.
807  ///
808  /// Each call of this method moves the current source to the next
809  /// rewritable source.
810  /// For instance, let CopyLike be the instruction to rewrite.
811  /// CopyLike has one definition and one source:
812  /// dst.dstSubIdx = CopyLike src.srcSubIdx.
813  ///
814  /// The first call will give the first rewritable source, i.e.,
815  /// the only source this instruction has:
816  /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
817  /// This source defines the whole definition, i.e.,
818  /// (DstReg, DstSubReg) = (dst, dstSubIdx).
819  ///
820  /// The second and subsequent calls will return false, as there is only one
821  /// rewritable source.
822  ///
823  /// \return True if a rewritable source has been found, false otherwise.
824  /// The output arguments are valid if and only if true is returned.
825  virtual bool getNextRewritableSource(RegSubRegPair &Src,
826                                       RegSubRegPair &Dst) = 0;
827
828  /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
829  /// \return True if the rewriting was possible, false otherwise.
830  virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0;
831};
832
833/// Rewriter for COPY instructions.
834class CopyRewriter : public Rewriter {
835public:
836  CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
837    assert(MI.isCopy() && "Expected copy instruction");
838  }
839  virtual ~CopyRewriter() = default;
840
841  bool getNextRewritableSource(RegSubRegPair &Src,
842                               RegSubRegPair &Dst) override {
843    // CurrentSrcIdx > 0 means this function has already been called.
844    if (CurrentSrcIdx > 0)
845      return false;
846    // This is the first call to getNextRewritableSource.
847    // Move the CurrentSrcIdx to remember that we made that call.
848    CurrentSrcIdx = 1;
849    // The rewritable source is the argument.
850    const MachineOperand &MOSrc = CopyLike.getOperand(1);
851    Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
852    // What we track are the alternative sources of the definition.
853    const MachineOperand &MODef = CopyLike.getOperand(0);
854    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
855    return true;
856  }
857
858  bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
859    if (CurrentSrcIdx != 1)
860      return false;
861    MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
862    MOSrc.setReg(NewReg);
863    MOSrc.setSubReg(NewSubReg);
864    return true;
865  }
866};
867
868/// Helper class to rewrite uncoalescable copy like instructions
869/// into new COPY (coalescable friendly) instructions.
870class UncoalescableRewriter : public Rewriter {
871  unsigned NumDefs;  ///< Number of defs in the bitcast.
872
873public:
874  UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
875    NumDefs = MI.getDesc().getNumDefs();
876  }
877
878  /// \see See Rewriter::getNextRewritableSource()
879  /// All such sources need to be considered rewritable in order to
880  /// rewrite a uncoalescable copy-like instruction. This method return
881  /// each definition that must be checked if rewritable.
882  bool getNextRewritableSource(RegSubRegPair &Src,
883                               RegSubRegPair &Dst) override {
884    // Find the next non-dead definition and continue from there.
885    if (CurrentSrcIdx == NumDefs)
886      return false;
887
888    while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
889      ++CurrentSrcIdx;
890      if (CurrentSrcIdx == NumDefs)
891        return false;
892    }
893
894    // What we track are the alternative sources of the definition.
895    Src = RegSubRegPair(0, 0);
896    const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
897    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
898
899    CurrentSrcIdx++;
900    return true;
901  }
902
903  bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
904    return false;
905  }
906};
907
908/// Specialized rewriter for INSERT_SUBREG instruction.
909class InsertSubregRewriter : public Rewriter {
910public:
911  InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
912    assert(MI.isInsertSubreg() && "Invalid instruction");
913  }
914
915  /// \see See Rewriter::getNextRewritableSource()
916  /// Here CopyLike has the following form:
917  /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
918  /// Src1 has the same register class has dst, hence, there is
919  /// nothing to rewrite.
920  /// Src2.src2SubIdx, may not be register coalescer friendly.
921  /// Therefore, the first call to this method returns:
922  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
923  /// (DstReg, DstSubReg) = (dst, subIdx).
924  ///
925  /// Subsequence calls will return false.
926  bool getNextRewritableSource(RegSubRegPair &Src,
927                               RegSubRegPair &Dst) override {
928    // If we already get the only source we can rewrite, return false.
929    if (CurrentSrcIdx == 2)
930      return false;
931    // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
932    CurrentSrcIdx = 2;
933    const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
934    Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
935    const MachineOperand &MODef = CopyLike.getOperand(0);
936
937    // We want to track something that is compatible with the
938    // partial definition.
939    if (MODef.getSubReg())
940      // Bail if we have to compose sub-register indices.
941      return false;
942    Dst = RegSubRegPair(MODef.getReg(),
943                        (unsigned)CopyLike.getOperand(3).getImm());
944    return true;
945  }
946
947  bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
948    if (CurrentSrcIdx != 2)
949      return false;
950    // We are rewriting the inserted reg.
951    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
952    MO.setReg(NewReg);
953    MO.setSubReg(NewSubReg);
954    return true;
955  }
956};
957
958/// Specialized rewriter for EXTRACT_SUBREG instruction.
959class ExtractSubregRewriter : public Rewriter {
960  const TargetInstrInfo &TII;
961
962public:
963  ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
964      : Rewriter(MI), TII(TII) {
965    assert(MI.isExtractSubreg() && "Invalid instruction");
966  }
967
968  /// \see Rewriter::getNextRewritableSource()
969  /// Here CopyLike has the following form:
970  /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
971  /// There is only one rewritable source: Src.subIdx,
972  /// which defines dst.dstSubIdx.
973  bool getNextRewritableSource(RegSubRegPair &Src,
974                               RegSubRegPair &Dst) override {
975    // If we already get the only source we can rewrite, return false.
976    if (CurrentSrcIdx == 1)
977      return false;
978    // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
979    CurrentSrcIdx = 1;
980    const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
981    // If we have to compose sub-register indices, bail out.
982    if (MOExtractedReg.getSubReg())
983      return false;
984
985    Src = RegSubRegPair(MOExtractedReg.getReg(),
986                        CopyLike.getOperand(2).getImm());
987
988    // We want to track something that is compatible with the definition.
989    const MachineOperand &MODef = CopyLike.getOperand(0);
990    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
991    return true;
992  }
993
994  bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
995    // The only source we can rewrite is the input register.
996    if (CurrentSrcIdx != 1)
997      return false;
998
999    CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
1000
1001    // If we find a source that does not require to extract something,
1002    // rewrite the operation with a copy.
1003    if (!NewSubReg) {
1004      // Move the current index to an invalid position.
1005      // We do not want another call to this method to be able
1006      // to do any change.
1007      CurrentSrcIdx = -1;
1008      // Rewrite the operation as a COPY.
1009      // Get rid of the sub-register index.
1010      CopyLike.RemoveOperand(2);
1011      // Morph the operation into a COPY.
1012      CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1013      return true;
1014    }
1015    CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1016    return true;
1017  }
1018};
1019
1020/// Specialized rewriter for REG_SEQUENCE instruction.
1021class RegSequenceRewriter : public Rewriter {
1022public:
1023  RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1024    assert(MI.isRegSequence() && "Invalid instruction");
1025  }
1026
1027  /// \see Rewriter::getNextRewritableSource()
1028  /// Here CopyLike has the following form:
1029  /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1030  /// Each call will return a different source, walking all the available
1031  /// source.
1032  ///
1033  /// The first call returns:
1034  /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1035  /// (DstReg, DstSubReg) = (dst, subIdx1).
1036  ///
1037  /// The second call returns:
1038  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1039  /// (DstReg, DstSubReg) = (dst, subIdx2).
1040  ///
1041  /// And so on, until all the sources have been traversed, then
1042  /// it returns false.
1043  bool getNextRewritableSource(RegSubRegPair &Src,
1044                               RegSubRegPair &Dst) override {
1045    // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1046
1047    // If this is the first call, move to the first argument.
1048    if (CurrentSrcIdx == 0) {
1049      CurrentSrcIdx = 1;
1050    } else {
1051      // Otherwise, move to the next argument and check that it is valid.
1052      CurrentSrcIdx += 2;
1053      if (CurrentSrcIdx >= CopyLike.getNumOperands())
1054        return false;
1055    }
1056    const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1057    Src.Reg = MOInsertedReg.getReg();
1058    // If we have to compose sub-register indices, bail out.
1059    if ((Src.SubReg = MOInsertedReg.getSubReg()))
1060      return false;
1061
1062    // We want to track something that is compatible with the related
1063    // partial definition.
1064    Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1065
1066    const MachineOperand &MODef = CopyLike.getOperand(0);
1067    Dst.Reg = MODef.getReg();
1068    // If we have to compose sub-registers, bail.
1069    return MODef.getSubReg() == 0;
1070  }
1071
1072  bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1073    // We cannot rewrite out of bound operands.
1074    // Moreover, rewritable sources are at odd positions.
1075    if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1076      return false;
1077
1078    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1079    MO.setReg(NewReg);
1080    MO.setSubReg(NewSubReg);
1081    return true;
1082  }
1083};
1084
1085} // end anonymous namespace
1086
1087/// Get the appropriated Rewriter for \p MI.
1088/// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1089/// rewriter works for \p MI.
1090static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1091  // Handle uncoalescable copy-like instructions.
1092  if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1093      MI.isExtractSubregLike())
1094    return new UncoalescableRewriter(MI);
1095
1096  switch (MI.getOpcode()) {
1097  default:
1098    return nullptr;
1099  case TargetOpcode::COPY:
1100    return new CopyRewriter(MI);
1101  case TargetOpcode::INSERT_SUBREG:
1102    return new InsertSubregRewriter(MI);
1103  case TargetOpcode::EXTRACT_SUBREG:
1104    return new ExtractSubregRewriter(MI, TII);
1105  case TargetOpcode::REG_SEQUENCE:
1106    return new RegSequenceRewriter(MI);
1107  }
1108}
1109
1110/// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
1111/// the new source to use for rewrite. If \p HandleMultipleSources is true and
1112/// multiple sources for a given \p Def are found along the way, we found a
1113/// PHI instructions that needs to be rewritten.
1114/// TODO: HandleMultipleSources should be removed once we test PHI handling
1115/// with coalescable copies.
1116static RegSubRegPair
1117getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1118             RegSubRegPair Def,
1119             const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1120             bool HandleMultipleSources = true) {
1121  RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1122  while (true) {
1123    ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1124    // If there are no entries on the map, LookupSrc is the new source.
1125    if (!Res.isValid())
1126      return LookupSrc;
1127
1128    // There's only one source for this definition, keep searching...
1129    unsigned NumSrcs = Res.getNumSources();
1130    if (NumSrcs == 1) {
1131      LookupSrc.Reg = Res.getSrcReg(0);
1132      LookupSrc.SubReg = Res.getSrcSubReg(0);
1133      continue;
1134    }
1135
1136    // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1137    if (!HandleMultipleSources)
1138      break;
1139
1140    // Multiple sources, recurse into each source to find a new source
1141    // for it. Then, rewrite the PHI accordingly to its new edges.
1142    SmallVector<RegSubRegPair, 4> NewPHISrcs;
1143    for (unsigned i = 0; i < NumSrcs; ++i) {
1144      RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1145      NewPHISrcs.push_back(
1146          getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1147    }
1148
1149    // Build the new PHI node and return its def register as the new source.
1150    MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1151    MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1152    LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1153    LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
1154    LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
1155    const MachineOperand &MODef = NewPHI.getOperand(0);
1156    return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1157  }
1158
1159  return RegSubRegPair(0, 0);
1160}
1161
1162/// Optimize generic copy instructions to avoid cross register bank copy.
1163/// The optimization looks through a chain of copies and tries to find a source
1164/// that has a compatible register class.
1165/// Two register classes are considered to be compatible if they share the same
1166/// register bank.
1167/// New copies issued by this optimization are register allocator
1168/// friendly. This optimization does not remove any copy as it may
1169/// overconstrain the register allocator, but replaces some operands
1170/// when possible.
1171/// \pre isCoalescableCopy(*MI) is true.
1172/// \return True, when \p MI has been rewritten. False otherwise.
1173bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1174  assert(isCoalescableCopy(MI) && "Invalid argument");
1175  assert(MI.getDesc().getNumDefs() == 1 &&
1176         "Coalescer can understand multiple defs?!");
1177  const MachineOperand &MODef = MI.getOperand(0);
1178  // Do not rewrite physical definitions.
1179  if (Register::isPhysicalRegister(MODef.getReg()))
1180    return false;
1181
1182  bool Changed = false;
1183  // Get the right rewriter for the current copy.
1184  std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1185  // If none exists, bail out.
1186  if (!CpyRewriter)
1187    return false;
1188  // Rewrite each rewritable source.
1189  RegSubRegPair Src;
1190  RegSubRegPair TrackPair;
1191  while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1192    // Keep track of PHI nodes and its incoming edges when looking for sources.
1193    RewriteMapTy RewriteMap;
1194    // Try to find a more suitable source. If we failed to do so, or get the
1195    // actual source, move to the next source.
1196    if (!findNextSource(TrackPair, RewriteMap))
1197      continue;
1198
1199    // Get the new source to rewrite. TODO: Only enable handling of multiple
1200    // sources (PHIs) once we have a motivating example and testcases for it.
1201    RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1202                                        /*HandleMultipleSources=*/false);
1203    if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1204      continue;
1205
1206    // Rewrite source.
1207    if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1208      // We may have extended the live-range of NewSrc, account for that.
1209      MRI->clearKillFlags(NewSrc.Reg);
1210      Changed = true;
1211    }
1212  }
1213  // TODO: We could have a clean-up method to tidy the instruction.
1214  // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1215  // => v0 = COPY v1
1216  // Currently we haven't seen motivating example for that and we
1217  // want to avoid untested code.
1218  NumRewrittenCopies += Changed;
1219  return Changed;
1220}
1221
1222/// Rewrite the source found through \p Def, by using the \p RewriteMap
1223/// and create a new COPY instruction. More info about RewriteMap in
1224/// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1225/// Uncoalescable copies, since they are copy like instructions that aren't
1226/// recognized by the register allocator.
1227MachineInstr &
1228PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1229                                 RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1230  assert(!Register::isPhysicalRegister(Def.Reg) &&
1231         "We do not rewrite physical registers");
1232
1233  // Find the new source to use in the COPY rewrite.
1234  RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1235
1236  // Insert the COPY.
1237  const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1238  Register NewVReg = MRI->createVirtualRegister(DefRC);
1239
1240  MachineInstr *NewCopy =
1241      BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1242              TII->get(TargetOpcode::COPY), NewVReg)
1243          .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1244
1245  if (Def.SubReg) {
1246    NewCopy->getOperand(0).setSubReg(Def.SubReg);
1247    NewCopy->getOperand(0).setIsUndef();
1248  }
1249
1250  LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1251  LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
1252  LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
1253  MRI->replaceRegWith(Def.Reg, NewVReg);
1254  MRI->clearKillFlags(NewVReg);
1255
1256  // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1257  // account for that.
1258  MRI->clearKillFlags(NewSrc.Reg);
1259
1260  return *NewCopy;
1261}
1262
1263/// Optimize copy-like instructions to create
1264/// register coalescer friendly instruction.
1265/// The optimization tries to kill-off the \p MI by looking
1266/// through a chain of copies to find a source that has a compatible
1267/// register class.
1268/// If such a source is found, it replace \p MI by a generic COPY
1269/// operation.
1270/// \pre isUncoalescableCopy(*MI) is true.
1271/// \return True, when \p MI has been optimized. In that case, \p MI has
1272/// been removed from its parent.
1273/// All COPY instructions created, are inserted in \p LocalMIs.
1274bool PeepholeOptimizer::optimizeUncoalescableCopy(
1275    MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1276  assert(isUncoalescableCopy(MI) && "Invalid argument");
1277  UncoalescableRewriter CpyRewriter(MI);
1278
1279  // Rewrite each rewritable source by generating new COPYs. This works
1280  // differently from optimizeCoalescableCopy since it first makes sure that all
1281  // definitions can be rewritten.
1282  RewriteMapTy RewriteMap;
1283  RegSubRegPair Src;
1284  RegSubRegPair Def;
1285  SmallVector<RegSubRegPair, 4> RewritePairs;
1286  while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1287    // If a physical register is here, this is probably for a good reason.
1288    // Do not rewrite that.
1289    if (Register::isPhysicalRegister(Def.Reg))
1290      return false;
1291
1292    // If we do not know how to rewrite this definition, there is no point
1293    // in trying to kill this instruction.
1294    if (!findNextSource(Def, RewriteMap))
1295      return false;
1296
1297    RewritePairs.push_back(Def);
1298  }
1299
1300  // The change is possible for all defs, do it.
1301  for (const RegSubRegPair &Def : RewritePairs) {
1302    // Rewrite the "copy" in a way the register coalescer understands.
1303    MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1304    LocalMIs.insert(&NewCopy);
1305  }
1306
1307  // MI is now dead.
1308  LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI);
1309  MI.eraseFromParent();
1310  ++NumUncoalescableCopies;
1311  return true;
1312}
1313
1314/// Check whether MI is a candidate for folding into a later instruction.
1315/// We only fold loads to virtual registers and the virtual register defined
1316/// has a single user.
1317bool PeepholeOptimizer::isLoadFoldable(
1318    MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) {
1319  if (!MI.canFoldAsLoad() || !MI.mayLoad())
1320    return false;
1321  const MCInstrDesc &MCID = MI.getDesc();
1322  if (MCID.getNumDefs() != 1)
1323    return false;
1324
1325  Register Reg = MI.getOperand(0).getReg();
1326  // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1327  // loads. It should be checked when processing uses of the load, since
1328  // uses can be removed during peephole.
1329  if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() &&
1330      MRI->hasOneNonDBGUser(Reg)) {
1331    FoldAsLoadDefCandidates.insert(Reg);
1332    return true;
1333  }
1334  return false;
1335}
1336
1337bool PeepholeOptimizer::isMoveImmediate(
1338    MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1339    DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1340  const MCInstrDesc &MCID = MI.getDesc();
1341  if (!MI.isMoveImmediate())
1342    return false;
1343  if (MCID.getNumDefs() != 1)
1344    return false;
1345  Register Reg = MI.getOperand(0).getReg();
1346  if (Reg.isVirtual()) {
1347    ImmDefMIs.insert(std::make_pair(Reg, &MI));
1348    ImmDefRegs.insert(Reg);
1349    return true;
1350  }
1351
1352  return false;
1353}
1354
1355/// Try folding register operands that are defined by move immediate
1356/// instructions, i.e. a trivial constant folding optimization, if
1357/// and only if the def and use are in the same BB.
1358bool PeepholeOptimizer::foldImmediate(
1359    MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1360    DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1361  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1362    MachineOperand &MO = MI.getOperand(i);
1363    if (!MO.isReg() || MO.isDef())
1364      continue;
1365    Register Reg = MO.getReg();
1366    if (!Reg.isVirtual())
1367      continue;
1368    if (ImmDefRegs.count(Reg) == 0)
1369      continue;
1370    DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg);
1371    assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1372    if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1373      ++NumImmFold;
1374      return true;
1375    }
1376  }
1377  return false;
1378}
1379
1380// FIXME: This is very simple and misses some cases which should be handled when
1381// motivating examples are found.
1382//
1383// The copy rewriting logic should look at uses as well as defs and be able to
1384// eliminate copies across blocks.
1385//
1386// Later copies that are subregister extracts will also not be eliminated since
1387// only the first copy is considered.
1388//
1389// e.g.
1390// %1 = COPY %0
1391// %2 = COPY %0:sub1
1392//
1393// Should replace %2 uses with %1:sub1
1394bool PeepholeOptimizer::foldRedundantCopy(
1395    MachineInstr &MI, DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs) {
1396  assert(MI.isCopy() && "expected a COPY machine instruction");
1397
1398  Register SrcReg = MI.getOperand(1).getReg();
1399  unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1400  if (!SrcReg.isVirtual())
1401    return false;
1402
1403  Register DstReg = MI.getOperand(0).getReg();
1404  if (!DstReg.isVirtual())
1405    return false;
1406
1407  RegSubRegPair SrcPair(SrcReg, SrcSubReg);
1408
1409  if (CopyMIs.insert(std::make_pair(SrcPair, &MI)).second) {
1410    // First copy of this reg seen.
1411    return false;
1412  }
1413
1414  MachineInstr *PrevCopy = CopyMIs.find(SrcPair)->second;
1415
1416  assert(SrcSubReg == PrevCopy->getOperand(1).getSubReg() &&
1417         "Unexpected mismatching subreg!");
1418
1419  Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1420
1421  // Only replace if the copy register class is the same.
1422  //
1423  // TODO: If we have multiple copies to different register classes, we may want
1424  // to track multiple copies of the same source register.
1425  if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1426    return false;
1427
1428  MRI->replaceRegWith(DstReg, PrevDstReg);
1429
1430  // Lifetime of the previous copy has been extended.
1431  MRI->clearKillFlags(PrevDstReg);
1432  return true;
1433}
1434
1435bool PeepholeOptimizer::isNAPhysCopy(Register Reg) {
1436  return Reg.isPhysical() && !MRI->isAllocatable(Reg);
1437}
1438
1439bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1440    MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) {
1441  assert(MI.isCopy() && "expected a COPY machine instruction");
1442
1443  if (DisableNAPhysCopyOpt)
1444    return false;
1445
1446  Register DstReg = MI.getOperand(0).getReg();
1447  Register SrcReg = MI.getOperand(1).getReg();
1448  if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) {
1449    // %vreg = COPY $physreg
1450    // Avoid using a datastructure which can track multiple live non-allocatable
1451    // phys->virt copies since LLVM doesn't seem to do this.
1452    NAPhysToVirtMIs.insert({SrcReg, &MI});
1453    return false;
1454  }
1455
1456  if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg)))
1457    return false;
1458
1459  // $physreg = COPY %vreg
1460  auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1461  if (PrevCopy == NAPhysToVirtMIs.end()) {
1462    // We can't remove the copy: there was an intervening clobber of the
1463    // non-allocatable physical register after the copy to virtual.
1464    LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1465                      << MI);
1466    return false;
1467  }
1468
1469  Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1470  if (PrevDstReg == SrcReg) {
1471    // Remove the virt->phys copy: we saw the virtual register definition, and
1472    // the non-allocatable physical register's state hasn't changed since then.
1473    LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1474    ++NumNAPhysCopies;
1475    return true;
1476  }
1477
1478  // Potential missed optimization opportunity: we saw a different virtual
1479  // register get a copy of the non-allocatable physical register, and we only
1480  // track one such copy. Avoid getting confused by this new non-allocatable
1481  // physical register definition, and remove it from the tracked copies.
1482  LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1483  NAPhysToVirtMIs.erase(PrevCopy);
1484  return false;
1485}
1486
1487/// \bried Returns true if \p MO is a virtual register operand.
1488static bool isVirtualRegisterOperand(MachineOperand &MO) {
1489  return MO.isReg() && MO.getReg().isVirtual();
1490}
1491
1492bool PeepholeOptimizer::findTargetRecurrence(
1493    Register Reg, const SmallSet<Register, 2> &TargetRegs,
1494    RecurrenceCycle &RC) {
1495  // Recurrence found if Reg is in TargetRegs.
1496  if (TargetRegs.count(Reg))
1497    return true;
1498
1499  // TODO: Curerntly, we only allow the last instruction of the recurrence
1500  // cycle (the instruction that feeds the PHI instruction) to have more than
1501  // one uses to guarantee that commuting operands does not tie registers
1502  // with overlapping live range. Once we have actual live range info of
1503  // each register, this constraint can be relaxed.
1504  if (!MRI->hasOneNonDBGUse(Reg))
1505    return false;
1506
1507  // Give up if the reccurrence chain length is longer than the limit.
1508  if (RC.size() >= MaxRecurrenceChain)
1509    return false;
1510
1511  MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1512  unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1513
1514  // Only interested in recurrences whose instructions have only one def, which
1515  // is a virtual register.
1516  if (MI.getDesc().getNumDefs() != 1)
1517    return false;
1518
1519  MachineOperand &DefOp = MI.getOperand(0);
1520  if (!isVirtualRegisterOperand(DefOp))
1521    return false;
1522
1523  // Check if def operand of MI is tied to any use operand. We are only
1524  // interested in the case that all the instructions in the recurrence chain
1525  // have there def operand tied with one of the use operand.
1526  unsigned TiedUseIdx;
1527  if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1528    return false;
1529
1530  if (Idx == TiedUseIdx) {
1531    RC.push_back(RecurrenceInstr(&MI));
1532    return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1533  } else {
1534    // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1535    unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1536    if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1537      RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1538      return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1539    }
1540  }
1541
1542  return false;
1543}
1544
1545/// Phi instructions will eventually be lowered to copy instructions.
1546/// If phi is in a loop header, a recurrence may formulated around the source
1547/// and destination of the phi. For such case commuting operands of the
1548/// instructions in the recurrence may enable coalescing of the copy instruction
1549/// generated from the phi. For example, if there is a recurrence of
1550///
1551/// LoopHeader:
1552///   %1 = phi(%0, %100)
1553/// LoopLatch:
1554///   %0<def, tied1> = ADD %2<def, tied0>, %1
1555///
1556/// , the fact that %0 and %2 are in the same tied operands set makes
1557/// the coalescing of copy instruction generated from the phi in
1558/// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1559/// %2 have overlapping live range. This introduces additional move
1560/// instruction to the final assembly. However, if we commute %2 and
1561/// %1 of ADD instruction, the redundant move instruction can be
1562/// avoided.
1563bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1564  SmallSet<Register, 2> TargetRegs;
1565  for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1566    MachineOperand &MO = PHI.getOperand(Idx);
1567    assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1568    TargetRegs.insert(MO.getReg());
1569  }
1570
1571  bool Changed = false;
1572  RecurrenceCycle RC;
1573  if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1574    // Commutes operands of instructions in RC if necessary so that the copy to
1575    // be generated from PHI can be coalesced.
1576    LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1577    for (auto &RI : RC) {
1578      LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1579      auto CP = RI.getCommutePair();
1580      if (CP) {
1581        Changed = true;
1582        TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1583                                (*CP).second);
1584        LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1585      }
1586    }
1587  }
1588
1589  return Changed;
1590}
1591
1592bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1593  if (skipFunction(MF.getFunction()))
1594    return false;
1595
1596  LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1597  LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1598
1599  if (DisablePeephole)
1600    return false;
1601
1602  TII = MF.getSubtarget().getInstrInfo();
1603  TRI = MF.getSubtarget().getRegisterInfo();
1604  MRI = &MF.getRegInfo();
1605  DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1606  MLI = &getAnalysis<MachineLoopInfo>();
1607
1608  bool Changed = false;
1609
1610  for (MachineBasicBlock &MBB : MF) {
1611    bool SeenMoveImm = false;
1612
1613    // During this forward scan, at some point it needs to answer the question
1614    // "given a pointer to an MI in the current BB, is it located before or
1615    // after the current instruction".
1616    // To perform this, the following set keeps track of the MIs already seen
1617    // during the scan, if a MI is not in the set, it is assumed to be located
1618    // after. Newly created MIs have to be inserted in the set as well.
1619    SmallPtrSet<MachineInstr*, 16> LocalMIs;
1620    SmallSet<Register, 4> ImmDefRegs;
1621    DenseMap<Register, MachineInstr *> ImmDefMIs;
1622    SmallSet<Register, 16> FoldAsLoadDefCandidates;
1623
1624    // Track when a non-allocatable physical register is copied to a virtual
1625    // register so that useless moves can be removed.
1626    //
1627    // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg`
1628    // without any intervening re-definition of $physreg.
1629    DenseMap<Register, MachineInstr *> NAPhysToVirtMIs;
1630
1631    // Set of pairs of virtual registers and their subregs that are copied
1632    // from.
1633    DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs;
1634
1635    bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1636
1637    for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1638         MII != MIE; ) {
1639      MachineInstr *MI = &*MII;
1640      // We may be erasing MI below, increment MII now.
1641      ++MII;
1642      LocalMIs.insert(MI);
1643
1644      // Skip debug instructions. They should not affect this peephole
1645      // optimization.
1646      if (MI->isDebugInstr())
1647        continue;
1648
1649      if (MI->isPosition())
1650        continue;
1651
1652      if (IsLoopHeader && MI->isPHI()) {
1653        if (optimizeRecurrence(*MI)) {
1654          Changed = true;
1655          continue;
1656        }
1657      }
1658
1659      if (!MI->isCopy()) {
1660        for (const MachineOperand &MO : MI->operands()) {
1661          // Visit all operands: definitions can be implicit or explicit.
1662          if (MO.isReg()) {
1663            Register Reg = MO.getReg();
1664            if (MO.isDef() && isNAPhysCopy(Reg)) {
1665              const auto &Def = NAPhysToVirtMIs.find(Reg);
1666              if (Def != NAPhysToVirtMIs.end()) {
1667                // A new definition of the non-allocatable physical register
1668                // invalidates previous copies.
1669                LLVM_DEBUG(dbgs()
1670                           << "NAPhysCopy: invalidating because of " << *MI);
1671                NAPhysToVirtMIs.erase(Def);
1672              }
1673            }
1674          } else if (MO.isRegMask()) {
1675            const uint32_t *RegMask = MO.getRegMask();
1676            for (auto &RegMI : NAPhysToVirtMIs) {
1677              Register Def = RegMI.first;
1678              if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1679                LLVM_DEBUG(dbgs()
1680                           << "NAPhysCopy: invalidating because of " << *MI);
1681                NAPhysToVirtMIs.erase(Def);
1682              }
1683            }
1684          }
1685        }
1686      }
1687
1688      if (MI->isImplicitDef() || MI->isKill())
1689        continue;
1690
1691      if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1692        // Blow away all non-allocatable physical registers knowledge since we
1693        // don't know what's correct anymore.
1694        //
1695        // FIXME: handle explicit asm clobbers.
1696        LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1697                          << *MI);
1698        NAPhysToVirtMIs.clear();
1699      }
1700
1701      if ((isUncoalescableCopy(*MI) &&
1702           optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1703          (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1704          (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1705        // MI is deleted.
1706        LocalMIs.erase(MI);
1707        Changed = true;
1708        continue;
1709      }
1710
1711      if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1712        Changed = true;
1713        continue;
1714      }
1715
1716      if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1717        // MI is just rewritten.
1718        Changed = true;
1719        continue;
1720      }
1721
1722      if (MI->isCopy() && (foldRedundantCopy(*MI, CopySrcMIs) ||
1723                           foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1724        LocalMIs.erase(MI);
1725        LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n");
1726        MI->eraseFromParent();
1727        Changed = true;
1728        continue;
1729      }
1730
1731      if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1732        SeenMoveImm = true;
1733      } else {
1734        Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1735        // optimizeExtInstr might have created new instructions after MI
1736        // and before the already incremented MII. Adjust MII so that the
1737        // next iteration sees the new instructions.
1738        MII = MI;
1739        ++MII;
1740        if (SeenMoveImm)
1741          Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1742      }
1743
1744      // Check whether MI is a load candidate for folding into a later
1745      // instruction. If MI is not a candidate, check whether we can fold an
1746      // earlier load into MI.
1747      if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1748          !FoldAsLoadDefCandidates.empty()) {
1749
1750        // We visit each operand even after successfully folding a previous
1751        // one.  This allows us to fold multiple loads into a single
1752        // instruction.  We do assume that optimizeLoadInstr doesn't insert
1753        // foldable uses earlier in the argument list.  Since we don't restart
1754        // iteration, we'd miss such cases.
1755        const MCInstrDesc &MIDesc = MI->getDesc();
1756        for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1757             ++i) {
1758          const MachineOperand &MOp = MI->getOperand(i);
1759          if (!MOp.isReg())
1760            continue;
1761          Register FoldAsLoadDefReg = MOp.getReg();
1762          if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1763            // We need to fold load after optimizeCmpInstr, since
1764            // optimizeCmpInstr can enable folding by converting SUB to CMP.
1765            // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1766            // we need it for markUsesInDebugValueAsUndef().
1767            Register FoldedReg = FoldAsLoadDefReg;
1768            MachineInstr *DefMI = nullptr;
1769            if (MachineInstr *FoldMI =
1770                    TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1771              // Update LocalMIs since we replaced MI with FoldMI and deleted
1772              // DefMI.
1773              LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1774              LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
1775              LocalMIs.erase(MI);
1776              LocalMIs.erase(DefMI);
1777              LocalMIs.insert(FoldMI);
1778              // Update the call site info.
1779              if (MI->shouldUpdateCallSiteInfo())
1780                MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1781              MI->eraseFromParent();
1782              DefMI->eraseFromParent();
1783              MRI->markUsesInDebugValueAsUndef(FoldedReg);
1784              FoldAsLoadDefCandidates.erase(FoldedReg);
1785              ++NumLoadFold;
1786
1787              // MI is replaced with FoldMI so we can continue trying to fold
1788              Changed = true;
1789              MI = FoldMI;
1790            }
1791          }
1792        }
1793      }
1794
1795      // If we run into an instruction we can't fold across, discard
1796      // the load candidates.  Note: We might be able to fold *into* this
1797      // instruction, so this needs to be after the folding logic.
1798      if (MI->isLoadFoldBarrier()) {
1799        LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1800        FoldAsLoadDefCandidates.clear();
1801      }
1802    }
1803  }
1804
1805  return Changed;
1806}
1807
1808ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1809  assert(Def->isCopy() && "Invalid definition");
1810  // Copy instruction are supposed to be: Def = Src.
1811  // If someone breaks this assumption, bad things will happen everywhere.
1812  // There may be implicit uses preventing the copy to be moved across
1813  // some target specific register definitions
1814  assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1815         "Invalid number of operands");
1816  assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1817
1818  if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1819    // If we look for a different subreg, it means we want a subreg of src.
1820    // Bails as we do not support composing subregs yet.
1821    return ValueTrackerResult();
1822  // Otherwise, we want the whole source.
1823  const MachineOperand &Src = Def->getOperand(1);
1824  if (Src.isUndef())
1825    return ValueTrackerResult();
1826  return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1827}
1828
1829ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1830  assert(Def->isBitcast() && "Invalid definition");
1831
1832  // Bail if there are effects that a plain copy will not expose.
1833  if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1834    return ValueTrackerResult();
1835
1836  // Bitcasts with more than one def are not supported.
1837  if (Def->getDesc().getNumDefs() != 1)
1838    return ValueTrackerResult();
1839  const MachineOperand DefOp = Def->getOperand(DefIdx);
1840  if (DefOp.getSubReg() != DefSubReg)
1841    // If we look for a different subreg, it means we want a subreg of the src.
1842    // Bails as we do not support composing subregs yet.
1843    return ValueTrackerResult();
1844
1845  unsigned SrcIdx = Def->getNumOperands();
1846  for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1847       ++OpIdx) {
1848    const MachineOperand &MO = Def->getOperand(OpIdx);
1849    if (!MO.isReg() || !MO.getReg())
1850      continue;
1851    // Ignore dead implicit defs.
1852    if (MO.isImplicit() && MO.isDead())
1853      continue;
1854    assert(!MO.isDef() && "We should have skipped all the definitions by now");
1855    if (SrcIdx != EndOpIdx)
1856      // Multiple sources?
1857      return ValueTrackerResult();
1858    SrcIdx = OpIdx;
1859  }
1860
1861  // In some rare case, Def has no input, SrcIdx is out of bound,
1862  // getOperand(SrcIdx) will fail below.
1863  if (SrcIdx >= Def->getNumOperands())
1864    return ValueTrackerResult();
1865
1866  // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1867  // will break the assumed guarantees for the upper bits.
1868  for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1869    if (UseMI.isSubregToReg())
1870      return ValueTrackerResult();
1871  }
1872
1873  const MachineOperand &Src = Def->getOperand(SrcIdx);
1874  if (Src.isUndef())
1875    return ValueTrackerResult();
1876  return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1877}
1878
1879ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1880  assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1881         "Invalid definition");
1882
1883  if (Def->getOperand(DefIdx).getSubReg())
1884    // If we are composing subregs, bail out.
1885    // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1886    // This should almost never happen as the SSA property is tracked at
1887    // the register level (as opposed to the subreg level).
1888    // I.e.,
1889    // Def.sub0 =
1890    // Def.sub1 =
1891    // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1892    // Def. Thus, it must not be generated.
1893    // However, some code could theoretically generates a single
1894    // Def.sub0 (i.e, not defining the other subregs) and we would
1895    // have this case.
1896    // If we can ascertain (or force) that this never happens, we could
1897    // turn that into an assertion.
1898    return ValueTrackerResult();
1899
1900  if (!TII)
1901    // We could handle the REG_SEQUENCE here, but we do not want to
1902    // duplicate the code from the generic TII.
1903    return ValueTrackerResult();
1904
1905  SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1906  if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1907    return ValueTrackerResult();
1908
1909  // We are looking at:
1910  // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1911  // Check if one of the operand defines the subreg we are interested in.
1912  for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1913    if (RegSeqInput.SubIdx == DefSubReg)
1914      return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1915  }
1916
1917  // If the subreg we are tracking is super-defined by another subreg,
1918  // we could follow this value. However, this would require to compose
1919  // the subreg and we do not do that for now.
1920  return ValueTrackerResult();
1921}
1922
1923ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1924  assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1925         "Invalid definition");
1926
1927  if (Def->getOperand(DefIdx).getSubReg())
1928    // If we are composing subreg, bail out.
1929    // Same remark as getNextSourceFromRegSequence.
1930    // I.e., this may be turned into an assert.
1931    return ValueTrackerResult();
1932
1933  if (!TII)
1934    // We could handle the REG_SEQUENCE here, but we do not want to
1935    // duplicate the code from the generic TII.
1936    return ValueTrackerResult();
1937
1938  RegSubRegPair BaseReg;
1939  RegSubRegPairAndIdx InsertedReg;
1940  if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1941    return ValueTrackerResult();
1942
1943  // We are looking at:
1944  // Def = INSERT_SUBREG v0, v1, sub1
1945  // There are two cases:
1946  // 1. DefSubReg == sub1, get v1.
1947  // 2. DefSubReg != sub1, the value may be available through v0.
1948
1949  // #1 Check if the inserted register matches the required sub index.
1950  if (InsertedReg.SubIdx == DefSubReg) {
1951    return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1952  }
1953  // #2 Otherwise, if the sub register we are looking for is not partial
1954  // defined by the inserted element, we can look through the main
1955  // register (v0).
1956  const MachineOperand &MODef = Def->getOperand(DefIdx);
1957  // If the result register (Def) and the base register (v0) do not
1958  // have the same register class or if we have to compose
1959  // subregisters, bail out.
1960  if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1961      BaseReg.SubReg)
1962    return ValueTrackerResult();
1963
1964  // Get the TRI and check if the inserted sub-register overlaps with the
1965  // sub-register we are tracking.
1966  const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1967  if (!TRI ||
1968      !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1969        TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1970    return ValueTrackerResult();
1971  // At this point, the value is available in v0 via the same subreg
1972  // we used for Def.
1973  return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1974}
1975
1976ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1977  assert((Def->isExtractSubreg() ||
1978          Def->isExtractSubregLike()) && "Invalid definition");
1979  // We are looking at:
1980  // Def = EXTRACT_SUBREG v0, sub0
1981
1982  // Bail if we have to compose sub registers.
1983  // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1984  if (DefSubReg)
1985    return ValueTrackerResult();
1986
1987  if (!TII)
1988    // We could handle the EXTRACT_SUBREG here, but we do not want to
1989    // duplicate the code from the generic TII.
1990    return ValueTrackerResult();
1991
1992  RegSubRegPairAndIdx ExtractSubregInputReg;
1993  if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1994    return ValueTrackerResult();
1995
1996  // Bail if we have to compose sub registers.
1997  // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1998  if (ExtractSubregInputReg.SubReg)
1999    return ValueTrackerResult();
2000  // Otherwise, the value is available in the v0.sub0.
2001  return ValueTrackerResult(ExtractSubregInputReg.Reg,
2002                            ExtractSubregInputReg.SubIdx);
2003}
2004
2005ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2006  assert(Def->isSubregToReg() && "Invalid definition");
2007  // We are looking at:
2008  // Def = SUBREG_TO_REG Imm, v0, sub0
2009
2010  // Bail if we have to compose sub registers.
2011  // If DefSubReg != sub0, we would have to check that all the bits
2012  // we track are included in sub0 and if yes, we would have to
2013  // determine the right subreg in v0.
2014  if (DefSubReg != Def->getOperand(3).getImm())
2015    return ValueTrackerResult();
2016  // Bail if we have to compose sub registers.
2017  // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2018  if (Def->getOperand(2).getSubReg())
2019    return ValueTrackerResult();
2020
2021  return ValueTrackerResult(Def->getOperand(2).getReg(),
2022                            Def->getOperand(3).getImm());
2023}
2024
2025/// Explore each PHI incoming operand and return its sources.
2026ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2027  assert(Def->isPHI() && "Invalid definition");
2028  ValueTrackerResult Res;
2029
2030  // If we look for a different subreg, bail as we do not support composing
2031  // subregs yet.
2032  if (Def->getOperand(0).getSubReg() != DefSubReg)
2033    return ValueTrackerResult();
2034
2035  // Return all register sources for PHI instructions.
2036  for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2037    const MachineOperand &MO = Def->getOperand(i);
2038    assert(MO.isReg() && "Invalid PHI instruction");
2039    // We have no code to deal with undef operands. They shouldn't happen in
2040    // normal programs anyway.
2041    if (MO.isUndef())
2042      return ValueTrackerResult();
2043    Res.addSource(MO.getReg(), MO.getSubReg());
2044  }
2045
2046  return Res;
2047}
2048
2049ValueTrackerResult ValueTracker::getNextSourceImpl() {
2050  assert(Def && "This method needs a valid definition");
2051
2052  assert(((Def->getOperand(DefIdx).isDef() &&
2053           (DefIdx < Def->getDesc().getNumDefs() ||
2054            Def->getDesc().isVariadic())) ||
2055          Def->getOperand(DefIdx).isImplicit()) &&
2056         "Invalid DefIdx");
2057  if (Def->isCopy())
2058    return getNextSourceFromCopy();
2059  if (Def->isBitcast())
2060    return getNextSourceFromBitcast();
2061  // All the remaining cases involve "complex" instructions.
2062  // Bail if we did not ask for the advanced tracking.
2063  if (DisableAdvCopyOpt)
2064    return ValueTrackerResult();
2065  if (Def->isRegSequence() || Def->isRegSequenceLike())
2066    return getNextSourceFromRegSequence();
2067  if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2068    return getNextSourceFromInsertSubreg();
2069  if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2070    return getNextSourceFromExtractSubreg();
2071  if (Def->isSubregToReg())
2072    return getNextSourceFromSubregToReg();
2073  if (Def->isPHI())
2074    return getNextSourceFromPHI();
2075  return ValueTrackerResult();
2076}
2077
2078ValueTrackerResult ValueTracker::getNextSource() {
2079  // If we reach a point where we cannot move up in the use-def chain,
2080  // there is nothing we can get.
2081  if (!Def)
2082    return ValueTrackerResult();
2083
2084  ValueTrackerResult Res = getNextSourceImpl();
2085  if (Res.isValid()) {
2086    // Update definition, definition index, and subregister for the
2087    // next call of getNextSource.
2088    // Update the current register.
2089    bool OneRegSrc = Res.getNumSources() == 1;
2090    if (OneRegSrc)
2091      Reg = Res.getSrcReg(0);
2092    // Update the result before moving up in the use-def chain
2093    // with the instruction containing the last found sources.
2094    Res.setInst(Def);
2095
2096    // If we can still move up in the use-def chain, move to the next
2097    // definition.
2098    if (!Register::isPhysicalRegister(Reg) && OneRegSrc) {
2099      MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2100      if (DI != MRI.def_end()) {
2101        Def = DI->getParent();
2102        DefIdx = DI.getOperandNo();
2103        DefSubReg = Res.getSrcSubReg(0);
2104      } else {
2105        Def = nullptr;
2106      }
2107      return Res;
2108    }
2109  }
2110  // If we end up here, this means we will not be able to find another source
2111  // for the next iteration. Make sure any new call to getNextSource bails out
2112  // early by cutting the use-def chain.
2113  Def = nullptr;
2114  return Res;
2115}
2116