1//===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Bitcode writer implementation.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Bitcode/BitcodeWriter.h"
14#include "ValueEnumerator.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringMap.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/Triple.h"
27#include "llvm/Bitcode/BitcodeCommon.h"
28#include "llvm/Bitcode/BitcodeReader.h"
29#include "llvm/Bitcode/LLVMBitCodes.h"
30#include "llvm/Bitstream/BitCodes.h"
31#include "llvm/Bitstream/BitstreamWriter.h"
32#include "llvm/Config/llvm-config.h"
33#include "llvm/IR/Attributes.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/Comdat.h"
36#include "llvm/IR/Constant.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DebugInfoMetadata.h"
39#include "llvm/IR/DebugLoc.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/GlobalAlias.h"
43#include "llvm/IR/GlobalIFunc.h"
44#include "llvm/IR/GlobalObject.h"
45#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/GlobalVariable.h"
47#include "llvm/IR/InlineAsm.h"
48#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Instructions.h"
51#include "llvm/IR/LLVMContext.h"
52#include "llvm/IR/Metadata.h"
53#include "llvm/IR/Module.h"
54#include "llvm/IR/ModuleSummaryIndex.h"
55#include "llvm/IR/Operator.h"
56#include "llvm/IR/Type.h"
57#include "llvm/IR/UseListOrder.h"
58#include "llvm/IR/Value.h"
59#include "llvm/IR/ValueSymbolTable.h"
60#include "llvm/MC/StringTableBuilder.h"
61#include "llvm/Object/IRSymtab.h"
62#include "llvm/Support/AtomicOrdering.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Endian.h"
66#include "llvm/Support/Error.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/MathExtras.h"
69#include "llvm/Support/SHA1.h"
70#include "llvm/Support/TargetRegistry.h"
71#include "llvm/Support/raw_ostream.h"
72#include <algorithm>
73#include <cassert>
74#include <cstddef>
75#include <cstdint>
76#include <iterator>
77#include <map>
78#include <memory>
79#include <string>
80#include <utility>
81#include <vector>
82
83using namespace llvm;
84
85static cl::opt<unsigned>
86    IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87                   cl::desc("Number of metadatas above which we emit an index "
88                            "to enable lazy-loading"));
89static cl::opt<uint32_t> FlushThreshold(
90    "bitcode-flush-threshold", cl::Hidden, cl::init(512),
91    cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
92
93static cl::opt<bool> WriteRelBFToSummary(
94    "write-relbf-to-summary", cl::Hidden, cl::init(false),
95    cl::desc("Write relative block frequency to function summary "));
96
97extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
98
99namespace {
100
101/// These are manifest constants used by the bitcode writer. They do not need to
102/// be kept in sync with the reader, but need to be consistent within this file.
103enum {
104  // VALUE_SYMTAB_BLOCK abbrev id's.
105  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
106  VST_ENTRY_7_ABBREV,
107  VST_ENTRY_6_ABBREV,
108  VST_BBENTRY_6_ABBREV,
109
110  // CONSTANTS_BLOCK abbrev id's.
111  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
112  CONSTANTS_INTEGER_ABBREV,
113  CONSTANTS_CE_CAST_Abbrev,
114  CONSTANTS_NULL_Abbrev,
115
116  // FUNCTION_BLOCK abbrev id's.
117  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
118  FUNCTION_INST_UNOP_ABBREV,
119  FUNCTION_INST_UNOP_FLAGS_ABBREV,
120  FUNCTION_INST_BINOP_ABBREV,
121  FUNCTION_INST_BINOP_FLAGS_ABBREV,
122  FUNCTION_INST_CAST_ABBREV,
123  FUNCTION_INST_RET_VOID_ABBREV,
124  FUNCTION_INST_RET_VAL_ABBREV,
125  FUNCTION_INST_UNREACHABLE_ABBREV,
126  FUNCTION_INST_GEP_ABBREV,
127};
128
129/// Abstract class to manage the bitcode writing, subclassed for each bitcode
130/// file type.
131class BitcodeWriterBase {
132protected:
133  /// The stream created and owned by the client.
134  BitstreamWriter &Stream;
135
136  StringTableBuilder &StrtabBuilder;
137
138public:
139  /// Constructs a BitcodeWriterBase object that writes to the provided
140  /// \p Stream.
141  BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
142      : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
143
144protected:
145  void writeBitcodeHeader();
146  void writeModuleVersion();
147};
148
149void BitcodeWriterBase::writeModuleVersion() {
150  // VERSION: [version#]
151  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
152}
153
154/// Base class to manage the module bitcode writing, currently subclassed for
155/// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
156class ModuleBitcodeWriterBase : public BitcodeWriterBase {
157protected:
158  /// The Module to write to bitcode.
159  const Module &M;
160
161  /// Enumerates ids for all values in the module.
162  ValueEnumerator VE;
163
164  /// Optional per-module index to write for ThinLTO.
165  const ModuleSummaryIndex *Index;
166
167  /// Map that holds the correspondence between GUIDs in the summary index,
168  /// that came from indirect call profiles, and a value id generated by this
169  /// class to use in the VST and summary block records.
170  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
171
172  /// Tracks the last value id recorded in the GUIDToValueMap.
173  unsigned GlobalValueId;
174
175  /// Saves the offset of the VSTOffset record that must eventually be
176  /// backpatched with the offset of the actual VST.
177  uint64_t VSTOffsetPlaceholder = 0;
178
179public:
180  /// Constructs a ModuleBitcodeWriterBase object for the given Module,
181  /// writing to the provided \p Buffer.
182  ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
183                          BitstreamWriter &Stream,
184                          bool ShouldPreserveUseListOrder,
185                          const ModuleSummaryIndex *Index)
186      : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
187        VE(M, ShouldPreserveUseListOrder), Index(Index) {
188    // Assign ValueIds to any callee values in the index that came from
189    // indirect call profiles and were recorded as a GUID not a Value*
190    // (which would have been assigned an ID by the ValueEnumerator).
191    // The starting ValueId is just after the number of values in the
192    // ValueEnumerator, so that they can be emitted in the VST.
193    GlobalValueId = VE.getValues().size();
194    if (!Index)
195      return;
196    for (const auto &GUIDSummaryLists : *Index)
197      // Examine all summaries for this GUID.
198      for (auto &Summary : GUIDSummaryLists.second.SummaryList)
199        if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
200          // For each call in the function summary, see if the call
201          // is to a GUID (which means it is for an indirect call,
202          // otherwise we would have a Value for it). If so, synthesize
203          // a value id.
204          for (auto &CallEdge : FS->calls())
205            if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
206              assignValueId(CallEdge.first.getGUID());
207  }
208
209protected:
210  void writePerModuleGlobalValueSummary();
211
212private:
213  void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
214                                           GlobalValueSummary *Summary,
215                                           unsigned ValueID,
216                                           unsigned FSCallsAbbrev,
217                                           unsigned FSCallsProfileAbbrev,
218                                           const Function &F);
219  void writeModuleLevelReferences(const GlobalVariable &V,
220                                  SmallVector<uint64_t, 64> &NameVals,
221                                  unsigned FSModRefsAbbrev,
222                                  unsigned FSModVTableRefsAbbrev);
223
224  void assignValueId(GlobalValue::GUID ValGUID) {
225    GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
226  }
227
228  unsigned getValueId(GlobalValue::GUID ValGUID) {
229    const auto &VMI = GUIDToValueIdMap.find(ValGUID);
230    // Expect that any GUID value had a value Id assigned by an
231    // earlier call to assignValueId.
232    assert(VMI != GUIDToValueIdMap.end() &&
233           "GUID does not have assigned value Id");
234    return VMI->second;
235  }
236
237  // Helper to get the valueId for the type of value recorded in VI.
238  unsigned getValueId(ValueInfo VI) {
239    if (!VI.haveGVs() || !VI.getValue())
240      return getValueId(VI.getGUID());
241    return VE.getValueID(VI.getValue());
242  }
243
244  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
245};
246
247/// Class to manage the bitcode writing for a module.
248class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
249  /// Pointer to the buffer allocated by caller for bitcode writing.
250  const SmallVectorImpl<char> &Buffer;
251
252  /// True if a module hash record should be written.
253  bool GenerateHash;
254
255  /// If non-null, when GenerateHash is true, the resulting hash is written
256  /// into ModHash.
257  ModuleHash *ModHash;
258
259  SHA1 Hasher;
260
261  /// The start bit of the identification block.
262  uint64_t BitcodeStartBit;
263
264public:
265  /// Constructs a ModuleBitcodeWriter object for the given Module,
266  /// writing to the provided \p Buffer.
267  ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
268                      StringTableBuilder &StrtabBuilder,
269                      BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
270                      const ModuleSummaryIndex *Index, bool GenerateHash,
271                      ModuleHash *ModHash = nullptr)
272      : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
273                                ShouldPreserveUseListOrder, Index),
274        Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
275        BitcodeStartBit(Stream.GetCurrentBitNo()) {}
276
277  /// Emit the current module to the bitstream.
278  void write();
279
280private:
281  uint64_t bitcodeStartBit() { return BitcodeStartBit; }
282
283  size_t addToStrtab(StringRef Str);
284
285  void writeAttributeGroupTable();
286  void writeAttributeTable();
287  void writeTypeTable();
288  void writeComdats();
289  void writeValueSymbolTableForwardDecl();
290  void writeModuleInfo();
291  void writeValueAsMetadata(const ValueAsMetadata *MD,
292                            SmallVectorImpl<uint64_t> &Record);
293  void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
294                    unsigned Abbrev);
295  unsigned createDILocationAbbrev();
296  void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
297                       unsigned &Abbrev);
298  unsigned createGenericDINodeAbbrev();
299  void writeGenericDINode(const GenericDINode *N,
300                          SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
301  void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
302                       unsigned Abbrev);
303  void writeDIGenericSubrange(const DIGenericSubrange *N,
304                              SmallVectorImpl<uint64_t> &Record,
305                              unsigned Abbrev);
306  void writeDIEnumerator(const DIEnumerator *N,
307                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308  void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
309                        unsigned Abbrev);
310  void writeDIStringType(const DIStringType *N,
311                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312  void writeDIDerivedType(const DIDerivedType *N,
313                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314  void writeDICompositeType(const DICompositeType *N,
315                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316  void writeDISubroutineType(const DISubroutineType *N,
317                             SmallVectorImpl<uint64_t> &Record,
318                             unsigned Abbrev);
319  void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
320                   unsigned Abbrev);
321  void writeDICompileUnit(const DICompileUnit *N,
322                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323  void writeDISubprogram(const DISubprogram *N,
324                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
325  void writeDILexicalBlock(const DILexicalBlock *N,
326                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
327  void writeDILexicalBlockFile(const DILexicalBlockFile *N,
328                               SmallVectorImpl<uint64_t> &Record,
329                               unsigned Abbrev);
330  void writeDICommonBlock(const DICommonBlock *N,
331                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
332  void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
333                        unsigned Abbrev);
334  void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
335                    unsigned Abbrev);
336  void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
337                        unsigned Abbrev);
338  void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
339                      unsigned Abbrev);
340  void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
341                     unsigned Abbrev);
342  void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
343                                    SmallVectorImpl<uint64_t> &Record,
344                                    unsigned Abbrev);
345  void writeDITemplateValueParameter(const DITemplateValueParameter *N,
346                                     SmallVectorImpl<uint64_t> &Record,
347                                     unsigned Abbrev);
348  void writeDIGlobalVariable(const DIGlobalVariable *N,
349                             SmallVectorImpl<uint64_t> &Record,
350                             unsigned Abbrev);
351  void writeDILocalVariable(const DILocalVariable *N,
352                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
353  void writeDILabel(const DILabel *N,
354                    SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
355  void writeDIExpression(const DIExpression *N,
356                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
357  void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
358                                       SmallVectorImpl<uint64_t> &Record,
359                                       unsigned Abbrev);
360  void writeDIObjCProperty(const DIObjCProperty *N,
361                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
362  void writeDIImportedEntity(const DIImportedEntity *N,
363                             SmallVectorImpl<uint64_t> &Record,
364                             unsigned Abbrev);
365  unsigned createNamedMetadataAbbrev();
366  void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
367  unsigned createMetadataStringsAbbrev();
368  void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
369                            SmallVectorImpl<uint64_t> &Record);
370  void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
371                            SmallVectorImpl<uint64_t> &Record,
372                            std::vector<unsigned> *MDAbbrevs = nullptr,
373                            std::vector<uint64_t> *IndexPos = nullptr);
374  void writeModuleMetadata();
375  void writeFunctionMetadata(const Function &F);
376  void writeFunctionMetadataAttachment(const Function &F);
377  void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
378  void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
379                                    const GlobalObject &GO);
380  void writeModuleMetadataKinds();
381  void writeOperandBundleTags();
382  void writeSyncScopeNames();
383  void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
384  void writeModuleConstants();
385  bool pushValueAndType(const Value *V, unsigned InstID,
386                        SmallVectorImpl<unsigned> &Vals);
387  void writeOperandBundles(const CallBase &CB, unsigned InstID);
388  void pushValue(const Value *V, unsigned InstID,
389                 SmallVectorImpl<unsigned> &Vals);
390  void pushValueSigned(const Value *V, unsigned InstID,
391                       SmallVectorImpl<uint64_t> &Vals);
392  void writeInstruction(const Instruction &I, unsigned InstID,
393                        SmallVectorImpl<unsigned> &Vals);
394  void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
395  void writeGlobalValueSymbolTable(
396      DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
397  void writeUseList(UseListOrder &&Order);
398  void writeUseListBlock(const Function *F);
399  void
400  writeFunction(const Function &F,
401                DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
402  void writeBlockInfo();
403  void writeModuleHash(size_t BlockStartPos);
404
405  unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
406    return unsigned(SSID);
407  }
408
409  unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
410};
411
412/// Class to manage the bitcode writing for a combined index.
413class IndexBitcodeWriter : public BitcodeWriterBase {
414  /// The combined index to write to bitcode.
415  const ModuleSummaryIndex &Index;
416
417  /// When writing a subset of the index for distributed backends, client
418  /// provides a map of modules to the corresponding GUIDs/summaries to write.
419  const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
420
421  /// Map that holds the correspondence between the GUID used in the combined
422  /// index and a value id generated by this class to use in references.
423  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
424
425  /// Tracks the last value id recorded in the GUIDToValueMap.
426  unsigned GlobalValueId = 0;
427
428public:
429  /// Constructs a IndexBitcodeWriter object for the given combined index,
430  /// writing to the provided \p Buffer. When writing a subset of the index
431  /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
432  IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
433                     const ModuleSummaryIndex &Index,
434                     const std::map<std::string, GVSummaryMapTy>
435                         *ModuleToSummariesForIndex = nullptr)
436      : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
437        ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
438    // Assign unique value ids to all summaries to be written, for use
439    // in writing out the call graph edges. Save the mapping from GUID
440    // to the new global value id to use when writing those edges, which
441    // are currently saved in the index in terms of GUID.
442    forEachSummary([&](GVInfo I, bool) {
443      GUIDToValueIdMap[I.first] = ++GlobalValueId;
444    });
445  }
446
447  /// The below iterator returns the GUID and associated summary.
448  using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
449
450  /// Calls the callback for each value GUID and summary to be written to
451  /// bitcode. This hides the details of whether they are being pulled from the
452  /// entire index or just those in a provided ModuleToSummariesForIndex map.
453  template<typename Functor>
454  void forEachSummary(Functor Callback) {
455    if (ModuleToSummariesForIndex) {
456      for (auto &M : *ModuleToSummariesForIndex)
457        for (auto &Summary : M.second) {
458          Callback(Summary, false);
459          // Ensure aliasee is handled, e.g. for assigning a valueId,
460          // even if we are not importing the aliasee directly (the
461          // imported alias will contain a copy of aliasee).
462          if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
463            Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
464        }
465    } else {
466      for (auto &Summaries : Index)
467        for (auto &Summary : Summaries.second.SummaryList)
468          Callback({Summaries.first, Summary.get()}, false);
469    }
470  }
471
472  /// Calls the callback for each entry in the modulePaths StringMap that
473  /// should be written to the module path string table. This hides the details
474  /// of whether they are being pulled from the entire index or just those in a
475  /// provided ModuleToSummariesForIndex map.
476  template <typename Functor> void forEachModule(Functor Callback) {
477    if (ModuleToSummariesForIndex) {
478      for (const auto &M : *ModuleToSummariesForIndex) {
479        const auto &MPI = Index.modulePaths().find(M.first);
480        if (MPI == Index.modulePaths().end()) {
481          // This should only happen if the bitcode file was empty, in which
482          // case we shouldn't be importing (the ModuleToSummariesForIndex
483          // would only include the module we are writing and index for).
484          assert(ModuleToSummariesForIndex->size() == 1);
485          continue;
486        }
487        Callback(*MPI);
488      }
489    } else {
490      for (const auto &MPSE : Index.modulePaths())
491        Callback(MPSE);
492    }
493  }
494
495  /// Main entry point for writing a combined index to bitcode.
496  void write();
497
498private:
499  void writeModStrings();
500  void writeCombinedGlobalValueSummary();
501
502  Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
503    auto VMI = GUIDToValueIdMap.find(ValGUID);
504    if (VMI == GUIDToValueIdMap.end())
505      return None;
506    return VMI->second;
507  }
508
509  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
510};
511
512} // end anonymous namespace
513
514static unsigned getEncodedCastOpcode(unsigned Opcode) {
515  switch (Opcode) {
516  default: llvm_unreachable("Unknown cast instruction!");
517  case Instruction::Trunc   : return bitc::CAST_TRUNC;
518  case Instruction::ZExt    : return bitc::CAST_ZEXT;
519  case Instruction::SExt    : return bitc::CAST_SEXT;
520  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
521  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
522  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
523  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
524  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
525  case Instruction::FPExt   : return bitc::CAST_FPEXT;
526  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
527  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
528  case Instruction::BitCast : return bitc::CAST_BITCAST;
529  case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
530  }
531}
532
533static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
534  switch (Opcode) {
535  default: llvm_unreachable("Unknown binary instruction!");
536  case Instruction::FNeg: return bitc::UNOP_FNEG;
537  }
538}
539
540static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
541  switch (Opcode) {
542  default: llvm_unreachable("Unknown binary instruction!");
543  case Instruction::Add:
544  case Instruction::FAdd: return bitc::BINOP_ADD;
545  case Instruction::Sub:
546  case Instruction::FSub: return bitc::BINOP_SUB;
547  case Instruction::Mul:
548  case Instruction::FMul: return bitc::BINOP_MUL;
549  case Instruction::UDiv: return bitc::BINOP_UDIV;
550  case Instruction::FDiv:
551  case Instruction::SDiv: return bitc::BINOP_SDIV;
552  case Instruction::URem: return bitc::BINOP_UREM;
553  case Instruction::FRem:
554  case Instruction::SRem: return bitc::BINOP_SREM;
555  case Instruction::Shl:  return bitc::BINOP_SHL;
556  case Instruction::LShr: return bitc::BINOP_LSHR;
557  case Instruction::AShr: return bitc::BINOP_ASHR;
558  case Instruction::And:  return bitc::BINOP_AND;
559  case Instruction::Or:   return bitc::BINOP_OR;
560  case Instruction::Xor:  return bitc::BINOP_XOR;
561  }
562}
563
564static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
565  switch (Op) {
566  default: llvm_unreachable("Unknown RMW operation!");
567  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
568  case AtomicRMWInst::Add: return bitc::RMW_ADD;
569  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
570  case AtomicRMWInst::And: return bitc::RMW_AND;
571  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
572  case AtomicRMWInst::Or: return bitc::RMW_OR;
573  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
574  case AtomicRMWInst::Max: return bitc::RMW_MAX;
575  case AtomicRMWInst::Min: return bitc::RMW_MIN;
576  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
577  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
578  case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
579  case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
580  }
581}
582
583static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
584  switch (Ordering) {
585  case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
586  case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
587  case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
588  case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
589  case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
590  case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
591  case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
592  }
593  llvm_unreachable("Invalid ordering");
594}
595
596static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
597                              StringRef Str, unsigned AbbrevToUse) {
598  SmallVector<unsigned, 64> Vals;
599
600  // Code: [strchar x N]
601  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
602    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
603      AbbrevToUse = 0;
604    Vals.push_back(Str[i]);
605  }
606
607  // Emit the finished record.
608  Stream.EmitRecord(Code, Vals, AbbrevToUse);
609}
610
611static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
612  switch (Kind) {
613  case Attribute::Alignment:
614    return bitc::ATTR_KIND_ALIGNMENT;
615  case Attribute::AllocSize:
616    return bitc::ATTR_KIND_ALLOC_SIZE;
617  case Attribute::AlwaysInline:
618    return bitc::ATTR_KIND_ALWAYS_INLINE;
619  case Attribute::ArgMemOnly:
620    return bitc::ATTR_KIND_ARGMEMONLY;
621  case Attribute::Builtin:
622    return bitc::ATTR_KIND_BUILTIN;
623  case Attribute::ByVal:
624    return bitc::ATTR_KIND_BY_VAL;
625  case Attribute::Convergent:
626    return bitc::ATTR_KIND_CONVERGENT;
627  case Attribute::InAlloca:
628    return bitc::ATTR_KIND_IN_ALLOCA;
629  case Attribute::Cold:
630    return bitc::ATTR_KIND_COLD;
631  case Attribute::Hot:
632    return bitc::ATTR_KIND_HOT;
633  case Attribute::InaccessibleMemOnly:
634    return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
635  case Attribute::InaccessibleMemOrArgMemOnly:
636    return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
637  case Attribute::InlineHint:
638    return bitc::ATTR_KIND_INLINE_HINT;
639  case Attribute::InReg:
640    return bitc::ATTR_KIND_IN_REG;
641  case Attribute::JumpTable:
642    return bitc::ATTR_KIND_JUMP_TABLE;
643  case Attribute::MinSize:
644    return bitc::ATTR_KIND_MIN_SIZE;
645  case Attribute::Naked:
646    return bitc::ATTR_KIND_NAKED;
647  case Attribute::Nest:
648    return bitc::ATTR_KIND_NEST;
649  case Attribute::NoAlias:
650    return bitc::ATTR_KIND_NO_ALIAS;
651  case Attribute::NoBuiltin:
652    return bitc::ATTR_KIND_NO_BUILTIN;
653  case Attribute::NoCallback:
654    return bitc::ATTR_KIND_NO_CALLBACK;
655  case Attribute::NoCapture:
656    return bitc::ATTR_KIND_NO_CAPTURE;
657  case Attribute::NoDuplicate:
658    return bitc::ATTR_KIND_NO_DUPLICATE;
659  case Attribute::NoFree:
660    return bitc::ATTR_KIND_NOFREE;
661  case Attribute::NoImplicitFloat:
662    return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
663  case Attribute::NoInline:
664    return bitc::ATTR_KIND_NO_INLINE;
665  case Attribute::NoRecurse:
666    return bitc::ATTR_KIND_NO_RECURSE;
667  case Attribute::NoMerge:
668    return bitc::ATTR_KIND_NO_MERGE;
669  case Attribute::NonLazyBind:
670    return bitc::ATTR_KIND_NON_LAZY_BIND;
671  case Attribute::NonNull:
672    return bitc::ATTR_KIND_NON_NULL;
673  case Attribute::Dereferenceable:
674    return bitc::ATTR_KIND_DEREFERENCEABLE;
675  case Attribute::DereferenceableOrNull:
676    return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
677  case Attribute::NoRedZone:
678    return bitc::ATTR_KIND_NO_RED_ZONE;
679  case Attribute::NoReturn:
680    return bitc::ATTR_KIND_NO_RETURN;
681  case Attribute::NoSync:
682    return bitc::ATTR_KIND_NOSYNC;
683  case Attribute::NoCfCheck:
684    return bitc::ATTR_KIND_NOCF_CHECK;
685  case Attribute::NoProfile:
686    return bitc::ATTR_KIND_NO_PROFILE;
687  case Attribute::NoUnwind:
688    return bitc::ATTR_KIND_NO_UNWIND;
689  case Attribute::NullPointerIsValid:
690    return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
691  case Attribute::OptForFuzzing:
692    return bitc::ATTR_KIND_OPT_FOR_FUZZING;
693  case Attribute::OptimizeForSize:
694    return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
695  case Attribute::OptimizeNone:
696    return bitc::ATTR_KIND_OPTIMIZE_NONE;
697  case Attribute::ReadNone:
698    return bitc::ATTR_KIND_READ_NONE;
699  case Attribute::ReadOnly:
700    return bitc::ATTR_KIND_READ_ONLY;
701  case Attribute::Returned:
702    return bitc::ATTR_KIND_RETURNED;
703  case Attribute::ReturnsTwice:
704    return bitc::ATTR_KIND_RETURNS_TWICE;
705  case Attribute::SExt:
706    return bitc::ATTR_KIND_S_EXT;
707  case Attribute::Speculatable:
708    return bitc::ATTR_KIND_SPECULATABLE;
709  case Attribute::StackAlignment:
710    return bitc::ATTR_KIND_STACK_ALIGNMENT;
711  case Attribute::StackProtect:
712    return bitc::ATTR_KIND_STACK_PROTECT;
713  case Attribute::StackProtectReq:
714    return bitc::ATTR_KIND_STACK_PROTECT_REQ;
715  case Attribute::StackProtectStrong:
716    return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
717  case Attribute::SafeStack:
718    return bitc::ATTR_KIND_SAFESTACK;
719  case Attribute::ShadowCallStack:
720    return bitc::ATTR_KIND_SHADOWCALLSTACK;
721  case Attribute::StrictFP:
722    return bitc::ATTR_KIND_STRICT_FP;
723  case Attribute::StructRet:
724    return bitc::ATTR_KIND_STRUCT_RET;
725  case Attribute::SanitizeAddress:
726    return bitc::ATTR_KIND_SANITIZE_ADDRESS;
727  case Attribute::SanitizeHWAddress:
728    return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
729  case Attribute::SanitizeThread:
730    return bitc::ATTR_KIND_SANITIZE_THREAD;
731  case Attribute::SanitizeMemory:
732    return bitc::ATTR_KIND_SANITIZE_MEMORY;
733  case Attribute::SpeculativeLoadHardening:
734    return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
735  case Attribute::SwiftError:
736    return bitc::ATTR_KIND_SWIFT_ERROR;
737  case Attribute::SwiftSelf:
738    return bitc::ATTR_KIND_SWIFT_SELF;
739  case Attribute::SwiftAsync:
740    return bitc::ATTR_KIND_SWIFT_ASYNC;
741  case Attribute::UWTable:
742    return bitc::ATTR_KIND_UW_TABLE;
743  case Attribute::VScaleRange:
744    return bitc::ATTR_KIND_VSCALE_RANGE;
745  case Attribute::WillReturn:
746    return bitc::ATTR_KIND_WILLRETURN;
747  case Attribute::WriteOnly:
748    return bitc::ATTR_KIND_WRITEONLY;
749  case Attribute::ZExt:
750    return bitc::ATTR_KIND_Z_EXT;
751  case Attribute::ImmArg:
752    return bitc::ATTR_KIND_IMMARG;
753  case Attribute::SanitizeMemTag:
754    return bitc::ATTR_KIND_SANITIZE_MEMTAG;
755  case Attribute::Preallocated:
756    return bitc::ATTR_KIND_PREALLOCATED;
757  case Attribute::NoUndef:
758    return bitc::ATTR_KIND_NOUNDEF;
759  case Attribute::ByRef:
760    return bitc::ATTR_KIND_BYREF;
761  case Attribute::MustProgress:
762    return bitc::ATTR_KIND_MUSTPROGRESS;
763  case Attribute::EndAttrKinds:
764    llvm_unreachable("Can not encode end-attribute kinds marker.");
765  case Attribute::None:
766    llvm_unreachable("Can not encode none-attribute.");
767  case Attribute::EmptyKey:
768  case Attribute::TombstoneKey:
769    llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
770  }
771
772  llvm_unreachable("Trying to encode unknown attribute");
773}
774
775void ModuleBitcodeWriter::writeAttributeGroupTable() {
776  const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
777      VE.getAttributeGroups();
778  if (AttrGrps.empty()) return;
779
780  Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
781
782  SmallVector<uint64_t, 64> Record;
783  for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
784    unsigned AttrListIndex = Pair.first;
785    AttributeSet AS = Pair.second;
786    Record.push_back(VE.getAttributeGroupID(Pair));
787    Record.push_back(AttrListIndex);
788
789    for (Attribute Attr : AS) {
790      if (Attr.isEnumAttribute()) {
791        Record.push_back(0);
792        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
793      } else if (Attr.isIntAttribute()) {
794        Record.push_back(1);
795        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
796        Record.push_back(Attr.getValueAsInt());
797      } else if (Attr.isStringAttribute()) {
798        StringRef Kind = Attr.getKindAsString();
799        StringRef Val = Attr.getValueAsString();
800
801        Record.push_back(Val.empty() ? 3 : 4);
802        Record.append(Kind.begin(), Kind.end());
803        Record.push_back(0);
804        if (!Val.empty()) {
805          Record.append(Val.begin(), Val.end());
806          Record.push_back(0);
807        }
808      } else {
809        assert(Attr.isTypeAttribute());
810        Type *Ty = Attr.getValueAsType();
811        Record.push_back(Ty ? 6 : 5);
812        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
813        if (Ty)
814          Record.push_back(VE.getTypeID(Attr.getValueAsType()));
815      }
816    }
817
818    Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
819    Record.clear();
820  }
821
822  Stream.ExitBlock();
823}
824
825void ModuleBitcodeWriter::writeAttributeTable() {
826  const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
827  if (Attrs.empty()) return;
828
829  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
830
831  SmallVector<uint64_t, 64> Record;
832  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
833    AttributeList AL = Attrs[i];
834    for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
835      AttributeSet AS = AL.getAttributes(i);
836      if (AS.hasAttributes())
837        Record.push_back(VE.getAttributeGroupID({i, AS}));
838    }
839
840    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
841    Record.clear();
842  }
843
844  Stream.ExitBlock();
845}
846
847/// WriteTypeTable - Write out the type table for a module.
848void ModuleBitcodeWriter::writeTypeTable() {
849  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
850
851  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
852  SmallVector<uint64_t, 64> TypeVals;
853
854  uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
855
856  // Abbrev for TYPE_CODE_POINTER.
857  auto Abbv = std::make_shared<BitCodeAbbrev>();
858  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
859  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
860  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
861  unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
862
863  // Abbrev for TYPE_CODE_OPAQUE_POINTER.
864  Abbv = std::make_shared<BitCodeAbbrev>();
865  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
866  Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
867  unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
868
869  // Abbrev for TYPE_CODE_FUNCTION.
870  Abbv = std::make_shared<BitCodeAbbrev>();
871  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
872  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
873  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
874  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
875  unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
876
877  // Abbrev for TYPE_CODE_STRUCT_ANON.
878  Abbv = std::make_shared<BitCodeAbbrev>();
879  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
880  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
881  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
882  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
883  unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
884
885  // Abbrev for TYPE_CODE_STRUCT_NAME.
886  Abbv = std::make_shared<BitCodeAbbrev>();
887  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
888  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
889  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
890  unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
891
892  // Abbrev for TYPE_CODE_STRUCT_NAMED.
893  Abbv = std::make_shared<BitCodeAbbrev>();
894  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
895  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
896  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
897  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
898  unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
899
900  // Abbrev for TYPE_CODE_ARRAY.
901  Abbv = std::make_shared<BitCodeAbbrev>();
902  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
903  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
904  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
905  unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
906
907  // Emit an entry count so the reader can reserve space.
908  TypeVals.push_back(TypeList.size());
909  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
910  TypeVals.clear();
911
912  // Loop over all of the types, emitting each in turn.
913  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
914    Type *T = TypeList[i];
915    int AbbrevToUse = 0;
916    unsigned Code = 0;
917
918    switch (T->getTypeID()) {
919    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
920    case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
921    case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
922    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
923    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
924    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
925    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
926    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
927    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
928    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
929    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
930    case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break;
931    case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
932    case Type::IntegerTyID:
933      // INTEGER: [width]
934      Code = bitc::TYPE_CODE_INTEGER;
935      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
936      break;
937    case Type::PointerTyID: {
938      PointerType *PTy = cast<PointerType>(T);
939      unsigned AddressSpace = PTy->getAddressSpace();
940      if (PTy->isOpaque()) {
941        // OPAQUE_POINTER: [address space]
942        Code = bitc::TYPE_CODE_OPAQUE_POINTER;
943        TypeVals.push_back(AddressSpace);
944        if (AddressSpace == 0)
945          AbbrevToUse = OpaquePtrAbbrev;
946      } else {
947        // POINTER: [pointee type, address space]
948        Code = bitc::TYPE_CODE_POINTER;
949        TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
950        TypeVals.push_back(AddressSpace);
951        if (AddressSpace == 0)
952          AbbrevToUse = PtrAbbrev;
953      }
954      break;
955    }
956    case Type::FunctionTyID: {
957      FunctionType *FT = cast<FunctionType>(T);
958      // FUNCTION: [isvararg, retty, paramty x N]
959      Code = bitc::TYPE_CODE_FUNCTION;
960      TypeVals.push_back(FT->isVarArg());
961      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
962      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
963        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
964      AbbrevToUse = FunctionAbbrev;
965      break;
966    }
967    case Type::StructTyID: {
968      StructType *ST = cast<StructType>(T);
969      // STRUCT: [ispacked, eltty x N]
970      TypeVals.push_back(ST->isPacked());
971      // Output all of the element types.
972      for (StructType::element_iterator I = ST->element_begin(),
973           E = ST->element_end(); I != E; ++I)
974        TypeVals.push_back(VE.getTypeID(*I));
975
976      if (ST->isLiteral()) {
977        Code = bitc::TYPE_CODE_STRUCT_ANON;
978        AbbrevToUse = StructAnonAbbrev;
979      } else {
980        if (ST->isOpaque()) {
981          Code = bitc::TYPE_CODE_OPAQUE;
982        } else {
983          Code = bitc::TYPE_CODE_STRUCT_NAMED;
984          AbbrevToUse = StructNamedAbbrev;
985        }
986
987        // Emit the name if it is present.
988        if (!ST->getName().empty())
989          writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
990                            StructNameAbbrev);
991      }
992      break;
993    }
994    case Type::ArrayTyID: {
995      ArrayType *AT = cast<ArrayType>(T);
996      // ARRAY: [numelts, eltty]
997      Code = bitc::TYPE_CODE_ARRAY;
998      TypeVals.push_back(AT->getNumElements());
999      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1000      AbbrevToUse = ArrayAbbrev;
1001      break;
1002    }
1003    case Type::FixedVectorTyID:
1004    case Type::ScalableVectorTyID: {
1005      VectorType *VT = cast<VectorType>(T);
1006      // VECTOR [numelts, eltty] or
1007      //        [numelts, eltty, scalable]
1008      Code = bitc::TYPE_CODE_VECTOR;
1009      TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1010      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1011      if (isa<ScalableVectorType>(VT))
1012        TypeVals.push_back(true);
1013      break;
1014    }
1015    }
1016
1017    // Emit the finished record.
1018    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1019    TypeVals.clear();
1020  }
1021
1022  Stream.ExitBlock();
1023}
1024
1025static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1026  switch (Linkage) {
1027  case GlobalValue::ExternalLinkage:
1028    return 0;
1029  case GlobalValue::WeakAnyLinkage:
1030    return 16;
1031  case GlobalValue::AppendingLinkage:
1032    return 2;
1033  case GlobalValue::InternalLinkage:
1034    return 3;
1035  case GlobalValue::LinkOnceAnyLinkage:
1036    return 18;
1037  case GlobalValue::ExternalWeakLinkage:
1038    return 7;
1039  case GlobalValue::CommonLinkage:
1040    return 8;
1041  case GlobalValue::PrivateLinkage:
1042    return 9;
1043  case GlobalValue::WeakODRLinkage:
1044    return 17;
1045  case GlobalValue::LinkOnceODRLinkage:
1046    return 19;
1047  case GlobalValue::AvailableExternallyLinkage:
1048    return 12;
1049  }
1050  llvm_unreachable("Invalid linkage");
1051}
1052
1053static unsigned getEncodedLinkage(const GlobalValue &GV) {
1054  return getEncodedLinkage(GV.getLinkage());
1055}
1056
1057static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1058  uint64_t RawFlags = 0;
1059  RawFlags |= Flags.ReadNone;
1060  RawFlags |= (Flags.ReadOnly << 1);
1061  RawFlags |= (Flags.NoRecurse << 2);
1062  RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1063  RawFlags |= (Flags.NoInline << 4);
1064  RawFlags |= (Flags.AlwaysInline << 5);
1065  return RawFlags;
1066}
1067
1068// Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1069// in BitcodeReader.cpp.
1070static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1071  uint64_t RawFlags = 0;
1072
1073  RawFlags |= Flags.NotEligibleToImport; // bool
1074  RawFlags |= (Flags.Live << 1);
1075  RawFlags |= (Flags.DSOLocal << 2);
1076  RawFlags |= (Flags.CanAutoHide << 3);
1077
1078  // Linkage don't need to be remapped at that time for the summary. Any future
1079  // change to the getEncodedLinkage() function will need to be taken into
1080  // account here as well.
1081  RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1082
1083  RawFlags |= (Flags.Visibility << 8); // 2 bits
1084
1085  return RawFlags;
1086}
1087
1088static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1089  uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1090                      (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1091  return RawFlags;
1092}
1093
1094static unsigned getEncodedVisibility(const GlobalValue &GV) {
1095  switch (GV.getVisibility()) {
1096  case GlobalValue::DefaultVisibility:   return 0;
1097  case GlobalValue::HiddenVisibility:    return 1;
1098  case GlobalValue::ProtectedVisibility: return 2;
1099  }
1100  llvm_unreachable("Invalid visibility");
1101}
1102
1103static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1104  switch (GV.getDLLStorageClass()) {
1105  case GlobalValue::DefaultStorageClass:   return 0;
1106  case GlobalValue::DLLImportStorageClass: return 1;
1107  case GlobalValue::DLLExportStorageClass: return 2;
1108  }
1109  llvm_unreachable("Invalid DLL storage class");
1110}
1111
1112static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1113  switch (GV.getThreadLocalMode()) {
1114    case GlobalVariable::NotThreadLocal:         return 0;
1115    case GlobalVariable::GeneralDynamicTLSModel: return 1;
1116    case GlobalVariable::LocalDynamicTLSModel:   return 2;
1117    case GlobalVariable::InitialExecTLSModel:    return 3;
1118    case GlobalVariable::LocalExecTLSModel:      return 4;
1119  }
1120  llvm_unreachable("Invalid TLS model");
1121}
1122
1123static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1124  switch (C.getSelectionKind()) {
1125  case Comdat::Any:
1126    return bitc::COMDAT_SELECTION_KIND_ANY;
1127  case Comdat::ExactMatch:
1128    return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1129  case Comdat::Largest:
1130    return bitc::COMDAT_SELECTION_KIND_LARGEST;
1131  case Comdat::NoDuplicates:
1132    return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1133  case Comdat::SameSize:
1134    return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1135  }
1136  llvm_unreachable("Invalid selection kind");
1137}
1138
1139static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1140  switch (GV.getUnnamedAddr()) {
1141  case GlobalValue::UnnamedAddr::None:   return 0;
1142  case GlobalValue::UnnamedAddr::Local:  return 2;
1143  case GlobalValue::UnnamedAddr::Global: return 1;
1144  }
1145  llvm_unreachable("Invalid unnamed_addr");
1146}
1147
1148size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1149  if (GenerateHash)
1150    Hasher.update(Str);
1151  return StrtabBuilder.add(Str);
1152}
1153
1154void ModuleBitcodeWriter::writeComdats() {
1155  SmallVector<unsigned, 64> Vals;
1156  for (const Comdat *C : VE.getComdats()) {
1157    // COMDAT: [strtab offset, strtab size, selection_kind]
1158    Vals.push_back(addToStrtab(C->getName()));
1159    Vals.push_back(C->getName().size());
1160    Vals.push_back(getEncodedComdatSelectionKind(*C));
1161    Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1162    Vals.clear();
1163  }
1164}
1165
1166/// Write a record that will eventually hold the word offset of the
1167/// module-level VST. For now the offset is 0, which will be backpatched
1168/// after the real VST is written. Saves the bit offset to backpatch.
1169void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1170  // Write a placeholder value in for the offset of the real VST,
1171  // which is written after the function blocks so that it can include
1172  // the offset of each function. The placeholder offset will be
1173  // updated when the real VST is written.
1174  auto Abbv = std::make_shared<BitCodeAbbrev>();
1175  Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1176  // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1177  // hold the real VST offset. Must use fixed instead of VBR as we don't
1178  // know how many VBR chunks to reserve ahead of time.
1179  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1180  unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1181
1182  // Emit the placeholder
1183  uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1184  Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1185
1186  // Compute and save the bit offset to the placeholder, which will be
1187  // patched when the real VST is written. We can simply subtract the 32-bit
1188  // fixed size from the current bit number to get the location to backpatch.
1189  VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1190}
1191
1192enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1193
1194/// Determine the encoding to use for the given string name and length.
1195static StringEncoding getStringEncoding(StringRef Str) {
1196  bool isChar6 = true;
1197  for (char C : Str) {
1198    if (isChar6)
1199      isChar6 = BitCodeAbbrevOp::isChar6(C);
1200    if ((unsigned char)C & 128)
1201      // don't bother scanning the rest.
1202      return SE_Fixed8;
1203  }
1204  if (isChar6)
1205    return SE_Char6;
1206  return SE_Fixed7;
1207}
1208
1209/// Emit top-level description of module, including target triple, inline asm,
1210/// descriptors for global variables, and function prototype info.
1211/// Returns the bit offset to backpatch with the location of the real VST.
1212void ModuleBitcodeWriter::writeModuleInfo() {
1213  // Emit various pieces of data attached to a module.
1214  if (!M.getTargetTriple().empty())
1215    writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1216                      0 /*TODO*/);
1217  const std::string &DL = M.getDataLayoutStr();
1218  if (!DL.empty())
1219    writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1220  if (!M.getModuleInlineAsm().empty())
1221    writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1222                      0 /*TODO*/);
1223
1224  // Emit information about sections and GC, computing how many there are. Also
1225  // compute the maximum alignment value.
1226  std::map<std::string, unsigned> SectionMap;
1227  std::map<std::string, unsigned> GCMap;
1228  MaybeAlign MaxAlignment;
1229  unsigned MaxGlobalType = 0;
1230  const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1231    if (A)
1232      MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1233  };
1234  for (const GlobalVariable &GV : M.globals()) {
1235    UpdateMaxAlignment(GV.getAlign());
1236    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1237    if (GV.hasSection()) {
1238      // Give section names unique ID's.
1239      unsigned &Entry = SectionMap[std::string(GV.getSection())];
1240      if (!Entry) {
1241        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1242                          0 /*TODO*/);
1243        Entry = SectionMap.size();
1244      }
1245    }
1246  }
1247  for (const Function &F : M) {
1248    UpdateMaxAlignment(F.getAlign());
1249    if (F.hasSection()) {
1250      // Give section names unique ID's.
1251      unsigned &Entry = SectionMap[std::string(F.getSection())];
1252      if (!Entry) {
1253        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1254                          0 /*TODO*/);
1255        Entry = SectionMap.size();
1256      }
1257    }
1258    if (F.hasGC()) {
1259      // Same for GC names.
1260      unsigned &Entry = GCMap[F.getGC()];
1261      if (!Entry) {
1262        writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1263                          0 /*TODO*/);
1264        Entry = GCMap.size();
1265      }
1266    }
1267  }
1268
1269  // Emit abbrev for globals, now that we know # sections and max alignment.
1270  unsigned SimpleGVarAbbrev = 0;
1271  if (!M.global_empty()) {
1272    // Add an abbrev for common globals with no visibility or thread localness.
1273    auto Abbv = std::make_shared<BitCodeAbbrev>();
1274    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1275    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1276    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1277    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1278                              Log2_32_Ceil(MaxGlobalType+1)));
1279    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1280                                                           //| explicitType << 1
1281                                                           //| constant
1282    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1283    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1284    if (!MaxAlignment)                                     // Alignment.
1285      Abbv->Add(BitCodeAbbrevOp(0));
1286    else {
1287      unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1288      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1289                               Log2_32_Ceil(MaxEncAlignment+1)));
1290    }
1291    if (SectionMap.empty())                                    // Section.
1292      Abbv->Add(BitCodeAbbrevOp(0));
1293    else
1294      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1295                               Log2_32_Ceil(SectionMap.size()+1)));
1296    // Don't bother emitting vis + thread local.
1297    SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1298  }
1299
1300  SmallVector<unsigned, 64> Vals;
1301  // Emit the module's source file name.
1302  {
1303    StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1304    BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1305    if (Bits == SE_Char6)
1306      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1307    else if (Bits == SE_Fixed7)
1308      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1309
1310    // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1311    auto Abbv = std::make_shared<BitCodeAbbrev>();
1312    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1313    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1314    Abbv->Add(AbbrevOpToUse);
1315    unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1316
1317    for (const auto P : M.getSourceFileName())
1318      Vals.push_back((unsigned char)P);
1319
1320    // Emit the finished record.
1321    Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1322    Vals.clear();
1323  }
1324
1325  // Emit the global variable information.
1326  for (const GlobalVariable &GV : M.globals()) {
1327    unsigned AbbrevToUse = 0;
1328
1329    // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1330    //             linkage, alignment, section, visibility, threadlocal,
1331    //             unnamed_addr, externally_initialized, dllstorageclass,
1332    //             comdat, attributes, DSO_Local]
1333    Vals.push_back(addToStrtab(GV.getName()));
1334    Vals.push_back(GV.getName().size());
1335    Vals.push_back(VE.getTypeID(GV.getValueType()));
1336    Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1337    Vals.push_back(GV.isDeclaration() ? 0 :
1338                   (VE.getValueID(GV.getInitializer()) + 1));
1339    Vals.push_back(getEncodedLinkage(GV));
1340    Vals.push_back(getEncodedAlign(GV.getAlign()));
1341    Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1342                                   : 0);
1343    if (GV.isThreadLocal() ||
1344        GV.getVisibility() != GlobalValue::DefaultVisibility ||
1345        GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1346        GV.isExternallyInitialized() ||
1347        GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1348        GV.hasComdat() ||
1349        GV.hasAttributes() ||
1350        GV.isDSOLocal() ||
1351        GV.hasPartition()) {
1352      Vals.push_back(getEncodedVisibility(GV));
1353      Vals.push_back(getEncodedThreadLocalMode(GV));
1354      Vals.push_back(getEncodedUnnamedAddr(GV));
1355      Vals.push_back(GV.isExternallyInitialized());
1356      Vals.push_back(getEncodedDLLStorageClass(GV));
1357      Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1358
1359      auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1360      Vals.push_back(VE.getAttributeListID(AL));
1361
1362      Vals.push_back(GV.isDSOLocal());
1363      Vals.push_back(addToStrtab(GV.getPartition()));
1364      Vals.push_back(GV.getPartition().size());
1365    } else {
1366      AbbrevToUse = SimpleGVarAbbrev;
1367    }
1368
1369    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1370    Vals.clear();
1371  }
1372
1373  // Emit the function proto information.
1374  for (const Function &F : M) {
1375    // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1376    //             linkage, paramattrs, alignment, section, visibility, gc,
1377    //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1378    //             prefixdata, personalityfn, DSO_Local, addrspace]
1379    Vals.push_back(addToStrtab(F.getName()));
1380    Vals.push_back(F.getName().size());
1381    Vals.push_back(VE.getTypeID(F.getFunctionType()));
1382    Vals.push_back(F.getCallingConv());
1383    Vals.push_back(F.isDeclaration());
1384    Vals.push_back(getEncodedLinkage(F));
1385    Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1386    Vals.push_back(getEncodedAlign(F.getAlign()));
1387    Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1388                                  : 0);
1389    Vals.push_back(getEncodedVisibility(F));
1390    Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1391    Vals.push_back(getEncodedUnnamedAddr(F));
1392    Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1393                                       : 0);
1394    Vals.push_back(getEncodedDLLStorageClass(F));
1395    Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1396    Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1397                                     : 0);
1398    Vals.push_back(
1399        F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1400
1401    Vals.push_back(F.isDSOLocal());
1402    Vals.push_back(F.getAddressSpace());
1403    Vals.push_back(addToStrtab(F.getPartition()));
1404    Vals.push_back(F.getPartition().size());
1405
1406    unsigned AbbrevToUse = 0;
1407    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1408    Vals.clear();
1409  }
1410
1411  // Emit the alias information.
1412  for (const GlobalAlias &A : M.aliases()) {
1413    // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1414    //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1415    //         DSO_Local]
1416    Vals.push_back(addToStrtab(A.getName()));
1417    Vals.push_back(A.getName().size());
1418    Vals.push_back(VE.getTypeID(A.getValueType()));
1419    Vals.push_back(A.getType()->getAddressSpace());
1420    Vals.push_back(VE.getValueID(A.getAliasee()));
1421    Vals.push_back(getEncodedLinkage(A));
1422    Vals.push_back(getEncodedVisibility(A));
1423    Vals.push_back(getEncodedDLLStorageClass(A));
1424    Vals.push_back(getEncodedThreadLocalMode(A));
1425    Vals.push_back(getEncodedUnnamedAddr(A));
1426    Vals.push_back(A.isDSOLocal());
1427    Vals.push_back(addToStrtab(A.getPartition()));
1428    Vals.push_back(A.getPartition().size());
1429
1430    unsigned AbbrevToUse = 0;
1431    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1432    Vals.clear();
1433  }
1434
1435  // Emit the ifunc information.
1436  for (const GlobalIFunc &I : M.ifuncs()) {
1437    // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1438    //         val#, linkage, visibility, DSO_Local]
1439    Vals.push_back(addToStrtab(I.getName()));
1440    Vals.push_back(I.getName().size());
1441    Vals.push_back(VE.getTypeID(I.getValueType()));
1442    Vals.push_back(I.getType()->getAddressSpace());
1443    Vals.push_back(VE.getValueID(I.getResolver()));
1444    Vals.push_back(getEncodedLinkage(I));
1445    Vals.push_back(getEncodedVisibility(I));
1446    Vals.push_back(I.isDSOLocal());
1447    Vals.push_back(addToStrtab(I.getPartition()));
1448    Vals.push_back(I.getPartition().size());
1449    Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1450    Vals.clear();
1451  }
1452
1453  writeValueSymbolTableForwardDecl();
1454}
1455
1456static uint64_t getOptimizationFlags(const Value *V) {
1457  uint64_t Flags = 0;
1458
1459  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1460    if (OBO->hasNoSignedWrap())
1461      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1462    if (OBO->hasNoUnsignedWrap())
1463      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1464  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1465    if (PEO->isExact())
1466      Flags |= 1 << bitc::PEO_EXACT;
1467  } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1468    if (FPMO->hasAllowReassoc())
1469      Flags |= bitc::AllowReassoc;
1470    if (FPMO->hasNoNaNs())
1471      Flags |= bitc::NoNaNs;
1472    if (FPMO->hasNoInfs())
1473      Flags |= bitc::NoInfs;
1474    if (FPMO->hasNoSignedZeros())
1475      Flags |= bitc::NoSignedZeros;
1476    if (FPMO->hasAllowReciprocal())
1477      Flags |= bitc::AllowReciprocal;
1478    if (FPMO->hasAllowContract())
1479      Flags |= bitc::AllowContract;
1480    if (FPMO->hasApproxFunc())
1481      Flags |= bitc::ApproxFunc;
1482  }
1483
1484  return Flags;
1485}
1486
1487void ModuleBitcodeWriter::writeValueAsMetadata(
1488    const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1489  // Mimic an MDNode with a value as one operand.
1490  Value *V = MD->getValue();
1491  Record.push_back(VE.getTypeID(V->getType()));
1492  Record.push_back(VE.getValueID(V));
1493  Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1494  Record.clear();
1495}
1496
1497void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1498                                       SmallVectorImpl<uint64_t> &Record,
1499                                       unsigned Abbrev) {
1500  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1501    Metadata *MD = N->getOperand(i);
1502    assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1503           "Unexpected function-local metadata");
1504    Record.push_back(VE.getMetadataOrNullID(MD));
1505  }
1506  Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1507                                    : bitc::METADATA_NODE,
1508                    Record, Abbrev);
1509  Record.clear();
1510}
1511
1512unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1513  // Assume the column is usually under 128, and always output the inlined-at
1514  // location (it's never more expensive than building an array size 1).
1515  auto Abbv = std::make_shared<BitCodeAbbrev>();
1516  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1517  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1518  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1519  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1520  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1521  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1522  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1523  return Stream.EmitAbbrev(std::move(Abbv));
1524}
1525
1526void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1527                                          SmallVectorImpl<uint64_t> &Record,
1528                                          unsigned &Abbrev) {
1529  if (!Abbrev)
1530    Abbrev = createDILocationAbbrev();
1531
1532  Record.push_back(N->isDistinct());
1533  Record.push_back(N->getLine());
1534  Record.push_back(N->getColumn());
1535  Record.push_back(VE.getMetadataID(N->getScope()));
1536  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1537  Record.push_back(N->isImplicitCode());
1538
1539  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1540  Record.clear();
1541}
1542
1543unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1544  // Assume the column is usually under 128, and always output the inlined-at
1545  // location (it's never more expensive than building an array size 1).
1546  auto Abbv = std::make_shared<BitCodeAbbrev>();
1547  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1548  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1549  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1550  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1551  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1552  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1553  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1554  return Stream.EmitAbbrev(std::move(Abbv));
1555}
1556
1557void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1558                                             SmallVectorImpl<uint64_t> &Record,
1559                                             unsigned &Abbrev) {
1560  if (!Abbrev)
1561    Abbrev = createGenericDINodeAbbrev();
1562
1563  Record.push_back(N->isDistinct());
1564  Record.push_back(N->getTag());
1565  Record.push_back(0); // Per-tag version field; unused for now.
1566
1567  for (auto &I : N->operands())
1568    Record.push_back(VE.getMetadataOrNullID(I));
1569
1570  Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1571  Record.clear();
1572}
1573
1574void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1575                                          SmallVectorImpl<uint64_t> &Record,
1576                                          unsigned Abbrev) {
1577  const uint64_t Version = 2 << 1;
1578  Record.push_back((uint64_t)N->isDistinct() | Version);
1579  Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1580  Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1581  Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1582  Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1583
1584  Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1585  Record.clear();
1586}
1587
1588void ModuleBitcodeWriter::writeDIGenericSubrange(
1589    const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1590    unsigned Abbrev) {
1591  Record.push_back((uint64_t)N->isDistinct());
1592  Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1593  Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1594  Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1595  Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1596
1597  Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1598  Record.clear();
1599}
1600
1601static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1602  if ((int64_t)V >= 0)
1603    Vals.push_back(V << 1);
1604  else
1605    Vals.push_back((-V << 1) | 1);
1606}
1607
1608static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1609  // We have an arbitrary precision integer value to write whose
1610  // bit width is > 64. However, in canonical unsigned integer
1611  // format it is likely that the high bits are going to be zero.
1612  // So, we only write the number of active words.
1613  unsigned NumWords = A.getActiveWords();
1614  const uint64_t *RawData = A.getRawData();
1615  for (unsigned i = 0; i < NumWords; i++)
1616    emitSignedInt64(Vals, RawData[i]);
1617}
1618
1619void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1620                                            SmallVectorImpl<uint64_t> &Record,
1621                                            unsigned Abbrev) {
1622  const uint64_t IsBigInt = 1 << 2;
1623  Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1624  Record.push_back(N->getValue().getBitWidth());
1625  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1626  emitWideAPInt(Record, N->getValue());
1627
1628  Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1629  Record.clear();
1630}
1631
1632void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1633                                           SmallVectorImpl<uint64_t> &Record,
1634                                           unsigned Abbrev) {
1635  Record.push_back(N->isDistinct());
1636  Record.push_back(N->getTag());
1637  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1638  Record.push_back(N->getSizeInBits());
1639  Record.push_back(N->getAlignInBits());
1640  Record.push_back(N->getEncoding());
1641  Record.push_back(N->getFlags());
1642
1643  Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1644  Record.clear();
1645}
1646
1647void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1648                                            SmallVectorImpl<uint64_t> &Record,
1649                                            unsigned Abbrev) {
1650  Record.push_back(N->isDistinct());
1651  Record.push_back(N->getTag());
1652  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1653  Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1654  Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1655  Record.push_back(N->getSizeInBits());
1656  Record.push_back(N->getAlignInBits());
1657  Record.push_back(N->getEncoding());
1658
1659  Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1660  Record.clear();
1661}
1662
1663void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1664                                             SmallVectorImpl<uint64_t> &Record,
1665                                             unsigned Abbrev) {
1666  Record.push_back(N->isDistinct());
1667  Record.push_back(N->getTag());
1668  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1669  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1670  Record.push_back(N->getLine());
1671  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1672  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1673  Record.push_back(N->getSizeInBits());
1674  Record.push_back(N->getAlignInBits());
1675  Record.push_back(N->getOffsetInBits());
1676  Record.push_back(N->getFlags());
1677  Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1678
1679  // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1680  // that there is no DWARF address space associated with DIDerivedType.
1681  if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1682    Record.push_back(*DWARFAddressSpace + 1);
1683  else
1684    Record.push_back(0);
1685
1686  Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1687  Record.clear();
1688}
1689
1690void ModuleBitcodeWriter::writeDICompositeType(
1691    const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1692    unsigned Abbrev) {
1693  const unsigned IsNotUsedInOldTypeRef = 0x2;
1694  Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1695  Record.push_back(N->getTag());
1696  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1697  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1698  Record.push_back(N->getLine());
1699  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1700  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1701  Record.push_back(N->getSizeInBits());
1702  Record.push_back(N->getAlignInBits());
1703  Record.push_back(N->getOffsetInBits());
1704  Record.push_back(N->getFlags());
1705  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1706  Record.push_back(N->getRuntimeLang());
1707  Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1708  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1709  Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1710  Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1711  Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1712  Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1713  Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1714  Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1715
1716  Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1717  Record.clear();
1718}
1719
1720void ModuleBitcodeWriter::writeDISubroutineType(
1721    const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1722    unsigned Abbrev) {
1723  const unsigned HasNoOldTypeRefs = 0x2;
1724  Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1725  Record.push_back(N->getFlags());
1726  Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1727  Record.push_back(N->getCC());
1728
1729  Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1730  Record.clear();
1731}
1732
1733void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1734                                      SmallVectorImpl<uint64_t> &Record,
1735                                      unsigned Abbrev) {
1736  Record.push_back(N->isDistinct());
1737  Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1738  Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1739  if (N->getRawChecksum()) {
1740    Record.push_back(N->getRawChecksum()->Kind);
1741    Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1742  } else {
1743    // Maintain backwards compatibility with the old internal representation of
1744    // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1745    Record.push_back(0);
1746    Record.push_back(VE.getMetadataOrNullID(nullptr));
1747  }
1748  auto Source = N->getRawSource();
1749  if (Source)
1750    Record.push_back(VE.getMetadataOrNullID(*Source));
1751
1752  Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1753  Record.clear();
1754}
1755
1756void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1757                                             SmallVectorImpl<uint64_t> &Record,
1758                                             unsigned Abbrev) {
1759  assert(N->isDistinct() && "Expected distinct compile units");
1760  Record.push_back(/* IsDistinct */ true);
1761  Record.push_back(N->getSourceLanguage());
1762  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1763  Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1764  Record.push_back(N->isOptimized());
1765  Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1766  Record.push_back(N->getRuntimeVersion());
1767  Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1768  Record.push_back(N->getEmissionKind());
1769  Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1770  Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1771  Record.push_back(/* subprograms */ 0);
1772  Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1773  Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1774  Record.push_back(N->getDWOId());
1775  Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1776  Record.push_back(N->getSplitDebugInlining());
1777  Record.push_back(N->getDebugInfoForProfiling());
1778  Record.push_back((unsigned)N->getNameTableKind());
1779  Record.push_back(N->getRangesBaseAddress());
1780  Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1781  Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1782
1783  Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1784  Record.clear();
1785}
1786
1787void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1788                                            SmallVectorImpl<uint64_t> &Record,
1789                                            unsigned Abbrev) {
1790  const uint64_t HasUnitFlag = 1 << 1;
1791  const uint64_t HasSPFlagsFlag = 1 << 2;
1792  Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1793  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1794  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1795  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1796  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1797  Record.push_back(N->getLine());
1798  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1799  Record.push_back(N->getScopeLine());
1800  Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1801  Record.push_back(N->getSPFlags());
1802  Record.push_back(N->getVirtualIndex());
1803  Record.push_back(N->getFlags());
1804  Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1805  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1806  Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1807  Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1808  Record.push_back(N->getThisAdjustment());
1809  Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1810
1811  Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1812  Record.clear();
1813}
1814
1815void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1816                                              SmallVectorImpl<uint64_t> &Record,
1817                                              unsigned Abbrev) {
1818  Record.push_back(N->isDistinct());
1819  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1820  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1821  Record.push_back(N->getLine());
1822  Record.push_back(N->getColumn());
1823
1824  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1825  Record.clear();
1826}
1827
1828void ModuleBitcodeWriter::writeDILexicalBlockFile(
1829    const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1830    unsigned Abbrev) {
1831  Record.push_back(N->isDistinct());
1832  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1833  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1834  Record.push_back(N->getDiscriminator());
1835
1836  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1837  Record.clear();
1838}
1839
1840void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1841                                             SmallVectorImpl<uint64_t> &Record,
1842                                             unsigned Abbrev) {
1843  Record.push_back(N->isDistinct());
1844  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1845  Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1846  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1847  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1848  Record.push_back(N->getLineNo());
1849
1850  Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1851  Record.clear();
1852}
1853
1854void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1855                                           SmallVectorImpl<uint64_t> &Record,
1856                                           unsigned Abbrev) {
1857  Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1858  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1859  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1860
1861  Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1862  Record.clear();
1863}
1864
1865void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1866                                       SmallVectorImpl<uint64_t> &Record,
1867                                       unsigned Abbrev) {
1868  Record.push_back(N->isDistinct());
1869  Record.push_back(N->getMacinfoType());
1870  Record.push_back(N->getLine());
1871  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1872  Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1873
1874  Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1875  Record.clear();
1876}
1877
1878void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1879                                           SmallVectorImpl<uint64_t> &Record,
1880                                           unsigned Abbrev) {
1881  Record.push_back(N->isDistinct());
1882  Record.push_back(N->getMacinfoType());
1883  Record.push_back(N->getLine());
1884  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1885  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1886
1887  Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1888  Record.clear();
1889}
1890
1891void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
1892                                         SmallVectorImpl<uint64_t> &Record,
1893                                         unsigned Abbrev) {
1894  Record.reserve(N->getArgs().size());
1895  for (ValueAsMetadata *MD : N->getArgs())
1896    Record.push_back(VE.getMetadataID(MD));
1897
1898  Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev);
1899  Record.clear();
1900}
1901
1902void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1903                                        SmallVectorImpl<uint64_t> &Record,
1904                                        unsigned Abbrev) {
1905  Record.push_back(N->isDistinct());
1906  for (auto &I : N->operands())
1907    Record.push_back(VE.getMetadataOrNullID(I));
1908  Record.push_back(N->getLineNo());
1909  Record.push_back(N->getIsDecl());
1910
1911  Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1912  Record.clear();
1913}
1914
1915void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1916    const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1917    unsigned Abbrev) {
1918  Record.push_back(N->isDistinct());
1919  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1920  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1921  Record.push_back(N->isDefault());
1922
1923  Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1924  Record.clear();
1925}
1926
1927void ModuleBitcodeWriter::writeDITemplateValueParameter(
1928    const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1929    unsigned Abbrev) {
1930  Record.push_back(N->isDistinct());
1931  Record.push_back(N->getTag());
1932  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1933  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1934  Record.push_back(N->isDefault());
1935  Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1936
1937  Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1938  Record.clear();
1939}
1940
1941void ModuleBitcodeWriter::writeDIGlobalVariable(
1942    const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1943    unsigned Abbrev) {
1944  const uint64_t Version = 2 << 1;
1945  Record.push_back((uint64_t)N->isDistinct() | Version);
1946  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1947  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1948  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1949  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1950  Record.push_back(N->getLine());
1951  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1952  Record.push_back(N->isLocalToUnit());
1953  Record.push_back(N->isDefinition());
1954  Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1955  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1956  Record.push_back(N->getAlignInBits());
1957
1958  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1959  Record.clear();
1960}
1961
1962void ModuleBitcodeWriter::writeDILocalVariable(
1963    const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1964    unsigned Abbrev) {
1965  // In order to support all possible bitcode formats in BitcodeReader we need
1966  // to distinguish the following cases:
1967  // 1) Record has no artificial tag (Record[1]),
1968  //   has no obsolete inlinedAt field (Record[9]).
1969  //   In this case Record size will be 8, HasAlignment flag is false.
1970  // 2) Record has artificial tag (Record[1]),
1971  //   has no obsolete inlignedAt field (Record[9]).
1972  //   In this case Record size will be 9, HasAlignment flag is false.
1973  // 3) Record has both artificial tag (Record[1]) and
1974  //   obsolete inlignedAt field (Record[9]).
1975  //   In this case Record size will be 10, HasAlignment flag is false.
1976  // 4) Record has neither artificial tag, nor inlignedAt field, but
1977  //   HasAlignment flag is true and Record[8] contains alignment value.
1978  const uint64_t HasAlignmentFlag = 1 << 1;
1979  Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1980  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1981  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1982  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1983  Record.push_back(N->getLine());
1984  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1985  Record.push_back(N->getArg());
1986  Record.push_back(N->getFlags());
1987  Record.push_back(N->getAlignInBits());
1988
1989  Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1990  Record.clear();
1991}
1992
1993void ModuleBitcodeWriter::writeDILabel(
1994    const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1995    unsigned Abbrev) {
1996  Record.push_back((uint64_t)N->isDistinct());
1997  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1998  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1999  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2000  Record.push_back(N->getLine());
2001
2002  Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2003  Record.clear();
2004}
2005
2006void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2007                                            SmallVectorImpl<uint64_t> &Record,
2008                                            unsigned Abbrev) {
2009  Record.reserve(N->getElements().size() + 1);
2010  const uint64_t Version = 3 << 1;
2011  Record.push_back((uint64_t)N->isDistinct() | Version);
2012  Record.append(N->elements_begin(), N->elements_end());
2013
2014  Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2015  Record.clear();
2016}
2017
2018void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2019    const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2020    unsigned Abbrev) {
2021  Record.push_back(N->isDistinct());
2022  Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2023  Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2024
2025  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2026  Record.clear();
2027}
2028
2029void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2030                                              SmallVectorImpl<uint64_t> &Record,
2031                                              unsigned Abbrev) {
2032  Record.push_back(N->isDistinct());
2033  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2034  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2035  Record.push_back(N->getLine());
2036  Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2037  Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2038  Record.push_back(N->getAttributes());
2039  Record.push_back(VE.getMetadataOrNullID(N->getType()));
2040
2041  Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2042  Record.clear();
2043}
2044
2045void ModuleBitcodeWriter::writeDIImportedEntity(
2046    const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2047    unsigned Abbrev) {
2048  Record.push_back(N->isDistinct());
2049  Record.push_back(N->getTag());
2050  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2051  Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2052  Record.push_back(N->getLine());
2053  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2054  Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2055
2056  Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2057  Record.clear();
2058}
2059
2060unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2061  auto Abbv = std::make_shared<BitCodeAbbrev>();
2062  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2063  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2064  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2065  return Stream.EmitAbbrev(std::move(Abbv));
2066}
2067
2068void ModuleBitcodeWriter::writeNamedMetadata(
2069    SmallVectorImpl<uint64_t> &Record) {
2070  if (M.named_metadata_empty())
2071    return;
2072
2073  unsigned Abbrev = createNamedMetadataAbbrev();
2074  for (const NamedMDNode &NMD : M.named_metadata()) {
2075    // Write name.
2076    StringRef Str = NMD.getName();
2077    Record.append(Str.bytes_begin(), Str.bytes_end());
2078    Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2079    Record.clear();
2080
2081    // Write named metadata operands.
2082    for (const MDNode *N : NMD.operands())
2083      Record.push_back(VE.getMetadataID(N));
2084    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2085    Record.clear();
2086  }
2087}
2088
2089unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2090  auto Abbv = std::make_shared<BitCodeAbbrev>();
2091  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2092  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2093  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2094  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2095  return Stream.EmitAbbrev(std::move(Abbv));
2096}
2097
2098/// Write out a record for MDString.
2099///
2100/// All the metadata strings in a metadata block are emitted in a single
2101/// record.  The sizes and strings themselves are shoved into a blob.
2102void ModuleBitcodeWriter::writeMetadataStrings(
2103    ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2104  if (Strings.empty())
2105    return;
2106
2107  // Start the record with the number of strings.
2108  Record.push_back(bitc::METADATA_STRINGS);
2109  Record.push_back(Strings.size());
2110
2111  // Emit the sizes of the strings in the blob.
2112  SmallString<256> Blob;
2113  {
2114    BitstreamWriter W(Blob);
2115    for (const Metadata *MD : Strings)
2116      W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2117    W.FlushToWord();
2118  }
2119
2120  // Add the offset to the strings to the record.
2121  Record.push_back(Blob.size());
2122
2123  // Add the strings to the blob.
2124  for (const Metadata *MD : Strings)
2125    Blob.append(cast<MDString>(MD)->getString());
2126
2127  // Emit the final record.
2128  Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2129  Record.clear();
2130}
2131
2132// Generates an enum to use as an index in the Abbrev array of Metadata record.
2133enum MetadataAbbrev : unsigned {
2134#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2135#include "llvm/IR/Metadata.def"
2136  LastPlusOne
2137};
2138
2139void ModuleBitcodeWriter::writeMetadataRecords(
2140    ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2141    std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2142  if (MDs.empty())
2143    return;
2144
2145  // Initialize MDNode abbreviations.
2146#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2147#include "llvm/IR/Metadata.def"
2148
2149  for (const Metadata *MD : MDs) {
2150    if (IndexPos)
2151      IndexPos->push_back(Stream.GetCurrentBitNo());
2152    if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2153      assert(N->isResolved() && "Expected forward references to be resolved");
2154
2155      switch (N->getMetadataID()) {
2156      default:
2157        llvm_unreachable("Invalid MDNode subclass");
2158#define HANDLE_MDNODE_LEAF(CLASS)                                              \
2159  case Metadata::CLASS##Kind:                                                  \
2160    if (MDAbbrevs)                                                             \
2161      write##CLASS(cast<CLASS>(N), Record,                                     \
2162                   (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2163    else                                                                       \
2164      write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2165    continue;
2166#include "llvm/IR/Metadata.def"
2167      }
2168    }
2169    writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2170  }
2171}
2172
2173void ModuleBitcodeWriter::writeModuleMetadata() {
2174  if (!VE.hasMDs() && M.named_metadata_empty())
2175    return;
2176
2177  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2178  SmallVector<uint64_t, 64> Record;
2179
2180  // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2181  // block and load any metadata.
2182  std::vector<unsigned> MDAbbrevs;
2183
2184  MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2185  MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2186  MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2187      createGenericDINodeAbbrev();
2188
2189  auto Abbv = std::make_shared<BitCodeAbbrev>();
2190  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2191  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2192  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2193  unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2194
2195  Abbv = std::make_shared<BitCodeAbbrev>();
2196  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2197  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2198  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2199  unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2200
2201  // Emit MDStrings together upfront.
2202  writeMetadataStrings(VE.getMDStrings(), Record);
2203
2204  // We only emit an index for the metadata record if we have more than a given
2205  // (naive) threshold of metadatas, otherwise it is not worth it.
2206  if (VE.getNonMDStrings().size() > IndexThreshold) {
2207    // Write a placeholder value in for the offset of the metadata index,
2208    // which is written after the records, so that it can include
2209    // the offset of each entry. The placeholder offset will be
2210    // updated after all records are emitted.
2211    uint64_t Vals[] = {0, 0};
2212    Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2213  }
2214
2215  // Compute and save the bit offset to the current position, which will be
2216  // patched when we emit the index later. We can simply subtract the 64-bit
2217  // fixed size from the current bit number to get the location to backpatch.
2218  uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2219
2220  // This index will contain the bitpos for each individual record.
2221  std::vector<uint64_t> IndexPos;
2222  IndexPos.reserve(VE.getNonMDStrings().size());
2223
2224  // Write all the records
2225  writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2226
2227  if (VE.getNonMDStrings().size() > IndexThreshold) {
2228    // Now that we have emitted all the records we will emit the index. But
2229    // first
2230    // backpatch the forward reference so that the reader can skip the records
2231    // efficiently.
2232    Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2233                           Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2234
2235    // Delta encode the index.
2236    uint64_t PreviousValue = IndexOffsetRecordBitPos;
2237    for (auto &Elt : IndexPos) {
2238      auto EltDelta = Elt - PreviousValue;
2239      PreviousValue = Elt;
2240      Elt = EltDelta;
2241    }
2242    // Emit the index record.
2243    Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2244    IndexPos.clear();
2245  }
2246
2247  // Write the named metadata now.
2248  writeNamedMetadata(Record);
2249
2250  auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2251    SmallVector<uint64_t, 4> Record;
2252    Record.push_back(VE.getValueID(&GO));
2253    pushGlobalMetadataAttachment(Record, GO);
2254    Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2255  };
2256  for (const Function &F : M)
2257    if (F.isDeclaration() && F.hasMetadata())
2258      AddDeclAttachedMetadata(F);
2259  // FIXME: Only store metadata for declarations here, and move data for global
2260  // variable definitions to a separate block (PR28134).
2261  for (const GlobalVariable &GV : M.globals())
2262    if (GV.hasMetadata())
2263      AddDeclAttachedMetadata(GV);
2264
2265  Stream.ExitBlock();
2266}
2267
2268void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2269  if (!VE.hasMDs())
2270    return;
2271
2272  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2273  SmallVector<uint64_t, 64> Record;
2274  writeMetadataStrings(VE.getMDStrings(), Record);
2275  writeMetadataRecords(VE.getNonMDStrings(), Record);
2276  Stream.ExitBlock();
2277}
2278
2279void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2280    SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2281  // [n x [id, mdnode]]
2282  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2283  GO.getAllMetadata(MDs);
2284  for (const auto &I : MDs) {
2285    Record.push_back(I.first);
2286    Record.push_back(VE.getMetadataID(I.second));
2287  }
2288}
2289
2290void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2291  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2292
2293  SmallVector<uint64_t, 64> Record;
2294
2295  if (F.hasMetadata()) {
2296    pushGlobalMetadataAttachment(Record, F);
2297    Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2298    Record.clear();
2299  }
2300
2301  // Write metadata attachments
2302  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2303  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2304  for (const BasicBlock &BB : F)
2305    for (const Instruction &I : BB) {
2306      MDs.clear();
2307      I.getAllMetadataOtherThanDebugLoc(MDs);
2308
2309      // If no metadata, ignore instruction.
2310      if (MDs.empty()) continue;
2311
2312      Record.push_back(VE.getInstructionID(&I));
2313
2314      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2315        Record.push_back(MDs[i].first);
2316        Record.push_back(VE.getMetadataID(MDs[i].second));
2317      }
2318      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2319      Record.clear();
2320    }
2321
2322  Stream.ExitBlock();
2323}
2324
2325void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2326  SmallVector<uint64_t, 64> Record;
2327
2328  // Write metadata kinds
2329  // METADATA_KIND - [n x [id, name]]
2330  SmallVector<StringRef, 8> Names;
2331  M.getMDKindNames(Names);
2332
2333  if (Names.empty()) return;
2334
2335  Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2336
2337  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2338    Record.push_back(MDKindID);
2339    StringRef KName = Names[MDKindID];
2340    Record.append(KName.begin(), KName.end());
2341
2342    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2343    Record.clear();
2344  }
2345
2346  Stream.ExitBlock();
2347}
2348
2349void ModuleBitcodeWriter::writeOperandBundleTags() {
2350  // Write metadata kinds
2351  //
2352  // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2353  //
2354  // OPERAND_BUNDLE_TAG - [strchr x N]
2355
2356  SmallVector<StringRef, 8> Tags;
2357  M.getOperandBundleTags(Tags);
2358
2359  if (Tags.empty())
2360    return;
2361
2362  Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2363
2364  SmallVector<uint64_t, 64> Record;
2365
2366  for (auto Tag : Tags) {
2367    Record.append(Tag.begin(), Tag.end());
2368
2369    Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2370    Record.clear();
2371  }
2372
2373  Stream.ExitBlock();
2374}
2375
2376void ModuleBitcodeWriter::writeSyncScopeNames() {
2377  SmallVector<StringRef, 8> SSNs;
2378  M.getContext().getSyncScopeNames(SSNs);
2379  if (SSNs.empty())
2380    return;
2381
2382  Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2383
2384  SmallVector<uint64_t, 64> Record;
2385  for (auto SSN : SSNs) {
2386    Record.append(SSN.begin(), SSN.end());
2387    Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2388    Record.clear();
2389  }
2390
2391  Stream.ExitBlock();
2392}
2393
2394void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2395                                         bool isGlobal) {
2396  if (FirstVal == LastVal) return;
2397
2398  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2399
2400  unsigned AggregateAbbrev = 0;
2401  unsigned String8Abbrev = 0;
2402  unsigned CString7Abbrev = 0;
2403  unsigned CString6Abbrev = 0;
2404  // If this is a constant pool for the module, emit module-specific abbrevs.
2405  if (isGlobal) {
2406    // Abbrev for CST_CODE_AGGREGATE.
2407    auto Abbv = std::make_shared<BitCodeAbbrev>();
2408    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2409    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2410    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2411    AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2412
2413    // Abbrev for CST_CODE_STRING.
2414    Abbv = std::make_shared<BitCodeAbbrev>();
2415    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2416    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2417    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2418    String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2419    // Abbrev for CST_CODE_CSTRING.
2420    Abbv = std::make_shared<BitCodeAbbrev>();
2421    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2422    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2423    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2424    CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2425    // Abbrev for CST_CODE_CSTRING.
2426    Abbv = std::make_shared<BitCodeAbbrev>();
2427    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2428    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2429    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2430    CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2431  }
2432
2433  SmallVector<uint64_t, 64> Record;
2434
2435  const ValueEnumerator::ValueList &Vals = VE.getValues();
2436  Type *LastTy = nullptr;
2437  for (unsigned i = FirstVal; i != LastVal; ++i) {
2438    const Value *V = Vals[i].first;
2439    // If we need to switch types, do so now.
2440    if (V->getType() != LastTy) {
2441      LastTy = V->getType();
2442      Record.push_back(VE.getTypeID(LastTy));
2443      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2444                        CONSTANTS_SETTYPE_ABBREV);
2445      Record.clear();
2446    }
2447
2448    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2449      Record.push_back(
2450          unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2451          unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2452
2453      // Add the asm string.
2454      const std::string &AsmStr = IA->getAsmString();
2455      Record.push_back(AsmStr.size());
2456      Record.append(AsmStr.begin(), AsmStr.end());
2457
2458      // Add the constraint string.
2459      const std::string &ConstraintStr = IA->getConstraintString();
2460      Record.push_back(ConstraintStr.size());
2461      Record.append(ConstraintStr.begin(), ConstraintStr.end());
2462      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2463      Record.clear();
2464      continue;
2465    }
2466    const Constant *C = cast<Constant>(V);
2467    unsigned Code = -1U;
2468    unsigned AbbrevToUse = 0;
2469    if (C->isNullValue()) {
2470      Code = bitc::CST_CODE_NULL;
2471    } else if (isa<PoisonValue>(C)) {
2472      Code = bitc::CST_CODE_POISON;
2473    } else if (isa<UndefValue>(C)) {
2474      Code = bitc::CST_CODE_UNDEF;
2475    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2476      if (IV->getBitWidth() <= 64) {
2477        uint64_t V = IV->getSExtValue();
2478        emitSignedInt64(Record, V);
2479        Code = bitc::CST_CODE_INTEGER;
2480        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2481      } else {                             // Wide integers, > 64 bits in size.
2482        emitWideAPInt(Record, IV->getValue());
2483        Code = bitc::CST_CODE_WIDE_INTEGER;
2484      }
2485    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2486      Code = bitc::CST_CODE_FLOAT;
2487      Type *Ty = CFP->getType();
2488      if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2489          Ty->isDoubleTy()) {
2490        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2491      } else if (Ty->isX86_FP80Ty()) {
2492        // api needed to prevent premature destruction
2493        // bits are not in the same order as a normal i80 APInt, compensate.
2494        APInt api = CFP->getValueAPF().bitcastToAPInt();
2495        const uint64_t *p = api.getRawData();
2496        Record.push_back((p[1] << 48) | (p[0] >> 16));
2497        Record.push_back(p[0] & 0xffffLL);
2498      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2499        APInt api = CFP->getValueAPF().bitcastToAPInt();
2500        const uint64_t *p = api.getRawData();
2501        Record.push_back(p[0]);
2502        Record.push_back(p[1]);
2503      } else {
2504        assert(0 && "Unknown FP type!");
2505      }
2506    } else if (isa<ConstantDataSequential>(C) &&
2507               cast<ConstantDataSequential>(C)->isString()) {
2508      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2509      // Emit constant strings specially.
2510      unsigned NumElts = Str->getNumElements();
2511      // If this is a null-terminated string, use the denser CSTRING encoding.
2512      if (Str->isCString()) {
2513        Code = bitc::CST_CODE_CSTRING;
2514        --NumElts;  // Don't encode the null, which isn't allowed by char6.
2515      } else {
2516        Code = bitc::CST_CODE_STRING;
2517        AbbrevToUse = String8Abbrev;
2518      }
2519      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2520      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2521      for (unsigned i = 0; i != NumElts; ++i) {
2522        unsigned char V = Str->getElementAsInteger(i);
2523        Record.push_back(V);
2524        isCStr7 &= (V & 128) == 0;
2525        if (isCStrChar6)
2526          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2527      }
2528
2529      if (isCStrChar6)
2530        AbbrevToUse = CString6Abbrev;
2531      else if (isCStr7)
2532        AbbrevToUse = CString7Abbrev;
2533    } else if (const ConstantDataSequential *CDS =
2534                  dyn_cast<ConstantDataSequential>(C)) {
2535      Code = bitc::CST_CODE_DATA;
2536      Type *EltTy = CDS->getElementType();
2537      if (isa<IntegerType>(EltTy)) {
2538        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2539          Record.push_back(CDS->getElementAsInteger(i));
2540      } else {
2541        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2542          Record.push_back(
2543              CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2544      }
2545    } else if (isa<ConstantAggregate>(C)) {
2546      Code = bitc::CST_CODE_AGGREGATE;
2547      for (const Value *Op : C->operands())
2548        Record.push_back(VE.getValueID(Op));
2549      AbbrevToUse = AggregateAbbrev;
2550    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2551      switch (CE->getOpcode()) {
2552      default:
2553        if (Instruction::isCast(CE->getOpcode())) {
2554          Code = bitc::CST_CODE_CE_CAST;
2555          Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2556          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2557          Record.push_back(VE.getValueID(C->getOperand(0)));
2558          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2559        } else {
2560          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2561          Code = bitc::CST_CODE_CE_BINOP;
2562          Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2563          Record.push_back(VE.getValueID(C->getOperand(0)));
2564          Record.push_back(VE.getValueID(C->getOperand(1)));
2565          uint64_t Flags = getOptimizationFlags(CE);
2566          if (Flags != 0)
2567            Record.push_back(Flags);
2568        }
2569        break;
2570      case Instruction::FNeg: {
2571        assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2572        Code = bitc::CST_CODE_CE_UNOP;
2573        Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2574        Record.push_back(VE.getValueID(C->getOperand(0)));
2575        uint64_t Flags = getOptimizationFlags(CE);
2576        if (Flags != 0)
2577          Record.push_back(Flags);
2578        break;
2579      }
2580      case Instruction::GetElementPtr: {
2581        Code = bitc::CST_CODE_CE_GEP;
2582        const auto *GO = cast<GEPOperator>(C);
2583        Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2584        if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2585          Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2586          Record.push_back((*Idx << 1) | GO->isInBounds());
2587        } else if (GO->isInBounds())
2588          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2589        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2590          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2591          Record.push_back(VE.getValueID(C->getOperand(i)));
2592        }
2593        break;
2594      }
2595      case Instruction::Select:
2596        Code = bitc::CST_CODE_CE_SELECT;
2597        Record.push_back(VE.getValueID(C->getOperand(0)));
2598        Record.push_back(VE.getValueID(C->getOperand(1)));
2599        Record.push_back(VE.getValueID(C->getOperand(2)));
2600        break;
2601      case Instruction::ExtractElement:
2602        Code = bitc::CST_CODE_CE_EXTRACTELT;
2603        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2604        Record.push_back(VE.getValueID(C->getOperand(0)));
2605        Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2606        Record.push_back(VE.getValueID(C->getOperand(1)));
2607        break;
2608      case Instruction::InsertElement:
2609        Code = bitc::CST_CODE_CE_INSERTELT;
2610        Record.push_back(VE.getValueID(C->getOperand(0)));
2611        Record.push_back(VE.getValueID(C->getOperand(1)));
2612        Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2613        Record.push_back(VE.getValueID(C->getOperand(2)));
2614        break;
2615      case Instruction::ShuffleVector:
2616        // If the return type and argument types are the same, this is a
2617        // standard shufflevector instruction.  If the types are different,
2618        // then the shuffle is widening or truncating the input vectors, and
2619        // the argument type must also be encoded.
2620        if (C->getType() == C->getOperand(0)->getType()) {
2621          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2622        } else {
2623          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2624          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2625        }
2626        Record.push_back(VE.getValueID(C->getOperand(0)));
2627        Record.push_back(VE.getValueID(C->getOperand(1)));
2628        Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2629        break;
2630      case Instruction::ICmp:
2631      case Instruction::FCmp:
2632        Code = bitc::CST_CODE_CE_CMP;
2633        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2634        Record.push_back(VE.getValueID(C->getOperand(0)));
2635        Record.push_back(VE.getValueID(C->getOperand(1)));
2636        Record.push_back(CE->getPredicate());
2637        break;
2638      }
2639    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2640      Code = bitc::CST_CODE_BLOCKADDRESS;
2641      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2642      Record.push_back(VE.getValueID(BA->getFunction()));
2643      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2644    } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2645      Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2646      Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2647      Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2648    } else {
2649#ifndef NDEBUG
2650      C->dump();
2651#endif
2652      llvm_unreachable("Unknown constant!");
2653    }
2654    Stream.EmitRecord(Code, Record, AbbrevToUse);
2655    Record.clear();
2656  }
2657
2658  Stream.ExitBlock();
2659}
2660
2661void ModuleBitcodeWriter::writeModuleConstants() {
2662  const ValueEnumerator::ValueList &Vals = VE.getValues();
2663
2664  // Find the first constant to emit, which is the first non-globalvalue value.
2665  // We know globalvalues have been emitted by WriteModuleInfo.
2666  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2667    if (!isa<GlobalValue>(Vals[i].first)) {
2668      writeConstants(i, Vals.size(), true);
2669      return;
2670    }
2671  }
2672}
2673
2674/// pushValueAndType - The file has to encode both the value and type id for
2675/// many values, because we need to know what type to create for forward
2676/// references.  However, most operands are not forward references, so this type
2677/// field is not needed.
2678///
2679/// This function adds V's value ID to Vals.  If the value ID is higher than the
2680/// instruction ID, then it is a forward reference, and it also includes the
2681/// type ID.  The value ID that is written is encoded relative to the InstID.
2682bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2683                                           SmallVectorImpl<unsigned> &Vals) {
2684  unsigned ValID = VE.getValueID(V);
2685  // Make encoding relative to the InstID.
2686  Vals.push_back(InstID - ValID);
2687  if (ValID >= InstID) {
2688    Vals.push_back(VE.getTypeID(V->getType()));
2689    return true;
2690  }
2691  return false;
2692}
2693
2694void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2695                                              unsigned InstID) {
2696  SmallVector<unsigned, 64> Record;
2697  LLVMContext &C = CS.getContext();
2698
2699  for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2700    const auto &Bundle = CS.getOperandBundleAt(i);
2701    Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2702
2703    for (auto &Input : Bundle.Inputs)
2704      pushValueAndType(Input, InstID, Record);
2705
2706    Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2707    Record.clear();
2708  }
2709}
2710
2711/// pushValue - Like pushValueAndType, but where the type of the value is
2712/// omitted (perhaps it was already encoded in an earlier operand).
2713void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2714                                    SmallVectorImpl<unsigned> &Vals) {
2715  unsigned ValID = VE.getValueID(V);
2716  Vals.push_back(InstID - ValID);
2717}
2718
2719void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2720                                          SmallVectorImpl<uint64_t> &Vals) {
2721  unsigned ValID = VE.getValueID(V);
2722  int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2723  emitSignedInt64(Vals, diff);
2724}
2725
2726/// WriteInstruction - Emit an instruction to the specified stream.
2727void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2728                                           unsigned InstID,
2729                                           SmallVectorImpl<unsigned> &Vals) {
2730  unsigned Code = 0;
2731  unsigned AbbrevToUse = 0;
2732  VE.setInstructionID(&I);
2733  switch (I.getOpcode()) {
2734  default:
2735    if (Instruction::isCast(I.getOpcode())) {
2736      Code = bitc::FUNC_CODE_INST_CAST;
2737      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2738        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2739      Vals.push_back(VE.getTypeID(I.getType()));
2740      Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2741    } else {
2742      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2743      Code = bitc::FUNC_CODE_INST_BINOP;
2744      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2745        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2746      pushValue(I.getOperand(1), InstID, Vals);
2747      Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2748      uint64_t Flags = getOptimizationFlags(&I);
2749      if (Flags != 0) {
2750        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2751          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2752        Vals.push_back(Flags);
2753      }
2754    }
2755    break;
2756  case Instruction::FNeg: {
2757    Code = bitc::FUNC_CODE_INST_UNOP;
2758    if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2759      AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2760    Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2761    uint64_t Flags = getOptimizationFlags(&I);
2762    if (Flags != 0) {
2763      if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2764        AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2765      Vals.push_back(Flags);
2766    }
2767    break;
2768  }
2769  case Instruction::GetElementPtr: {
2770    Code = bitc::FUNC_CODE_INST_GEP;
2771    AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2772    auto &GEPInst = cast<GetElementPtrInst>(I);
2773    Vals.push_back(GEPInst.isInBounds());
2774    Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2775    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2776      pushValueAndType(I.getOperand(i), InstID, Vals);
2777    break;
2778  }
2779  case Instruction::ExtractValue: {
2780    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2781    pushValueAndType(I.getOperand(0), InstID, Vals);
2782    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2783    Vals.append(EVI->idx_begin(), EVI->idx_end());
2784    break;
2785  }
2786  case Instruction::InsertValue: {
2787    Code = bitc::FUNC_CODE_INST_INSERTVAL;
2788    pushValueAndType(I.getOperand(0), InstID, Vals);
2789    pushValueAndType(I.getOperand(1), InstID, Vals);
2790    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2791    Vals.append(IVI->idx_begin(), IVI->idx_end());
2792    break;
2793  }
2794  case Instruction::Select: {
2795    Code = bitc::FUNC_CODE_INST_VSELECT;
2796    pushValueAndType(I.getOperand(1), InstID, Vals);
2797    pushValue(I.getOperand(2), InstID, Vals);
2798    pushValueAndType(I.getOperand(0), InstID, Vals);
2799    uint64_t Flags = getOptimizationFlags(&I);
2800    if (Flags != 0)
2801      Vals.push_back(Flags);
2802    break;
2803  }
2804  case Instruction::ExtractElement:
2805    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2806    pushValueAndType(I.getOperand(0), InstID, Vals);
2807    pushValueAndType(I.getOperand(1), InstID, Vals);
2808    break;
2809  case Instruction::InsertElement:
2810    Code = bitc::FUNC_CODE_INST_INSERTELT;
2811    pushValueAndType(I.getOperand(0), InstID, Vals);
2812    pushValue(I.getOperand(1), InstID, Vals);
2813    pushValueAndType(I.getOperand(2), InstID, Vals);
2814    break;
2815  case Instruction::ShuffleVector:
2816    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2817    pushValueAndType(I.getOperand(0), InstID, Vals);
2818    pushValue(I.getOperand(1), InstID, Vals);
2819    pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2820              Vals);
2821    break;
2822  case Instruction::ICmp:
2823  case Instruction::FCmp: {
2824    // compare returning Int1Ty or vector of Int1Ty
2825    Code = bitc::FUNC_CODE_INST_CMP2;
2826    pushValueAndType(I.getOperand(0), InstID, Vals);
2827    pushValue(I.getOperand(1), InstID, Vals);
2828    Vals.push_back(cast<CmpInst>(I).getPredicate());
2829    uint64_t Flags = getOptimizationFlags(&I);
2830    if (Flags != 0)
2831      Vals.push_back(Flags);
2832    break;
2833  }
2834
2835  case Instruction::Ret:
2836    {
2837      Code = bitc::FUNC_CODE_INST_RET;
2838      unsigned NumOperands = I.getNumOperands();
2839      if (NumOperands == 0)
2840        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2841      else if (NumOperands == 1) {
2842        if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2843          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2844      } else {
2845        for (unsigned i = 0, e = NumOperands; i != e; ++i)
2846          pushValueAndType(I.getOperand(i), InstID, Vals);
2847      }
2848    }
2849    break;
2850  case Instruction::Br:
2851    {
2852      Code = bitc::FUNC_CODE_INST_BR;
2853      const BranchInst &II = cast<BranchInst>(I);
2854      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2855      if (II.isConditional()) {
2856        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2857        pushValue(II.getCondition(), InstID, Vals);
2858      }
2859    }
2860    break;
2861  case Instruction::Switch:
2862    {
2863      Code = bitc::FUNC_CODE_INST_SWITCH;
2864      const SwitchInst &SI = cast<SwitchInst>(I);
2865      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2866      pushValue(SI.getCondition(), InstID, Vals);
2867      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2868      for (auto Case : SI.cases()) {
2869        Vals.push_back(VE.getValueID(Case.getCaseValue()));
2870        Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2871      }
2872    }
2873    break;
2874  case Instruction::IndirectBr:
2875    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2876    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2877    // Encode the address operand as relative, but not the basic blocks.
2878    pushValue(I.getOperand(0), InstID, Vals);
2879    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2880      Vals.push_back(VE.getValueID(I.getOperand(i)));
2881    break;
2882
2883  case Instruction::Invoke: {
2884    const InvokeInst *II = cast<InvokeInst>(&I);
2885    const Value *Callee = II->getCalledOperand();
2886    FunctionType *FTy = II->getFunctionType();
2887
2888    if (II->hasOperandBundles())
2889      writeOperandBundles(*II, InstID);
2890
2891    Code = bitc::FUNC_CODE_INST_INVOKE;
2892
2893    Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2894    Vals.push_back(II->getCallingConv() | 1 << 13);
2895    Vals.push_back(VE.getValueID(II->getNormalDest()));
2896    Vals.push_back(VE.getValueID(II->getUnwindDest()));
2897    Vals.push_back(VE.getTypeID(FTy));
2898    pushValueAndType(Callee, InstID, Vals);
2899
2900    // Emit value #'s for the fixed parameters.
2901    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2902      pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2903
2904    // Emit type/value pairs for varargs params.
2905    if (FTy->isVarArg()) {
2906      for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2907           i != e; ++i)
2908        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2909    }
2910    break;
2911  }
2912  case Instruction::Resume:
2913    Code = bitc::FUNC_CODE_INST_RESUME;
2914    pushValueAndType(I.getOperand(0), InstID, Vals);
2915    break;
2916  case Instruction::CleanupRet: {
2917    Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2918    const auto &CRI = cast<CleanupReturnInst>(I);
2919    pushValue(CRI.getCleanupPad(), InstID, Vals);
2920    if (CRI.hasUnwindDest())
2921      Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2922    break;
2923  }
2924  case Instruction::CatchRet: {
2925    Code = bitc::FUNC_CODE_INST_CATCHRET;
2926    const auto &CRI = cast<CatchReturnInst>(I);
2927    pushValue(CRI.getCatchPad(), InstID, Vals);
2928    Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2929    break;
2930  }
2931  case Instruction::CleanupPad:
2932  case Instruction::CatchPad: {
2933    const auto &FuncletPad = cast<FuncletPadInst>(I);
2934    Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2935                                         : bitc::FUNC_CODE_INST_CLEANUPPAD;
2936    pushValue(FuncletPad.getParentPad(), InstID, Vals);
2937
2938    unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2939    Vals.push_back(NumArgOperands);
2940    for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2941      pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2942    break;
2943  }
2944  case Instruction::CatchSwitch: {
2945    Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2946    const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2947
2948    pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2949
2950    unsigned NumHandlers = CatchSwitch.getNumHandlers();
2951    Vals.push_back(NumHandlers);
2952    for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2953      Vals.push_back(VE.getValueID(CatchPadBB));
2954
2955    if (CatchSwitch.hasUnwindDest())
2956      Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2957    break;
2958  }
2959  case Instruction::CallBr: {
2960    const CallBrInst *CBI = cast<CallBrInst>(&I);
2961    const Value *Callee = CBI->getCalledOperand();
2962    FunctionType *FTy = CBI->getFunctionType();
2963
2964    if (CBI->hasOperandBundles())
2965      writeOperandBundles(*CBI, InstID);
2966
2967    Code = bitc::FUNC_CODE_INST_CALLBR;
2968
2969    Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2970
2971    Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2972                   1 << bitc::CALL_EXPLICIT_TYPE);
2973
2974    Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2975    Vals.push_back(CBI->getNumIndirectDests());
2976    for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2977      Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2978
2979    Vals.push_back(VE.getTypeID(FTy));
2980    pushValueAndType(Callee, InstID, Vals);
2981
2982    // Emit value #'s for the fixed parameters.
2983    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2984      pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2985
2986    // Emit type/value pairs for varargs params.
2987    if (FTy->isVarArg()) {
2988      for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2989           i != e; ++i)
2990        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2991    }
2992    break;
2993  }
2994  case Instruction::Unreachable:
2995    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2996    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2997    break;
2998
2999  case Instruction::PHI: {
3000    const PHINode &PN = cast<PHINode>(I);
3001    Code = bitc::FUNC_CODE_INST_PHI;
3002    // With the newer instruction encoding, forward references could give
3003    // negative valued IDs.  This is most common for PHIs, so we use
3004    // signed VBRs.
3005    SmallVector<uint64_t, 128> Vals64;
3006    Vals64.push_back(VE.getTypeID(PN.getType()));
3007    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3008      pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3009      Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3010    }
3011
3012    uint64_t Flags = getOptimizationFlags(&I);
3013    if (Flags != 0)
3014      Vals64.push_back(Flags);
3015
3016    // Emit a Vals64 vector and exit.
3017    Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3018    Vals64.clear();
3019    return;
3020  }
3021
3022  case Instruction::LandingPad: {
3023    const LandingPadInst &LP = cast<LandingPadInst>(I);
3024    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3025    Vals.push_back(VE.getTypeID(LP.getType()));
3026    Vals.push_back(LP.isCleanup());
3027    Vals.push_back(LP.getNumClauses());
3028    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3029      if (LP.isCatch(I))
3030        Vals.push_back(LandingPadInst::Catch);
3031      else
3032        Vals.push_back(LandingPadInst::Filter);
3033      pushValueAndType(LP.getClause(I), InstID, Vals);
3034    }
3035    break;
3036  }
3037
3038  case Instruction::Alloca: {
3039    Code = bitc::FUNC_CODE_INST_ALLOCA;
3040    const AllocaInst &AI = cast<AllocaInst>(I);
3041    Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3042    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3043    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3044    using APV = AllocaPackedValues;
3045    unsigned Record = 0;
3046    Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign()));
3047    Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3048    Bitfield::set<APV::ExplicitType>(Record, true);
3049    Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3050    Vals.push_back(Record);
3051    break;
3052  }
3053
3054  case Instruction::Load:
3055    if (cast<LoadInst>(I).isAtomic()) {
3056      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3057      pushValueAndType(I.getOperand(0), InstID, Vals);
3058    } else {
3059      Code = bitc::FUNC_CODE_INST_LOAD;
3060      if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3061        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3062    }
3063    Vals.push_back(VE.getTypeID(I.getType()));
3064    Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3065    Vals.push_back(cast<LoadInst>(I).isVolatile());
3066    if (cast<LoadInst>(I).isAtomic()) {
3067      Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3068      Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3069    }
3070    break;
3071  case Instruction::Store:
3072    if (cast<StoreInst>(I).isAtomic())
3073      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3074    else
3075      Code = bitc::FUNC_CODE_INST_STORE;
3076    pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3077    pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3078    Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3079    Vals.push_back(cast<StoreInst>(I).isVolatile());
3080    if (cast<StoreInst>(I).isAtomic()) {
3081      Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3082      Vals.push_back(
3083          getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3084    }
3085    break;
3086  case Instruction::AtomicCmpXchg:
3087    Code = bitc::FUNC_CODE_INST_CMPXCHG;
3088    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3089    pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3090    pushValue(I.getOperand(2), InstID, Vals);        // newval.
3091    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3092    Vals.push_back(
3093        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3094    Vals.push_back(
3095        getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3096    Vals.push_back(
3097        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3098    Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3099    Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3100    break;
3101  case Instruction::AtomicRMW:
3102    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3103    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3104    pushValue(I.getOperand(1), InstID, Vals);        // val.
3105    Vals.push_back(
3106        getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3107    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3108    Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3109    Vals.push_back(
3110        getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3111    Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3112    break;
3113  case Instruction::Fence:
3114    Code = bitc::FUNC_CODE_INST_FENCE;
3115    Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3116    Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3117    break;
3118  case Instruction::Call: {
3119    const CallInst &CI = cast<CallInst>(I);
3120    FunctionType *FTy = CI.getFunctionType();
3121
3122    if (CI.hasOperandBundles())
3123      writeOperandBundles(CI, InstID);
3124
3125    Code = bitc::FUNC_CODE_INST_CALL;
3126
3127    Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3128
3129    unsigned Flags = getOptimizationFlags(&I);
3130    Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3131                   unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3132                   unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3133                   1 << bitc::CALL_EXPLICIT_TYPE |
3134                   unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3135                   unsigned(Flags != 0) << bitc::CALL_FMF);
3136    if (Flags != 0)
3137      Vals.push_back(Flags);
3138
3139    Vals.push_back(VE.getTypeID(FTy));
3140    pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3141
3142    // Emit value #'s for the fixed parameters.
3143    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3144      // Check for labels (can happen with asm labels).
3145      if (FTy->getParamType(i)->isLabelTy())
3146        Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3147      else
3148        pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3149    }
3150
3151    // Emit type/value pairs for varargs params.
3152    if (FTy->isVarArg()) {
3153      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
3154           i != e; ++i)
3155        pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3156    }
3157    break;
3158  }
3159  case Instruction::VAArg:
3160    Code = bitc::FUNC_CODE_INST_VAARG;
3161    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3162    pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3163    Vals.push_back(VE.getTypeID(I.getType())); // restype.
3164    break;
3165  case Instruction::Freeze:
3166    Code = bitc::FUNC_CODE_INST_FREEZE;
3167    pushValueAndType(I.getOperand(0), InstID, Vals);
3168    break;
3169  }
3170
3171  Stream.EmitRecord(Code, Vals, AbbrevToUse);
3172  Vals.clear();
3173}
3174
3175/// Write a GlobalValue VST to the module. The purpose of this data structure is
3176/// to allow clients to efficiently find the function body.
3177void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3178  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3179  // Get the offset of the VST we are writing, and backpatch it into
3180  // the VST forward declaration record.
3181  uint64_t VSTOffset = Stream.GetCurrentBitNo();
3182  // The BitcodeStartBit was the stream offset of the identification block.
3183  VSTOffset -= bitcodeStartBit();
3184  assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3185  // Note that we add 1 here because the offset is relative to one word
3186  // before the start of the identification block, which was historically
3187  // always the start of the regular bitcode header.
3188  Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3189
3190  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3191
3192  auto Abbv = std::make_shared<BitCodeAbbrev>();
3193  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3194  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3195  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3196  unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3197
3198  for (const Function &F : M) {
3199    uint64_t Record[2];
3200
3201    if (F.isDeclaration())
3202      continue;
3203
3204    Record[0] = VE.getValueID(&F);
3205
3206    // Save the word offset of the function (from the start of the
3207    // actual bitcode written to the stream).
3208    uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3209    assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3210    // Note that we add 1 here because the offset is relative to one word
3211    // before the start of the identification block, which was historically
3212    // always the start of the regular bitcode header.
3213    Record[1] = BitcodeIndex / 32 + 1;
3214
3215    Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3216  }
3217
3218  Stream.ExitBlock();
3219}
3220
3221/// Emit names for arguments, instructions and basic blocks in a function.
3222void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3223    const ValueSymbolTable &VST) {
3224  if (VST.empty())
3225    return;
3226
3227  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3228
3229  // FIXME: Set up the abbrev, we know how many values there are!
3230  // FIXME: We know if the type names can use 7-bit ascii.
3231  SmallVector<uint64_t, 64> NameVals;
3232
3233  for (const ValueName &Name : VST) {
3234    // Figure out the encoding to use for the name.
3235    StringEncoding Bits = getStringEncoding(Name.getKey());
3236
3237    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3238    NameVals.push_back(VE.getValueID(Name.getValue()));
3239
3240    // VST_CODE_ENTRY:   [valueid, namechar x N]
3241    // VST_CODE_BBENTRY: [bbid, namechar x N]
3242    unsigned Code;
3243    if (isa<BasicBlock>(Name.getValue())) {
3244      Code = bitc::VST_CODE_BBENTRY;
3245      if (Bits == SE_Char6)
3246        AbbrevToUse = VST_BBENTRY_6_ABBREV;
3247    } else {
3248      Code = bitc::VST_CODE_ENTRY;
3249      if (Bits == SE_Char6)
3250        AbbrevToUse = VST_ENTRY_6_ABBREV;
3251      else if (Bits == SE_Fixed7)
3252        AbbrevToUse = VST_ENTRY_7_ABBREV;
3253    }
3254
3255    for (const auto P : Name.getKey())
3256      NameVals.push_back((unsigned char)P);
3257
3258    // Emit the finished record.
3259    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3260    NameVals.clear();
3261  }
3262
3263  Stream.ExitBlock();
3264}
3265
3266void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3267  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3268  unsigned Code;
3269  if (isa<BasicBlock>(Order.V))
3270    Code = bitc::USELIST_CODE_BB;
3271  else
3272    Code = bitc::USELIST_CODE_DEFAULT;
3273
3274  SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3275  Record.push_back(VE.getValueID(Order.V));
3276  Stream.EmitRecord(Code, Record);
3277}
3278
3279void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3280  assert(VE.shouldPreserveUseListOrder() &&
3281         "Expected to be preserving use-list order");
3282
3283  auto hasMore = [&]() {
3284    return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3285  };
3286  if (!hasMore())
3287    // Nothing to do.
3288    return;
3289
3290  Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3291  while (hasMore()) {
3292    writeUseList(std::move(VE.UseListOrders.back()));
3293    VE.UseListOrders.pop_back();
3294  }
3295  Stream.ExitBlock();
3296}
3297
3298/// Emit a function body to the module stream.
3299void ModuleBitcodeWriter::writeFunction(
3300    const Function &F,
3301    DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3302  // Save the bitcode index of the start of this function block for recording
3303  // in the VST.
3304  FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3305
3306  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3307  VE.incorporateFunction(F);
3308
3309  SmallVector<unsigned, 64> Vals;
3310
3311  // Emit the number of basic blocks, so the reader can create them ahead of
3312  // time.
3313  Vals.push_back(VE.getBasicBlocks().size());
3314  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3315  Vals.clear();
3316
3317  // If there are function-local constants, emit them now.
3318  unsigned CstStart, CstEnd;
3319  VE.getFunctionConstantRange(CstStart, CstEnd);
3320  writeConstants(CstStart, CstEnd, false);
3321
3322  // If there is function-local metadata, emit it now.
3323  writeFunctionMetadata(F);
3324
3325  // Keep a running idea of what the instruction ID is.
3326  unsigned InstID = CstEnd;
3327
3328  bool NeedsMetadataAttachment = F.hasMetadata();
3329
3330  DILocation *LastDL = nullptr;
3331  // Finally, emit all the instructions, in order.
3332  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3333    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3334         I != E; ++I) {
3335      writeInstruction(*I, InstID, Vals);
3336
3337      if (!I->getType()->isVoidTy())
3338        ++InstID;
3339
3340      // If the instruction has metadata, write a metadata attachment later.
3341      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3342
3343      // If the instruction has a debug location, emit it.
3344      DILocation *DL = I->getDebugLoc();
3345      if (!DL)
3346        continue;
3347
3348      if (DL == LastDL) {
3349        // Just repeat the same debug loc as last time.
3350        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3351        continue;
3352      }
3353
3354      Vals.push_back(DL->getLine());
3355      Vals.push_back(DL->getColumn());
3356      Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3357      Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3358      Vals.push_back(DL->isImplicitCode());
3359      Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3360      Vals.clear();
3361
3362      LastDL = DL;
3363    }
3364
3365  // Emit names for all the instructions etc.
3366  if (auto *Symtab = F.getValueSymbolTable())
3367    writeFunctionLevelValueSymbolTable(*Symtab);
3368
3369  if (NeedsMetadataAttachment)
3370    writeFunctionMetadataAttachment(F);
3371  if (VE.shouldPreserveUseListOrder())
3372    writeUseListBlock(&F);
3373  VE.purgeFunction();
3374  Stream.ExitBlock();
3375}
3376
3377// Emit blockinfo, which defines the standard abbreviations etc.
3378void ModuleBitcodeWriter::writeBlockInfo() {
3379  // We only want to emit block info records for blocks that have multiple
3380  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3381  // Other blocks can define their abbrevs inline.
3382  Stream.EnterBlockInfoBlock();
3383
3384  { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3385    auto Abbv = std::make_shared<BitCodeAbbrev>();
3386    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3387    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3388    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3389    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3390    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3391        VST_ENTRY_8_ABBREV)
3392      llvm_unreachable("Unexpected abbrev ordering!");
3393  }
3394
3395  { // 7-bit fixed width VST_CODE_ENTRY strings.
3396    auto Abbv = std::make_shared<BitCodeAbbrev>();
3397    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3398    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3399    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3400    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3401    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3402        VST_ENTRY_7_ABBREV)
3403      llvm_unreachable("Unexpected abbrev ordering!");
3404  }
3405  { // 6-bit char6 VST_CODE_ENTRY strings.
3406    auto Abbv = std::make_shared<BitCodeAbbrev>();
3407    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3408    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3409    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3410    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3411    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3412        VST_ENTRY_6_ABBREV)
3413      llvm_unreachable("Unexpected abbrev ordering!");
3414  }
3415  { // 6-bit char6 VST_CODE_BBENTRY strings.
3416    auto Abbv = std::make_shared<BitCodeAbbrev>();
3417    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3418    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3419    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3420    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3421    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3422        VST_BBENTRY_6_ABBREV)
3423      llvm_unreachable("Unexpected abbrev ordering!");
3424  }
3425
3426  { // SETTYPE abbrev for CONSTANTS_BLOCK.
3427    auto Abbv = std::make_shared<BitCodeAbbrev>();
3428    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3429    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3430                              VE.computeBitsRequiredForTypeIndicies()));
3431    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3432        CONSTANTS_SETTYPE_ABBREV)
3433      llvm_unreachable("Unexpected abbrev ordering!");
3434  }
3435
3436  { // INTEGER abbrev for CONSTANTS_BLOCK.
3437    auto Abbv = std::make_shared<BitCodeAbbrev>();
3438    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3439    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3440    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3441        CONSTANTS_INTEGER_ABBREV)
3442      llvm_unreachable("Unexpected abbrev ordering!");
3443  }
3444
3445  { // CE_CAST abbrev for CONSTANTS_BLOCK.
3446    auto Abbv = std::make_shared<BitCodeAbbrev>();
3447    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3448    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3449    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3450                              VE.computeBitsRequiredForTypeIndicies()));
3451    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3452
3453    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3454        CONSTANTS_CE_CAST_Abbrev)
3455      llvm_unreachable("Unexpected abbrev ordering!");
3456  }
3457  { // NULL abbrev for CONSTANTS_BLOCK.
3458    auto Abbv = std::make_shared<BitCodeAbbrev>();
3459    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3460    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3461        CONSTANTS_NULL_Abbrev)
3462      llvm_unreachable("Unexpected abbrev ordering!");
3463  }
3464
3465  // FIXME: This should only use space for first class types!
3466
3467  { // INST_LOAD abbrev for FUNCTION_BLOCK.
3468    auto Abbv = std::make_shared<BitCodeAbbrev>();
3469    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3470    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3471    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3472                              VE.computeBitsRequiredForTypeIndicies()));
3473    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3474    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3475    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3476        FUNCTION_INST_LOAD_ABBREV)
3477      llvm_unreachable("Unexpected abbrev ordering!");
3478  }
3479  { // INST_UNOP abbrev for FUNCTION_BLOCK.
3480    auto Abbv = std::make_shared<BitCodeAbbrev>();
3481    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3482    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3483    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3484    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3485        FUNCTION_INST_UNOP_ABBREV)
3486      llvm_unreachable("Unexpected abbrev ordering!");
3487  }
3488  { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3489    auto Abbv = std::make_shared<BitCodeAbbrev>();
3490    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3491    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3492    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3493    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3494    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3495        FUNCTION_INST_UNOP_FLAGS_ABBREV)
3496      llvm_unreachable("Unexpected abbrev ordering!");
3497  }
3498  { // INST_BINOP abbrev for FUNCTION_BLOCK.
3499    auto Abbv = std::make_shared<BitCodeAbbrev>();
3500    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3501    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3502    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3503    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3504    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3505        FUNCTION_INST_BINOP_ABBREV)
3506      llvm_unreachable("Unexpected abbrev ordering!");
3507  }
3508  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3509    auto Abbv = std::make_shared<BitCodeAbbrev>();
3510    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3511    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3512    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3513    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3514    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3515    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3516        FUNCTION_INST_BINOP_FLAGS_ABBREV)
3517      llvm_unreachable("Unexpected abbrev ordering!");
3518  }
3519  { // INST_CAST abbrev for FUNCTION_BLOCK.
3520    auto Abbv = std::make_shared<BitCodeAbbrev>();
3521    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3522    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3523    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3524                              VE.computeBitsRequiredForTypeIndicies()));
3525    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3526    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3527        FUNCTION_INST_CAST_ABBREV)
3528      llvm_unreachable("Unexpected abbrev ordering!");
3529  }
3530
3531  { // INST_RET abbrev for FUNCTION_BLOCK.
3532    auto Abbv = std::make_shared<BitCodeAbbrev>();
3533    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3534    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3535        FUNCTION_INST_RET_VOID_ABBREV)
3536      llvm_unreachable("Unexpected abbrev ordering!");
3537  }
3538  { // INST_RET abbrev for FUNCTION_BLOCK.
3539    auto Abbv = std::make_shared<BitCodeAbbrev>();
3540    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3541    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3542    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3543        FUNCTION_INST_RET_VAL_ABBREV)
3544      llvm_unreachable("Unexpected abbrev ordering!");
3545  }
3546  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3547    auto Abbv = std::make_shared<BitCodeAbbrev>();
3548    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3549    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3550        FUNCTION_INST_UNREACHABLE_ABBREV)
3551      llvm_unreachable("Unexpected abbrev ordering!");
3552  }
3553  {
3554    auto Abbv = std::make_shared<BitCodeAbbrev>();
3555    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3556    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3557    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3558                              Log2_32_Ceil(VE.getTypes().size() + 1)));
3559    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3560    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3561    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3562        FUNCTION_INST_GEP_ABBREV)
3563      llvm_unreachable("Unexpected abbrev ordering!");
3564  }
3565
3566  Stream.ExitBlock();
3567}
3568
3569/// Write the module path strings, currently only used when generating
3570/// a combined index file.
3571void IndexBitcodeWriter::writeModStrings() {
3572  Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3573
3574  // TODO: See which abbrev sizes we actually need to emit
3575
3576  // 8-bit fixed-width MST_ENTRY strings.
3577  auto Abbv = std::make_shared<BitCodeAbbrev>();
3578  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3579  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3580  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3581  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3582  unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3583
3584  // 7-bit fixed width MST_ENTRY strings.
3585  Abbv = std::make_shared<BitCodeAbbrev>();
3586  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3587  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3588  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3589  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3590  unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3591
3592  // 6-bit char6 MST_ENTRY strings.
3593  Abbv = std::make_shared<BitCodeAbbrev>();
3594  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3595  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3596  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3597  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3598  unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3599
3600  // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3601  Abbv = std::make_shared<BitCodeAbbrev>();
3602  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3603  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3604  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3605  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3606  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3607  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3608  unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3609
3610  SmallVector<unsigned, 64> Vals;
3611  forEachModule(
3612      [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3613        StringRef Key = MPSE.getKey();
3614        const auto &Value = MPSE.getValue();
3615        StringEncoding Bits = getStringEncoding(Key);
3616        unsigned AbbrevToUse = Abbrev8Bit;
3617        if (Bits == SE_Char6)
3618          AbbrevToUse = Abbrev6Bit;
3619        else if (Bits == SE_Fixed7)
3620          AbbrevToUse = Abbrev7Bit;
3621
3622        Vals.push_back(Value.first);
3623        Vals.append(Key.begin(), Key.end());
3624
3625        // Emit the finished record.
3626        Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3627
3628        // Emit an optional hash for the module now
3629        const auto &Hash = Value.second;
3630        if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3631          Vals.assign(Hash.begin(), Hash.end());
3632          // Emit the hash record.
3633          Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3634        }
3635
3636        Vals.clear();
3637      });
3638  Stream.ExitBlock();
3639}
3640
3641/// Write the function type metadata related records that need to appear before
3642/// a function summary entry (whether per-module or combined).
3643template <typename Fn>
3644static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3645                                             FunctionSummary *FS,
3646                                             Fn GetValueID) {
3647  if (!FS->type_tests().empty())
3648    Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3649
3650  SmallVector<uint64_t, 64> Record;
3651
3652  auto WriteVFuncIdVec = [&](uint64_t Ty,
3653                             ArrayRef<FunctionSummary::VFuncId> VFs) {
3654    if (VFs.empty())
3655      return;
3656    Record.clear();
3657    for (auto &VF : VFs) {
3658      Record.push_back(VF.GUID);
3659      Record.push_back(VF.Offset);
3660    }
3661    Stream.EmitRecord(Ty, Record);
3662  };
3663
3664  WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3665                  FS->type_test_assume_vcalls());
3666  WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3667                  FS->type_checked_load_vcalls());
3668
3669  auto WriteConstVCallVec = [&](uint64_t Ty,
3670                                ArrayRef<FunctionSummary::ConstVCall> VCs) {
3671    for (auto &VC : VCs) {
3672      Record.clear();
3673      Record.push_back(VC.VFunc.GUID);
3674      Record.push_back(VC.VFunc.Offset);
3675      llvm::append_range(Record, VC.Args);
3676      Stream.EmitRecord(Ty, Record);
3677    }
3678  };
3679
3680  WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3681                     FS->type_test_assume_const_vcalls());
3682  WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3683                     FS->type_checked_load_const_vcalls());
3684
3685  auto WriteRange = [&](ConstantRange Range) {
3686    Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3687    assert(Range.getLower().getNumWords() == 1);
3688    assert(Range.getUpper().getNumWords() == 1);
3689    emitSignedInt64(Record, *Range.getLower().getRawData());
3690    emitSignedInt64(Record, *Range.getUpper().getRawData());
3691  };
3692
3693  if (!FS->paramAccesses().empty()) {
3694    Record.clear();
3695    for (auto &Arg : FS->paramAccesses()) {
3696      size_t UndoSize = Record.size();
3697      Record.push_back(Arg.ParamNo);
3698      WriteRange(Arg.Use);
3699      Record.push_back(Arg.Calls.size());
3700      for (auto &Call : Arg.Calls) {
3701        Record.push_back(Call.ParamNo);
3702        Optional<unsigned> ValueID = GetValueID(Call.Callee);
3703        if (!ValueID) {
3704          // If ValueID is unknown we can't drop just this call, we must drop
3705          // entire parameter.
3706          Record.resize(UndoSize);
3707          break;
3708        }
3709        Record.push_back(*ValueID);
3710        WriteRange(Call.Offsets);
3711      }
3712    }
3713    if (!Record.empty())
3714      Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
3715  }
3716}
3717
3718/// Collect type IDs from type tests used by function.
3719static void
3720getReferencedTypeIds(FunctionSummary *FS,
3721                     std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3722  if (!FS->type_tests().empty())
3723    for (auto &TT : FS->type_tests())
3724      ReferencedTypeIds.insert(TT);
3725
3726  auto GetReferencedTypesFromVFuncIdVec =
3727      [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3728        for (auto &VF : VFs)
3729          ReferencedTypeIds.insert(VF.GUID);
3730      };
3731
3732  GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3733  GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3734
3735  auto GetReferencedTypesFromConstVCallVec =
3736      [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3737        for (auto &VC : VCs)
3738          ReferencedTypeIds.insert(VC.VFunc.GUID);
3739      };
3740
3741  GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3742  GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3743}
3744
3745static void writeWholeProgramDevirtResolutionByArg(
3746    SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3747    const WholeProgramDevirtResolution::ByArg &ByArg) {
3748  NameVals.push_back(args.size());
3749  llvm::append_range(NameVals, args);
3750
3751  NameVals.push_back(ByArg.TheKind);
3752  NameVals.push_back(ByArg.Info);
3753  NameVals.push_back(ByArg.Byte);
3754  NameVals.push_back(ByArg.Bit);
3755}
3756
3757static void writeWholeProgramDevirtResolution(
3758    SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3759    uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3760  NameVals.push_back(Id);
3761
3762  NameVals.push_back(Wpd.TheKind);
3763  NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3764  NameVals.push_back(Wpd.SingleImplName.size());
3765
3766  NameVals.push_back(Wpd.ResByArg.size());
3767  for (auto &A : Wpd.ResByArg)
3768    writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3769}
3770
3771static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3772                                     StringTableBuilder &StrtabBuilder,
3773                                     const std::string &Id,
3774                                     const TypeIdSummary &Summary) {
3775  NameVals.push_back(StrtabBuilder.add(Id));
3776  NameVals.push_back(Id.size());
3777
3778  NameVals.push_back(Summary.TTRes.TheKind);
3779  NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3780  NameVals.push_back(Summary.TTRes.AlignLog2);
3781  NameVals.push_back(Summary.TTRes.SizeM1);
3782  NameVals.push_back(Summary.TTRes.BitMask);
3783  NameVals.push_back(Summary.TTRes.InlineBits);
3784
3785  for (auto &W : Summary.WPDRes)
3786    writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3787                                      W.second);
3788}
3789
3790static void writeTypeIdCompatibleVtableSummaryRecord(
3791    SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3792    const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3793    ValueEnumerator &VE) {
3794  NameVals.push_back(StrtabBuilder.add(Id));
3795  NameVals.push_back(Id.size());
3796
3797  for (auto &P : Summary) {
3798    NameVals.push_back(P.AddressPointOffset);
3799    NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3800  }
3801}
3802
3803// Helper to emit a single function summary record.
3804void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3805    SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3806    unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3807    const Function &F) {
3808  NameVals.push_back(ValueID);
3809
3810  FunctionSummary *FS = cast<FunctionSummary>(Summary);
3811
3812  writeFunctionTypeMetadataRecords(
3813      Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> {
3814        return {VE.getValueID(VI.getValue())};
3815      });
3816
3817  auto SpecialRefCnts = FS->specialRefCounts();
3818  NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3819  NameVals.push_back(FS->instCount());
3820  NameVals.push_back(getEncodedFFlags(FS->fflags()));
3821  NameVals.push_back(FS->refs().size());
3822  NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
3823  NameVals.push_back(SpecialRefCnts.second); // worefcnt
3824
3825  for (auto &RI : FS->refs())
3826    NameVals.push_back(VE.getValueID(RI.getValue()));
3827
3828  bool HasProfileData =
3829      F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3830  for (auto &ECI : FS->calls()) {
3831    NameVals.push_back(getValueId(ECI.first));
3832    if (HasProfileData)
3833      NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3834    else if (WriteRelBFToSummary)
3835      NameVals.push_back(ECI.second.RelBlockFreq);
3836  }
3837
3838  unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3839  unsigned Code =
3840      (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3841                      : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3842                                             : bitc::FS_PERMODULE));
3843
3844  // Emit the finished record.
3845  Stream.EmitRecord(Code, NameVals, FSAbbrev);
3846  NameVals.clear();
3847}
3848
3849// Collect the global value references in the given variable's initializer,
3850// and emit them in a summary record.
3851void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3852    const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3853    unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3854  auto VI = Index->getValueInfo(V.getGUID());
3855  if (!VI || VI.getSummaryList().empty()) {
3856    // Only declarations should not have a summary (a declaration might however
3857    // have a summary if the def was in module level asm).
3858    assert(V.isDeclaration());
3859    return;
3860  }
3861  auto *Summary = VI.getSummaryList()[0].get();
3862  NameVals.push_back(VE.getValueID(&V));
3863  GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3864  NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3865  NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3866
3867  auto VTableFuncs = VS->vTableFuncs();
3868  if (!VTableFuncs.empty())
3869    NameVals.push_back(VS->refs().size());
3870
3871  unsigned SizeBeforeRefs = NameVals.size();
3872  for (auto &RI : VS->refs())
3873    NameVals.push_back(VE.getValueID(RI.getValue()));
3874  // Sort the refs for determinism output, the vector returned by FS->refs() has
3875  // been initialized from a DenseSet.
3876  llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
3877
3878  if (VTableFuncs.empty())
3879    Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3880                      FSModRefsAbbrev);
3881  else {
3882    // VTableFuncs pairs should already be sorted by offset.
3883    for (auto &P : VTableFuncs) {
3884      NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3885      NameVals.push_back(P.VTableOffset);
3886    }
3887
3888    Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3889                      FSModVTableRefsAbbrev);
3890  }
3891  NameVals.clear();
3892}
3893
3894/// Emit the per-module summary section alongside the rest of
3895/// the module's bitcode.
3896void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3897  // By default we compile with ThinLTO if the module has a summary, but the
3898  // client can request full LTO with a module flag.
3899  bool IsThinLTO = true;
3900  if (auto *MD =
3901          mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3902    IsThinLTO = MD->getZExtValue();
3903  Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3904                                 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3905                       4);
3906
3907  Stream.EmitRecord(
3908      bitc::FS_VERSION,
3909      ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3910
3911  // Write the index flags.
3912  uint64_t Flags = 0;
3913  // Bits 1-3 are set only in the combined index, skip them.
3914  if (Index->enableSplitLTOUnit())
3915    Flags |= 0x8;
3916  Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3917
3918  if (Index->begin() == Index->end()) {
3919    Stream.ExitBlock();
3920    return;
3921  }
3922
3923  for (const auto &GVI : valueIds()) {
3924    Stream.EmitRecord(bitc::FS_VALUE_GUID,
3925                      ArrayRef<uint64_t>{GVI.second, GVI.first});
3926  }
3927
3928  // Abbrev for FS_PERMODULE_PROFILE.
3929  auto Abbv = std::make_shared<BitCodeAbbrev>();
3930  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3931  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3932  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3933  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3934  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3935  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3936  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3937  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3938  // numrefs x valueid, n x (valueid, hotness)
3939  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3940  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3941  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3942
3943  // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3944  Abbv = std::make_shared<BitCodeAbbrev>();
3945  if (WriteRelBFToSummary)
3946    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3947  else
3948    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3949  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3950  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3951  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3952  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3953  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3954  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3955  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3956  // numrefs x valueid, n x (valueid [, rel_block_freq])
3957  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3958  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3959  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3960
3961  // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3962  Abbv = std::make_shared<BitCodeAbbrev>();
3963  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3964  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3965  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3966  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3967  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3968  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3969
3970  // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3971  Abbv = std::make_shared<BitCodeAbbrev>();
3972  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
3973  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3974  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3975  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3976  // numrefs x valueid, n x (valueid , offset)
3977  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3978  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3979  unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3980
3981  // Abbrev for FS_ALIAS.
3982  Abbv = std::make_shared<BitCodeAbbrev>();
3983  Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3984  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3985  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3986  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3987  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3988
3989  // Abbrev for FS_TYPE_ID_METADATA
3990  Abbv = std::make_shared<BitCodeAbbrev>();
3991  Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
3992  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
3993  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
3994  // n x (valueid , offset)
3995  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3996  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3997  unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3998
3999  SmallVector<uint64_t, 64> NameVals;
4000  // Iterate over the list of functions instead of the Index to
4001  // ensure the ordering is stable.
4002  for (const Function &F : M) {
4003    // Summary emission does not support anonymous functions, they have to
4004    // renamed using the anonymous function renaming pass.
4005    if (!F.hasName())
4006      report_fatal_error("Unexpected anonymous function when writing summary");
4007
4008    ValueInfo VI = Index->getValueInfo(F.getGUID());
4009    if (!VI || VI.getSummaryList().empty()) {
4010      // Only declarations should not have a summary (a declaration might
4011      // however have a summary if the def was in module level asm).
4012      assert(F.isDeclaration());
4013      continue;
4014    }
4015    auto *Summary = VI.getSummaryList()[0].get();
4016    writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
4017                                        FSCallsAbbrev, FSCallsProfileAbbrev, F);
4018  }
4019
4020  // Capture references from GlobalVariable initializers, which are outside
4021  // of a function scope.
4022  for (const GlobalVariable &G : M.globals())
4023    writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4024                               FSModVTableRefsAbbrev);
4025
4026  for (const GlobalAlias &A : M.aliases()) {
4027    auto *Aliasee = A.getBaseObject();
4028    if (!Aliasee->hasName())
4029      // Nameless function don't have an entry in the summary, skip it.
4030      continue;
4031    auto AliasId = VE.getValueID(&A);
4032    auto AliaseeId = VE.getValueID(Aliasee);
4033    NameVals.push_back(AliasId);
4034    auto *Summary = Index->getGlobalValueSummary(A);
4035    AliasSummary *AS = cast<AliasSummary>(Summary);
4036    NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4037    NameVals.push_back(AliaseeId);
4038    Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4039    NameVals.clear();
4040  }
4041
4042  for (auto &S : Index->typeIdCompatibleVtableMap()) {
4043    writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4044                                             S.second, VE);
4045    Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4046                      TypeIdCompatibleVtableAbbrev);
4047    NameVals.clear();
4048  }
4049
4050  Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4051                    ArrayRef<uint64_t>{Index->getBlockCount()});
4052
4053  Stream.ExitBlock();
4054}
4055
4056/// Emit the combined summary section into the combined index file.
4057void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4058  Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
4059  Stream.EmitRecord(
4060      bitc::FS_VERSION,
4061      ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4062
4063  // Write the index flags.
4064  Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4065
4066  for (const auto &GVI : valueIds()) {
4067    Stream.EmitRecord(bitc::FS_VALUE_GUID,
4068                      ArrayRef<uint64_t>{GVI.second, GVI.first});
4069  }
4070
4071  // Abbrev for FS_COMBINED.
4072  auto Abbv = std::make_shared<BitCodeAbbrev>();
4073  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
4074  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4075  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4076  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4077  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4078  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4079  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4080  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4081  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4082  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4083  // numrefs x valueid, n x (valueid)
4084  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4085  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4086  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4087
4088  // Abbrev for FS_COMBINED_PROFILE.
4089  Abbv = std::make_shared<BitCodeAbbrev>();
4090  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4091  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4092  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4093  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4094  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4095  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4096  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4097  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4098  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4099  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4100  // numrefs x valueid, n x (valueid, hotness)
4101  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4102  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4103  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4104
4105  // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4106  Abbv = std::make_shared<BitCodeAbbrev>();
4107  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4108  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4109  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4110  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4111  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4112  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4113  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4114
4115  // Abbrev for FS_COMBINED_ALIAS.
4116  Abbv = std::make_shared<BitCodeAbbrev>();
4117  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4118  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4119  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4120  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4121  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4122  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4123
4124  // The aliases are emitted as a post-pass, and will point to the value
4125  // id of the aliasee. Save them in a vector for post-processing.
4126  SmallVector<AliasSummary *, 64> Aliases;
4127
4128  // Save the value id for each summary for alias emission.
4129  DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4130
4131  SmallVector<uint64_t, 64> NameVals;
4132
4133  // Set that will be populated during call to writeFunctionTypeMetadataRecords
4134  // with the type ids referenced by this index file.
4135  std::set<GlobalValue::GUID> ReferencedTypeIds;
4136
4137  // For local linkage, we also emit the original name separately
4138  // immediately after the record.
4139  auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4140    if (!GlobalValue::isLocalLinkage(S.linkage()))
4141      return;
4142    NameVals.push_back(S.getOriginalName());
4143    Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4144    NameVals.clear();
4145  };
4146
4147  std::set<GlobalValue::GUID> DefOrUseGUIDs;
4148  forEachSummary([&](GVInfo I, bool IsAliasee) {
4149    GlobalValueSummary *S = I.second;
4150    assert(S);
4151    DefOrUseGUIDs.insert(I.first);
4152    for (const ValueInfo &VI : S->refs())
4153      DefOrUseGUIDs.insert(VI.getGUID());
4154
4155    auto ValueId = getValueId(I.first);
4156    assert(ValueId);
4157    SummaryToValueIdMap[S] = *ValueId;
4158
4159    // If this is invoked for an aliasee, we want to record the above
4160    // mapping, but then not emit a summary entry (if the aliasee is
4161    // to be imported, we will invoke this separately with IsAliasee=false).
4162    if (IsAliasee)
4163      return;
4164
4165    if (auto *AS = dyn_cast<AliasSummary>(S)) {
4166      // Will process aliases as a post-pass because the reader wants all
4167      // global to be loaded first.
4168      Aliases.push_back(AS);
4169      return;
4170    }
4171
4172    if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4173      NameVals.push_back(*ValueId);
4174      NameVals.push_back(Index.getModuleId(VS->modulePath()));
4175      NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4176      NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4177      for (auto &RI : VS->refs()) {
4178        auto RefValueId = getValueId(RI.getGUID());
4179        if (!RefValueId)
4180          continue;
4181        NameVals.push_back(*RefValueId);
4182      }
4183
4184      // Emit the finished record.
4185      Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4186                        FSModRefsAbbrev);
4187      NameVals.clear();
4188      MaybeEmitOriginalName(*S);
4189      return;
4190    }
4191
4192    auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> {
4193      GlobalValue::GUID GUID = VI.getGUID();
4194      Optional<unsigned> CallValueId = getValueId(GUID);
4195      if (CallValueId)
4196        return CallValueId;
4197      // For SamplePGO, the indirect call targets for local functions will
4198      // have its original name annotated in profile. We try to find the
4199      // corresponding PGOFuncName as the GUID.
4200      GUID = Index.getGUIDFromOriginalID(GUID);
4201      if (!GUID)
4202        return None;
4203      CallValueId = getValueId(GUID);
4204      if (!CallValueId)
4205        return None;
4206      // The mapping from OriginalId to GUID may return a GUID
4207      // that corresponds to a static variable. Filter it out here.
4208      // This can happen when
4209      // 1) There is a call to a library function which does not have
4210      // a CallValidId;
4211      // 2) There is a static variable with the  OriginalGUID identical
4212      // to the GUID of the library function in 1);
4213      // When this happens, the logic for SamplePGO kicks in and
4214      // the static variable in 2) will be found, which needs to be
4215      // filtered out.
4216      auto *GVSum = Index.getGlobalValueSummary(GUID, false);
4217      if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
4218        return None;
4219      return CallValueId;
4220    };
4221
4222    auto *FS = cast<FunctionSummary>(S);
4223    writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4224    getReferencedTypeIds(FS, ReferencedTypeIds);
4225
4226    NameVals.push_back(*ValueId);
4227    NameVals.push_back(Index.getModuleId(FS->modulePath()));
4228    NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4229    NameVals.push_back(FS->instCount());
4230    NameVals.push_back(getEncodedFFlags(FS->fflags()));
4231    NameVals.push_back(FS->entryCount());
4232
4233    // Fill in below
4234    NameVals.push_back(0); // numrefs
4235    NameVals.push_back(0); // rorefcnt
4236    NameVals.push_back(0); // worefcnt
4237
4238    unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4239    for (auto &RI : FS->refs()) {
4240      auto RefValueId = getValueId(RI.getGUID());
4241      if (!RefValueId)
4242        continue;
4243      NameVals.push_back(*RefValueId);
4244      if (RI.isReadOnly())
4245        RORefCnt++;
4246      else if (RI.isWriteOnly())
4247        WORefCnt++;
4248      Count++;
4249    }
4250    NameVals[6] = Count;
4251    NameVals[7] = RORefCnt;
4252    NameVals[8] = WORefCnt;
4253
4254    bool HasProfileData = false;
4255    for (auto &EI : FS->calls()) {
4256      HasProfileData |=
4257          EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4258      if (HasProfileData)
4259        break;
4260    }
4261
4262    for (auto &EI : FS->calls()) {
4263      // If this GUID doesn't have a value id, it doesn't have a function
4264      // summary and we don't need to record any calls to it.
4265      Optional<unsigned> CallValueId = GetValueId(EI.first);
4266      if (!CallValueId)
4267        continue;
4268      NameVals.push_back(*CallValueId);
4269      if (HasProfileData)
4270        NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4271    }
4272
4273    unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4274    unsigned Code =
4275        (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4276
4277    // Emit the finished record.
4278    Stream.EmitRecord(Code, NameVals, FSAbbrev);
4279    NameVals.clear();
4280    MaybeEmitOriginalName(*S);
4281  });
4282
4283  for (auto *AS : Aliases) {
4284    auto AliasValueId = SummaryToValueIdMap[AS];
4285    assert(AliasValueId);
4286    NameVals.push_back(AliasValueId);
4287    NameVals.push_back(Index.getModuleId(AS->modulePath()));
4288    NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4289    auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4290    assert(AliaseeValueId);
4291    NameVals.push_back(AliaseeValueId);
4292
4293    // Emit the finished record.
4294    Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4295    NameVals.clear();
4296    MaybeEmitOriginalName(*AS);
4297
4298    if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4299      getReferencedTypeIds(FS, ReferencedTypeIds);
4300  }
4301
4302  if (!Index.cfiFunctionDefs().empty()) {
4303    for (auto &S : Index.cfiFunctionDefs()) {
4304      if (DefOrUseGUIDs.count(
4305              GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4306        NameVals.push_back(StrtabBuilder.add(S));
4307        NameVals.push_back(S.size());
4308      }
4309    }
4310    if (!NameVals.empty()) {
4311      Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4312      NameVals.clear();
4313    }
4314  }
4315
4316  if (!Index.cfiFunctionDecls().empty()) {
4317    for (auto &S : Index.cfiFunctionDecls()) {
4318      if (DefOrUseGUIDs.count(
4319              GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4320        NameVals.push_back(StrtabBuilder.add(S));
4321        NameVals.push_back(S.size());
4322      }
4323    }
4324    if (!NameVals.empty()) {
4325      Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4326      NameVals.clear();
4327    }
4328  }
4329
4330  // Walk the GUIDs that were referenced, and write the
4331  // corresponding type id records.
4332  for (auto &T : ReferencedTypeIds) {
4333    auto TidIter = Index.typeIds().equal_range(T);
4334    for (auto It = TidIter.first; It != TidIter.second; ++It) {
4335      writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4336                               It->second.second);
4337      Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4338      NameVals.clear();
4339    }
4340  }
4341
4342  Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4343                    ArrayRef<uint64_t>{Index.getBlockCount()});
4344
4345  Stream.ExitBlock();
4346}
4347
4348/// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4349/// current llvm version, and a record for the epoch number.
4350static void writeIdentificationBlock(BitstreamWriter &Stream) {
4351  Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4352
4353  // Write the "user readable" string identifying the bitcode producer
4354  auto Abbv = std::make_shared<BitCodeAbbrev>();
4355  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4356  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4357  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4358  auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4359  writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4360                    "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4361
4362  // Write the epoch version
4363  Abbv = std::make_shared<BitCodeAbbrev>();
4364  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4365  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4366  auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4367  constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4368  Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4369  Stream.ExitBlock();
4370}
4371
4372void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4373  // Emit the module's hash.
4374  // MODULE_CODE_HASH: [5*i32]
4375  if (GenerateHash) {
4376    uint32_t Vals[5];
4377    Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4378                                    Buffer.size() - BlockStartPos));
4379    StringRef Hash = Hasher.result();
4380    for (int Pos = 0; Pos < 20; Pos += 4) {
4381      Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4382    }
4383
4384    // Emit the finished record.
4385    Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4386
4387    if (ModHash)
4388      // Save the written hash value.
4389      llvm::copy(Vals, std::begin(*ModHash));
4390  }
4391}
4392
4393void ModuleBitcodeWriter::write() {
4394  writeIdentificationBlock(Stream);
4395
4396  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4397  size_t BlockStartPos = Buffer.size();
4398
4399  writeModuleVersion();
4400
4401  // Emit blockinfo, which defines the standard abbreviations etc.
4402  writeBlockInfo();
4403
4404  // Emit information describing all of the types in the module.
4405  writeTypeTable();
4406
4407  // Emit information about attribute groups.
4408  writeAttributeGroupTable();
4409
4410  // Emit information about parameter attributes.
4411  writeAttributeTable();
4412
4413  writeComdats();
4414
4415  // Emit top-level description of module, including target triple, inline asm,
4416  // descriptors for global variables, and function prototype info.
4417  writeModuleInfo();
4418
4419  // Emit constants.
4420  writeModuleConstants();
4421
4422  // Emit metadata kind names.
4423  writeModuleMetadataKinds();
4424
4425  // Emit metadata.
4426  writeModuleMetadata();
4427
4428  // Emit module-level use-lists.
4429  if (VE.shouldPreserveUseListOrder())
4430    writeUseListBlock(nullptr);
4431
4432  writeOperandBundleTags();
4433  writeSyncScopeNames();
4434
4435  // Emit function bodies.
4436  DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4437  for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4438    if (!F->isDeclaration())
4439      writeFunction(*F, FunctionToBitcodeIndex);
4440
4441  // Need to write after the above call to WriteFunction which populates
4442  // the summary information in the index.
4443  if (Index)
4444    writePerModuleGlobalValueSummary();
4445
4446  writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4447
4448  writeModuleHash(BlockStartPos);
4449
4450  Stream.ExitBlock();
4451}
4452
4453static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4454                               uint32_t &Position) {
4455  support::endian::write32le(&Buffer[Position], Value);
4456  Position += 4;
4457}
4458
4459/// If generating a bc file on darwin, we have to emit a
4460/// header and trailer to make it compatible with the system archiver.  To do
4461/// this we emit the following header, and then emit a trailer that pads the
4462/// file out to be a multiple of 16 bytes.
4463///
4464/// struct bc_header {
4465///   uint32_t Magic;         // 0x0B17C0DE
4466///   uint32_t Version;       // Version, currently always 0.
4467///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4468///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4469///   uint32_t CPUType;       // CPU specifier.
4470///   ... potentially more later ...
4471/// };
4472static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4473                                         const Triple &TT) {
4474  unsigned CPUType = ~0U;
4475
4476  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4477  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4478  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4479  // specific constants here because they are implicitly part of the Darwin ABI.
4480  enum {
4481    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4482    DARWIN_CPU_TYPE_X86        = 7,
4483    DARWIN_CPU_TYPE_ARM        = 12,
4484    DARWIN_CPU_TYPE_POWERPC    = 18
4485  };
4486
4487  Triple::ArchType Arch = TT.getArch();
4488  if (Arch == Triple::x86_64)
4489    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4490  else if (Arch == Triple::x86)
4491    CPUType = DARWIN_CPU_TYPE_X86;
4492  else if (Arch == Triple::ppc)
4493    CPUType = DARWIN_CPU_TYPE_POWERPC;
4494  else if (Arch == Triple::ppc64)
4495    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4496  else if (Arch == Triple::arm || Arch == Triple::thumb)
4497    CPUType = DARWIN_CPU_TYPE_ARM;
4498
4499  // Traditional Bitcode starts after header.
4500  assert(Buffer.size() >= BWH_HeaderSize &&
4501         "Expected header size to be reserved");
4502  unsigned BCOffset = BWH_HeaderSize;
4503  unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4504
4505  // Write the magic and version.
4506  unsigned Position = 0;
4507  writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4508  writeInt32ToBuffer(0, Buffer, Position); // Version.
4509  writeInt32ToBuffer(BCOffset, Buffer, Position);
4510  writeInt32ToBuffer(BCSize, Buffer, Position);
4511  writeInt32ToBuffer(CPUType, Buffer, Position);
4512
4513  // If the file is not a multiple of 16 bytes, insert dummy padding.
4514  while (Buffer.size() & 15)
4515    Buffer.push_back(0);
4516}
4517
4518/// Helper to write the header common to all bitcode files.
4519static void writeBitcodeHeader(BitstreamWriter &Stream) {
4520  // Emit the file header.
4521  Stream.Emit((unsigned)'B', 8);
4522  Stream.Emit((unsigned)'C', 8);
4523  Stream.Emit(0x0, 4);
4524  Stream.Emit(0xC, 4);
4525  Stream.Emit(0xE, 4);
4526  Stream.Emit(0xD, 4);
4527}
4528
4529BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4530    : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4531  writeBitcodeHeader(*Stream);
4532}
4533
4534BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4535
4536void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4537  Stream->EnterSubblock(Block, 3);
4538
4539  auto Abbv = std::make_shared<BitCodeAbbrev>();
4540  Abbv->Add(BitCodeAbbrevOp(Record));
4541  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4542  auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4543
4544  Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4545
4546  Stream->ExitBlock();
4547}
4548
4549void BitcodeWriter::writeSymtab() {
4550  assert(!WroteStrtab && !WroteSymtab);
4551
4552  // If any module has module-level inline asm, we will require a registered asm
4553  // parser for the target so that we can create an accurate symbol table for
4554  // the module.
4555  for (Module *M : Mods) {
4556    if (M->getModuleInlineAsm().empty())
4557      continue;
4558
4559    std::string Err;
4560    const Triple TT(M->getTargetTriple());
4561    const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4562    if (!T || !T->hasMCAsmParser())
4563      return;
4564  }
4565
4566  WroteSymtab = true;
4567  SmallVector<char, 0> Symtab;
4568  // The irsymtab::build function may be unable to create a symbol table if the
4569  // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4570  // table is not required for correctness, but we still want to be able to
4571  // write malformed modules to bitcode files, so swallow the error.
4572  if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4573    consumeError(std::move(E));
4574    return;
4575  }
4576
4577  writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4578            {Symtab.data(), Symtab.size()});
4579}
4580
4581void BitcodeWriter::writeStrtab() {
4582  assert(!WroteStrtab);
4583
4584  std::vector<char> Strtab;
4585  StrtabBuilder.finalizeInOrder();
4586  Strtab.resize(StrtabBuilder.getSize());
4587  StrtabBuilder.write((uint8_t *)Strtab.data());
4588
4589  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4590            {Strtab.data(), Strtab.size()});
4591
4592  WroteStrtab = true;
4593}
4594
4595void BitcodeWriter::copyStrtab(StringRef Strtab) {
4596  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4597  WroteStrtab = true;
4598}
4599
4600void BitcodeWriter::writeModule(const Module &M,
4601                                bool ShouldPreserveUseListOrder,
4602                                const ModuleSummaryIndex *Index,
4603                                bool GenerateHash, ModuleHash *ModHash) {
4604  assert(!WroteStrtab);
4605
4606  // The Mods vector is used by irsymtab::build, which requires non-const
4607  // Modules in case it needs to materialize metadata. But the bitcode writer
4608  // requires that the module is materialized, so we can cast to non-const here,
4609  // after checking that it is in fact materialized.
4610  assert(M.isMaterialized());
4611  Mods.push_back(const_cast<Module *>(&M));
4612
4613  ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4614                                   ShouldPreserveUseListOrder, Index,
4615                                   GenerateHash, ModHash);
4616  ModuleWriter.write();
4617}
4618
4619void BitcodeWriter::writeIndex(
4620    const ModuleSummaryIndex *Index,
4621    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4622  IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4623                                 ModuleToSummariesForIndex);
4624  IndexWriter.write();
4625}
4626
4627/// Write the specified module to the specified output stream.
4628void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4629                              bool ShouldPreserveUseListOrder,
4630                              const ModuleSummaryIndex *Index,
4631                              bool GenerateHash, ModuleHash *ModHash) {
4632  SmallVector<char, 0> Buffer;
4633  Buffer.reserve(256*1024);
4634
4635  // If this is darwin or another generic macho target, reserve space for the
4636  // header.
4637  Triple TT(M.getTargetTriple());
4638  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4639    Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4640
4641  BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
4642  Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4643                     ModHash);
4644  Writer.writeSymtab();
4645  Writer.writeStrtab();
4646
4647  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4648    emitDarwinBCHeaderAndTrailer(Buffer, TT);
4649
4650  // Write the generated bitstream to "Out".
4651  if (!Buffer.empty())
4652    Out.write((char *)&Buffer.front(), Buffer.size());
4653}
4654
4655void IndexBitcodeWriter::write() {
4656  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4657
4658  writeModuleVersion();
4659
4660  // Write the module paths in the combined index.
4661  writeModStrings();
4662
4663  // Write the summary combined index records.
4664  writeCombinedGlobalValueSummary();
4665
4666  Stream.ExitBlock();
4667}
4668
4669// Write the specified module summary index to the given raw output stream,
4670// where it will be written in a new bitcode block. This is used when
4671// writing the combined index file for ThinLTO. When writing a subset of the
4672// index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4673void llvm::WriteIndexToFile(
4674    const ModuleSummaryIndex &Index, raw_ostream &Out,
4675    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4676  SmallVector<char, 0> Buffer;
4677  Buffer.reserve(256 * 1024);
4678
4679  BitcodeWriter Writer(Buffer);
4680  Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4681  Writer.writeStrtab();
4682
4683  Out.write((char *)&Buffer.front(), Buffer.size());
4684}
4685
4686namespace {
4687
4688/// Class to manage the bitcode writing for a thin link bitcode file.
4689class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4690  /// ModHash is for use in ThinLTO incremental build, generated while writing
4691  /// the module bitcode file.
4692  const ModuleHash *ModHash;
4693
4694public:
4695  ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4696                        BitstreamWriter &Stream,
4697                        const ModuleSummaryIndex &Index,
4698                        const ModuleHash &ModHash)
4699      : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4700                                /*ShouldPreserveUseListOrder=*/false, &Index),
4701        ModHash(&ModHash) {}
4702
4703  void write();
4704
4705private:
4706  void writeSimplifiedModuleInfo();
4707};
4708
4709} // end anonymous namespace
4710
4711// This function writes a simpilified module info for thin link bitcode file.
4712// It only contains the source file name along with the name(the offset and
4713// size in strtab) and linkage for global values. For the global value info
4714// entry, in order to keep linkage at offset 5, there are three zeros used
4715// as padding.
4716void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4717  SmallVector<unsigned, 64> Vals;
4718  // Emit the module's source file name.
4719  {
4720    StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4721    BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4722    if (Bits == SE_Char6)
4723      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4724    else if (Bits == SE_Fixed7)
4725      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4726
4727    // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4728    auto Abbv = std::make_shared<BitCodeAbbrev>();
4729    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4730    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4731    Abbv->Add(AbbrevOpToUse);
4732    unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4733
4734    for (const auto P : M.getSourceFileName())
4735      Vals.push_back((unsigned char)P);
4736
4737    Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4738    Vals.clear();
4739  }
4740
4741  // Emit the global variable information.
4742  for (const GlobalVariable &GV : M.globals()) {
4743    // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4744    Vals.push_back(StrtabBuilder.add(GV.getName()));
4745    Vals.push_back(GV.getName().size());
4746    Vals.push_back(0);
4747    Vals.push_back(0);
4748    Vals.push_back(0);
4749    Vals.push_back(getEncodedLinkage(GV));
4750
4751    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4752    Vals.clear();
4753  }
4754
4755  // Emit the function proto information.
4756  for (const Function &F : M) {
4757    // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4758    Vals.push_back(StrtabBuilder.add(F.getName()));
4759    Vals.push_back(F.getName().size());
4760    Vals.push_back(0);
4761    Vals.push_back(0);
4762    Vals.push_back(0);
4763    Vals.push_back(getEncodedLinkage(F));
4764
4765    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4766    Vals.clear();
4767  }
4768
4769  // Emit the alias information.
4770  for (const GlobalAlias &A : M.aliases()) {
4771    // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4772    Vals.push_back(StrtabBuilder.add(A.getName()));
4773    Vals.push_back(A.getName().size());
4774    Vals.push_back(0);
4775    Vals.push_back(0);
4776    Vals.push_back(0);
4777    Vals.push_back(getEncodedLinkage(A));
4778
4779    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4780    Vals.clear();
4781  }
4782
4783  // Emit the ifunc information.
4784  for (const GlobalIFunc &I : M.ifuncs()) {
4785    // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4786    Vals.push_back(StrtabBuilder.add(I.getName()));
4787    Vals.push_back(I.getName().size());
4788    Vals.push_back(0);
4789    Vals.push_back(0);
4790    Vals.push_back(0);
4791    Vals.push_back(getEncodedLinkage(I));
4792
4793    Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4794    Vals.clear();
4795  }
4796}
4797
4798void ThinLinkBitcodeWriter::write() {
4799  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4800
4801  writeModuleVersion();
4802
4803  writeSimplifiedModuleInfo();
4804
4805  writePerModuleGlobalValueSummary();
4806
4807  // Write module hash.
4808  Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4809
4810  Stream.ExitBlock();
4811}
4812
4813void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4814                                         const ModuleSummaryIndex &Index,
4815                                         const ModuleHash &ModHash) {
4816  assert(!WroteStrtab);
4817
4818  // The Mods vector is used by irsymtab::build, which requires non-const
4819  // Modules in case it needs to materialize metadata. But the bitcode writer
4820  // requires that the module is materialized, so we can cast to non-const here,
4821  // after checking that it is in fact materialized.
4822  assert(M.isMaterialized());
4823  Mods.push_back(const_cast<Module *>(&M));
4824
4825  ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4826                                       ModHash);
4827  ThinLinkWriter.write();
4828}
4829
4830// Write the specified thin link bitcode file to the given raw output stream,
4831// where it will be written in a new bitcode block. This is used when
4832// writing the per-module index file for ThinLTO.
4833void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4834                                      const ModuleSummaryIndex &Index,
4835                                      const ModuleHash &ModHash) {
4836  SmallVector<char, 0> Buffer;
4837  Buffer.reserve(256 * 1024);
4838
4839  BitcodeWriter Writer(Buffer);
4840  Writer.writeThinLinkBitcode(M, Index, ModHash);
4841  Writer.writeSymtab();
4842  Writer.writeStrtab();
4843
4844  Out.write((char *)&Buffer.front(), Buffer.size());
4845}
4846
4847static const char *getSectionNameForBitcode(const Triple &T) {
4848  switch (T.getObjectFormat()) {
4849  case Triple::MachO:
4850    return "__LLVM,__bitcode";
4851  case Triple::COFF:
4852  case Triple::ELF:
4853  case Triple::Wasm:
4854  case Triple::UnknownObjectFormat:
4855    return ".llvmbc";
4856  case Triple::GOFF:
4857    llvm_unreachable("GOFF is not yet implemented");
4858    break;
4859  case Triple::XCOFF:
4860    llvm_unreachable("XCOFF is not yet implemented");
4861    break;
4862  }
4863  llvm_unreachable("Unimplemented ObjectFormatType");
4864}
4865
4866static const char *getSectionNameForCommandline(const Triple &T) {
4867  switch (T.getObjectFormat()) {
4868  case Triple::MachO:
4869    return "__LLVM,__cmdline";
4870  case Triple::COFF:
4871  case Triple::ELF:
4872  case Triple::Wasm:
4873  case Triple::UnknownObjectFormat:
4874    return ".llvmcmd";
4875  case Triple::GOFF:
4876    llvm_unreachable("GOFF is not yet implemented");
4877    break;
4878  case Triple::XCOFF:
4879    llvm_unreachable("XCOFF is not yet implemented");
4880    break;
4881  }
4882  llvm_unreachable("Unimplemented ObjectFormatType");
4883}
4884
4885void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
4886                                bool EmbedBitcode, bool EmbedCmdline,
4887                                const std::vector<uint8_t> &CmdArgs) {
4888  // Save llvm.compiler.used and remove it.
4889  SmallVector<Constant *, 2> UsedArray;
4890  SmallVector<GlobalValue *, 4> UsedGlobals;
4891  Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
4892  GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
4893  for (auto *GV : UsedGlobals) {
4894    if (GV->getName() != "llvm.embedded.module" &&
4895        GV->getName() != "llvm.cmdline")
4896      UsedArray.push_back(
4897          ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4898  }
4899  if (Used)
4900    Used->eraseFromParent();
4901
4902  // Embed the bitcode for the llvm module.
4903  std::string Data;
4904  ArrayRef<uint8_t> ModuleData;
4905  Triple T(M.getTargetTriple());
4906
4907  if (EmbedBitcode) {
4908    if (Buf.getBufferSize() == 0 ||
4909        !isBitcode((const unsigned char *)Buf.getBufferStart(),
4910                   (const unsigned char *)Buf.getBufferEnd())) {
4911      // If the input is LLVM Assembly, bitcode is produced by serializing
4912      // the module. Use-lists order need to be preserved in this case.
4913      llvm::raw_string_ostream OS(Data);
4914      llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
4915      ModuleData =
4916          ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
4917    } else
4918      // If the input is LLVM bitcode, write the input byte stream directly.
4919      ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
4920                                     Buf.getBufferSize());
4921  }
4922  llvm::Constant *ModuleConstant =
4923      llvm::ConstantDataArray::get(M.getContext(), ModuleData);
4924  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
4925      M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
4926      ModuleConstant);
4927  GV->setSection(getSectionNameForBitcode(T));
4928  // Set alignment to 1 to prevent padding between two contributions from input
4929  // sections after linking.
4930  GV->setAlignment(Align(1));
4931  UsedArray.push_back(
4932      ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4933  if (llvm::GlobalVariable *Old =
4934          M.getGlobalVariable("llvm.embedded.module", true)) {
4935    assert(Old->hasOneUse() &&
4936           "llvm.embedded.module can only be used once in llvm.compiler.used");
4937    GV->takeName(Old);
4938    Old->eraseFromParent();
4939  } else {
4940    GV->setName("llvm.embedded.module");
4941  }
4942
4943  // Skip if only bitcode needs to be embedded.
4944  if (EmbedCmdline) {
4945    // Embed command-line options.
4946    ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
4947                              CmdArgs.size());
4948    llvm::Constant *CmdConstant =
4949        llvm::ConstantDataArray::get(M.getContext(), CmdData);
4950    GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
4951                                  llvm::GlobalValue::PrivateLinkage,
4952                                  CmdConstant);
4953    GV->setSection(getSectionNameForCommandline(T));
4954    GV->setAlignment(Align(1));
4955    UsedArray.push_back(
4956        ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4957    if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
4958      assert(Old->hasOneUse() &&
4959             "llvm.cmdline can only be used once in llvm.compiler.used");
4960      GV->takeName(Old);
4961      Old->eraseFromParent();
4962    } else {
4963      GV->setName("llvm.cmdline");
4964    }
4965  }
4966
4967  if (UsedArray.empty())
4968    return;
4969
4970  // Recreate llvm.compiler.used.
4971  ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
4972  auto *NewUsed = new GlobalVariable(
4973      M, ATy, false, llvm::GlobalValue::AppendingLinkage,
4974      llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
4975  NewUsed->setSection("llvm.metadata");
4976}
4977