1//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements an abstract sparse conditional propagation algorithm,
10// modeled after SCCP, but with a customizable lattice function.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
15#define LLVM_ANALYSIS_SPARSEPROPAGATION_H
16
17#include "llvm/IR/Instructions.h"
18#include "llvm/Support/Debug.h"
19#include <set>
20
21#define DEBUG_TYPE "sparseprop"
22
23namespace llvm {
24
25/// A template for translating between LLVM Values and LatticeKeys. Clients must
26/// provide a specialization of LatticeKeyInfo for their LatticeKey type.
27template <class LatticeKey> struct LatticeKeyInfo {
28  // static inline Value *getValueFromLatticeKey(LatticeKey Key);
29  // static inline LatticeKey getLatticeKeyFromValue(Value *V);
30};
31
32template <class LatticeKey, class LatticeVal,
33          class KeyInfo = LatticeKeyInfo<LatticeKey>>
34class SparseSolver;
35
36/// AbstractLatticeFunction - This class is implemented by the dataflow instance
37/// to specify what the lattice values are and how they handle merges etc.  This
38/// gives the client the power to compute lattice values from instructions,
39/// constants, etc.  The current requirement is that lattice values must be
40/// copyable.  At the moment, nothing tries to avoid copying.  Additionally,
41/// lattice keys must be able to be used as keys of a mapping data structure.
42/// Internally, the generic solver currently uses a DenseMap to map lattice keys
43/// to lattice values.  If the lattice key is a non-standard type, a
44/// specialization of DenseMapInfo must be provided.
45template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
46private:
47  LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
48
49public:
50  AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
51                          LatticeVal untrackedVal) {
52    UndefVal = undefVal;
53    OverdefinedVal = overdefinedVal;
54    UntrackedVal = untrackedVal;
55  }
56
57  virtual ~AbstractLatticeFunction() = default;
58
59  LatticeVal getUndefVal()       const { return UndefVal; }
60  LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
61  LatticeVal getUntrackedVal()   const { return UntrackedVal; }
62
63  /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
64  /// to the analysis (i.e., it would always return UntrackedVal), this
65  /// function can return true to avoid pointless work.
66  virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
67
68  /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
69  /// given LatticeKey.
70  virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
71    return getOverdefinedVal();
72  }
73
74  /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
75  /// one that the we want to handle through ComputeInstructionState.
76  virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
77
78  /// MergeValues - Compute and return the merge of the two specified lattice
79  /// values.  Merging should only move one direction down the lattice to
80  /// guarantee convergence (toward overdefined).
81  virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
82    return getOverdefinedVal(); // always safe, never useful.
83  }
84
85  /// ComputeInstructionState - Compute the LatticeKeys that change as a result
86  /// of executing instruction \p I. Their associated LatticeVals are store in
87  /// \p ChangedValues.
88  virtual void
89  ComputeInstructionState(Instruction &I,
90                          DenseMap<LatticeKey, LatticeVal> &ChangedValues,
91                          SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
92
93  /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
94  virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
95
96  /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
97  virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
98
99  /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
100  /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
101  /// returned value must have the same type. This function is used by the
102  /// generic solver in attempting to resolve branch and switch conditions.
103  virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
104    return nullptr;
105  }
106};
107
108/// SparseSolver - This class is a general purpose solver for Sparse Conditional
109/// Propagation with a programmable lattice function.
110template <class LatticeKey, class LatticeVal, class KeyInfo>
111class SparseSolver {
112
113  /// LatticeFunc - This is the object that knows the lattice and how to
114  /// compute transfer functions.
115  AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
116
117  /// ValueState - Holds the LatticeVals associated with LatticeKeys.
118  DenseMap<LatticeKey, LatticeVal> ValueState;
119
120  /// BBExecutable - Holds the basic blocks that are executable.
121  SmallPtrSet<BasicBlock *, 16> BBExecutable;
122
123  /// ValueWorkList - Holds values that should be processed.
124  SmallVector<Value *, 64> ValueWorkList;
125
126  /// BBWorkList - Holds basic blocks that should be processed.
127  SmallVector<BasicBlock *, 64> BBWorkList;
128
129  using Edge = std::pair<BasicBlock *, BasicBlock *>;
130
131  /// KnownFeasibleEdges - Entries in this set are edges which have already had
132  /// PHI nodes retriggered.
133  std::set<Edge> KnownFeasibleEdges;
134
135public:
136  explicit SparseSolver(
137      AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
138      : LatticeFunc(Lattice) {}
139  SparseSolver(const SparseSolver &) = delete;
140  SparseSolver &operator=(const SparseSolver &) = delete;
141
142  /// Solve - Solve for constants and executable blocks.
143  void Solve();
144
145  void Print(raw_ostream &OS) const;
146
147  /// getExistingValueState - Return the LatticeVal object corresponding to the
148  /// given value from the ValueState map. If the value is not in the map,
149  /// UntrackedVal is returned, unlike the getValueState method.
150  LatticeVal getExistingValueState(LatticeKey Key) const {
151    auto I = ValueState.find(Key);
152    return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
153  }
154
155  /// getValueState - Return the LatticeVal object corresponding to the given
156  /// value from the ValueState map. If the value is not in the map, its state
157  /// is initialized.
158  LatticeVal getValueState(LatticeKey Key);
159
160  /// isEdgeFeasible - Return true if the control flow edge from the 'From'
161  /// basic block to the 'To' basic block is currently feasible.  If
162  /// AggressiveUndef is true, then this treats values with unknown lattice
163  /// values as undefined.  This is generally only useful when solving the
164  /// lattice, not when querying it.
165  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
166                      bool AggressiveUndef = false);
167
168  /// isBlockExecutable - Return true if there are any known feasible
169  /// edges into the basic block.  This is generally only useful when
170  /// querying the lattice.
171  bool isBlockExecutable(BasicBlock *BB) const {
172    return BBExecutable.count(BB);
173  }
174
175  /// MarkBlockExecutable - This method can be used by clients to mark all of
176  /// the blocks that are known to be intrinsically live in the processed unit.
177  void MarkBlockExecutable(BasicBlock *BB);
178
179private:
180  /// UpdateState - When the state of some LatticeKey is potentially updated to
181  /// the given LatticeVal, this function notices and adds the LLVM value
182  /// corresponding the key to the work list, if needed.
183  void UpdateState(LatticeKey Key, LatticeVal LV);
184
185  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
186  /// work list if it is not already executable.
187  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
188
189  /// getFeasibleSuccessors - Return a vector of booleans to indicate which
190  /// successors are reachable from a given terminator instruction.
191  void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs,
192                             bool AggressiveUndef);
193
194  void visitInst(Instruction &I);
195  void visitPHINode(PHINode &I);
196  void visitTerminator(Instruction &TI);
197};
198
199//===----------------------------------------------------------------------===//
200//                  AbstractLatticeFunction Implementation
201//===----------------------------------------------------------------------===//
202
203template <class LatticeKey, class LatticeVal>
204void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
205    LatticeVal V, raw_ostream &OS) {
206  if (V == UndefVal)
207    OS << "undefined";
208  else if (V == OverdefinedVal)
209    OS << "overdefined";
210  else if (V == UntrackedVal)
211    OS << "untracked";
212  else
213    OS << "unknown lattice value";
214}
215
216template <class LatticeKey, class LatticeVal>
217void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
218    LatticeKey Key, raw_ostream &OS) {
219  OS << "unknown lattice key";
220}
221
222//===----------------------------------------------------------------------===//
223//                          SparseSolver Implementation
224//===----------------------------------------------------------------------===//
225
226template <class LatticeKey, class LatticeVal, class KeyInfo>
227LatticeVal
228SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
229  auto I = ValueState.find(Key);
230  if (I != ValueState.end())
231    return I->second; // Common case, in the map
232
233  if (LatticeFunc->IsUntrackedValue(Key))
234    return LatticeFunc->getUntrackedVal();
235  LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
236
237  // If this value is untracked, don't add it to the map.
238  if (LV == LatticeFunc->getUntrackedVal())
239    return LV;
240  return ValueState[Key] = std::move(LV);
241}
242
243template <class LatticeKey, class LatticeVal, class KeyInfo>
244void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
245                                                                LatticeVal LV) {
246  auto I = ValueState.find(Key);
247  if (I != ValueState.end() && I->second == LV)
248    return; // No change.
249
250  // Update the state of the given LatticeKey and add its corresponding LLVM
251  // value to the work list.
252  ValueState[Key] = std::move(LV);
253  if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
254    ValueWorkList.push_back(V);
255}
256
257template <class LatticeKey, class LatticeVal, class KeyInfo>
258void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
259    BasicBlock *BB) {
260  if (!BBExecutable.insert(BB).second)
261    return;
262  LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
263  BBWorkList.push_back(BB); // Add the block to the work list!
264}
265
266template <class LatticeKey, class LatticeVal, class KeyInfo>
267void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
268    BasicBlock *Source, BasicBlock *Dest) {
269  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
270    return; // This edge is already known to be executable!
271
272  LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
273                    << " -> " << Dest->getName() << "\n");
274
275  if (BBExecutable.count(Dest)) {
276    // The destination is already executable, but we just made an edge
277    // feasible that wasn't before.  Revisit the PHI nodes in the block
278    // because they have potentially new operands.
279    for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
280      visitPHINode(*cast<PHINode>(I));
281  } else {
282    MarkBlockExecutable(Dest);
283  }
284}
285
286template <class LatticeKey, class LatticeVal, class KeyInfo>
287void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
288    Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
289  Succs.resize(TI.getNumSuccessors());
290  if (TI.getNumSuccessors() == 0)
291    return;
292
293  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
294    if (BI->isUnconditional()) {
295      Succs[0] = true;
296      return;
297    }
298
299    LatticeVal BCValue;
300    if (AggressiveUndef)
301      BCValue =
302          getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
303    else
304      BCValue = getExistingValueState(
305          KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
306
307    if (BCValue == LatticeFunc->getOverdefinedVal() ||
308        BCValue == LatticeFunc->getUntrackedVal()) {
309      // Overdefined condition variables can branch either way.
310      Succs[0] = Succs[1] = true;
311      return;
312    }
313
314    // If undefined, neither is feasible yet.
315    if (BCValue == LatticeFunc->getUndefVal())
316      return;
317
318    Constant *C =
319        dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
320            std::move(BCValue), BI->getCondition()->getType()));
321    if (!C || !isa<ConstantInt>(C)) {
322      // Non-constant values can go either way.
323      Succs[0] = Succs[1] = true;
324      return;
325    }
326
327    // Constant condition variables mean the branch can only go a single way
328    Succs[C->isNullValue()] = true;
329    return;
330  }
331
332  if (TI.isExceptionalTerminator() ||
333      TI.isIndirectTerminator()) {
334    Succs.assign(Succs.size(), true);
335    return;
336  }
337
338  SwitchInst &SI = cast<SwitchInst>(TI);
339  LatticeVal SCValue;
340  if (AggressiveUndef)
341    SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
342  else
343    SCValue = getExistingValueState(
344        KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
345
346  if (SCValue == LatticeFunc->getOverdefinedVal() ||
347      SCValue == LatticeFunc->getUntrackedVal()) {
348    // All destinations are executable!
349    Succs.assign(TI.getNumSuccessors(), true);
350    return;
351  }
352
353  // If undefined, neither is feasible yet.
354  if (SCValue == LatticeFunc->getUndefVal())
355    return;
356
357  Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
358      std::move(SCValue), SI.getCondition()->getType()));
359  if (!C || !isa<ConstantInt>(C)) {
360    // All destinations are executable!
361    Succs.assign(TI.getNumSuccessors(), true);
362    return;
363  }
364  SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
365  Succs[Case.getSuccessorIndex()] = true;
366}
367
368template <class LatticeKey, class LatticeVal, class KeyInfo>
369bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
370    BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
371  SmallVector<bool, 16> SuccFeasible;
372  Instruction *TI = From->getTerminator();
373  getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
374
375  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
376    if (TI->getSuccessor(i) == To && SuccFeasible[i])
377      return true;
378
379  return false;
380}
381
382template <class LatticeKey, class LatticeVal, class KeyInfo>
383void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator(
384    Instruction &TI) {
385  SmallVector<bool, 16> SuccFeasible;
386  getFeasibleSuccessors(TI, SuccFeasible, true);
387
388  BasicBlock *BB = TI.getParent();
389
390  // Mark all feasible successors executable...
391  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
392    if (SuccFeasible[i])
393      markEdgeExecutable(BB, TI.getSuccessor(i));
394}
395
396template <class LatticeKey, class LatticeVal, class KeyInfo>
397void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
398  // The lattice function may store more information on a PHINode than could be
399  // computed from its incoming values.  For example, SSI form stores its sigma
400  // functions as PHINodes with a single incoming value.
401  if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
402    DenseMap<LatticeKey, LatticeVal> ChangedValues;
403    LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
404    for (auto &ChangedValue : ChangedValues)
405      if (ChangedValue.second != LatticeFunc->getUntrackedVal())
406        UpdateState(std::move(ChangedValue.first),
407                    std::move(ChangedValue.second));
408    return;
409  }
410
411  LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
412  LatticeVal PNIV = getValueState(Key);
413  LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
414
415  // If this value is already overdefined (common) just return.
416  if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
417    return; // Quick exit
418
419  // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
420  // and slow us down a lot.  Just mark them overdefined.
421  if (PN.getNumIncomingValues() > 64) {
422    UpdateState(Key, Overdefined);
423    return;
424  }
425
426  // Look at all of the executable operands of the PHI node.  If any of them
427  // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
428  // transfer function to give us the merge of the incoming values.
429  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
430    // If the edge is not yet known to be feasible, it doesn't impact the PHI.
431    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
432      continue;
433
434    // Merge in this value.
435    LatticeVal OpVal =
436        getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
437    if (OpVal != PNIV)
438      PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
439
440    if (PNIV == Overdefined)
441      break; // Rest of input values don't matter.
442  }
443
444  // Update the PHI with the compute value, which is the merge of the inputs.
445  UpdateState(Key, PNIV);
446}
447
448template <class LatticeKey, class LatticeVal, class KeyInfo>
449void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
450  // PHIs are handled by the propagation logic, they are never passed into the
451  // transfer functions.
452  if (PHINode *PN = dyn_cast<PHINode>(&I))
453    return visitPHINode(*PN);
454
455  // Otherwise, ask the transfer function what the result is.  If this is
456  // something that we care about, remember it.
457  DenseMap<LatticeKey, LatticeVal> ChangedValues;
458  LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
459  for (auto &ChangedValue : ChangedValues)
460    if (ChangedValue.second != LatticeFunc->getUntrackedVal())
461      UpdateState(ChangedValue.first, ChangedValue.second);
462
463  if (I.isTerminator())
464    visitTerminator(I);
465}
466
467template <class LatticeKey, class LatticeVal, class KeyInfo>
468void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
469  // Process the work lists until they are empty!
470  while (!BBWorkList.empty() || !ValueWorkList.empty()) {
471    // Process the value work list.
472    while (!ValueWorkList.empty()) {
473      Value *V = ValueWorkList.pop_back_val();
474
475      LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
476
477      // "V" got into the work list because it made a transition. See if any
478      // users are both live and in need of updating.
479      for (User *U : V->users())
480        if (Instruction *Inst = dyn_cast<Instruction>(U))
481          if (BBExecutable.count(Inst->getParent())) // Inst is executable?
482            visitInst(*Inst);
483    }
484
485    // Process the basic block work list.
486    while (!BBWorkList.empty()) {
487      BasicBlock *BB = BBWorkList.pop_back_val();
488
489      LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
490
491      // Notify all instructions in this basic block that they are newly
492      // executable.
493      for (Instruction &I : *BB)
494        visitInst(I);
495    }
496  }
497}
498
499template <class LatticeKey, class LatticeVal, class KeyInfo>
500void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
501    raw_ostream &OS) const {
502  if (ValueState.empty())
503    return;
504
505  LatticeKey Key;
506  LatticeVal LV;
507
508  OS << "ValueState:\n";
509  for (auto &Entry : ValueState) {
510    std::tie(Key, LV) = Entry;
511    if (LV == LatticeFunc->getUntrackedVal())
512      continue;
513    OS << "\t";
514    LatticeFunc->PrintLatticeVal(LV, OS);
515    OS << ": ";
516    LatticeFunc->PrintLatticeKey(Key, OS);
517    OS << "\n";
518  }
519}
520} // end namespace llvm
521
522#undef DEBUG_TYPE
523
524#endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
525