1//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Calculate a program structure tree built out of single entry single exit
10// regions.
11// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
12// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
13// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
14// Koehler - 2009".
15// The algorithm to calculate these data structures however is completely
16// different, as it takes advantage of existing information already available
17// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
18// and in practice hopefully better performing algorithm. The runtime of the
19// algorithms described in the papers above are both linear in graph size,
20// O(V+E), whereas this algorithm is not, as the dominance frontier information
21// itself is not, but in practice runtime seems to be in the order of magnitude
22// of dominance tree calculation.
23//
24// WARNING: LLVM is generally very concerned about compile time such that
25//          the use of additional analysis passes in the default
26//          optimization sequence is avoided as much as possible.
27//          Specifically, if you do not need the RegionInfo, but dominance
28//          information could be sufficient please base your work only on
29//          the dominator tree. Most passes maintain it, such that using
30//          it has often near zero cost. In contrast RegionInfo is by
31//          default not available, is not maintained by existing
32//          transformations and there is no intention to do so.
33//
34//===----------------------------------------------------------------------===//
35
36#ifndef LLVM_ANALYSIS_REGIONINFO_H
37#define LLVM_ANALYSIS_REGIONINFO_H
38
39#include "llvm/ADT/DenseMap.h"
40#include "llvm/ADT/DepthFirstIterator.h"
41#include "llvm/ADT/GraphTraits.h"
42#include "llvm/ADT/PointerIntPair.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Config/llvm-config.h"
45#include "llvm/IR/BasicBlock.h"
46#include "llvm/IR/Dominators.h"
47#include "llvm/IR/PassManager.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <cassert>
52#include <map>
53#include <memory>
54#include <set>
55#include <string>
56#include <type_traits>
57#include <vector>
58
59namespace llvm {
60
61class DominanceFrontier;
62class Loop;
63class LoopInfo;
64class PostDominatorTree;
65class Region;
66template <class RegionTr> class RegionBase;
67class RegionInfo;
68template <class RegionTr> class RegionInfoBase;
69class RegionNode;
70
71// Class to be specialized for different users of RegionInfo
72// (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
73// pass around an unreasonable number of template parameters.
74template <class FuncT_>
75struct RegionTraits {
76  // FuncT
77  // BlockT
78  // RegionT
79  // RegionNodeT
80  // RegionInfoT
81  using BrokenT = typename FuncT_::UnknownRegionTypeError;
82};
83
84template <>
85struct RegionTraits<Function> {
86  using FuncT = Function;
87  using BlockT = BasicBlock;
88  using RegionT = Region;
89  using RegionNodeT = RegionNode;
90  using RegionInfoT = RegionInfo;
91  using DomTreeT = DominatorTree;
92  using DomTreeNodeT = DomTreeNode;
93  using DomFrontierT = DominanceFrontier;
94  using PostDomTreeT = PostDominatorTree;
95  using InstT = Instruction;
96  using LoopT = Loop;
97  using LoopInfoT = LoopInfo;
98
99  static unsigned getNumSuccessors(BasicBlock *BB) {
100    return BB->getTerminator()->getNumSuccessors();
101  }
102};
103
104/// Marker class to iterate over the elements of a Region in flat mode.
105///
106/// The class is used to either iterate in Flat mode or by not using it to not
107/// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
108/// and the iteration returns every BasicBlock.  If the Flat mode is not
109/// selected for SubRegions just one RegionNode containing the subregion is
110/// returned.
111template <class GraphType>
112class FlatIt {};
113
114/// A RegionNode represents a subregion or a BasicBlock that is part of a
115/// Region.
116template <class Tr>
117class RegionNodeBase {
118  friend class RegionBase<Tr>;
119
120public:
121  using BlockT = typename Tr::BlockT;
122  using RegionT = typename Tr::RegionT;
123
124private:
125  /// This is the entry basic block that starts this region node.  If this is a
126  /// BasicBlock RegionNode, then entry is just the basic block, that this
127  /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
128  ///
129  /// In the BBtoRegionNode map of the parent of this node, BB will always map
130  /// to this node no matter which kind of node this one is.
131  ///
132  /// The node can hold either a Region or a BasicBlock.
133  /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
134  /// RegionNode.
135  PointerIntPair<BlockT *, 1, bool> entry;
136
137  /// The parent Region of this RegionNode.
138  /// @see getParent()
139  RegionT *parent;
140
141protected:
142  /// Create a RegionNode.
143  ///
144  /// @param Parent      The parent of this RegionNode.
145  /// @param Entry       The entry BasicBlock of the RegionNode.  If this
146  ///                    RegionNode represents a BasicBlock, this is the
147  ///                    BasicBlock itself.  If it represents a subregion, this
148  ///                    is the entry BasicBlock of the subregion.
149  /// @param isSubRegion If this RegionNode represents a SubRegion.
150  inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
151                        bool isSubRegion = false)
152      : entry(Entry, isSubRegion), parent(Parent) {}
153
154public:
155  RegionNodeBase(const RegionNodeBase &) = delete;
156  RegionNodeBase &operator=(const RegionNodeBase &) = delete;
157
158  /// Get the parent Region of this RegionNode.
159  ///
160  /// The parent Region is the Region this RegionNode belongs to. If for
161  /// example a BasicBlock is element of two Regions, there exist two
162  /// RegionNodes for this BasicBlock. Each with the getParent() function
163  /// pointing to the Region this RegionNode belongs to.
164  ///
165  /// @return Get the parent Region of this RegionNode.
166  inline RegionT *getParent() const { return parent; }
167
168  /// Get the entry BasicBlock of this RegionNode.
169  ///
170  /// If this RegionNode represents a BasicBlock this is just the BasicBlock
171  /// itself, otherwise we return the entry BasicBlock of the Subregion
172  ///
173  /// @return The entry BasicBlock of this RegionNode.
174  inline BlockT *getEntry() const { return entry.getPointer(); }
175
176  /// Get the content of this RegionNode.
177  ///
178  /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
179  /// check the type of the content with the isSubRegion() function call.
180  ///
181  /// @return The content of this RegionNode.
182  template <class T> inline T *getNodeAs() const;
183
184  /// Is this RegionNode a subregion?
185  ///
186  /// @return True if it contains a subregion. False if it contains a
187  ///         BasicBlock.
188  inline bool isSubRegion() const { return entry.getInt(); }
189};
190
191//===----------------------------------------------------------------------===//
192/// A single entry single exit Region.
193///
194/// A Region is a connected subgraph of a control flow graph that has exactly
195/// two connections to the remaining graph. It can be used to analyze or
196/// optimize parts of the control flow graph.
197///
198/// A <em> simple Region </em> is connected to the remaining graph by just two
199/// edges. One edge entering the Region and another one leaving the Region.
200///
201/// An <em> extended Region </em> (or just Region) is a subgraph that can be
202/// transform into a simple Region. The transformation is done by adding
203/// BasicBlocks that merge several entry or exit edges so that after the merge
204/// just one entry and one exit edge exists.
205///
206/// The \e Entry of a Region is the first BasicBlock that is passed after
207/// entering the Region. It is an element of the Region. The entry BasicBlock
208/// dominates all BasicBlocks in the Region.
209///
210/// The \e Exit of a Region is the first BasicBlock that is passed after
211/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
212/// postdominates all BasicBlocks in the Region.
213///
214/// A <em> canonical Region </em> cannot be constructed by combining smaller
215/// Regions.
216///
217/// Region A is the \e parent of Region B, if B is completely contained in A.
218///
219/// Two canonical Regions either do not intersect at all or one is
220/// the parent of the other.
221///
222/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
223/// Regions in the control flow graph and E is the \e parent relation of these
224/// Regions.
225///
226/// Example:
227///
228/// \verbatim
229/// A simple control flow graph, that contains two regions.
230///
231///        1
232///       / |
233///      2   |
234///     / \   3
235///    4   5  |
236///    |   |  |
237///    6   7  8
238///     \  | /
239///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
240///        9        Region B: 2 -> 9 {2,4,5,6,7}
241/// \endverbatim
242///
243/// You can obtain more examples by either calling
244///
245/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
246/// or
247/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
248///
249/// on any LLVM file you are interested in.
250///
251/// The first call returns a textual representation of the program structure
252/// tree, the second one creates a graphical representation using graphviz.
253template <class Tr>
254class RegionBase : public RegionNodeBase<Tr> {
255  friend class RegionInfoBase<Tr>;
256
257  using FuncT = typename Tr::FuncT;
258  using BlockT = typename Tr::BlockT;
259  using RegionInfoT = typename Tr::RegionInfoT;
260  using RegionT = typename Tr::RegionT;
261  using RegionNodeT = typename Tr::RegionNodeT;
262  using DomTreeT = typename Tr::DomTreeT;
263  using LoopT = typename Tr::LoopT;
264  using LoopInfoT = typename Tr::LoopInfoT;
265  using InstT = typename Tr::InstT;
266
267  using BlockTraits = GraphTraits<BlockT *>;
268  using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
269  using SuccIterTy = typename BlockTraits::ChildIteratorType;
270  using PredIterTy = typename InvBlockTraits::ChildIteratorType;
271
272  // Information necessary to manage this Region.
273  RegionInfoT *RI;
274  DomTreeT *DT;
275
276  // The exit BasicBlock of this region.
277  // (The entry BasicBlock is part of RegionNode)
278  BlockT *exit;
279
280  using RegionSet = std::vector<std::unique_ptr<RegionT>>;
281
282  // The subregions of this region.
283  RegionSet children;
284
285  using BBNodeMapT = std::map<BlockT *, std::unique_ptr<RegionNodeT>>;
286
287  // Save the BasicBlock RegionNodes that are element of this Region.
288  mutable BBNodeMapT BBNodeMap;
289
290  /// Check if a BB is in this Region. This check also works
291  /// if the region is incorrectly built. (EXPENSIVE!)
292  void verifyBBInRegion(BlockT *BB) const;
293
294  /// Walk over all the BBs of the region starting from BB and
295  /// verify that all reachable basic blocks are elements of the region.
296  /// (EXPENSIVE!)
297  void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
298
299  /// Verify if the region and its children are valid regions (EXPENSIVE!)
300  void verifyRegionNest() const;
301
302public:
303  /// Create a new region.
304  ///
305  /// @param Entry  The entry basic block of the region.
306  /// @param Exit   The exit basic block of the region.
307  /// @param RI     The region info object that is managing this region.
308  /// @param DT     The dominator tree of the current function.
309  /// @param Parent The surrounding region or NULL if this is a top level
310  ///               region.
311  RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
312             RegionT *Parent = nullptr);
313
314  RegionBase(const RegionBase &) = delete;
315  RegionBase &operator=(const RegionBase &) = delete;
316
317  /// Delete the Region and all its subregions.
318  ~RegionBase();
319
320  /// Get the entry BasicBlock of the Region.
321  /// @return The entry BasicBlock of the region.
322  BlockT *getEntry() const {
323    return RegionNodeBase<Tr>::getEntry();
324  }
325
326  /// Replace the entry basic block of the region with the new basic
327  ///        block.
328  ///
329  /// @param BB  The new entry basic block of the region.
330  void replaceEntry(BlockT *BB);
331
332  /// Replace the exit basic block of the region with the new basic
333  ///        block.
334  ///
335  /// @param BB  The new exit basic block of the region.
336  void replaceExit(BlockT *BB);
337
338  /// Recursively replace the entry basic block of the region.
339  ///
340  /// This function replaces the entry basic block with a new basic block. It
341  /// also updates all child regions that have the same entry basic block as
342  /// this region.
343  ///
344  /// @param NewEntry The new entry basic block.
345  void replaceEntryRecursive(BlockT *NewEntry);
346
347  /// Recursively replace the exit basic block of the region.
348  ///
349  /// This function replaces the exit basic block with a new basic block. It
350  /// also updates all child regions that have the same exit basic block as
351  /// this region.
352  ///
353  /// @param NewExit The new exit basic block.
354  void replaceExitRecursive(BlockT *NewExit);
355
356  /// Get the exit BasicBlock of the Region.
357  /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
358  ///         Region.
359  BlockT *getExit() const { return exit; }
360
361  /// Get the parent of the Region.
362  /// @return The parent of the Region or NULL if this is a top level
363  ///         Region.
364  RegionT *getParent() const {
365    return RegionNodeBase<Tr>::getParent();
366  }
367
368  /// Get the RegionNode representing the current Region.
369  /// @return The RegionNode representing the current Region.
370  RegionNodeT *getNode() const {
371    return const_cast<RegionNodeT *>(
372        reinterpret_cast<const RegionNodeT *>(this));
373  }
374
375  /// Get the nesting level of this Region.
376  ///
377  /// An toplevel Region has depth 0.
378  ///
379  /// @return The depth of the region.
380  unsigned getDepth() const;
381
382  /// Check if a Region is the TopLevel region.
383  ///
384  /// The toplevel region represents the whole function.
385  bool isTopLevelRegion() const { return exit == nullptr; }
386
387  /// Return a new (non-canonical) region, that is obtained by joining
388  ///        this region with its predecessors.
389  ///
390  /// @return A region also starting at getEntry(), but reaching to the next
391  ///         basic block that forms with getEntry() a (non-canonical) region.
392  ///         NULL if such a basic block does not exist.
393  RegionT *getExpandedRegion() const;
394
395  /// Return the first block of this region's single entry edge,
396  ///        if existing.
397  ///
398  /// @return The BasicBlock starting this region's single entry edge,
399  ///         else NULL.
400  BlockT *getEnteringBlock() const;
401
402  /// Return the first block of this region's single exit edge,
403  ///        if existing.
404  ///
405  /// @return The BasicBlock starting this region's single exit edge,
406  ///         else NULL.
407  BlockT *getExitingBlock() const;
408
409  /// Collect all blocks of this region's single exit edge, if existing.
410  ///
411  /// @return True if this region contains all the predecessors of the exit.
412  bool getExitingBlocks(SmallVectorImpl<BlockT *> &Exitings) const;
413
414  /// Is this a simple region?
415  ///
416  /// A region is simple if it has exactly one exit and one entry edge.
417  ///
418  /// @return True if the Region is simple.
419  bool isSimple() const;
420
421  /// Returns the name of the Region.
422  /// @return The Name of the Region.
423  std::string getNameStr() const;
424
425  /// Return the RegionInfo object, that belongs to this Region.
426  RegionInfoT *getRegionInfo() const { return RI; }
427
428  /// PrintStyle - Print region in difference ways.
429  enum PrintStyle { PrintNone, PrintBB, PrintRN };
430
431  /// Print the region.
432  ///
433  /// @param OS The output stream the Region is printed to.
434  /// @param printTree Print also the tree of subregions.
435  /// @param level The indentation level used for printing.
436  void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
437             PrintStyle Style = PrintNone) const;
438
439#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
440  /// Print the region to stderr.
441  void dump() const;
442#endif
443
444  /// Check if the region contains a BasicBlock.
445  ///
446  /// @param BB The BasicBlock that might be contained in this Region.
447  /// @return True if the block is contained in the region otherwise false.
448  bool contains(const BlockT *BB) const;
449
450  /// Check if the region contains another region.
451  ///
452  /// @param SubRegion The region that might be contained in this Region.
453  /// @return True if SubRegion is contained in the region otherwise false.
454  bool contains(const RegionT *SubRegion) const {
455    // Toplevel Region.
456    if (!getExit())
457      return true;
458
459    return contains(SubRegion->getEntry()) &&
460           (contains(SubRegion->getExit()) ||
461            SubRegion->getExit() == getExit());
462  }
463
464  /// Check if the region contains an Instruction.
465  ///
466  /// @param Inst The Instruction that might be contained in this region.
467  /// @return True if the Instruction is contained in the region otherwise
468  /// false.
469  bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
470
471  /// Check if the region contains a loop.
472  ///
473  /// @param L The loop that might be contained in this region.
474  /// @return True if the loop is contained in the region otherwise false.
475  ///         In case a NULL pointer is passed to this function the result
476  ///         is false, except for the region that describes the whole function.
477  ///         In that case true is returned.
478  bool contains(const LoopT *L) const;
479
480  /// Get the outermost loop in the region that contains a loop.
481  ///
482  /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
483  /// and is itself contained in the region.
484  ///
485  /// @param L The loop the lookup is started.
486  /// @return The outermost loop in the region, NULL if such a loop does not
487  ///         exist or if the region describes the whole function.
488  LoopT *outermostLoopInRegion(LoopT *L) const;
489
490  /// Get the outermost loop in the region that contains a basic block.
491  ///
492  /// Find for a basic block BB the outermost loop L that contains BB and is
493  /// itself contained in the region.
494  ///
495  /// @param LI A pointer to a LoopInfo analysis.
496  /// @param BB The basic block surrounded by the loop.
497  /// @return The outermost loop in the region, NULL if such a loop does not
498  ///         exist or if the region describes the whole function.
499  LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
500
501  /// Get the subregion that starts at a BasicBlock
502  ///
503  /// @param BB The BasicBlock the subregion should start.
504  /// @return The Subregion if available, otherwise NULL.
505  RegionT *getSubRegionNode(BlockT *BB) const;
506
507  /// Get the RegionNode for a BasicBlock
508  ///
509  /// @param BB The BasicBlock at which the RegionNode should start.
510  /// @return If available, the RegionNode that represents the subregion
511  ///         starting at BB. If no subregion starts at BB, the RegionNode
512  ///         representing BB.
513  RegionNodeT *getNode(BlockT *BB) const;
514
515  /// Get the BasicBlock RegionNode for a BasicBlock
516  ///
517  /// @param BB The BasicBlock for which the RegionNode is requested.
518  /// @return The RegionNode representing the BB.
519  RegionNodeT *getBBNode(BlockT *BB) const;
520
521  /// Add a new subregion to this Region.
522  ///
523  /// @param SubRegion The new subregion that will be added.
524  /// @param moveChildren Move the children of this region, that are also
525  ///                     contained in SubRegion into SubRegion.
526  void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
527
528  /// Remove a subregion from this Region.
529  ///
530  /// The subregion is not deleted, as it will probably be inserted into another
531  /// region.
532  /// @param SubRegion The SubRegion that will be removed.
533  RegionT *removeSubRegion(RegionT *SubRegion);
534
535  /// Move all direct child nodes of this Region to another Region.
536  ///
537  /// @param To The Region the child nodes will be transferred to.
538  void transferChildrenTo(RegionT *To);
539
540  /// Verify if the region is a correct region.
541  ///
542  /// Check if this is a correctly build Region. This is an expensive check, as
543  /// the complete CFG of the Region will be walked.
544  void verifyRegion() const;
545
546  /// Clear the cache for BB RegionNodes.
547  ///
548  /// After calling this function the BasicBlock RegionNodes will be stored at
549  /// different memory locations. RegionNodes obtained before this function is
550  /// called are therefore not comparable to RegionNodes abtained afterwords.
551  void clearNodeCache();
552
553  /// @name Subregion Iterators
554  ///
555  /// These iterators iterator over all subregions of this Region.
556  //@{
557  using iterator = typename RegionSet::iterator;
558  using const_iterator = typename RegionSet::const_iterator;
559
560  iterator begin() { return children.begin(); }
561  iterator end() { return children.end(); }
562
563  const_iterator begin() const { return children.begin(); }
564  const_iterator end() const { return children.end(); }
565  //@}
566
567  /// @name BasicBlock Iterators
568  ///
569  /// These iterators iterate over all BasicBlocks that are contained in this
570  /// Region. The iterator also iterates over BasicBlocks that are elements of
571  /// a subregion of this Region. It is therefore called a flat iterator.
572  //@{
573  template <bool IsConst>
574  class block_iterator_wrapper
575      : public df_iterator<
576            std::conditional_t<IsConst, const BlockT, BlockT> *> {
577    using super =
578        df_iterator<std::conditional_t<IsConst, const BlockT, BlockT> *>;
579
580  public:
581    using Self = block_iterator_wrapper<IsConst>;
582    using value_type = typename super::value_type;
583
584    // Construct the begin iterator.
585    block_iterator_wrapper(value_type Entry, value_type Exit)
586        : super(df_begin(Entry)) {
587      // Mark the exit of the region as visited, so that the children of the
588      // exit and the exit itself, i.e. the block outside the region will never
589      // be visited.
590      super::Visited.insert(Exit);
591    }
592
593    // Construct the end iterator.
594    block_iterator_wrapper() : super(df_end<value_type>((BlockT *)nullptr)) {}
595
596    /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
597
598    // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
599    //        This was introduced for backwards compatibility, but should
600    //        be removed as soon as all users are fixed.
601    BlockT *operator*() const {
602      return const_cast<BlockT *>(super::operator*());
603    }
604  };
605
606  using block_iterator = block_iterator_wrapper<false>;
607  using const_block_iterator = block_iterator_wrapper<true>;
608
609  block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
610
611  block_iterator block_end() { return block_iterator(); }
612
613  const_block_iterator block_begin() const {
614    return const_block_iterator(getEntry(), getExit());
615  }
616  const_block_iterator block_end() const { return const_block_iterator(); }
617
618  using block_range = iterator_range<block_iterator>;
619  using const_block_range = iterator_range<const_block_iterator>;
620
621  /// Returns a range view of the basic blocks in the region.
622  inline block_range blocks() {
623    return block_range(block_begin(), block_end());
624  }
625
626  /// Returns a range view of the basic blocks in the region.
627  ///
628  /// This is the 'const' version of the range view.
629  inline const_block_range blocks() const {
630    return const_block_range(block_begin(), block_end());
631  }
632  //@}
633
634  /// @name Element Iterators
635  ///
636  /// These iterators iterate over all BasicBlock and subregion RegionNodes that
637  /// are direct children of this Region. It does not iterate over any
638  /// RegionNodes that are also element of a subregion of this Region.
639  //@{
640  using element_iterator =
641      df_iterator<RegionNodeT *, df_iterator_default_set<RegionNodeT *>, false,
642                  GraphTraits<RegionNodeT *>>;
643
644  using const_element_iterator =
645      df_iterator<const RegionNodeT *,
646                  df_iterator_default_set<const RegionNodeT *>, false,
647                  GraphTraits<const RegionNodeT *>>;
648
649  element_iterator element_begin();
650  element_iterator element_end();
651  iterator_range<element_iterator> elements() {
652    return make_range(element_begin(), element_end());
653  }
654
655  const_element_iterator element_begin() const;
656  const_element_iterator element_end() const;
657  iterator_range<const_element_iterator> elements() const {
658    return make_range(element_begin(), element_end());
659  }
660  //@}
661};
662
663/// Print a RegionNode.
664template <class Tr>
665inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
666
667//===----------------------------------------------------------------------===//
668/// Analysis that detects all canonical Regions.
669///
670/// The RegionInfo pass detects all canonical regions in a function. The Regions
671/// are connected using the parent relation. This builds a Program Structure
672/// Tree.
673template <class Tr>
674class RegionInfoBase {
675  friend class RegionInfo;
676  friend class MachineRegionInfo;
677
678  using BlockT = typename Tr::BlockT;
679  using FuncT = typename Tr::FuncT;
680  using RegionT = typename Tr::RegionT;
681  using RegionInfoT = typename Tr::RegionInfoT;
682  using DomTreeT = typename Tr::DomTreeT;
683  using DomTreeNodeT = typename Tr::DomTreeNodeT;
684  using PostDomTreeT = typename Tr::PostDomTreeT;
685  using DomFrontierT = typename Tr::DomFrontierT;
686  using BlockTraits = GraphTraits<BlockT *>;
687  using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
688  using SuccIterTy = typename BlockTraits::ChildIteratorType;
689  using PredIterTy = typename InvBlockTraits::ChildIteratorType;
690
691  using BBtoBBMap = DenseMap<BlockT *, BlockT *>;
692  using BBtoRegionMap = DenseMap<BlockT *, RegionT *>;
693
694  RegionInfoBase();
695
696  RegionInfoBase(RegionInfoBase &&Arg)
697    : DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)),
698      TopLevelRegion(std::move(Arg.TopLevelRegion)),
699      BBtoRegion(std::move(Arg.BBtoRegion)) {
700    Arg.wipe();
701  }
702
703  RegionInfoBase &operator=(RegionInfoBase &&RHS) {
704    DT = std::move(RHS.DT);
705    PDT = std::move(RHS.PDT);
706    DF = std::move(RHS.DF);
707    TopLevelRegion = std::move(RHS.TopLevelRegion);
708    BBtoRegion = std::move(RHS.BBtoRegion);
709    RHS.wipe();
710    return *this;
711  }
712
713  virtual ~RegionInfoBase();
714
715  DomTreeT *DT;
716  PostDomTreeT *PDT;
717  DomFrontierT *DF;
718
719  /// The top level region.
720  RegionT *TopLevelRegion = nullptr;
721
722  /// Map every BB to the smallest region, that contains BB.
723  BBtoRegionMap BBtoRegion;
724
725protected:
726  /// Update refences to a RegionInfoT held by the RegionT managed here
727  ///
728  /// This is a post-move helper. Regions hold references to the owning
729  /// RegionInfo object. After a move these need to be fixed.
730  template<typename TheRegionT>
731  void updateRegionTree(RegionInfoT &RI, TheRegionT *R) {
732    if (!R)
733      return;
734    R->RI = &RI;
735    for (auto &SubR : *R)
736      updateRegionTree(RI, SubR.get());
737  }
738
739private:
740  /// Wipe this region tree's state without releasing any resources.
741  ///
742  /// This is essentially a post-move helper only. It leaves the object in an
743  /// assignable and destroyable state, but otherwise invalid.
744  void wipe() {
745    DT = nullptr;
746    PDT = nullptr;
747    DF = nullptr;
748    TopLevelRegion = nullptr;
749    BBtoRegion.clear();
750  }
751
752  // Check whether the entries of BBtoRegion for the BBs of region
753  // SR are correct. Triggers an assertion if not. Calls itself recursively for
754  // subregions.
755  void verifyBBMap(const RegionT *SR) const;
756
757  // Returns true if BB is in the dominance frontier of
758  // entry, because it was inherited from exit. In the other case there is an
759  // edge going from entry to BB without passing exit.
760  bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
761
762  // Check if entry and exit surround a valid region, based on
763  // dominance tree and dominance frontier.
764  bool isRegion(BlockT *entry, BlockT *exit) const;
765
766  // Saves a shortcut pointing from entry to exit.
767  // This function may extend this shortcut if possible.
768  void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
769
770  // Returns the next BB that postdominates N, while skipping
771  // all post dominators that cannot finish a canonical region.
772  DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
773
774  // A region is trivial, if it contains only one BB.
775  bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
776
777  // Creates a single entry single exit region.
778  RegionT *createRegion(BlockT *entry, BlockT *exit);
779
780  // Detect all regions starting with bb 'entry'.
781  void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
782
783  // Detects regions in F.
784  void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
785
786  // Get the top most parent with the same entry block.
787  RegionT *getTopMostParent(RegionT *region);
788
789  // Build the region hierarchy after all region detected.
790  void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
791
792  // Update statistic about created regions.
793  virtual void updateStatistics(RegionT *R) = 0;
794
795  // Detect all regions in function and build the region tree.
796  void calculate(FuncT &F);
797
798public:
799  RegionInfoBase(const RegionInfoBase &) = delete;
800  RegionInfoBase &operator=(const RegionInfoBase &) = delete;
801
802  static bool VerifyRegionInfo;
803  static typename RegionT::PrintStyle printStyle;
804
805  void print(raw_ostream &OS) const;
806#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
807  void dump() const;
808#endif
809
810  void releaseMemory();
811
812  /// Get the smallest region that contains a BasicBlock.
813  ///
814  /// @param BB The basic block.
815  /// @return The smallest region, that contains BB or NULL, if there is no
816  /// region containing BB.
817  RegionT *getRegionFor(BlockT *BB) const;
818
819  ///  Set the smallest region that surrounds a basic block.
820  ///
821  /// @param BB The basic block surrounded by a region.
822  /// @param R The smallest region that surrounds BB.
823  void setRegionFor(BlockT *BB, RegionT *R);
824
825  /// A shortcut for getRegionFor().
826  ///
827  /// @param BB The basic block.
828  /// @return The smallest region, that contains BB or NULL, if there is no
829  /// region containing BB.
830  RegionT *operator[](BlockT *BB) const;
831
832  /// Return the exit of the maximal refined region, that starts at a
833  /// BasicBlock.
834  ///
835  /// @param BB The BasicBlock the refined region starts.
836  BlockT *getMaxRegionExit(BlockT *BB) const;
837
838  /// Find the smallest region that contains two regions.
839  ///
840  /// @param A The first region.
841  /// @param B The second region.
842  /// @return The smallest region containing A and B.
843  RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
844
845  /// Find the smallest region that contains two basic blocks.
846  ///
847  /// @param A The first basic block.
848  /// @param B The second basic block.
849  /// @return The smallest region that contains A and B.
850  RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
851    return getCommonRegion(getRegionFor(A), getRegionFor(B));
852  }
853
854  /// Find the smallest region that contains a set of regions.
855  ///
856  /// @param Regions A vector of regions.
857  /// @return The smallest region that contains all regions in Regions.
858  RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
859
860  /// Find the smallest region that contains a set of basic blocks.
861  ///
862  /// @param BBs A vector of basic blocks.
863  /// @return The smallest region that contains all basic blocks in BBS.
864  RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
865
866  RegionT *getTopLevelRegion() const { return TopLevelRegion; }
867
868  /// Clear the Node Cache for all Regions.
869  ///
870  /// @see Region::clearNodeCache()
871  void clearNodeCache() {
872    if (TopLevelRegion)
873      TopLevelRegion->clearNodeCache();
874  }
875
876  void verifyAnalysis() const;
877};
878
879class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
880public:
881  inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
882      : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
883
884  bool operator==(const Region &RN) const {
885    return this == reinterpret_cast<const RegionNode *>(&RN);
886  }
887};
888
889class Region : public RegionBase<RegionTraits<Function>> {
890public:
891  Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
892         Region *Parent = nullptr);
893  ~Region();
894
895  bool operator==(const RegionNode &RN) const {
896    return &RN == reinterpret_cast<const RegionNode *>(this);
897  }
898};
899
900class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
901public:
902  using Base = RegionInfoBase<RegionTraits<Function>>;
903
904  explicit RegionInfo();
905
906  RegionInfo(RegionInfo &&Arg) : Base(std::move(static_cast<Base &>(Arg))) {
907    updateRegionTree(*this, TopLevelRegion);
908  }
909
910  RegionInfo &operator=(RegionInfo &&RHS) {
911    Base::operator=(std::move(static_cast<Base &>(RHS)));
912    updateRegionTree(*this, TopLevelRegion);
913    return *this;
914  }
915
916  ~RegionInfo() override;
917
918  /// Handle invalidation explicitly.
919  bool invalidate(Function &F, const PreservedAnalyses &PA,
920                  FunctionAnalysisManager::Invalidator &);
921
922  // updateStatistics - Update statistic about created regions.
923  void updateStatistics(Region *R) final;
924
925  void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
926                   DominanceFrontier *DF);
927
928#ifndef NDEBUG
929  /// Opens a viewer to show the GraphViz visualization of the regions.
930  ///
931  /// Useful during debugging as an alternative to dump().
932  void view();
933
934  /// Opens a viewer to show the GraphViz visualization of this region
935  /// without instructions in the BasicBlocks.
936  ///
937  /// Useful during debugging as an alternative to dump().
938  void viewOnly();
939#endif
940};
941
942class RegionInfoPass : public FunctionPass {
943  RegionInfo RI;
944
945public:
946  static char ID;
947
948  explicit RegionInfoPass();
949  ~RegionInfoPass() override;
950
951  RegionInfo &getRegionInfo() { return RI; }
952
953  const RegionInfo &getRegionInfo() const { return RI; }
954
955  /// @name FunctionPass interface
956  //@{
957  bool runOnFunction(Function &F) override;
958  void releaseMemory() override;
959  void verifyAnalysis() const override;
960  void getAnalysisUsage(AnalysisUsage &AU) const override;
961  void print(raw_ostream &OS, const Module *) const override;
962  void dump() const;
963  //@}
964};
965
966/// Analysis pass that exposes the \c RegionInfo for a function.
967class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> {
968  friend AnalysisInfoMixin<RegionInfoAnalysis>;
969
970  static AnalysisKey Key;
971
972public:
973  using Result = RegionInfo;
974
975  RegionInfo run(Function &F, FunctionAnalysisManager &AM);
976};
977
978/// Printer pass for the \c RegionInfo.
979class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> {
980  raw_ostream &OS;
981
982public:
983  explicit RegionInfoPrinterPass(raw_ostream &OS);
984
985  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
986};
987
988/// Verifier pass for the \c RegionInfo.
989struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> {
990  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
991};
992
993template <>
994template <>
995inline BasicBlock *
996RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
997  assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
998  return getEntry();
999}
1000
1001template <>
1002template <>
1003inline Region *
1004RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
1005  assert(isSubRegion() && "This is not a subregion RegionNode!");
1006  auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
1007  return reinterpret_cast<Region *>(Unconst);
1008}
1009
1010template <class Tr>
1011inline raw_ostream &operator<<(raw_ostream &OS,
1012                               const RegionNodeBase<Tr> &Node) {
1013  using BlockT = typename Tr::BlockT;
1014  using RegionT = typename Tr::RegionT;
1015
1016  if (Node.isSubRegion())
1017    return OS << Node.template getNodeAs<RegionT>()->getNameStr();
1018  else
1019    return OS << Node.template getNodeAs<BlockT>()->getName();
1020}
1021
1022extern template class RegionBase<RegionTraits<Function>>;
1023extern template class RegionNodeBase<RegionTraits<Function>>;
1024extern template class RegionInfoBase<RegionTraits<Function>>;
1025
1026} // end namespace llvm
1027
1028#endif // LLVM_ANALYSIS_REGIONINFO_H
1029