1//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file exposes an interface to building/using memory SSA to
11/// walk memory instructions using a use/def graph.
12///
13/// Memory SSA class builds an SSA form that links together memory access
14/// instructions such as loads, stores, atomics, and calls. Additionally, it
15/// does a trivial form of "heap versioning" Every time the memory state changes
16/// in the program, we generate a new heap version. It generates
17/// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
18///
19/// As a trivial example,
20/// define i32 @main() #0 {
21/// entry:
22///   %call = call noalias i8* @_Znwm(i64 4) #2
23///   %0 = bitcast i8* %call to i32*
24///   %call1 = call noalias i8* @_Znwm(i64 4) #2
25///   %1 = bitcast i8* %call1 to i32*
26///   store i32 5, i32* %0, align 4
27///   store i32 7, i32* %1, align 4
28///   %2 = load i32* %0, align 4
29///   %3 = load i32* %1, align 4
30///   %add = add nsw i32 %2, %3
31///   ret i32 %add
32/// }
33///
34/// Will become
35/// define i32 @main() #0 {
36/// entry:
37///   ; 1 = MemoryDef(0)
38///   %call = call noalias i8* @_Znwm(i64 4) #3
39///   %2 = bitcast i8* %call to i32*
40///   ; 2 = MemoryDef(1)
41///   %call1 = call noalias i8* @_Znwm(i64 4) #3
42///   %4 = bitcast i8* %call1 to i32*
43///   ; 3 = MemoryDef(2)
44///   store i32 5, i32* %2, align 4
45///   ; 4 = MemoryDef(3)
46///   store i32 7, i32* %4, align 4
47///   ; MemoryUse(3)
48///   %7 = load i32* %2, align 4
49///   ; MemoryUse(4)
50///   %8 = load i32* %4, align 4
51///   %add = add nsw i32 %7, %8
52///   ret i32 %add
53/// }
54///
55/// Given this form, all the stores that could ever effect the load at %8 can be
56/// gotten by using the MemoryUse associated with it, and walking from use to
57/// def until you hit the top of the function.
58///
59/// Each def also has a list of users associated with it, so you can walk from
60/// both def to users, and users to defs. Note that we disambiguate MemoryUses,
61/// but not the RHS of MemoryDefs. You can see this above at %7, which would
62/// otherwise be a MemoryUse(4). Being disambiguated means that for a given
63/// store, all the MemoryUses on its use lists are may-aliases of that store
64/// (but the MemoryDefs on its use list may not be).
65///
66/// MemoryDefs are not disambiguated because it would require multiple reaching
67/// definitions, which would require multiple phis, and multiple memoryaccesses
68/// per instruction.
69//
70//===----------------------------------------------------------------------===//
71
72#ifndef LLVM_ANALYSIS_MEMORYSSA_H
73#define LLVM_ANALYSIS_MEMORYSSA_H
74
75#include "llvm/ADT/DenseMap.h"
76#include "llvm/ADT/GraphTraits.h"
77#include "llvm/ADT/SmallPtrSet.h"
78#include "llvm/ADT/SmallVector.h"
79#include "llvm/ADT/ilist.h"
80#include "llvm/ADT/ilist_node.h"
81#include "llvm/ADT/iterator.h"
82#include "llvm/ADT/iterator_range.h"
83#include "llvm/ADT/simple_ilist.h"
84#include "llvm/Analysis/AliasAnalysis.h"
85#include "llvm/Analysis/MemoryLocation.h"
86#include "llvm/Analysis/PHITransAddr.h"
87#include "llvm/IR/BasicBlock.h"
88#include "llvm/IR/DerivedUser.h"
89#include "llvm/IR/Dominators.h"
90#include "llvm/IR/Module.h"
91#include "llvm/IR/Operator.h"
92#include "llvm/IR/Type.h"
93#include "llvm/IR/Use.h"
94#include "llvm/IR/User.h"
95#include "llvm/IR/Value.h"
96#include "llvm/IR/ValueHandle.h"
97#include "llvm/Pass.h"
98#include "llvm/Support/Casting.h"
99#include "llvm/Support/CommandLine.h"
100#include <algorithm>
101#include <cassert>
102#include <cstddef>
103#include <iterator>
104#include <memory>
105#include <utility>
106
107namespace llvm {
108
109/// Enables memory ssa as a dependency for loop passes.
110extern cl::opt<bool> EnableMSSALoopDependency;
111
112class AllocaInst;
113class Function;
114class Instruction;
115class MemoryAccess;
116class MemorySSAWalker;
117class LLVMContext;
118class raw_ostream;
119
120namespace MSSAHelpers {
121
122struct AllAccessTag {};
123struct DefsOnlyTag {};
124
125} // end namespace MSSAHelpers
126
127enum : unsigned {
128  // Used to signify what the default invalid ID is for MemoryAccess's
129  // getID()
130  INVALID_MEMORYACCESS_ID = -1U
131};
132
133template <class T> class memoryaccess_def_iterator_base;
134using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
135using const_memoryaccess_def_iterator =
136    memoryaccess_def_iterator_base<const MemoryAccess>;
137
138// The base for all memory accesses. All memory accesses in a block are
139// linked together using an intrusive list.
140class MemoryAccess
141    : public DerivedUser,
142      public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
143      public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
144public:
145  using AllAccessType =
146      ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
147  using DefsOnlyType =
148      ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
149
150  MemoryAccess(const MemoryAccess &) = delete;
151  MemoryAccess &operator=(const MemoryAccess &) = delete;
152
153  void *operator new(size_t) = delete;
154
155  // Methods for support type inquiry through isa, cast, and
156  // dyn_cast
157  static bool classof(const Value *V) {
158    unsigned ID = V->getValueID();
159    return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
160  }
161
162  BasicBlock *getBlock() const { return Block; }
163
164  void print(raw_ostream &OS) const;
165  void dump() const;
166
167  /// The user iterators for a memory access
168  using iterator = user_iterator;
169  using const_iterator = const_user_iterator;
170
171  /// This iterator walks over all of the defs in a given
172  /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
173  /// MemoryUse/MemoryDef, this walks the defining access.
174  memoryaccess_def_iterator defs_begin();
175  const_memoryaccess_def_iterator defs_begin() const;
176  memoryaccess_def_iterator defs_end();
177  const_memoryaccess_def_iterator defs_end() const;
178
179  /// Get the iterators for the all access list and the defs only list
180  /// We default to the all access list.
181  AllAccessType::self_iterator getIterator() {
182    return this->AllAccessType::getIterator();
183  }
184  AllAccessType::const_self_iterator getIterator() const {
185    return this->AllAccessType::getIterator();
186  }
187  AllAccessType::reverse_self_iterator getReverseIterator() {
188    return this->AllAccessType::getReverseIterator();
189  }
190  AllAccessType::const_reverse_self_iterator getReverseIterator() const {
191    return this->AllAccessType::getReverseIterator();
192  }
193  DefsOnlyType::self_iterator getDefsIterator() {
194    return this->DefsOnlyType::getIterator();
195  }
196  DefsOnlyType::const_self_iterator getDefsIterator() const {
197    return this->DefsOnlyType::getIterator();
198  }
199  DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
200    return this->DefsOnlyType::getReverseIterator();
201  }
202  DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
203    return this->DefsOnlyType::getReverseIterator();
204  }
205
206protected:
207  friend class MemoryDef;
208  friend class MemoryPhi;
209  friend class MemorySSA;
210  friend class MemoryUse;
211  friend class MemoryUseOrDef;
212
213  /// Used by MemorySSA to change the block of a MemoryAccess when it is
214  /// moved.
215  void setBlock(BasicBlock *BB) { Block = BB; }
216
217  /// Used for debugging and tracking things about MemoryAccesses.
218  /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
219  inline unsigned getID() const;
220
221  MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue,
222               BasicBlock *BB, unsigned NumOperands)
223      : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue),
224        Block(BB) {}
225
226  // Use deleteValue() to delete a generic MemoryAccess.
227  ~MemoryAccess() = default;
228
229private:
230  BasicBlock *Block;
231};
232
233template <>
234struct ilist_alloc_traits<MemoryAccess> {
235  static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); }
236};
237
238inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
239  MA.print(OS);
240  return OS;
241}
242
243/// Class that has the common methods + fields of memory uses/defs. It's
244/// a little awkward to have, but there are many cases where we want either a
245/// use or def, and there are many cases where uses are needed (defs aren't
246/// acceptable), and vice-versa.
247///
248/// This class should never be instantiated directly; make a MemoryUse or
249/// MemoryDef instead.
250class MemoryUseOrDef : public MemoryAccess {
251public:
252  void *operator new(size_t) = delete;
253
254  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
255
256  /// Get the instruction that this MemoryUse represents.
257  Instruction *getMemoryInst() const { return MemoryInstruction; }
258
259  /// Get the access that produces the memory state used by this Use.
260  MemoryAccess *getDefiningAccess() const { return getOperand(0); }
261
262  static bool classof(const Value *MA) {
263    return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
264  }
265
266  // Sadly, these have to be public because they are needed in some of the
267  // iterators.
268  inline bool isOptimized() const;
269  inline MemoryAccess *getOptimized() const;
270  inline void setOptimized(MemoryAccess *);
271
272  // Retrieve AliasResult type of the optimized access. Ideally this would be
273  // returned by the caching walker and may go away in the future.
274  Optional<AliasResult> getOptimizedAccessType() const {
275    return isOptimized() ? OptimizedAccessAlias : None;
276  }
277
278  /// Reset the ID of what this MemoryUse was optimized to, causing it to
279  /// be rewalked by the walker if necessary.
280  /// This really should only be called by tests.
281  inline void resetOptimized();
282
283protected:
284  friend class MemorySSA;
285  friend class MemorySSAUpdater;
286
287  MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
288                 DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB,
289                 unsigned NumOperands)
290      : MemoryAccess(C, Vty, DeleteValue, BB, NumOperands),
291        MemoryInstruction(MI), OptimizedAccessAlias(AliasResult::MayAlias) {
292    setDefiningAccess(DMA);
293  }
294
295  // Use deleteValue() to delete a generic MemoryUseOrDef.
296  ~MemoryUseOrDef() = default;
297
298  void setOptimizedAccessType(Optional<AliasResult> AR) {
299    OptimizedAccessAlias = AR;
300  }
301
302  void setDefiningAccess(
303      MemoryAccess *DMA, bool Optimized = false,
304      Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias)) {
305    if (!Optimized) {
306      setOperand(0, DMA);
307      return;
308    }
309    setOptimized(DMA);
310    setOptimizedAccessType(AR);
311  }
312
313private:
314  Instruction *MemoryInstruction;
315  Optional<AliasResult> OptimizedAccessAlias;
316};
317
318/// Represents read-only accesses to memory
319///
320/// In particular, the set of Instructions that will be represented by
321/// MemoryUse's is exactly the set of Instructions for which
322/// AliasAnalysis::getModRefInfo returns "Ref".
323class MemoryUse final : public MemoryUseOrDef {
324public:
325  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
326
327  MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
328      : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB,
329                       /*NumOperands=*/1) {}
330
331  // allocate space for exactly one operand
332  void *operator new(size_t s) { return User::operator new(s, 1); }
333
334  static bool classof(const Value *MA) {
335    return MA->getValueID() == MemoryUseVal;
336  }
337
338  void print(raw_ostream &OS) const;
339
340  void setOptimized(MemoryAccess *DMA) {
341    OptimizedID = DMA->getID();
342    setOperand(0, DMA);
343  }
344
345  bool isOptimized() const {
346    return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
347  }
348
349  MemoryAccess *getOptimized() const {
350    return getDefiningAccess();
351  }
352
353  void resetOptimized() {
354    OptimizedID = INVALID_MEMORYACCESS_ID;
355  }
356
357protected:
358  friend class MemorySSA;
359
360private:
361  static void deleteMe(DerivedUser *Self);
362
363  unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
364};
365
366template <>
367struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
368DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
369
370/// Represents a read-write access to memory, whether it is a must-alias,
371/// or a may-alias.
372///
373/// In particular, the set of Instructions that will be represented by
374/// MemoryDef's is exactly the set of Instructions for which
375/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
376/// Note that, in order to provide def-def chains, all defs also have a use
377/// associated with them. This use points to the nearest reaching
378/// MemoryDef/MemoryPhi.
379class MemoryDef final : public MemoryUseOrDef {
380public:
381  friend class MemorySSA;
382
383  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
384
385  MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
386            unsigned Ver)
387      : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB,
388                       /*NumOperands=*/2),
389        ID(Ver) {}
390
391  // allocate space for exactly two operands
392  void *operator new(size_t s) { return User::operator new(s, 2); }
393
394  static bool classof(const Value *MA) {
395    return MA->getValueID() == MemoryDefVal;
396  }
397
398  void setOptimized(MemoryAccess *MA) {
399    setOperand(1, MA);
400    OptimizedID = MA->getID();
401  }
402
403  MemoryAccess *getOptimized() const {
404    return cast_or_null<MemoryAccess>(getOperand(1));
405  }
406
407  bool isOptimized() const {
408    return getOptimized() && OptimizedID == getOptimized()->getID();
409  }
410
411  void resetOptimized() {
412    OptimizedID = INVALID_MEMORYACCESS_ID;
413    setOperand(1, nullptr);
414  }
415
416  void print(raw_ostream &OS) const;
417
418  unsigned getID() const { return ID; }
419
420private:
421  static void deleteMe(DerivedUser *Self);
422
423  const unsigned ID;
424  unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
425};
426
427template <>
428struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 2> {};
429DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
430
431template <>
432struct OperandTraits<MemoryUseOrDef> {
433  static Use *op_begin(MemoryUseOrDef *MUD) {
434    if (auto *MU = dyn_cast<MemoryUse>(MUD))
435      return OperandTraits<MemoryUse>::op_begin(MU);
436    return OperandTraits<MemoryDef>::op_begin(cast<MemoryDef>(MUD));
437  }
438
439  static Use *op_end(MemoryUseOrDef *MUD) {
440    if (auto *MU = dyn_cast<MemoryUse>(MUD))
441      return OperandTraits<MemoryUse>::op_end(MU);
442    return OperandTraits<MemoryDef>::op_end(cast<MemoryDef>(MUD));
443  }
444
445  static unsigned operands(const MemoryUseOrDef *MUD) {
446    if (const auto *MU = dyn_cast<MemoryUse>(MUD))
447      return OperandTraits<MemoryUse>::operands(MU);
448    return OperandTraits<MemoryDef>::operands(cast<MemoryDef>(MUD));
449  }
450};
451DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
452
453/// Represents phi nodes for memory accesses.
454///
455/// These have the same semantic as regular phi nodes, with the exception that
456/// only one phi will ever exist in a given basic block.
457/// Guaranteeing one phi per block means guaranteeing there is only ever one
458/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
459/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
460/// a MemoryPhi's operands.
461/// That is, given
462/// if (a) {
463///   store %a
464///   store %b
465/// }
466/// it *must* be transformed into
467/// if (a) {
468///    1 = MemoryDef(liveOnEntry)
469///    store %a
470///    2 = MemoryDef(1)
471///    store %b
472/// }
473/// and *not*
474/// if (a) {
475///    1 = MemoryDef(liveOnEntry)
476///    store %a
477///    2 = MemoryDef(liveOnEntry)
478///    store %b
479/// }
480/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
481/// end of the branch, and if there are not two phi nodes, one will be
482/// disconnected completely from the SSA graph below that point.
483/// Because MemoryUse's do not generate new definitions, they do not have this
484/// issue.
485class MemoryPhi final : public MemoryAccess {
486  // allocate space for exactly zero operands
487  void *operator new(size_t s) { return User::operator new(s); }
488
489public:
490  /// Provide fast operand accessors
491  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
492
493  MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
494      : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver),
495        ReservedSpace(NumPreds) {
496    allocHungoffUses(ReservedSpace);
497  }
498
499  // Block iterator interface. This provides access to the list of incoming
500  // basic blocks, which parallels the list of incoming values.
501  using block_iterator = BasicBlock **;
502  using const_block_iterator = BasicBlock *const *;
503
504  block_iterator block_begin() {
505    return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
506  }
507
508  const_block_iterator block_begin() const {
509    return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
510  }
511
512  block_iterator block_end() { return block_begin() + getNumOperands(); }
513
514  const_block_iterator block_end() const {
515    return block_begin() + getNumOperands();
516  }
517
518  iterator_range<block_iterator> blocks() {
519    return make_range(block_begin(), block_end());
520  }
521
522  iterator_range<const_block_iterator> blocks() const {
523    return make_range(block_begin(), block_end());
524  }
525
526  op_range incoming_values() { return operands(); }
527
528  const_op_range incoming_values() const { return operands(); }
529
530  /// Return the number of incoming edges
531  unsigned getNumIncomingValues() const { return getNumOperands(); }
532
533  /// Return incoming value number x
534  MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
535  void setIncomingValue(unsigned I, MemoryAccess *V) {
536    assert(V && "PHI node got a null value!");
537    setOperand(I, V);
538  }
539
540  static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
541  static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
542
543  /// Return incoming basic block number @p i.
544  BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
545
546  /// Return incoming basic block corresponding
547  /// to an operand of the PHI.
548  BasicBlock *getIncomingBlock(const Use &U) const {
549    assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
550    return getIncomingBlock(unsigned(&U - op_begin()));
551  }
552
553  /// Return incoming basic block corresponding
554  /// to value use iterator.
555  BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
556    return getIncomingBlock(I.getUse());
557  }
558
559  void setIncomingBlock(unsigned I, BasicBlock *BB) {
560    assert(BB && "PHI node got a null basic block!");
561    block_begin()[I] = BB;
562  }
563
564  /// Add an incoming value to the end of the PHI list
565  void addIncoming(MemoryAccess *V, BasicBlock *BB) {
566    if (getNumOperands() == ReservedSpace)
567      growOperands(); // Get more space!
568    // Initialize some new operands.
569    setNumHungOffUseOperands(getNumOperands() + 1);
570    setIncomingValue(getNumOperands() - 1, V);
571    setIncomingBlock(getNumOperands() - 1, BB);
572  }
573
574  /// Return the first index of the specified basic
575  /// block in the value list for this PHI.  Returns -1 if no instance.
576  int getBasicBlockIndex(const BasicBlock *BB) const {
577    for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
578      if (block_begin()[I] == BB)
579        return I;
580    return -1;
581  }
582
583  MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const {
584    int Idx = getBasicBlockIndex(BB);
585    assert(Idx >= 0 && "Invalid basic block argument!");
586    return getIncomingValue(Idx);
587  }
588
589  // After deleting incoming position I, the order of incoming may be changed.
590  void unorderedDeleteIncoming(unsigned I) {
591    unsigned E = getNumOperands();
592    assert(I < E && "Cannot remove out of bounds Phi entry.");
593    // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi
594    // itself should be deleted.
595    assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with "
596                     "at least 2 values.");
597    setIncomingValue(I, getIncomingValue(E - 1));
598    setIncomingBlock(I, block_begin()[E - 1]);
599    setOperand(E - 1, nullptr);
600    block_begin()[E - 1] = nullptr;
601    setNumHungOffUseOperands(getNumOperands() - 1);
602  }
603
604  // After deleting entries that satisfy Pred, remaining entries may have
605  // changed order.
606  template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) {
607    for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
608      if (Pred(getIncomingValue(I), getIncomingBlock(I))) {
609        unorderedDeleteIncoming(I);
610        E = getNumOperands();
611        --I;
612      }
613    assert(getNumOperands() >= 1 &&
614           "Cannot remove all incoming blocks in a MemoryPhi.");
615  }
616
617  // After deleting incoming block BB, the incoming blocks order may be changed.
618  void unorderedDeleteIncomingBlock(const BasicBlock *BB) {
619    unorderedDeleteIncomingIf(
620        [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; });
621  }
622
623  // After deleting incoming memory access MA, the incoming accesses order may
624  // be changed.
625  void unorderedDeleteIncomingValue(const MemoryAccess *MA) {
626    unorderedDeleteIncomingIf(
627        [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; });
628  }
629
630  static bool classof(const Value *V) {
631    return V->getValueID() == MemoryPhiVal;
632  }
633
634  void print(raw_ostream &OS) const;
635
636  unsigned getID() const { return ID; }
637
638protected:
639  friend class MemorySSA;
640
641  /// this is more complicated than the generic
642  /// User::allocHungoffUses, because we have to allocate Uses for the incoming
643  /// values and pointers to the incoming blocks, all in one allocation.
644  void allocHungoffUses(unsigned N) {
645    User::allocHungoffUses(N, /* IsPhi */ true);
646  }
647
648private:
649  // For debugging only
650  const unsigned ID;
651  unsigned ReservedSpace;
652
653  /// This grows the operand list in response to a push_back style of
654  /// operation.  This grows the number of ops by 1.5 times.
655  void growOperands() {
656    unsigned E = getNumOperands();
657    // 2 op PHI nodes are VERY common, so reserve at least enough for that.
658    ReservedSpace = std::max(E + E / 2, 2u);
659    growHungoffUses(ReservedSpace, /* IsPhi */ true);
660  }
661
662  static void deleteMe(DerivedUser *Self);
663};
664
665inline unsigned MemoryAccess::getID() const {
666  assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) &&
667         "only memory defs and phis have ids");
668  if (const auto *MD = dyn_cast<MemoryDef>(this))
669    return MD->getID();
670  return cast<MemoryPhi>(this)->getID();
671}
672
673inline bool MemoryUseOrDef::isOptimized() const {
674  if (const auto *MD = dyn_cast<MemoryDef>(this))
675    return MD->isOptimized();
676  return cast<MemoryUse>(this)->isOptimized();
677}
678
679inline MemoryAccess *MemoryUseOrDef::getOptimized() const {
680  if (const auto *MD = dyn_cast<MemoryDef>(this))
681    return MD->getOptimized();
682  return cast<MemoryUse>(this)->getOptimized();
683}
684
685inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) {
686  if (auto *MD = dyn_cast<MemoryDef>(this))
687    MD->setOptimized(MA);
688  else
689    cast<MemoryUse>(this)->setOptimized(MA);
690}
691
692inline void MemoryUseOrDef::resetOptimized() {
693  if (auto *MD = dyn_cast<MemoryDef>(this))
694    MD->resetOptimized();
695  else
696    cast<MemoryUse>(this)->resetOptimized();
697}
698
699template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
700DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
701
702/// Encapsulates MemorySSA, including all data associated with memory
703/// accesses.
704class MemorySSA {
705public:
706  MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
707
708  // MemorySSA must remain where it's constructed; Walkers it creates store
709  // pointers to it.
710  MemorySSA(MemorySSA &&) = delete;
711
712  ~MemorySSA();
713
714  MemorySSAWalker *getWalker();
715  MemorySSAWalker *getSkipSelfWalker();
716
717  /// Given a memory Mod/Ref'ing instruction, get the MemorySSA
718  /// access associated with it. If passed a basic block gets the memory phi
719  /// node that exists for that block, if there is one. Otherwise, this will get
720  /// a MemoryUseOrDef.
721  MemoryUseOrDef *getMemoryAccess(const Instruction *I) const {
722    return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
723  }
724
725  MemoryPhi *getMemoryAccess(const BasicBlock *BB) const {
726    return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
727  }
728
729  DominatorTree &getDomTree() const { return *DT; }
730
731  void dump() const;
732  void print(raw_ostream &) const;
733
734  /// Return true if \p MA represents the live on entry value
735  ///
736  /// Loads and stores from pointer arguments and other global values may be
737  /// defined by memory operations that do not occur in the current function, so
738  /// they may be live on entry to the function. MemorySSA represents such
739  /// memory state by the live on entry definition, which is guaranteed to occur
740  /// before any other memory access in the function.
741  inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
742    return MA == LiveOnEntryDef.get();
743  }
744
745  inline MemoryAccess *getLiveOnEntryDef() const {
746    return LiveOnEntryDef.get();
747  }
748
749  // Sadly, iplists, by default, owns and deletes pointers added to the
750  // list. It's not currently possible to have two iplists for the same type,
751  // where one owns the pointers, and one does not. This is because the traits
752  // are per-type, not per-tag.  If this ever changes, we should make the
753  // DefList an iplist.
754  using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
755  using DefsList =
756      simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
757
758  /// Return the list of MemoryAccess's for a given basic block.
759  ///
760  /// This list is not modifiable by the user.
761  const AccessList *getBlockAccesses(const BasicBlock *BB) const {
762    return getWritableBlockAccesses(BB);
763  }
764
765  /// Return the list of MemoryDef's and MemoryPhi's for a given basic
766  /// block.
767  ///
768  /// This list is not modifiable by the user.
769  const DefsList *getBlockDefs(const BasicBlock *BB) const {
770    return getWritableBlockDefs(BB);
771  }
772
773  /// Given two memory accesses in the same basic block, determine
774  /// whether MemoryAccess \p A dominates MemoryAccess \p B.
775  bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
776
777  /// Given two memory accesses in potentially different blocks,
778  /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
779  bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
780
781  /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
782  /// dominates Use \p B.
783  bool dominates(const MemoryAccess *A, const Use &B) const;
784
785  /// Verify that MemorySSA is self consistent (IE definitions dominate
786  /// all uses, uses appear in the right places).  This is used by unit tests.
787  void verifyMemorySSA() const;
788
789  /// Used in various insertion functions to specify whether we are talking
790  /// about the beginning or end of a block.
791  enum InsertionPlace { Beginning, End, BeforeTerminator };
792
793protected:
794  // Used by Memory SSA annotater, dumpers, and wrapper pass
795  friend class MemorySSAAnnotatedWriter;
796  friend class MemorySSAPrinterLegacyPass;
797  friend class MemorySSAUpdater;
798
799  void verifyOrderingDominationAndDefUses(Function &F) const;
800  void verifyDominationNumbers(const Function &F) const;
801  void verifyPrevDefInPhis(Function &F) const;
802
803  // This is used by the use optimizer and updater.
804  AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
805    auto It = PerBlockAccesses.find(BB);
806    return It == PerBlockAccesses.end() ? nullptr : It->second.get();
807  }
808
809  // This is used by the use optimizer and updater.
810  DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
811    auto It = PerBlockDefs.find(BB);
812    return It == PerBlockDefs.end() ? nullptr : It->second.get();
813  }
814
815  // These is used by the updater to perform various internal MemorySSA
816  // machinsations.  They do not always leave the IR in a correct state, and
817  // relies on the updater to fixup what it breaks, so it is not public.
818
819  void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
820  void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point);
821
822  // Rename the dominator tree branch rooted at BB.
823  void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
824                  SmallPtrSetImpl<BasicBlock *> &Visited) {
825    renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
826  }
827
828  void removeFromLookups(MemoryAccess *);
829  void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
830  void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
831                               InsertionPlace);
832  void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
833                             AccessList::iterator);
834  MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *,
835                                      const MemoryUseOrDef *Template = nullptr,
836                                      bool CreationMustSucceed = true);
837
838private:
839  template <class AliasAnalysisType> class ClobberWalkerBase;
840  template <class AliasAnalysisType> class CachingWalker;
841  template <class AliasAnalysisType> class SkipSelfWalker;
842  class OptimizeUses;
843
844  CachingWalker<AliasAnalysis> *getWalkerImpl();
845  void buildMemorySSA(BatchAAResults &BAA);
846
847  void prepareForMoveTo(MemoryAccess *, BasicBlock *);
848  void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
849
850  using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
851  using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
852
853  void markUnreachableAsLiveOnEntry(BasicBlock *BB);
854  MemoryPhi *createMemoryPhi(BasicBlock *BB);
855  template <typename AliasAnalysisType>
856  MemoryUseOrDef *createNewAccess(Instruction *, AliasAnalysisType *,
857                                  const MemoryUseOrDef *Template = nullptr);
858  void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &);
859  MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
860  void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
861  void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
862                  SmallPtrSetImpl<BasicBlock *> &Visited,
863                  bool SkipVisited = false, bool RenameAllUses = false);
864  AccessList *getOrCreateAccessList(const BasicBlock *);
865  DefsList *getOrCreateDefsList(const BasicBlock *);
866  void renumberBlock(const BasicBlock *) const;
867  AliasAnalysis *AA;
868  DominatorTree *DT;
869  Function &F;
870
871  // Memory SSA mappings
872  DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
873
874  // These two mappings contain the main block to access/def mappings for
875  // MemorySSA. The list contained in PerBlockAccesses really owns all the
876  // MemoryAccesses.
877  // Both maps maintain the invariant that if a block is found in them, the
878  // corresponding list is not empty, and if a block is not found in them, the
879  // corresponding list is empty.
880  AccessMap PerBlockAccesses;
881  DefsMap PerBlockDefs;
882  std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef;
883
884  // Domination mappings
885  // Note that the numbering is local to a block, even though the map is
886  // global.
887  mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
888  mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
889
890  // Memory SSA building info
891  std::unique_ptr<ClobberWalkerBase<AliasAnalysis>> WalkerBase;
892  std::unique_ptr<CachingWalker<AliasAnalysis>> Walker;
893  std::unique_ptr<SkipSelfWalker<AliasAnalysis>> SkipWalker;
894  unsigned NextID;
895};
896
897// Internal MemorySSA utils, for use by MemorySSA classes and walkers
898class MemorySSAUtil {
899protected:
900  friend class GVNHoist;
901  friend class MemorySSAWalker;
902
903  // This function should not be used by new passes.
904  static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
905                                  AliasAnalysis &AA);
906};
907
908// This pass does eager building and then printing of MemorySSA. It is used by
909// the tests to be able to build, dump, and verify Memory SSA.
910class MemorySSAPrinterLegacyPass : public FunctionPass {
911public:
912  MemorySSAPrinterLegacyPass();
913
914  bool runOnFunction(Function &) override;
915  void getAnalysisUsage(AnalysisUsage &AU) const override;
916
917  static char ID;
918};
919
920/// An analysis that produces \c MemorySSA for a function.
921///
922class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
923  friend AnalysisInfoMixin<MemorySSAAnalysis>;
924
925  static AnalysisKey Key;
926
927public:
928  // Wrap MemorySSA result to ensure address stability of internal MemorySSA
929  // pointers after construction.  Use a wrapper class instead of plain
930  // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
931  struct Result {
932    Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
933
934    MemorySSA &getMSSA() { return *MSSA.get(); }
935
936    std::unique_ptr<MemorySSA> MSSA;
937
938    bool invalidate(Function &F, const PreservedAnalyses &PA,
939                    FunctionAnalysisManager::Invalidator &Inv);
940  };
941
942  Result run(Function &F, FunctionAnalysisManager &AM);
943};
944
945/// Printer pass for \c MemorySSA.
946class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
947  raw_ostream &OS;
948
949public:
950  explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
951
952  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
953};
954
955/// Verifier pass for \c MemorySSA.
956struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
957  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
958};
959
960/// Legacy analysis pass which computes \c MemorySSA.
961class MemorySSAWrapperPass : public FunctionPass {
962public:
963  MemorySSAWrapperPass();
964
965  static char ID;
966
967  bool runOnFunction(Function &) override;
968  void releaseMemory() override;
969  MemorySSA &getMSSA() { return *MSSA; }
970  const MemorySSA &getMSSA() const { return *MSSA; }
971
972  void getAnalysisUsage(AnalysisUsage &AU) const override;
973
974  void verifyAnalysis() const override;
975  void print(raw_ostream &OS, const Module *M = nullptr) const override;
976
977private:
978  std::unique_ptr<MemorySSA> MSSA;
979};
980
981/// This is the generic walker interface for walkers of MemorySSA.
982/// Walkers are used to be able to further disambiguate the def-use chains
983/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
984/// you.
985/// In particular, while the def-use chains provide basic information, and are
986/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
987/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
988/// information. In particular, they may want to use SCEV info to further
989/// disambiguate memory accesses, or they may want the nearest dominating
990/// may-aliasing MemoryDef for a call or a store. This API enables a
991/// standardized interface to getting and using that info.
992class MemorySSAWalker {
993public:
994  MemorySSAWalker(MemorySSA *);
995  virtual ~MemorySSAWalker() = default;
996
997  using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
998
999  /// Given a memory Mod/Ref/ModRef'ing instruction, calling this
1000  /// will give you the nearest dominating MemoryAccess that Mod's the location
1001  /// the instruction accesses (by skipping any def which AA can prove does not
1002  /// alias the location(s) accessed by the instruction given).
1003  ///
1004  /// Note that this will return a single access, and it must dominate the
1005  /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
1006  /// this will return the MemoryPhi, not the operand. This means that
1007  /// given:
1008  /// if (a) {
1009  ///   1 = MemoryDef(liveOnEntry)
1010  ///   store %a
1011  /// } else {
1012  ///   2 = MemoryDef(liveOnEntry)
1013  ///   store %b
1014  /// }
1015  /// 3 = MemoryPhi(2, 1)
1016  /// MemoryUse(3)
1017  /// load %a
1018  ///
1019  /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
1020  /// in the if (a) branch.
1021  MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
1022    MemoryAccess *MA = MSSA->getMemoryAccess(I);
1023    assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
1024    return getClobberingMemoryAccess(MA);
1025  }
1026
1027  /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
1028  /// but takes a MemoryAccess instead of an Instruction.
1029  virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
1030
1031  /// Given a potentially clobbering memory access and a new location,
1032  /// calling this will give you the nearest dominating clobbering MemoryAccess
1033  /// (by skipping non-aliasing def links).
1034  ///
1035  /// This version of the function is mainly used to disambiguate phi translated
1036  /// pointers, where the value of a pointer may have changed from the initial
1037  /// memory access. Note that this expects to be handed either a MemoryUse,
1038  /// or an already potentially clobbering access. Unlike the above API, if
1039  /// given a MemoryDef that clobbers the pointer as the starting access, it
1040  /// will return that MemoryDef, whereas the above would return the clobber
1041  /// starting from the use side of  the memory def.
1042  virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1043                                                  const MemoryLocation &) = 0;
1044
1045  /// Given a memory access, invalidate anything this walker knows about
1046  /// that access.
1047  /// This API is used by walkers that store information to perform basic cache
1048  /// invalidation.  This will be called by MemorySSA at appropriate times for
1049  /// the walker it uses or returns.
1050  virtual void invalidateInfo(MemoryAccess *) {}
1051
1052protected:
1053  friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
1054                          // constructor.
1055  MemorySSA *MSSA;
1056};
1057
1058/// A MemorySSAWalker that does no alias queries, or anything else. It
1059/// simply returns the links as they were constructed by the builder.
1060class DoNothingMemorySSAWalker final : public MemorySSAWalker {
1061public:
1062  // Keep the overrides below from hiding the Instruction overload of
1063  // getClobberingMemoryAccess.
1064  using MemorySSAWalker::getClobberingMemoryAccess;
1065
1066  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
1067  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1068                                          const MemoryLocation &) override;
1069};
1070
1071using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
1072using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
1073
1074/// Iterator base class used to implement const and non-const iterators
1075/// over the defining accesses of a MemoryAccess.
1076template <class T>
1077class memoryaccess_def_iterator_base
1078    : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
1079                                  std::forward_iterator_tag, T, ptrdiff_t, T *,
1080                                  T *> {
1081  using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
1082
1083public:
1084  memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
1085  memoryaccess_def_iterator_base() = default;
1086
1087  bool operator==(const memoryaccess_def_iterator_base &Other) const {
1088    return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
1089  }
1090
1091  // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
1092  // block from the operand in constant time (In a PHINode, the uselist has
1093  // both, so it's just subtraction). We provide it as part of the
1094  // iterator to avoid callers having to linear walk to get the block.
1095  // If the operation becomes constant time on MemoryPHI's, this bit of
1096  // abstraction breaking should be removed.
1097  BasicBlock *getPhiArgBlock() const {
1098    MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
1099    assert(MP && "Tried to get phi arg block when not iterating over a PHI");
1100    return MP->getIncomingBlock(ArgNo);
1101  }
1102
1103  typename std::iterator_traits<BaseT>::pointer operator*() const {
1104    assert(Access && "Tried to access past the end of our iterator");
1105    // Go to the first argument for phis, and the defining access for everything
1106    // else.
1107    if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
1108      return MP->getIncomingValue(ArgNo);
1109    return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
1110  }
1111
1112  using BaseT::operator++;
1113  memoryaccess_def_iterator_base &operator++() {
1114    assert(Access && "Hit end of iterator");
1115    if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
1116      if (++ArgNo >= MP->getNumIncomingValues()) {
1117        ArgNo = 0;
1118        Access = nullptr;
1119      }
1120    } else {
1121      Access = nullptr;
1122    }
1123    return *this;
1124  }
1125
1126private:
1127  T *Access = nullptr;
1128  unsigned ArgNo = 0;
1129};
1130
1131inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
1132  return memoryaccess_def_iterator(this);
1133}
1134
1135inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
1136  return const_memoryaccess_def_iterator(this);
1137}
1138
1139inline memoryaccess_def_iterator MemoryAccess::defs_end() {
1140  return memoryaccess_def_iterator();
1141}
1142
1143inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
1144  return const_memoryaccess_def_iterator();
1145}
1146
1147/// GraphTraits for a MemoryAccess, which walks defs in the normal case,
1148/// and uses in the inverse case.
1149template <> struct GraphTraits<MemoryAccess *> {
1150  using NodeRef = MemoryAccess *;
1151  using ChildIteratorType = memoryaccess_def_iterator;
1152
1153  static NodeRef getEntryNode(NodeRef N) { return N; }
1154  static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
1155  static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
1156};
1157
1158template <> struct GraphTraits<Inverse<MemoryAccess *>> {
1159  using NodeRef = MemoryAccess *;
1160  using ChildIteratorType = MemoryAccess::iterator;
1161
1162  static NodeRef getEntryNode(NodeRef N) { return N; }
1163  static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
1164  static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
1165};
1166
1167/// Provide an iterator that walks defs, giving both the memory access,
1168/// and the current pointer location, updating the pointer location as it
1169/// changes due to phi node translation.
1170///
1171/// This iterator, while somewhat specialized, is what most clients actually
1172/// want when walking upwards through MemorySSA def chains. It takes a pair of
1173/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
1174/// memory location through phi nodes for the user.
1175class upward_defs_iterator
1176    : public iterator_facade_base<upward_defs_iterator,
1177                                  std::forward_iterator_tag,
1178                                  const MemoryAccessPair> {
1179  using BaseT = upward_defs_iterator::iterator_facade_base;
1180
1181public:
1182  upward_defs_iterator(const MemoryAccessPair &Info, DominatorTree *DT,
1183                       bool *PerformedPhiTranslation = nullptr)
1184      : DefIterator(Info.first), Location(Info.second),
1185        OriginalAccess(Info.first), DT(DT),
1186        PerformedPhiTranslation(PerformedPhiTranslation) {
1187    CurrentPair.first = nullptr;
1188
1189    WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
1190    fillInCurrentPair();
1191  }
1192
1193  upward_defs_iterator() { CurrentPair.first = nullptr; }
1194
1195  bool operator==(const upward_defs_iterator &Other) const {
1196    return DefIterator == Other.DefIterator;
1197  }
1198
1199  typename std::iterator_traits<BaseT>::reference operator*() const {
1200    assert(DefIterator != OriginalAccess->defs_end() &&
1201           "Tried to access past the end of our iterator");
1202    return CurrentPair;
1203  }
1204
1205  using BaseT::operator++;
1206  upward_defs_iterator &operator++() {
1207    assert(DefIterator != OriginalAccess->defs_end() &&
1208           "Tried to access past the end of the iterator");
1209    ++DefIterator;
1210    if (DefIterator != OriginalAccess->defs_end())
1211      fillInCurrentPair();
1212    return *this;
1213  }
1214
1215  BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
1216
1217private:
1218  /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1219  /// loop. In particular, this guarantees that it only references a single
1220  /// MemoryLocation during execution of the containing function.
1221  bool IsGuaranteedLoopInvariant(Value *Ptr) const;
1222
1223  void fillInCurrentPair() {
1224    CurrentPair.first = *DefIterator;
1225    CurrentPair.second = Location;
1226    if (WalkingPhi && Location.Ptr) {
1227      // Mark size as unknown, if the location is not guaranteed to be
1228      // loop-invariant for any possible loop in the function. Setting the size
1229      // to unknown guarantees that any memory accesses that access locations
1230      // after the pointer are considered as clobbers, which is important to
1231      // catch loop carried dependences.
1232      if (Location.Ptr &&
1233          !IsGuaranteedLoopInvariant(const_cast<Value *>(Location.Ptr)))
1234        CurrentPair.second =
1235            Location.getWithNewSize(LocationSize::beforeOrAfterPointer());
1236      PHITransAddr Translator(
1237          const_cast<Value *>(Location.Ptr),
1238          OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
1239
1240      if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
1241                                        DefIterator.getPhiArgBlock(), DT,
1242                                        true)) {
1243        Value *TransAddr = Translator.getAddr();
1244        if (TransAddr != Location.Ptr) {
1245          CurrentPair.second = CurrentPair.second.getWithNewPtr(TransAddr);
1246
1247          if (TransAddr &&
1248              !IsGuaranteedLoopInvariant(const_cast<Value *>(TransAddr)))
1249            CurrentPair.second = CurrentPair.second.getWithNewSize(
1250                LocationSize::beforeOrAfterPointer());
1251
1252          if (PerformedPhiTranslation)
1253            *PerformedPhiTranslation = true;
1254        }
1255      }
1256    }
1257  }
1258
1259  MemoryAccessPair CurrentPair;
1260  memoryaccess_def_iterator DefIterator;
1261  MemoryLocation Location;
1262  MemoryAccess *OriginalAccess = nullptr;
1263  DominatorTree *DT = nullptr;
1264  bool WalkingPhi = false;
1265  bool *PerformedPhiTranslation = nullptr;
1266};
1267
1268inline upward_defs_iterator
1269upward_defs_begin(const MemoryAccessPair &Pair, DominatorTree &DT,
1270                  bool *PerformedPhiTranslation = nullptr) {
1271  return upward_defs_iterator(Pair, &DT, PerformedPhiTranslation);
1272}
1273
1274inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
1275
1276inline iterator_range<upward_defs_iterator>
1277upward_defs(const MemoryAccessPair &Pair, DominatorTree &DT) {
1278  return make_range(upward_defs_begin(Pair, DT), upward_defs_end());
1279}
1280
1281/// Walks the defining accesses of MemoryDefs. Stops after we hit something that
1282/// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
1283/// comparing against a null def_chain_iterator, this will compare equal only
1284/// after walking said Phi/liveOnEntry.
1285///
1286/// The UseOptimizedChain flag specifies whether to walk the clobbering
1287/// access chain, or all the accesses.
1288///
1289/// Normally, MemoryDef are all just def/use linked together, so a def_chain on
1290/// a MemoryDef will walk all MemoryDefs above it in the program until it hits
1291/// a phi node.  The optimized chain walks the clobbering access of a store.
1292/// So if you are just trying to find, given a store, what the next
1293/// thing that would clobber the same memory is, you want the optimized chain.
1294template <class T, bool UseOptimizedChain = false>
1295struct def_chain_iterator
1296    : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
1297                                  std::forward_iterator_tag, MemoryAccess *> {
1298  def_chain_iterator() : MA(nullptr) {}
1299  def_chain_iterator(T MA) : MA(MA) {}
1300
1301  T operator*() const { return MA; }
1302
1303  def_chain_iterator &operator++() {
1304    // N.B. liveOnEntry has a null defining access.
1305    if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1306      if (UseOptimizedChain && MUD->isOptimized())
1307        MA = MUD->getOptimized();
1308      else
1309        MA = MUD->getDefiningAccess();
1310    } else {
1311      MA = nullptr;
1312    }
1313
1314    return *this;
1315  }
1316
1317  bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
1318
1319private:
1320  T MA;
1321};
1322
1323template <class T>
1324inline iterator_range<def_chain_iterator<T>>
1325def_chain(T MA, MemoryAccess *UpTo = nullptr) {
1326#ifdef EXPENSIVE_CHECKS
1327  assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
1328         "UpTo isn't in the def chain!");
1329#endif
1330  return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
1331}
1332
1333template <class T>
1334inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
1335  return make_range(def_chain_iterator<T, true>(MA),
1336                    def_chain_iterator<T, true>(nullptr));
1337}
1338
1339} // end namespace llvm
1340
1341#endif // LLVM_ANALYSIS_MEMORYSSA_H
1342