1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the LoopInfo class that is used to identify natural loops
10// and determine the loop depth of various nodes of the CFG.  A natural loop
11// has exactly one entry-point, which is called the header. Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20//  * whether there is a preheader for the loop
21//  * the number of back edges to the header
22//  * whether or not a particular block branches out of the loop
23//  * the successor blocks of the loop
24//  * the loop depth
25//  * etc...
26//
27// Note that this analysis specifically identifies *Loops* not cycles or SCCs
28// in the CFG.  There can be strongly connected components in the CFG which
29// this analysis will not recognize and that will not be represented by a Loop
30// instance.  In particular, a Loop might be inside such a non-loop SCC, or a
31// non-loop SCC might contain a sub-SCC which is a Loop.
32//
33// For an overview of terminology used in this API (and thus all of our loop
34// analyses or transforms), see docs/LoopTerminology.rst.
35//
36//===----------------------------------------------------------------------===//
37
38#ifndef LLVM_ANALYSIS_LOOPINFO_H
39#define LLVM_ANALYSIS_LOOPINFO_H
40
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/DenseSet.h"
43#include "llvm/ADT/GraphTraits.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/SmallVector.h"
46#include "llvm/IR/CFG.h"
47#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/PassManager.h"
50#include "llvm/Pass.h"
51#include "llvm/Support/Allocator.h"
52#include <algorithm>
53#include <utility>
54
55namespace llvm {
56
57class DominatorTree;
58class LoopInfo;
59class Loop;
60class InductionDescriptor;
61class MDNode;
62class MemorySSAUpdater;
63class ScalarEvolution;
64class raw_ostream;
65template <class N, bool IsPostDom> class DominatorTreeBase;
66template <class N, class M> class LoopInfoBase;
67template <class N, class M> class LoopBase;
68
69//===----------------------------------------------------------------------===//
70/// Instances of this class are used to represent loops that are detected in the
71/// flow graph.
72///
73template <class BlockT, class LoopT> class LoopBase {
74  LoopT *ParentLoop;
75  // Loops contained entirely within this one.
76  std::vector<LoopT *> SubLoops;
77
78  // The list of blocks in this loop. First entry is the header node.
79  std::vector<BlockT *> Blocks;
80
81  SmallPtrSet<const BlockT *, 8> DenseBlockSet;
82
83#if LLVM_ENABLE_ABI_BREAKING_CHECKS
84  /// Indicator that this loop is no longer a valid loop.
85  bool IsInvalid = false;
86#endif
87
88  LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
89  const LoopBase<BlockT, LoopT> &
90  operator=(const LoopBase<BlockT, LoopT> &) = delete;
91
92public:
93  /// Return the nesting level of this loop.  An outer-most loop has depth 1,
94  /// for consistency with loop depth values used for basic blocks, where depth
95  /// 0 is used for blocks not inside any loops.
96  unsigned getLoopDepth() const {
97    assert(!isInvalid() && "Loop not in a valid state!");
98    unsigned D = 1;
99    for (const LoopT *CurLoop = ParentLoop; CurLoop;
100         CurLoop = CurLoop->ParentLoop)
101      ++D;
102    return D;
103  }
104  BlockT *getHeader() const { return getBlocks().front(); }
105  /// Return the parent loop if it exists or nullptr for top
106  /// level loops.
107
108  /// A loop is either top-level in a function (that is, it is not
109  /// contained in any other loop) or it is entirely enclosed in
110  /// some other loop.
111  /// If a loop is top-level, it has no parent, otherwise its
112  /// parent is the innermost loop in which it is enclosed.
113  LoopT *getParentLoop() const { return ParentLoop; }
114
115  /// This is a raw interface for bypassing addChildLoop.
116  void setParentLoop(LoopT *L) {
117    assert(!isInvalid() && "Loop not in a valid state!");
118    ParentLoop = L;
119  }
120
121  /// Return true if the specified loop is contained within in this loop.
122  bool contains(const LoopT *L) const {
123    assert(!isInvalid() && "Loop not in a valid state!");
124    if (L == this)
125      return true;
126    if (!L)
127      return false;
128    return contains(L->getParentLoop());
129  }
130
131  /// Return true if the specified basic block is in this loop.
132  bool contains(const BlockT *BB) const {
133    assert(!isInvalid() && "Loop not in a valid state!");
134    return DenseBlockSet.count(BB);
135  }
136
137  /// Return true if the specified instruction is in this loop.
138  template <class InstT> bool contains(const InstT *Inst) const {
139    return contains(Inst->getParent());
140  }
141
142  /// Return the loops contained entirely within this loop.
143  const std::vector<LoopT *> &getSubLoops() const {
144    assert(!isInvalid() && "Loop not in a valid state!");
145    return SubLoops;
146  }
147  std::vector<LoopT *> &getSubLoopsVector() {
148    assert(!isInvalid() && "Loop not in a valid state!");
149    return SubLoops;
150  }
151  typedef typename std::vector<LoopT *>::const_iterator iterator;
152  typedef
153      typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
154  iterator begin() const { return getSubLoops().begin(); }
155  iterator end() const { return getSubLoops().end(); }
156  reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
157  reverse_iterator rend() const { return getSubLoops().rend(); }
158
159  // LoopInfo does not detect irreducible control flow, just natural
160  // loops. That is, it is possible that there is cyclic control
161  // flow within the "innermost loop" or around the "outermost
162  // loop".
163
164  /// Return true if the loop does not contain any (natural) loops.
165  bool isInnermost() const { return getSubLoops().empty(); }
166  /// Return true if the loop does not have a parent (natural) loop
167  // (i.e. it is outermost, which is the same as top-level).
168  bool isOutermost() const { return getParentLoop() == nullptr; }
169
170  /// Get a list of the basic blocks which make up this loop.
171  ArrayRef<BlockT *> getBlocks() const {
172    assert(!isInvalid() && "Loop not in a valid state!");
173    return Blocks;
174  }
175  typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
176  block_iterator block_begin() const { return getBlocks().begin(); }
177  block_iterator block_end() const { return getBlocks().end(); }
178  inline iterator_range<block_iterator> blocks() const {
179    assert(!isInvalid() && "Loop not in a valid state!");
180    return make_range(block_begin(), block_end());
181  }
182
183  /// Get the number of blocks in this loop in constant time.
184  /// Invalidate the loop, indicating that it is no longer a loop.
185  unsigned getNumBlocks() const {
186    assert(!isInvalid() && "Loop not in a valid state!");
187    return Blocks.size();
188  }
189
190  /// Return a direct, mutable handle to the blocks vector so that we can
191  /// mutate it efficiently with techniques like `std::remove`.
192  std::vector<BlockT *> &getBlocksVector() {
193    assert(!isInvalid() && "Loop not in a valid state!");
194    return Blocks;
195  }
196  /// Return a direct, mutable handle to the blocks set so that we can
197  /// mutate it efficiently.
198  SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
199    assert(!isInvalid() && "Loop not in a valid state!");
200    return DenseBlockSet;
201  }
202
203  /// Return a direct, immutable handle to the blocks set.
204  const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
205    assert(!isInvalid() && "Loop not in a valid state!");
206    return DenseBlockSet;
207  }
208
209  /// Return true if this loop is no longer valid.  The only valid use of this
210  /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
211  /// true by the destructor.  In other words, if this accessor returns true,
212  /// the caller has already triggered UB by calling this accessor; and so it
213  /// can only be called in a context where a return value of true indicates a
214  /// programmer error.
215  bool isInvalid() const {
216#if LLVM_ENABLE_ABI_BREAKING_CHECKS
217    return IsInvalid;
218#else
219    return false;
220#endif
221  }
222
223  /// True if terminator in the block can branch to another block that is
224  /// outside of the current loop. \p BB must be inside the loop.
225  bool isLoopExiting(const BlockT *BB) const {
226    assert(!isInvalid() && "Loop not in a valid state!");
227    assert(contains(BB) && "Exiting block must be part of the loop");
228    for (const auto *Succ : children<const BlockT *>(BB)) {
229      if (!contains(Succ))
230        return true;
231    }
232    return false;
233  }
234
235  /// Returns true if \p BB is a loop-latch.
236  /// A latch block is a block that contains a branch back to the header.
237  /// This function is useful when there are multiple latches in a loop
238  /// because \fn getLoopLatch will return nullptr in that case.
239  bool isLoopLatch(const BlockT *BB) const {
240    assert(!isInvalid() && "Loop not in a valid state!");
241    assert(contains(BB) && "block does not belong to the loop");
242
243    BlockT *Header = getHeader();
244    auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
245    auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
246    return std::find(PredBegin, PredEnd, BB) != PredEnd;
247  }
248
249  /// Calculate the number of back edges to the loop header.
250  unsigned getNumBackEdges() const {
251    assert(!isInvalid() && "Loop not in a valid state!");
252    unsigned NumBackEdges = 0;
253    BlockT *H = getHeader();
254
255    for (const auto Pred : children<Inverse<BlockT *>>(H))
256      if (contains(Pred))
257        ++NumBackEdges;
258
259    return NumBackEdges;
260  }
261
262  //===--------------------------------------------------------------------===//
263  // APIs for simple analysis of the loop.
264  //
265  // Note that all of these methods can fail on general loops (ie, there may not
266  // be a preheader, etc).  For best success, the loop simplification and
267  // induction variable canonicalization pass should be used to normalize loops
268  // for easy analysis.  These methods assume canonical loops.
269
270  /// Return all blocks inside the loop that have successors outside of the
271  /// loop. These are the blocks _inside of the current loop_ which branch out.
272  /// The returned list is always unique.
273  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
274
275  /// If getExitingBlocks would return exactly one block, return that block.
276  /// Otherwise return null.
277  BlockT *getExitingBlock() const;
278
279  /// Return all of the successor blocks of this loop. These are the blocks
280  /// _outside of the current loop_ which are branched to.
281  void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
282
283  /// If getExitBlocks would return exactly one block, return that block.
284  /// Otherwise return null.
285  BlockT *getExitBlock() const;
286
287  /// Return true if no exit block for the loop has a predecessor that is
288  /// outside the loop.
289  bool hasDedicatedExits() const;
290
291  /// Return all unique successor blocks of this loop.
292  /// These are the blocks _outside of the current loop_ which are branched to.
293  void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
294
295  /// Return all unique successor blocks of this loop except successors from
296  /// Latch block are not considered. If the exit comes from Latch has also
297  /// non Latch predecessor in a loop it will be added to ExitBlocks.
298  /// These are the blocks _outside of the current loop_ which are branched to.
299  void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
300
301  /// If getUniqueExitBlocks would return exactly one block, return that block.
302  /// Otherwise return null.
303  BlockT *getUniqueExitBlock() const;
304
305  /// Return true if this loop does not have any exit blocks.
306  bool hasNoExitBlocks() const;
307
308  /// Edge type.
309  typedef std::pair<BlockT *, BlockT *> Edge;
310
311  /// Return all pairs of (_inside_block_,_outside_block_).
312  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
313
314  /// If there is a preheader for this loop, return it. A loop has a preheader
315  /// if there is only one edge to the header of the loop from outside of the
316  /// loop. If this is the case, the block branching to the header of the loop
317  /// is the preheader node.
318  ///
319  /// This method returns null if there is no preheader for the loop.
320  BlockT *getLoopPreheader() const;
321
322  /// If the given loop's header has exactly one unique predecessor outside the
323  /// loop, return it. Otherwise return null.
324  ///  This is less strict that the loop "preheader" concept, which requires
325  /// the predecessor to have exactly one successor.
326  BlockT *getLoopPredecessor() const;
327
328  /// If there is a single latch block for this loop, return it.
329  /// A latch block is a block that contains a branch back to the header.
330  BlockT *getLoopLatch() const;
331
332  /// Return all loop latch blocks of this loop. A latch block is a block that
333  /// contains a branch back to the header.
334  void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
335    assert(!isInvalid() && "Loop not in a valid state!");
336    BlockT *H = getHeader();
337    for (const auto Pred : children<Inverse<BlockT *>>(H))
338      if (contains(Pred))
339        LoopLatches.push_back(Pred);
340  }
341
342  /// Return all inner loops in the loop nest rooted by the loop in preorder,
343  /// with siblings in forward program order.
344  template <class Type>
345  static void getInnerLoopsInPreorder(const LoopT &L,
346                                      SmallVectorImpl<Type> &PreOrderLoops) {
347    SmallVector<LoopT *, 4> PreOrderWorklist;
348    PreOrderWorklist.append(L.rbegin(), L.rend());
349
350    while (!PreOrderWorklist.empty()) {
351      LoopT *L = PreOrderWorklist.pop_back_val();
352      // Sub-loops are stored in forward program order, but will process the
353      // worklist backwards so append them in reverse order.
354      PreOrderWorklist.append(L->rbegin(), L->rend());
355      PreOrderLoops.push_back(L);
356    }
357  }
358
359  /// Return all loops in the loop nest rooted by the loop in preorder, with
360  /// siblings in forward program order.
361  SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
362    SmallVector<const LoopT *, 4> PreOrderLoops;
363    const LoopT *CurLoop = static_cast<const LoopT *>(this);
364    PreOrderLoops.push_back(CurLoop);
365    getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
366    return PreOrderLoops;
367  }
368  SmallVector<LoopT *, 4> getLoopsInPreorder() {
369    SmallVector<LoopT *, 4> PreOrderLoops;
370    LoopT *CurLoop = static_cast<LoopT *>(this);
371    PreOrderLoops.push_back(CurLoop);
372    getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
373    return PreOrderLoops;
374  }
375
376  //===--------------------------------------------------------------------===//
377  // APIs for updating loop information after changing the CFG
378  //
379
380  /// This method is used by other analyses to update loop information.
381  /// NewBB is set to be a new member of the current loop.
382  /// Because of this, it is added as a member of all parent loops, and is added
383  /// to the specified LoopInfo object as being in the current basic block.  It
384  /// is not valid to replace the loop header with this method.
385  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
386
387  /// This is used when splitting loops up. It replaces the OldChild entry in
388  /// our children list with NewChild, and updates the parent pointer of
389  /// OldChild to be null and the NewChild to be this loop.
390  /// This updates the loop depth of the new child.
391  void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
392
393  /// Add the specified loop to be a child of this loop.
394  /// This updates the loop depth of the new child.
395  void addChildLoop(LoopT *NewChild) {
396    assert(!isInvalid() && "Loop not in a valid state!");
397    assert(!NewChild->ParentLoop && "NewChild already has a parent!");
398    NewChild->ParentLoop = static_cast<LoopT *>(this);
399    SubLoops.push_back(NewChild);
400  }
401
402  /// This removes the specified child from being a subloop of this loop. The
403  /// loop is not deleted, as it will presumably be inserted into another loop.
404  LoopT *removeChildLoop(iterator I) {
405    assert(!isInvalid() && "Loop not in a valid state!");
406    assert(I != SubLoops.end() && "Cannot remove end iterator!");
407    LoopT *Child = *I;
408    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
409    SubLoops.erase(SubLoops.begin() + (I - begin()));
410    Child->ParentLoop = nullptr;
411    return Child;
412  }
413
414  /// This removes the specified child from being a subloop of this loop. The
415  /// loop is not deleted, as it will presumably be inserted into another loop.
416  LoopT *removeChildLoop(LoopT *Child) {
417    return removeChildLoop(llvm::find(*this, Child));
418  }
419
420  /// This adds a basic block directly to the basic block list.
421  /// This should only be used by transformations that create new loops.  Other
422  /// transformations should use addBasicBlockToLoop.
423  void addBlockEntry(BlockT *BB) {
424    assert(!isInvalid() && "Loop not in a valid state!");
425    Blocks.push_back(BB);
426    DenseBlockSet.insert(BB);
427  }
428
429  /// interface to reverse Blocks[from, end of loop] in this loop
430  void reverseBlock(unsigned from) {
431    assert(!isInvalid() && "Loop not in a valid state!");
432    std::reverse(Blocks.begin() + from, Blocks.end());
433  }
434
435  /// interface to do reserve() for Blocks
436  void reserveBlocks(unsigned size) {
437    assert(!isInvalid() && "Loop not in a valid state!");
438    Blocks.reserve(size);
439  }
440
441  /// This method is used to move BB (which must be part of this loop) to be the
442  /// loop header of the loop (the block that dominates all others).
443  void moveToHeader(BlockT *BB) {
444    assert(!isInvalid() && "Loop not in a valid state!");
445    if (Blocks[0] == BB)
446      return;
447    for (unsigned i = 0;; ++i) {
448      assert(i != Blocks.size() && "Loop does not contain BB!");
449      if (Blocks[i] == BB) {
450        Blocks[i] = Blocks[0];
451        Blocks[0] = BB;
452        return;
453      }
454    }
455  }
456
457  /// This removes the specified basic block from the current loop, updating the
458  /// Blocks as appropriate. This does not update the mapping in the LoopInfo
459  /// class.
460  void removeBlockFromLoop(BlockT *BB) {
461    assert(!isInvalid() && "Loop not in a valid state!");
462    auto I = find(Blocks, BB);
463    assert(I != Blocks.end() && "N is not in this list!");
464    Blocks.erase(I);
465
466    DenseBlockSet.erase(BB);
467  }
468
469  /// Verify loop structure
470  void verifyLoop() const;
471
472  /// Verify loop structure of this loop and all nested loops.
473  void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
474
475  /// Returns true if the loop is annotated parallel.
476  ///
477  /// Derived classes can override this method using static template
478  /// polymorphism.
479  bool isAnnotatedParallel() const { return false; }
480
481  /// Print loop with all the BBs inside it.
482  void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true,
483             unsigned Depth = 0) const;
484
485protected:
486  friend class LoopInfoBase<BlockT, LoopT>;
487
488  /// This creates an empty loop.
489  LoopBase() : ParentLoop(nullptr) {}
490
491  explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
492    Blocks.push_back(BB);
493    DenseBlockSet.insert(BB);
494  }
495
496  // Since loop passes like SCEV are allowed to key analysis results off of
497  // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
498  // This means loop passes should not be `delete` ing `Loop` objects directly
499  // (and risk a later `Loop` allocation re-using the address of a previous one)
500  // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
501  // pointer till the end of the lifetime of the `LoopInfo` object.
502  //
503  // To make it easier to follow this rule, we mark the destructor as
504  // non-public.
505  ~LoopBase() {
506    for (auto *SubLoop : SubLoops)
507      SubLoop->~LoopT();
508
509#if LLVM_ENABLE_ABI_BREAKING_CHECKS
510    IsInvalid = true;
511#endif
512    SubLoops.clear();
513    Blocks.clear();
514    DenseBlockSet.clear();
515    ParentLoop = nullptr;
516  }
517};
518
519template <class BlockT, class LoopT>
520raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
521  Loop.print(OS);
522  return OS;
523}
524
525// Implementation in LoopInfoImpl.h
526extern template class LoopBase<BasicBlock, Loop>;
527
528/// Represents a single loop in the control flow graph.  Note that not all SCCs
529/// in the CFG are necessarily loops.
530class Loop : public LoopBase<BasicBlock, Loop> {
531public:
532  /// A range representing the start and end location of a loop.
533  class LocRange {
534    DebugLoc Start;
535    DebugLoc End;
536
537  public:
538    LocRange() {}
539    LocRange(DebugLoc Start) : Start(Start), End(Start) {}
540    LocRange(DebugLoc Start, DebugLoc End)
541        : Start(std::move(Start)), End(std::move(End)) {}
542
543    const DebugLoc &getStart() const { return Start; }
544    const DebugLoc &getEnd() const { return End; }
545
546    /// Check for null.
547    ///
548    explicit operator bool() const { return Start && End; }
549  };
550
551  /// Return true if the specified value is loop invariant.
552  bool isLoopInvariant(const Value *V) const;
553
554  /// Return true if all the operands of the specified instruction are loop
555  /// invariant.
556  bool hasLoopInvariantOperands(const Instruction *I) const;
557
558  /// If the given value is an instruction inside of the loop and it can be
559  /// hoisted, do so to make it trivially loop-invariant.
560  /// Return true if the value after any hoisting is loop invariant. This
561  /// function can be used as a slightly more aggressive replacement for
562  /// isLoopInvariant.
563  ///
564  /// If InsertPt is specified, it is the point to hoist instructions to.
565  /// If null, the terminator of the loop preheader is used.
566  bool makeLoopInvariant(Value *V, bool &Changed,
567                         Instruction *InsertPt = nullptr,
568                         MemorySSAUpdater *MSSAU = nullptr) const;
569
570  /// If the given instruction is inside of the loop and it can be hoisted, do
571  /// so to make it trivially loop-invariant.
572  /// Return true if the instruction after any hoisting is loop invariant. This
573  /// function can be used as a slightly more aggressive replacement for
574  /// isLoopInvariant.
575  ///
576  /// If InsertPt is specified, it is the point to hoist instructions to.
577  /// If null, the terminator of the loop preheader is used.
578  ///
579  bool makeLoopInvariant(Instruction *I, bool &Changed,
580                         Instruction *InsertPt = nullptr,
581                         MemorySSAUpdater *MSSAU = nullptr) const;
582
583  /// Check to see if the loop has a canonical induction variable: an integer
584  /// recurrence that starts at 0 and increments by one each time through the
585  /// loop. If so, return the phi node that corresponds to it.
586  ///
587  /// The IndVarSimplify pass transforms loops to have a canonical induction
588  /// variable.
589  ///
590  PHINode *getCanonicalInductionVariable() const;
591
592  /// Obtain the unique incoming and back edge. Return false if they are
593  /// non-unique or the loop is dead; otherwise, return true.
594  bool getIncomingAndBackEdge(BasicBlock *&Incoming,
595                              BasicBlock *&Backedge) const;
596
597  /// Below are some utilities to get the loop guard, loop bounds and induction
598  /// variable, and to check if a given phinode is an auxiliary induction
599  /// variable, if the loop is guarded, and if the loop is canonical.
600  ///
601  /// Here is an example:
602  /// \code
603  /// for (int i = lb; i < ub; i+=step)
604  ///   <loop body>
605  /// --- pseudo LLVMIR ---
606  /// beforeloop:
607  ///   guardcmp = (lb < ub)
608  ///   if (guardcmp) goto preheader; else goto afterloop
609  /// preheader:
610  /// loop:
611  ///   i_1 = phi[{lb, preheader}, {i_2, latch}]
612  ///   <loop body>
613  ///   i_2 = i_1 + step
614  /// latch:
615  ///   cmp = (i_2 < ub)
616  ///   if (cmp) goto loop
617  /// exit:
618  /// afterloop:
619  /// \endcode
620  ///
621  /// - getBounds
622  ///   - getInitialIVValue      --> lb
623  ///   - getStepInst            --> i_2 = i_1 + step
624  ///   - getStepValue           --> step
625  ///   - getFinalIVValue        --> ub
626  ///   - getCanonicalPredicate  --> '<'
627  ///   - getDirection           --> Increasing
628  ///
629  /// - getInductionVariable            --> i_1
630  /// - isAuxiliaryInductionVariable(x) --> true if x == i_1
631  /// - getLoopGuardBranch()
632  ///                 --> `if (guardcmp) goto preheader; else goto afterloop`
633  /// - isGuarded()                     --> true
634  /// - isCanonical                     --> false
635  struct LoopBounds {
636    /// Return the LoopBounds object if
637    /// - the given \p IndVar is an induction variable
638    /// - the initial value of the induction variable can be found
639    /// - the step instruction of the induction variable can be found
640    /// - the final value of the induction variable can be found
641    ///
642    /// Else None.
643    static Optional<Loop::LoopBounds> getBounds(const Loop &L, PHINode &IndVar,
644                                                ScalarEvolution &SE);
645
646    /// Get the initial value of the loop induction variable.
647    Value &getInitialIVValue() const { return InitialIVValue; }
648
649    /// Get the instruction that updates the loop induction variable.
650    Instruction &getStepInst() const { return StepInst; }
651
652    /// Get the step that the loop induction variable gets updated by in each
653    /// loop iteration. Return nullptr if not found.
654    Value *getStepValue() const { return StepValue; }
655
656    /// Get the final value of the loop induction variable.
657    Value &getFinalIVValue() const { return FinalIVValue; }
658
659    /// Return the canonical predicate for the latch compare instruction, if
660    /// able to be calcuated. Else BAD_ICMP_PREDICATE.
661    ///
662    /// A predicate is considered as canonical if requirements below are all
663    /// satisfied:
664    /// 1. The first successor of the latch branch is the loop header
665    ///    If not, inverse the predicate.
666    /// 2. One of the operands of the latch comparison is StepInst
667    ///    If not, and
668    ///    - if the current calcuated predicate is not ne or eq, flip the
669    ///      predicate.
670    ///    - else if the loop is increasing, return slt
671    ///      (notice that it is safe to change from ne or eq to sign compare)
672    ///    - else if the loop is decreasing, return sgt
673    ///      (notice that it is safe to change from ne or eq to sign compare)
674    ///
675    /// Here is an example when both (1) and (2) are not satisfied:
676    /// \code
677    /// loop.header:
678    ///  %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
679    ///  %inc = add %iv, %step
680    ///  %cmp = slt %iv, %finaliv
681    ///  br %cmp, %loop.exit, %loop.header
682    /// loop.exit:
683    /// \endcode
684    /// - The second successor of the latch branch is the loop header instead
685    ///   of the first successor (slt -> sge)
686    /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
687    ///   instead of the StepInst (%inc) (sge -> sgt)
688    ///
689    /// The predicate would be sgt if both (1) and (2) are satisfied.
690    /// getCanonicalPredicate() returns sgt for this example.
691    /// Note: The IR is not changed.
692    ICmpInst::Predicate getCanonicalPredicate() const;
693
694    /// An enum for the direction of the loop
695    /// - for (int i = 0; i < ub; ++i)  --> Increasing
696    /// - for (int i = ub; i > 0; --i)  --> Descresing
697    /// - for (int i = x; i != y; i+=z) --> Unknown
698    enum class Direction { Increasing, Decreasing, Unknown };
699
700    /// Get the direction of the loop.
701    Direction getDirection() const;
702
703  private:
704    LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
705               ScalarEvolution &SE)
706        : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
707          FinalIVValue(F), SE(SE) {}
708
709    const Loop &L;
710
711    // The initial value of the loop induction variable
712    Value &InitialIVValue;
713
714    // The instruction that updates the loop induction variable
715    Instruction &StepInst;
716
717    // The value that the loop induction variable gets updated by in each loop
718    // iteration
719    Value *StepValue;
720
721    // The final value of the loop induction variable
722    Value &FinalIVValue;
723
724    ScalarEvolution &SE;
725  };
726
727  /// Return the struct LoopBounds collected if all struct members are found,
728  /// else None.
729  Optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
730
731  /// Return the loop induction variable if found, else return nullptr.
732  /// An instruction is considered as the loop induction variable if
733  /// - it is an induction variable of the loop; and
734  /// - it is used to determine the condition of the branch in the loop latch
735  ///
736  /// Note: the induction variable doesn't need to be canonical, i.e. starts at
737  /// zero and increments by one each time through the loop (but it can be).
738  PHINode *getInductionVariable(ScalarEvolution &SE) const;
739
740  /// Get the loop induction descriptor for the loop induction variable. Return
741  /// true if the loop induction variable is found.
742  bool getInductionDescriptor(ScalarEvolution &SE,
743                              InductionDescriptor &IndDesc) const;
744
745  /// Return true if the given PHINode \p AuxIndVar is
746  /// - in the loop header
747  /// - not used outside of the loop
748  /// - incremented by a loop invariant step for each loop iteration
749  /// - step instruction opcode should be add or sub
750  /// Note: auxiliary induction variable is not required to be used in the
751  ///       conditional branch in the loop latch. (but it can be)
752  bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
753                                    ScalarEvolution &SE) const;
754
755  /// Return the loop guard branch, if it exists.
756  ///
757  /// This currently only works on simplified loop, as it requires a preheader
758  /// and a latch to identify the guard. It will work on loops of the form:
759  /// \code
760  /// GuardBB:
761  ///   br cond1, Preheader, ExitSucc <== GuardBranch
762  /// Preheader:
763  ///   br Header
764  /// Header:
765  ///  ...
766  ///   br Latch
767  /// Latch:
768  ///   br cond2, Header, ExitBlock
769  /// ExitBlock:
770  ///   br ExitSucc
771  /// ExitSucc:
772  /// \endcode
773  BranchInst *getLoopGuardBranch() const;
774
775  /// Return true iff the loop is
776  /// - in simplify rotated form, and
777  /// - guarded by a loop guard branch.
778  bool isGuarded() const { return (getLoopGuardBranch() != nullptr); }
779
780  /// Return true if the loop is in rotated form.
781  ///
782  /// This does not check if the loop was rotated by loop rotation, instead it
783  /// only checks if the loop is in rotated form (has a valid latch that exists
784  /// the loop).
785  bool isRotatedForm() const {
786    assert(!isInvalid() && "Loop not in a valid state!");
787    BasicBlock *Latch = getLoopLatch();
788    return Latch && isLoopExiting(Latch);
789  }
790
791  /// Return true if the loop induction variable starts at zero and increments
792  /// by one each time through the loop.
793  bool isCanonical(ScalarEvolution &SE) const;
794
795  /// Return true if the Loop is in LCSSA form.
796  bool isLCSSAForm(const DominatorTree &DT) const;
797
798  /// Return true if this Loop and all inner subloops are in LCSSA form.
799  bool isRecursivelyLCSSAForm(const DominatorTree &DT,
800                              const LoopInfo &LI) const;
801
802  /// Return true if the Loop is in the form that the LoopSimplify form
803  /// transforms loops to, which is sometimes called normal form.
804  bool isLoopSimplifyForm() const;
805
806  /// Return true if the loop body is safe to clone in practice.
807  bool isSafeToClone() const;
808
809  /// Returns true if the loop is annotated parallel.
810  ///
811  /// A parallel loop can be assumed to not contain any dependencies between
812  /// iterations by the compiler. That is, any loop-carried dependency checking
813  /// can be skipped completely when parallelizing the loop on the target
814  /// machine. Thus, if the parallel loop information originates from the
815  /// programmer, e.g. via the OpenMP parallel for pragma, it is the
816  /// programmer's responsibility to ensure there are no loop-carried
817  /// dependencies. The final execution order of the instructions across
818  /// iterations is not guaranteed, thus, the end result might or might not
819  /// implement actual concurrent execution of instructions across multiple
820  /// iterations.
821  bool isAnnotatedParallel() const;
822
823  /// Return the llvm.loop loop id metadata node for this loop if it is present.
824  ///
825  /// If this loop contains the same llvm.loop metadata on each branch to the
826  /// header then the node is returned. If any latch instruction does not
827  /// contain llvm.loop or if multiple latches contain different nodes then
828  /// 0 is returned.
829  MDNode *getLoopID() const;
830  /// Set the llvm.loop loop id metadata for this loop.
831  ///
832  /// The LoopID metadata node will be added to each terminator instruction in
833  /// the loop that branches to the loop header.
834  ///
835  /// The LoopID metadata node should have one or more operands and the first
836  /// operand should be the node itself.
837  void setLoopID(MDNode *LoopID) const;
838
839  /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
840  ///
841  /// Remove existing unroll metadata and add unroll disable metadata to
842  /// indicate the loop has already been unrolled.  This prevents a loop
843  /// from being unrolled more than is directed by a pragma if the loop
844  /// unrolling pass is run more than once (which it generally is).
845  void setLoopAlreadyUnrolled();
846
847  /// Add llvm.loop.mustprogress to this loop's loop id metadata.
848  void setLoopMustProgress();
849
850  void dump() const;
851  void dumpVerbose() const;
852
853  /// Return the debug location of the start of this loop.
854  /// This looks for a BB terminating instruction with a known debug
855  /// location by looking at the preheader and header blocks. If it
856  /// cannot find a terminating instruction with location information,
857  /// it returns an unknown location.
858  DebugLoc getStartLoc() const;
859
860  /// Return the source code span of the loop.
861  LocRange getLocRange() const;
862
863  StringRef getName() const {
864    if (BasicBlock *Header = getHeader())
865      if (Header->hasName())
866        return Header->getName();
867    return "<unnamed loop>";
868  }
869
870private:
871  Loop() = default;
872
873  friend class LoopInfoBase<BasicBlock, Loop>;
874  friend class LoopBase<BasicBlock, Loop>;
875  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
876  ~Loop() = default;
877};
878
879//===----------------------------------------------------------------------===//
880/// This class builds and contains all of the top-level loop
881/// structures in the specified function.
882///
883
884template <class BlockT, class LoopT> class LoopInfoBase {
885  // BBMap - Mapping of basic blocks to the inner most loop they occur in
886  DenseMap<const BlockT *, LoopT *> BBMap;
887  std::vector<LoopT *> TopLevelLoops;
888  BumpPtrAllocator LoopAllocator;
889
890  friend class LoopBase<BlockT, LoopT>;
891  friend class LoopInfo;
892
893  void operator=(const LoopInfoBase &) = delete;
894  LoopInfoBase(const LoopInfoBase &) = delete;
895
896public:
897  LoopInfoBase() {}
898  ~LoopInfoBase() { releaseMemory(); }
899
900  LoopInfoBase(LoopInfoBase &&Arg)
901      : BBMap(std::move(Arg.BBMap)),
902        TopLevelLoops(std::move(Arg.TopLevelLoops)),
903        LoopAllocator(std::move(Arg.LoopAllocator)) {
904    // We have to clear the arguments top level loops as we've taken ownership.
905    Arg.TopLevelLoops.clear();
906  }
907  LoopInfoBase &operator=(LoopInfoBase &&RHS) {
908    BBMap = std::move(RHS.BBMap);
909
910    for (auto *L : TopLevelLoops)
911      L->~LoopT();
912
913    TopLevelLoops = std::move(RHS.TopLevelLoops);
914    LoopAllocator = std::move(RHS.LoopAllocator);
915    RHS.TopLevelLoops.clear();
916    return *this;
917  }
918
919  void releaseMemory() {
920    BBMap.clear();
921
922    for (auto *L : TopLevelLoops)
923      L->~LoopT();
924    TopLevelLoops.clear();
925    LoopAllocator.Reset();
926  }
927
928  template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
929    LoopT *Storage = LoopAllocator.Allocate<LoopT>();
930    return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
931  }
932
933  /// iterator/begin/end - The interface to the top-level loops in the current
934  /// function.
935  ///
936  typedef typename std::vector<LoopT *>::const_iterator iterator;
937  typedef
938      typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
939  iterator begin() const { return TopLevelLoops.begin(); }
940  iterator end() const { return TopLevelLoops.end(); }
941  reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
942  reverse_iterator rend() const { return TopLevelLoops.rend(); }
943  bool empty() const { return TopLevelLoops.empty(); }
944
945  /// Return all of the loops in the function in preorder across the loop
946  /// nests, with siblings in forward program order.
947  ///
948  /// Note that because loops form a forest of trees, preorder is equivalent to
949  /// reverse postorder.
950  SmallVector<LoopT *, 4> getLoopsInPreorder();
951
952  /// Return all of the loops in the function in preorder across the loop
953  /// nests, with siblings in *reverse* program order.
954  ///
955  /// Note that because loops form a forest of trees, preorder is equivalent to
956  /// reverse postorder.
957  ///
958  /// Also note that this is *not* a reverse preorder. Only the siblings are in
959  /// reverse program order.
960  SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder();
961
962  /// Return the inner most loop that BB lives in. If a basic block is in no
963  /// loop (for example the entry node), null is returned.
964  LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
965
966  /// Same as getLoopFor.
967  const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
968
969  /// Return the loop nesting level of the specified block. A depth of 0 means
970  /// the block is not inside any loop.
971  unsigned getLoopDepth(const BlockT *BB) const {
972    const LoopT *L = getLoopFor(BB);
973    return L ? L->getLoopDepth() : 0;
974  }
975
976  // True if the block is a loop header node
977  bool isLoopHeader(const BlockT *BB) const {
978    const LoopT *L = getLoopFor(BB);
979    return L && L->getHeader() == BB;
980  }
981
982  /// Return the top-level loops.
983  const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
984
985  /// Return the top-level loops.
986  std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
987
988  /// This removes the specified top-level loop from this loop info object.
989  /// The loop is not deleted, as it will presumably be inserted into
990  /// another loop.
991  LoopT *removeLoop(iterator I) {
992    assert(I != end() && "Cannot remove end iterator!");
993    LoopT *L = *I;
994    assert(L->isOutermost() && "Not a top-level loop!");
995    TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
996    return L;
997  }
998
999  /// Change the top-level loop that contains BB to the specified loop.
1000  /// This should be used by transformations that restructure the loop hierarchy
1001  /// tree.
1002  void changeLoopFor(BlockT *BB, LoopT *L) {
1003    if (!L) {
1004      BBMap.erase(BB);
1005      return;
1006    }
1007    BBMap[BB] = L;
1008  }
1009
1010  /// Replace the specified loop in the top-level loops list with the indicated
1011  /// loop.
1012  void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
1013    auto I = find(TopLevelLoops, OldLoop);
1014    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
1015    *I = NewLoop;
1016    assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
1017           "Loops already embedded into a subloop!");
1018  }
1019
1020  /// This adds the specified loop to the collection of top-level loops.
1021  void addTopLevelLoop(LoopT *New) {
1022    assert(New->isOutermost() && "Loop already in subloop!");
1023    TopLevelLoops.push_back(New);
1024  }
1025
1026  /// This method completely removes BB from all data structures,
1027  /// including all of the Loop objects it is nested in and our mapping from
1028  /// BasicBlocks to loops.
1029  void removeBlock(BlockT *BB) {
1030    auto I = BBMap.find(BB);
1031    if (I != BBMap.end()) {
1032      for (LoopT *L = I->second; L; L = L->getParentLoop())
1033        L->removeBlockFromLoop(BB);
1034
1035      BBMap.erase(I);
1036    }
1037  }
1038
1039  // Internals
1040
1041  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
1042                                      const LoopT *ParentLoop) {
1043    if (!SubLoop)
1044      return true;
1045    if (SubLoop == ParentLoop)
1046      return false;
1047    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
1048  }
1049
1050  /// Create the loop forest using a stable algorithm.
1051  void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
1052
1053  // Debugging
1054  void print(raw_ostream &OS) const;
1055
1056  void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
1057
1058  /// Destroy a loop that has been removed from the `LoopInfo` nest.
1059  ///
1060  /// This runs the destructor of the loop object making it invalid to
1061  /// reference afterward. The memory is retained so that the *pointer* to the
1062  /// loop remains valid.
1063  ///
1064  /// The caller is responsible for removing this loop from the loop nest and
1065  /// otherwise disconnecting it from the broader `LoopInfo` data structures.
1066  /// Callers that don't naturally handle this themselves should probably call
1067  /// `erase' instead.
1068  void destroy(LoopT *L) {
1069    L->~LoopT();
1070
1071    // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
1072    // \c L, but the pointer remains valid for non-dereferencing uses.
1073    LoopAllocator.Deallocate(L);
1074  }
1075};
1076
1077// Implementation in LoopInfoImpl.h
1078extern template class LoopInfoBase<BasicBlock, Loop>;
1079
1080class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
1081  typedef LoopInfoBase<BasicBlock, Loop> BaseT;
1082
1083  friend class LoopBase<BasicBlock, Loop>;
1084
1085  void operator=(const LoopInfo &) = delete;
1086  LoopInfo(const LoopInfo &) = delete;
1087
1088public:
1089  LoopInfo() {}
1090  explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
1091
1092  LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
1093  LoopInfo &operator=(LoopInfo &&RHS) {
1094    BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
1095    return *this;
1096  }
1097
1098  /// Handle invalidation explicitly.
1099  bool invalidate(Function &F, const PreservedAnalyses &PA,
1100                  FunctionAnalysisManager::Invalidator &);
1101
1102  // Most of the public interface is provided via LoopInfoBase.
1103
1104  /// Update LoopInfo after removing the last backedge from a loop. This updates
1105  /// the loop forest and parent loops for each block so that \c L is no longer
1106  /// referenced, but does not actually delete \c L immediately. The pointer
1107  /// will remain valid until this LoopInfo's memory is released.
1108  void erase(Loop *L);
1109
1110  /// Returns true if replacing From with To everywhere is guaranteed to
1111  /// preserve LCSSA form.
1112  bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1113    // Preserving LCSSA form is only problematic if the replacing value is an
1114    // instruction.
1115    Instruction *I = dyn_cast<Instruction>(To);
1116    if (!I)
1117      return true;
1118    // If both instructions are defined in the same basic block then replacement
1119    // cannot break LCSSA form.
1120    if (I->getParent() == From->getParent())
1121      return true;
1122    // If the instruction is not defined in a loop then it can safely replace
1123    // anything.
1124    Loop *ToLoop = getLoopFor(I->getParent());
1125    if (!ToLoop)
1126      return true;
1127    // If the replacing instruction is defined in the same loop as the original
1128    // instruction, or in a loop that contains it as an inner loop, then using
1129    // it as a replacement will not break LCSSA form.
1130    return ToLoop->contains(getLoopFor(From->getParent()));
1131  }
1132
1133  /// Checks if moving a specific instruction can break LCSSA in any loop.
1134  ///
1135  /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
1136  /// assuming that the function containing \p Inst and \p NewLoc is currently
1137  /// in LCSSA form.
1138  bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
1139    assert(Inst->getFunction() == NewLoc->getFunction() &&
1140           "Can't reason about IPO!");
1141
1142    auto *OldBB = Inst->getParent();
1143    auto *NewBB = NewLoc->getParent();
1144
1145    // Movement within the same loop does not break LCSSA (the equality check is
1146    // to avoid doing a hashtable lookup in case of intra-block movement).
1147    if (OldBB == NewBB)
1148      return true;
1149
1150    auto *OldLoop = getLoopFor(OldBB);
1151    auto *NewLoop = getLoopFor(NewBB);
1152
1153    if (OldLoop == NewLoop)
1154      return true;
1155
1156    // Check if Outer contains Inner; with the null loop counting as the
1157    // "outermost" loop.
1158    auto Contains = [](const Loop *Outer, const Loop *Inner) {
1159      return !Outer || Outer->contains(Inner);
1160    };
1161
1162    // To check that the movement of Inst to before NewLoc does not break LCSSA,
1163    // we need to check two sets of uses for possible LCSSA violations at
1164    // NewLoc: the users of NewInst, and the operands of NewInst.
1165
1166    // If we know we're hoisting Inst out of an inner loop to an outer loop,
1167    // then the uses *of* Inst don't need to be checked.
1168
1169    if (!Contains(NewLoop, OldLoop)) {
1170      for (Use &U : Inst->uses()) {
1171        auto *UI = cast<Instruction>(U.getUser());
1172        auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
1173                                     : UI->getParent();
1174        if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
1175          return false;
1176      }
1177    }
1178
1179    // If we know we're sinking Inst from an outer loop into an inner loop, then
1180    // the *operands* of Inst don't need to be checked.
1181
1182    if (!Contains(OldLoop, NewLoop)) {
1183      // See below on why we can't handle phi nodes here.
1184      if (isa<PHINode>(Inst))
1185        return false;
1186
1187      for (Use &U : Inst->operands()) {
1188        auto *DefI = dyn_cast<Instruction>(U.get());
1189        if (!DefI)
1190          return false;
1191
1192        // This would need adjustment if we allow Inst to be a phi node -- the
1193        // new use block won't simply be NewBB.
1194
1195        auto *DefBlock = DefI->getParent();
1196        if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
1197          return false;
1198      }
1199    }
1200
1201    return true;
1202  }
1203
1204  // Return true if a new use of V added in ExitBB would require an LCSSA PHI
1205  // to be inserted at the begining of the block.  Note that V is assumed to
1206  // dominate ExitBB, and ExitBB must be the exit block of some loop.  The
1207  // IR is assumed to be in LCSSA form before the planned insertion.
1208  bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V,
1209                                         const BasicBlock *ExitBB) const;
1210
1211};
1212
1213// Allow clients to walk the list of nested loops...
1214template <> struct GraphTraits<const Loop *> {
1215  typedef const Loop *NodeRef;
1216  typedef LoopInfo::iterator ChildIteratorType;
1217
1218  static NodeRef getEntryNode(const Loop *L) { return L; }
1219  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1220  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1221};
1222
1223template <> struct GraphTraits<Loop *> {
1224  typedef Loop *NodeRef;
1225  typedef LoopInfo::iterator ChildIteratorType;
1226
1227  static NodeRef getEntryNode(Loop *L) { return L; }
1228  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1229  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1230};
1231
1232/// Analysis pass that exposes the \c LoopInfo for a function.
1233class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
1234  friend AnalysisInfoMixin<LoopAnalysis>;
1235  static AnalysisKey Key;
1236
1237public:
1238  typedef LoopInfo Result;
1239
1240  LoopInfo run(Function &F, FunctionAnalysisManager &AM);
1241};
1242
1243/// Printer pass for the \c LoopAnalysis results.
1244class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
1245  raw_ostream &OS;
1246
1247public:
1248  explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
1249  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1250};
1251
1252/// Verifier pass for the \c LoopAnalysis results.
1253struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
1254  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1255};
1256
1257/// The legacy pass manager's analysis pass to compute loop information.
1258class LoopInfoWrapperPass : public FunctionPass {
1259  LoopInfo LI;
1260
1261public:
1262  static char ID; // Pass identification, replacement for typeid
1263
1264  LoopInfoWrapperPass();
1265
1266  LoopInfo &getLoopInfo() { return LI; }
1267  const LoopInfo &getLoopInfo() const { return LI; }
1268
1269  /// Calculate the natural loop information for a given function.
1270  bool runOnFunction(Function &F) override;
1271
1272  void verifyAnalysis() const override;
1273
1274  void releaseMemory() override { LI.releaseMemory(); }
1275
1276  void print(raw_ostream &O, const Module *M = nullptr) const override;
1277
1278  void getAnalysisUsage(AnalysisUsage &AU) const override;
1279};
1280
1281/// Function to print a loop's contents as LLVM's text IR assembly.
1282void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
1283
1284/// Find and return the loop attribute node for the attribute @p Name in
1285/// @p LoopID. Return nullptr if there is no such attribute.
1286MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
1287
1288/// Find string metadata for a loop.
1289///
1290/// Returns the MDNode where the first operand is the metadata's name. The
1291/// following operands are the metadata's values. If no metadata with @p Name is
1292/// found, return nullptr.
1293MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
1294
1295/// Return whether an MDNode might represent an access group.
1296///
1297/// Access group metadata nodes have to be distinct and empty. Being
1298/// always-empty ensures that it never needs to be changed (which -- because
1299/// MDNodes are designed immutable -- would require creating a new MDNode). Note
1300/// that this is not a sufficient condition: not every distinct and empty NDNode
1301/// is representing an access group.
1302bool isValidAsAccessGroup(MDNode *AccGroup);
1303
1304/// Create a new LoopID after the loop has been transformed.
1305///
1306/// This can be used when no follow-up loop attributes are defined
1307/// (llvm::makeFollowupLoopID returning None) to stop transformations to be
1308/// applied again.
1309///
1310/// @param Context        The LLVMContext in which to create the new LoopID.
1311/// @param OrigLoopID     The original LoopID; can be nullptr if the original
1312///                       loop has no LoopID.
1313/// @param RemovePrefixes Remove all loop attributes that have these prefixes.
1314///                       Use to remove metadata of the transformation that has
1315///                       been applied.
1316/// @param AddAttrs       Add these loop attributes to the new LoopID.
1317///
1318/// @return A new LoopID that can be applied using Loop::setLoopID().
1319llvm::MDNode *
1320makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
1321                               llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
1322                               llvm::ArrayRef<llvm::MDNode *> AddAttrs);
1323
1324} // End llvm namespace
1325
1326#endif
1327