1//===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interface for the loop memory dependence framework that
10// was originally developed for the Loop Vectorizer.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15#define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16
17#include "llvm/ADT/EquivalenceClasses.h"
18#include "llvm/Analysis/LoopAnalysisManager.h"
19#include "llvm/Analysis/ScalarEvolutionExpressions.h"
20#include "llvm/IR/DiagnosticInfo.h"
21#include "llvm/Pass.h"
22
23namespace llvm {
24
25class AAResults;
26class DataLayout;
27class Loop;
28class LoopAccessInfo;
29class OptimizationRemarkEmitter;
30class raw_ostream;
31class SCEV;
32class SCEVUnionPredicate;
33class Value;
34
35/// Collection of parameters shared beetween the Loop Vectorizer and the
36/// Loop Access Analysis.
37struct VectorizerParams {
38  /// Maximum SIMD width.
39  static const unsigned MaxVectorWidth;
40
41  /// VF as overridden by the user.
42  static unsigned VectorizationFactor;
43  /// Interleave factor as overridden by the user.
44  static unsigned VectorizationInterleave;
45  /// True if force-vector-interleave was specified by the user.
46  static bool isInterleaveForced();
47
48  /// \When performing memory disambiguation checks at runtime do not
49  /// make more than this number of comparisons.
50  static unsigned RuntimeMemoryCheckThreshold;
51};
52
53/// Checks memory dependences among accesses to the same underlying
54/// object to determine whether there vectorization is legal or not (and at
55/// which vectorization factor).
56///
57/// Note: This class will compute a conservative dependence for access to
58/// different underlying pointers. Clients, such as the loop vectorizer, will
59/// sometimes deal these potential dependencies by emitting runtime checks.
60///
61/// We use the ScalarEvolution framework to symbolically evalutate access
62/// functions pairs. Since we currently don't restructure the loop we can rely
63/// on the program order of memory accesses to determine their safety.
64/// At the moment we will only deem accesses as safe for:
65///  * A negative constant distance assuming program order.
66///
67///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
68///            a[i] = tmp;                y = a[i];
69///
70///   The latter case is safe because later checks guarantuee that there can't
71///   be a cycle through a phi node (that is, we check that "x" and "y" is not
72///   the same variable: a header phi can only be an induction or a reduction, a
73///   reduction can't have a memory sink, an induction can't have a memory
74///   source). This is important and must not be violated (or we have to
75///   resort to checking for cycles through memory).
76///
77///  * A positive constant distance assuming program order that is bigger
78///    than the biggest memory access.
79///
80///     tmp = a[i]        OR              b[i] = x
81///     a[i+2] = tmp                      y = b[i+2];
82///
83///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
84///
85///  * Zero distances and all accesses have the same size.
86///
87class MemoryDepChecker {
88public:
89  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
90  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
91  /// Set of potential dependent memory accesses.
92  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
93
94  /// Type to keep track of the status of the dependence check. The order of
95  /// the elements is important and has to be from most permissive to least
96  /// permissive.
97  enum class VectorizationSafetyStatus {
98    // Can vectorize safely without RT checks. All dependences are known to be
99    // safe.
100    Safe,
101    // Can possibly vectorize with RT checks to overcome unknown dependencies.
102    PossiblySafeWithRtChecks,
103    // Cannot vectorize due to known unsafe dependencies.
104    Unsafe,
105  };
106
107  /// Dependece between memory access instructions.
108  struct Dependence {
109    /// The type of the dependence.
110    enum DepType {
111      // No dependence.
112      NoDep,
113      // We couldn't determine the direction or the distance.
114      Unknown,
115      // Lexically forward.
116      //
117      // FIXME: If we only have loop-independent forward dependences (e.g. a
118      // read and write of A[i]), LAA will locally deem the dependence "safe"
119      // without querying the MemoryDepChecker.  Therefore we can miss
120      // enumerating loop-independent forward dependences in
121      // getDependences.  Note that as soon as there are different
122      // indices used to access the same array, the MemoryDepChecker *is*
123      // queried and the dependence list is complete.
124      Forward,
125      // Forward, but if vectorized, is likely to prevent store-to-load
126      // forwarding.
127      ForwardButPreventsForwarding,
128      // Lexically backward.
129      Backward,
130      // Backward, but the distance allows a vectorization factor of
131      // MaxSafeDepDistBytes.
132      BackwardVectorizable,
133      // Same, but may prevent store-to-load forwarding.
134      BackwardVectorizableButPreventsForwarding
135    };
136
137    /// String version of the types.
138    static const char *DepName[];
139
140    /// Index of the source of the dependence in the InstMap vector.
141    unsigned Source;
142    /// Index of the destination of the dependence in the InstMap vector.
143    unsigned Destination;
144    /// The type of the dependence.
145    DepType Type;
146
147    Dependence(unsigned Source, unsigned Destination, DepType Type)
148        : Source(Source), Destination(Destination), Type(Type) {}
149
150    /// Return the source instruction of the dependence.
151    Instruction *getSource(const LoopAccessInfo &LAI) const;
152    /// Return the destination instruction of the dependence.
153    Instruction *getDestination(const LoopAccessInfo &LAI) const;
154
155    /// Dependence types that don't prevent vectorization.
156    static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
157
158    /// Lexically forward dependence.
159    bool isForward() const;
160    /// Lexically backward dependence.
161    bool isBackward() const;
162
163    /// May be a lexically backward dependence type (includes Unknown).
164    bool isPossiblyBackward() const;
165
166    /// Print the dependence.  \p Instr is used to map the instruction
167    /// indices to instructions.
168    void print(raw_ostream &OS, unsigned Depth,
169               const SmallVectorImpl<Instruction *> &Instrs) const;
170  };
171
172  MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
173      : PSE(PSE), InnermostLoop(L), AccessIdx(0), MaxSafeDepDistBytes(0),
174        MaxSafeVectorWidthInBits(-1U),
175        FoundNonConstantDistanceDependence(false),
176        Status(VectorizationSafetyStatus::Safe), RecordDependences(true) {}
177
178  /// Register the location (instructions are given increasing numbers)
179  /// of a write access.
180  void addAccess(StoreInst *SI) {
181    Value *Ptr = SI->getPointerOperand();
182    Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
183    InstMap.push_back(SI);
184    ++AccessIdx;
185  }
186
187  /// Register the location (instructions are given increasing numbers)
188  /// of a write access.
189  void addAccess(LoadInst *LI) {
190    Value *Ptr = LI->getPointerOperand();
191    Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
192    InstMap.push_back(LI);
193    ++AccessIdx;
194  }
195
196  /// Check whether the dependencies between the accesses are safe.
197  ///
198  /// Only checks sets with elements in \p CheckDeps.
199  bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
200                   const ValueToValueMap &Strides);
201
202  /// No memory dependence was encountered that would inhibit
203  /// vectorization.
204  bool isSafeForVectorization() const {
205    return Status == VectorizationSafetyStatus::Safe;
206  }
207
208  /// Return true if the number of elements that are safe to operate on
209  /// simultaneously is not bounded.
210  bool isSafeForAnyVectorWidth() const {
211    return MaxSafeVectorWidthInBits == UINT_MAX;
212  }
213
214  /// The maximum number of bytes of a vector register we can vectorize
215  /// the accesses safely with.
216  uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
217
218  /// Return the number of elements that are safe to operate on
219  /// simultaneously, multiplied by the size of the element in bits.
220  uint64_t getMaxSafeVectorWidthInBits() const {
221    return MaxSafeVectorWidthInBits;
222  }
223
224  /// In same cases when the dependency check fails we can still
225  /// vectorize the loop with a dynamic array access check.
226  bool shouldRetryWithRuntimeCheck() const {
227    return FoundNonConstantDistanceDependence &&
228           Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
229  }
230
231  /// Returns the memory dependences.  If null is returned we exceeded
232  /// the MaxDependences threshold and this information is not
233  /// available.
234  const SmallVectorImpl<Dependence> *getDependences() const {
235    return RecordDependences ? &Dependences : nullptr;
236  }
237
238  void clearDependences() { Dependences.clear(); }
239
240  /// The vector of memory access instructions.  The indices are used as
241  /// instruction identifiers in the Dependence class.
242  const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
243    return InstMap;
244  }
245
246  /// Generate a mapping between the memory instructions and their
247  /// indices according to program order.
248  DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
249    DenseMap<Instruction *, unsigned> OrderMap;
250
251    for (unsigned I = 0; I < InstMap.size(); ++I)
252      OrderMap[InstMap[I]] = I;
253
254    return OrderMap;
255  }
256
257  /// Find the set of instructions that read or write via \p Ptr.
258  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
259                                                         bool isWrite) const;
260
261private:
262  /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
263  /// applies dynamic knowledge to simplify SCEV expressions and convert them
264  /// to a more usable form. We need this in case assumptions about SCEV
265  /// expressions need to be made in order to avoid unknown dependences. For
266  /// example we might assume a unit stride for a pointer in order to prove
267  /// that a memory access is strided and doesn't wrap.
268  PredicatedScalarEvolution &PSE;
269  const Loop *InnermostLoop;
270
271  /// Maps access locations (ptr, read/write) to program order.
272  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
273
274  /// Memory access instructions in program order.
275  SmallVector<Instruction *, 16> InstMap;
276
277  /// The program order index to be used for the next instruction.
278  unsigned AccessIdx;
279
280  // We can access this many bytes in parallel safely.
281  uint64_t MaxSafeDepDistBytes;
282
283  /// Number of elements (from consecutive iterations) that are safe to
284  /// operate on simultaneously, multiplied by the size of the element in bits.
285  /// The size of the element is taken from the memory access that is most
286  /// restrictive.
287  uint64_t MaxSafeVectorWidthInBits;
288
289  /// If we see a non-constant dependence distance we can still try to
290  /// vectorize this loop with runtime checks.
291  bool FoundNonConstantDistanceDependence;
292
293  /// Result of the dependence checks, indicating whether the checked
294  /// dependences are safe for vectorization, require RT checks or are known to
295  /// be unsafe.
296  VectorizationSafetyStatus Status;
297
298  //// True if Dependences reflects the dependences in the
299  //// loop.  If false we exceeded MaxDependences and
300  //// Dependences is invalid.
301  bool RecordDependences;
302
303  /// Memory dependences collected during the analysis.  Only valid if
304  /// RecordDependences is true.
305  SmallVector<Dependence, 8> Dependences;
306
307  /// Check whether there is a plausible dependence between the two
308  /// accesses.
309  ///
310  /// Access \p A must happen before \p B in program order. The two indices
311  /// identify the index into the program order map.
312  ///
313  /// This function checks  whether there is a plausible dependence (or the
314  /// absence of such can't be proved) between the two accesses. If there is a
315  /// plausible dependence but the dependence distance is bigger than one
316  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
317  /// distance is smaller than any other distance encountered so far).
318  /// Otherwise, this function returns true signaling a possible dependence.
319  Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
320                                  const MemAccessInfo &B, unsigned BIdx,
321                                  const ValueToValueMap &Strides);
322
323  /// Check whether the data dependence could prevent store-load
324  /// forwarding.
325  ///
326  /// \return false if we shouldn't vectorize at all or avoid larger
327  /// vectorization factors by limiting MaxSafeDepDistBytes.
328  bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
329
330  /// Updates the current safety status with \p S. We can go from Safe to
331  /// either PossiblySafeWithRtChecks or Unsafe and from
332  /// PossiblySafeWithRtChecks to Unsafe.
333  void mergeInStatus(VectorizationSafetyStatus S);
334};
335
336class RuntimePointerChecking;
337/// A grouping of pointers. A single memcheck is required between
338/// two groups.
339struct RuntimeCheckingPtrGroup {
340  /// Create a new pointer checking group containing a single
341  /// pointer, with index \p Index in RtCheck.
342  RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
343
344  /// Tries to add the pointer recorded in RtCheck at index
345  /// \p Index to this pointer checking group. We can only add a pointer
346  /// to a checking group if we will still be able to get
347  /// the upper and lower bounds of the check. Returns true in case
348  /// of success, false otherwise.
349  bool addPointer(unsigned Index);
350
351  /// Constitutes the context of this pointer checking group. For each
352  /// pointer that is a member of this group we will retain the index
353  /// at which it appears in RtCheck.
354  RuntimePointerChecking &RtCheck;
355  /// The SCEV expression which represents the upper bound of all the
356  /// pointers in this group.
357  const SCEV *High;
358  /// The SCEV expression which represents the lower bound of all the
359  /// pointers in this group.
360  const SCEV *Low;
361  /// Indices of all the pointers that constitute this grouping.
362  SmallVector<unsigned, 2> Members;
363};
364
365/// A memcheck which made up of a pair of grouped pointers.
366typedef std::pair<const RuntimeCheckingPtrGroup *,
367                  const RuntimeCheckingPtrGroup *>
368    RuntimePointerCheck;
369
370/// Holds information about the memory runtime legality checks to verify
371/// that a group of pointers do not overlap.
372class RuntimePointerChecking {
373  friend struct RuntimeCheckingPtrGroup;
374
375public:
376  struct PointerInfo {
377    /// Holds the pointer value that we need to check.
378    TrackingVH<Value> PointerValue;
379    /// Holds the smallest byte address accessed by the pointer throughout all
380    /// iterations of the loop.
381    const SCEV *Start;
382    /// Holds the largest byte address accessed by the pointer throughout all
383    /// iterations of the loop, plus 1.
384    const SCEV *End;
385    /// Holds the information if this pointer is used for writing to memory.
386    bool IsWritePtr;
387    /// Holds the id of the set of pointers that could be dependent because of a
388    /// shared underlying object.
389    unsigned DependencySetId;
390    /// Holds the id of the disjoint alias set to which this pointer belongs.
391    unsigned AliasSetId;
392    /// SCEV for the access.
393    const SCEV *Expr;
394
395    PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
396                bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
397                const SCEV *Expr)
398        : PointerValue(PointerValue), Start(Start), End(End),
399          IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
400          AliasSetId(AliasSetId), Expr(Expr) {}
401  };
402
403  RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
404
405  /// Reset the state of the pointer runtime information.
406  void reset() {
407    Need = false;
408    Pointers.clear();
409    Checks.clear();
410  }
411
412  /// Insert a pointer and calculate the start and end SCEVs.
413  /// We need \p PSE in order to compute the SCEV expression of the pointer
414  /// according to the assumptions that we've made during the analysis.
415  /// The method might also version the pointer stride according to \p Strides,
416  /// and add new predicates to \p PSE.
417  void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
418              unsigned ASId, const ValueToValueMap &Strides,
419              PredicatedScalarEvolution &PSE);
420
421  /// No run-time memory checking is necessary.
422  bool empty() const { return Pointers.empty(); }
423
424  /// Generate the checks and store it.  This also performs the grouping
425  /// of pointers to reduce the number of memchecks necessary.
426  void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
427                      bool UseDependencies);
428
429  /// Returns the checks that generateChecks created.
430  const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
431    return Checks;
432  }
433
434  /// Decide if we need to add a check between two groups of pointers,
435  /// according to needsChecking.
436  bool needsChecking(const RuntimeCheckingPtrGroup &M,
437                     const RuntimeCheckingPtrGroup &N) const;
438
439  /// Returns the number of run-time checks required according to
440  /// needsChecking.
441  unsigned getNumberOfChecks() const { return Checks.size(); }
442
443  /// Print the list run-time memory checks necessary.
444  void print(raw_ostream &OS, unsigned Depth = 0) const;
445
446  /// Print \p Checks.
447  void printChecks(raw_ostream &OS,
448                   const SmallVectorImpl<RuntimePointerCheck> &Checks,
449                   unsigned Depth = 0) const;
450
451  /// This flag indicates if we need to add the runtime check.
452  bool Need;
453
454  /// Information about the pointers that may require checking.
455  SmallVector<PointerInfo, 2> Pointers;
456
457  /// Holds a partitioning of pointers into "check groups".
458  SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
459
460  /// Check if pointers are in the same partition
461  ///
462  /// \p PtrToPartition contains the partition number for pointers (-1 if the
463  /// pointer belongs to multiple partitions).
464  static bool
465  arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
466                             unsigned PtrIdx1, unsigned PtrIdx2);
467
468  /// Decide whether we need to issue a run-time check for pointer at
469  /// index \p I and \p J to prove their independence.
470  bool needsChecking(unsigned I, unsigned J) const;
471
472  /// Return PointerInfo for pointer at index \p PtrIdx.
473  const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
474    return Pointers[PtrIdx];
475  }
476
477  ScalarEvolution *getSE() const { return SE; }
478
479private:
480  /// Groups pointers such that a single memcheck is required
481  /// between two different groups. This will clear the CheckingGroups vector
482  /// and re-compute it. We will only group dependecies if \p UseDependencies
483  /// is true, otherwise we will create a separate group for each pointer.
484  void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
485                   bool UseDependencies);
486
487  /// Generate the checks and return them.
488  SmallVector<RuntimePointerCheck, 4> generateChecks() const;
489
490  /// Holds a pointer to the ScalarEvolution analysis.
491  ScalarEvolution *SE;
492
493  /// Set of run-time checks required to establish independence of
494  /// otherwise may-aliasing pointers in the loop.
495  SmallVector<RuntimePointerCheck, 4> Checks;
496};
497
498/// Drive the analysis of memory accesses in the loop
499///
500/// This class is responsible for analyzing the memory accesses of a loop.  It
501/// collects the accesses and then its main helper the AccessAnalysis class
502/// finds and categorizes the dependences in buildDependenceSets.
503///
504/// For memory dependences that can be analyzed at compile time, it determines
505/// whether the dependence is part of cycle inhibiting vectorization.  This work
506/// is delegated to the MemoryDepChecker class.
507///
508/// For memory dependences that cannot be determined at compile time, it
509/// generates run-time checks to prove independence.  This is done by
510/// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
511/// RuntimePointerCheck class.
512///
513/// If pointers can wrap or can't be expressed as affine AddRec expressions by
514/// ScalarEvolution, we will generate run-time checks by emitting a
515/// SCEVUnionPredicate.
516///
517/// Checks for both memory dependences and the SCEV predicates contained in the
518/// PSE must be emitted in order for the results of this analysis to be valid.
519class LoopAccessInfo {
520public:
521  LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
522                 AAResults *AA, DominatorTree *DT, LoopInfo *LI);
523
524  /// Return true we can analyze the memory accesses in the loop and there are
525  /// no memory dependence cycles.
526  bool canVectorizeMemory() const { return CanVecMem; }
527
528  /// Return true if there is a convergent operation in the loop. There may
529  /// still be reported runtime pointer checks that would be required, but it is
530  /// not legal to insert them.
531  bool hasConvergentOp() const { return HasConvergentOp; }
532
533  const RuntimePointerChecking *getRuntimePointerChecking() const {
534    return PtrRtChecking.get();
535  }
536
537  /// Number of memchecks required to prove independence of otherwise
538  /// may-alias pointers.
539  unsigned getNumRuntimePointerChecks() const {
540    return PtrRtChecking->getNumberOfChecks();
541  }
542
543  /// Return true if the block BB needs to be predicated in order for the loop
544  /// to be vectorized.
545  static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
546                                    DominatorTree *DT);
547
548  /// Returns true if the value V is uniform within the loop.
549  bool isUniform(Value *V) const;
550
551  uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
552  unsigned getNumStores() const { return NumStores; }
553  unsigned getNumLoads() const { return NumLoads;}
554
555  /// The diagnostics report generated for the analysis.  E.g. why we
556  /// couldn't analyze the loop.
557  const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
558
559  /// the Memory Dependence Checker which can determine the
560  /// loop-independent and loop-carried dependences between memory accesses.
561  const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
562
563  /// Return the list of instructions that use \p Ptr to read or write
564  /// memory.
565  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
566                                                         bool isWrite) const {
567    return DepChecker->getInstructionsForAccess(Ptr, isWrite);
568  }
569
570  /// If an access has a symbolic strides, this maps the pointer value to
571  /// the stride symbol.
572  const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
573
574  /// Pointer has a symbolic stride.
575  bool hasStride(Value *V) const { return StrideSet.count(V); }
576
577  /// Print the information about the memory accesses in the loop.
578  void print(raw_ostream &OS, unsigned Depth = 0) const;
579
580  /// If the loop has memory dependence involving an invariant address, i.e. two
581  /// stores or a store and a load, then return true, else return false.
582  bool hasDependenceInvolvingLoopInvariantAddress() const {
583    return HasDependenceInvolvingLoopInvariantAddress;
584  }
585
586  /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
587  /// them to a more usable form.  All SCEV expressions during the analysis
588  /// should be re-written (and therefore simplified) according to PSE.
589  /// A user of LoopAccessAnalysis will need to emit the runtime checks
590  /// associated with this predicate.
591  const PredicatedScalarEvolution &getPSE() const { return *PSE; }
592
593private:
594  /// Analyze the loop.
595  void analyzeLoop(AAResults *AA, LoopInfo *LI,
596                   const TargetLibraryInfo *TLI, DominatorTree *DT);
597
598  /// Check if the structure of the loop allows it to be analyzed by this
599  /// pass.
600  bool canAnalyzeLoop();
601
602  /// Save the analysis remark.
603  ///
604  /// LAA does not directly emits the remarks.  Instead it stores it which the
605  /// client can retrieve and presents as its own analysis
606  /// (e.g. -Rpass-analysis=loop-vectorize).
607  OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
608                                             Instruction *Instr = nullptr);
609
610  /// Collect memory access with loop invariant strides.
611  ///
612  /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
613  /// invariant.
614  void collectStridedAccess(Value *LoadOrStoreInst);
615
616  std::unique_ptr<PredicatedScalarEvolution> PSE;
617
618  /// We need to check that all of the pointers in this list are disjoint
619  /// at runtime. Using std::unique_ptr to make using move ctor simpler.
620  std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
621
622  /// the Memory Dependence Checker which can determine the
623  /// loop-independent and loop-carried dependences between memory accesses.
624  std::unique_ptr<MemoryDepChecker> DepChecker;
625
626  Loop *TheLoop;
627
628  unsigned NumLoads;
629  unsigned NumStores;
630
631  uint64_t MaxSafeDepDistBytes;
632
633  /// Cache the result of analyzeLoop.
634  bool CanVecMem;
635  bool HasConvergentOp;
636
637  /// Indicator that there are non vectorizable stores to a uniform address.
638  bool HasDependenceInvolvingLoopInvariantAddress;
639
640  /// The diagnostics report generated for the analysis.  E.g. why we
641  /// couldn't analyze the loop.
642  std::unique_ptr<OptimizationRemarkAnalysis> Report;
643
644  /// If an access has a symbolic strides, this maps the pointer value to
645  /// the stride symbol.
646  ValueToValueMap SymbolicStrides;
647
648  /// Set of symbolic strides values.
649  SmallPtrSet<Value *, 8> StrideSet;
650};
651
652Value *stripIntegerCast(Value *V);
653
654/// Return the SCEV corresponding to a pointer with the symbolic stride
655/// replaced with constant one, assuming the SCEV predicate associated with
656/// \p PSE is true.
657///
658/// If necessary this method will version the stride of the pointer according
659/// to \p PtrToStride and therefore add further predicates to \p PSE.
660///
661/// If \p OrigPtr is not null, use it to look up the stride value instead of \p
662/// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
663/// stride as collected by LoopVectorizationLegality::collectStridedAccess.
664const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
665                                      const ValueToValueMap &PtrToStride,
666                                      Value *Ptr, Value *OrigPtr = nullptr);
667
668/// If the pointer has a constant stride return it in units of its
669/// element size.  Otherwise return zero.
670///
671/// Ensure that it does not wrap in the address space, assuming the predicate
672/// associated with \p PSE is true.
673///
674/// If necessary this method will version the stride of the pointer according
675/// to \p PtrToStride and therefore add further predicates to \p PSE.
676/// The \p Assume parameter indicates if we are allowed to make additional
677/// run-time assumptions.
678int64_t getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
679                     const ValueToValueMap &StridesMap = ValueToValueMap(),
680                     bool Assume = false, bool ShouldCheckWrap = true);
681
682/// Returns the distance between the pointers \p PtrA and \p PtrB iff they are
683/// compatible and it is possible to calculate the distance between them. This
684/// is a simple API that does not depend on the analysis pass.
685/// \param StrictCheck Ensure that the calculated distance matches the
686/// type-based one after all the bitcasts removal in the provided pointers.
687Optional<int> getPointersDiff(Value *PtrA, Value *PtrB, const DataLayout &DL,
688                              ScalarEvolution &SE, bool StrictCheck = false,
689                              bool CheckType = true);
690
691/// Attempt to sort the pointers in \p VL and return the sorted indices
692/// in \p SortedIndices, if reordering is required.
693///
694/// Returns 'true' if sorting is legal, otherwise returns 'false'.
695///
696/// For example, for a given \p VL of memory accesses in program order, a[i+4],
697/// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
698/// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
699/// saves the mask for actual memory accesses in program order in
700/// \p SortedIndices as <1,2,0,3>
701bool sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
702                     ScalarEvolution &SE,
703                     SmallVectorImpl<unsigned> &SortedIndices);
704
705/// Returns true if the memory operations \p A and \p B are consecutive.
706/// This is a simple API that does not depend on the analysis pass.
707bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
708                         ScalarEvolution &SE, bool CheckType = true);
709
710/// This analysis provides dependence information for the memory accesses
711/// of a loop.
712///
713/// It runs the analysis for a loop on demand.  This can be initiated by
714/// querying the loop access info via LAA::getInfo.  getInfo return a
715/// LoopAccessInfo object.  See this class for the specifics of what information
716/// is provided.
717class LoopAccessLegacyAnalysis : public FunctionPass {
718public:
719  static char ID;
720
721  LoopAccessLegacyAnalysis();
722
723  bool runOnFunction(Function &F) override;
724
725  void getAnalysisUsage(AnalysisUsage &AU) const override;
726
727  /// Query the result of the loop access information for the loop \p L.
728  ///
729  /// If there is no cached result available run the analysis.
730  const LoopAccessInfo &getInfo(Loop *L);
731
732  void releaseMemory() override {
733    // Invalidate the cache when the pass is freed.
734    LoopAccessInfoMap.clear();
735  }
736
737  /// Print the result of the analysis when invoked with -analyze.
738  void print(raw_ostream &OS, const Module *M = nullptr) const override;
739
740private:
741  /// The cache.
742  DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
743
744  // The used analysis passes.
745  ScalarEvolution *SE = nullptr;
746  const TargetLibraryInfo *TLI = nullptr;
747  AAResults *AA = nullptr;
748  DominatorTree *DT = nullptr;
749  LoopInfo *LI = nullptr;
750};
751
752/// This analysis provides dependence information for the memory
753/// accesses of a loop.
754///
755/// It runs the analysis for a loop on demand.  This can be initiated by
756/// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
757/// getResult return a LoopAccessInfo object.  See this class for the
758/// specifics of what information is provided.
759class LoopAccessAnalysis
760    : public AnalysisInfoMixin<LoopAccessAnalysis> {
761  friend AnalysisInfoMixin<LoopAccessAnalysis>;
762  static AnalysisKey Key;
763
764public:
765  typedef LoopAccessInfo Result;
766
767  Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
768};
769
770inline Instruction *MemoryDepChecker::Dependence::getSource(
771    const LoopAccessInfo &LAI) const {
772  return LAI.getDepChecker().getMemoryInstructions()[Source];
773}
774
775inline Instruction *MemoryDepChecker::Dependence::getDestination(
776    const LoopAccessInfo &LAI) const {
777  return LAI.getDepChecker().getMemoryInstructions()[Destination];
778}
779
780} // End llvm namespace
781
782#endif
783