1// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
2// Copyright 2017 Roman Lebedev. All rights reserved.
3//
4// Licensed under the Apache License, Version 2.0 (the "License");
5// you may not use this file except in compliance with the License.
6// You may obtain a copy of the License at
7//
8//     http://www.apache.org/licenses/LICENSE-2.0
9//
10// Unless required by applicable law or agreed to in writing, software
11// distributed under the License is distributed on an "AS IS" BASIS,
12// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13// See the License for the specific language governing permissions and
14// limitations under the License.
15
16#include "benchmark/benchmark.h"
17
18#include <algorithm>
19#include <cmath>
20#include <numeric>
21#include <string>
22#include <vector>
23#include "check.h"
24#include "statistics.h"
25
26namespace benchmark {
27
28auto StatisticsSum = [](const std::vector<double>& v) {
29  return std::accumulate(v.begin(), v.end(), 0.0);
30};
31
32double StatisticsMean(const std::vector<double>& v) {
33  if (v.empty()) return 0.0;
34  return StatisticsSum(v) * (1.0 / v.size());
35}
36
37double StatisticsMedian(const std::vector<double>& v) {
38  if (v.size() < 3) return StatisticsMean(v);
39  std::vector<double> copy(v);
40
41  auto center = copy.begin() + v.size() / 2;
42  std::nth_element(copy.begin(), center, copy.end());
43
44  // did we have an odd number of samples?
45  // if yes, then center is the median
46  // it no, then we are looking for the average between center and the value
47  // before
48  if (v.size() % 2 == 1) return *center;
49  auto center2 = copy.begin() + v.size() / 2 - 1;
50  std::nth_element(copy.begin(), center2, copy.end());
51  return (*center + *center2) / 2.0;
52}
53
54// Return the sum of the squares of this sample set
55auto SumSquares = [](const std::vector<double>& v) {
56  return std::inner_product(v.begin(), v.end(), v.begin(), 0.0);
57};
58
59auto Sqr = [](const double dat) { return dat * dat; };
60auto Sqrt = [](const double dat) {
61  // Avoid NaN due to imprecision in the calculations
62  if (dat < 0.0) return 0.0;
63  return std::sqrt(dat);
64};
65
66double StatisticsStdDev(const std::vector<double>& v) {
67  const auto mean = StatisticsMean(v);
68  if (v.empty()) return mean;
69
70  // Sample standard deviation is undefined for n = 1
71  if (v.size() == 1) return 0.0;
72
73  const double avg_squares = SumSquares(v) * (1.0 / v.size());
74  return Sqrt(v.size() / (v.size() - 1.0) * (avg_squares - Sqr(mean)));
75}
76
77std::vector<BenchmarkReporter::Run> ComputeStats(
78    const std::vector<BenchmarkReporter::Run>& reports) {
79  typedef BenchmarkReporter::Run Run;
80  std::vector<Run> results;
81
82  auto error_count =
83      std::count_if(reports.begin(), reports.end(),
84                    [](Run const& run) { return run.error_occurred; });
85
86  if (reports.size() - error_count < 2) {
87    // We don't report aggregated data if there was a single run.
88    return results;
89  }
90
91  // Accumulators.
92  std::vector<double> real_accumulated_time_stat;
93  std::vector<double> cpu_accumulated_time_stat;
94
95  real_accumulated_time_stat.reserve(reports.size());
96  cpu_accumulated_time_stat.reserve(reports.size());
97
98  // All repetitions should be run with the same number of iterations so we
99  // can take this information from the first benchmark.
100  int64_t const run_iterations = reports.front().iterations;
101  // create stats for user counters
102  struct CounterStat {
103    Counter c;
104    std::vector<double> s;
105  };
106  std::map<std::string, CounterStat> counter_stats;
107  for (Run const& r : reports) {
108    for (auto const& cnt : r.counters) {
109      auto it = counter_stats.find(cnt.first);
110      if (it == counter_stats.end()) {
111        counter_stats.insert({cnt.first, {cnt.second, std::vector<double>{}}});
112        it = counter_stats.find(cnt.first);
113        it->second.s.reserve(reports.size());
114      } else {
115        CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags);
116      }
117    }
118  }
119
120  // Populate the accumulators.
121  for (Run const& run : reports) {
122    CHECK_EQ(reports[0].benchmark_name(), run.benchmark_name());
123    CHECK_EQ(run_iterations, run.iterations);
124    if (run.error_occurred) continue;
125    real_accumulated_time_stat.emplace_back(run.real_accumulated_time);
126    cpu_accumulated_time_stat.emplace_back(run.cpu_accumulated_time);
127    // user counters
128    for (auto const& cnt : run.counters) {
129      auto it = counter_stats.find(cnt.first);
130      CHECK_NE(it, counter_stats.end());
131      it->second.s.emplace_back(cnt.second);
132    }
133  }
134
135  // Only add label if it is same for all runs
136  std::string report_label = reports[0].report_label;
137  for (std::size_t i = 1; i < reports.size(); i++) {
138    if (reports[i].report_label != report_label) {
139      report_label = "";
140      break;
141    }
142  }
143
144  const double iteration_rescale_factor =
145      double(reports.size()) / double(run_iterations);
146
147  for (const auto& Stat : *reports[0].statistics) {
148    // Get the data from the accumulator to BenchmarkReporter::Run's.
149    Run data;
150    data.run_name = reports[0].benchmark_name();
151    data.run_type = BenchmarkReporter::Run::RT_Aggregate;
152    data.aggregate_name = Stat.name_;
153    data.report_label = report_label;
154
155    // It is incorrect to say that an aggregate is computed over
156    // run's iterations, because those iterations already got averaged.
157    // Similarly, if there are N repetitions with 1 iterations each,
158    // an aggregate will be computed over N measurements, not 1.
159    // Thus it is best to simply use the count of separate reports.
160    data.iterations = reports.size();
161
162    data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat);
163    data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat);
164
165    // We will divide these times by data.iterations when reporting, but the
166    // data.iterations is not nessesairly the scale of these measurements,
167    // because in each repetition, these timers are sum over all the iterations.
168    // And if we want to say that the stats are over N repetitions and not
169    // M iterations, we need to multiply these by (N/M).
170    data.real_accumulated_time *= iteration_rescale_factor;
171    data.cpu_accumulated_time *= iteration_rescale_factor;
172
173    data.time_unit = reports[0].time_unit;
174
175    // user counters
176    for (auto const& kv : counter_stats) {
177      // Do *NOT* rescale the custom counters. They are already properly scaled.
178      const auto uc_stat = Stat.compute_(kv.second.s);
179      auto c = Counter(uc_stat, counter_stats[kv.first].c.flags,
180                       counter_stats[kv.first].c.oneK);
181      data.counters[kv.first] = c;
182    }
183
184    results.push_back(data);
185  }
186
187  return results;
188}
189
190}  // end namespace benchmark
191