1//===- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the DeltaTree and related classes.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Rewrite/Core/DeltaTree.h"
14#include "clang/Basic/LLVM.h"
15#include "llvm/Support/Casting.h"
16#include <cassert>
17#include <cstring>
18
19using namespace clang;
20
21/// The DeltaTree class is a multiway search tree (BTree) structure with some
22/// fancy features.  B-Trees are generally more memory and cache efficient
23/// than binary trees, because they store multiple keys/values in each node.
24///
25/// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
26/// fast lookup by FileIndex.  However, an added (important) bonus is that it
27/// can also efficiently tell us the full accumulated delta for a specific
28/// file offset as well, without traversing the whole tree.
29///
30/// The nodes of the tree are made up of instances of two classes:
31/// DeltaTreeNode and DeltaTreeInteriorNode.  The later subclasses the
32/// former and adds children pointers.  Each node knows the full delta of all
33/// entries (recursively) contained inside of it, which allows us to get the
34/// full delta implied by a whole subtree in constant time.
35
36namespace {
37
38  /// SourceDelta - As code in the original input buffer is added and deleted,
39  /// SourceDelta records are used to keep track of how the input SourceLocation
40  /// object is mapped into the output buffer.
41  struct SourceDelta {
42    unsigned FileLoc;
43    int Delta;
44
45    static SourceDelta get(unsigned Loc, int D) {
46      SourceDelta Delta;
47      Delta.FileLoc = Loc;
48      Delta.Delta = D;
49      return Delta;
50    }
51  };
52
53  /// DeltaTreeNode - The common part of all nodes.
54  ///
55  class DeltaTreeNode {
56  public:
57    struct InsertResult {
58      DeltaTreeNode *LHS, *RHS;
59      SourceDelta Split;
60    };
61
62  private:
63    friend class DeltaTreeInteriorNode;
64
65    /// WidthFactor - This controls the number of K/V slots held in the BTree:
66    /// how wide it is.  Each level of the BTree is guaranteed to have at least
67    /// WidthFactor-1 K/V pairs (except the root) and may have at most
68    /// 2*WidthFactor-1 K/V pairs.
69    enum { WidthFactor = 8 };
70
71    /// Values - This tracks the SourceDelta's currently in this node.
72    SourceDelta Values[2*WidthFactor-1];
73
74    /// NumValuesUsed - This tracks the number of values this node currently
75    /// holds.
76    unsigned char NumValuesUsed = 0;
77
78    /// IsLeaf - This is true if this is a leaf of the btree.  If false, this is
79    /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
80    bool IsLeaf;
81
82    /// FullDelta - This is the full delta of all the values in this node and
83    /// all children nodes.
84    int FullDelta = 0;
85
86  public:
87    DeltaTreeNode(bool isLeaf = true) : IsLeaf(isLeaf) {}
88
89    bool isLeaf() const { return IsLeaf; }
90    int getFullDelta() const { return FullDelta; }
91    bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; }
92
93    unsigned getNumValuesUsed() const { return NumValuesUsed; }
94
95    const SourceDelta &getValue(unsigned i) const {
96      assert(i < NumValuesUsed && "Invalid value #");
97      return Values[i];
98    }
99
100    SourceDelta &getValue(unsigned i) {
101      assert(i < NumValuesUsed && "Invalid value #");
102      return Values[i];
103    }
104
105    /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
106    /// this node.  If insertion is easy, do it and return false.  Otherwise,
107    /// split the node, populate InsertRes with info about the split, and return
108    /// true.
109    bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
110
111    void DoSplit(InsertResult &InsertRes);
112
113
114    /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
115    /// local walk over our contained deltas.
116    void RecomputeFullDeltaLocally();
117
118    void Destroy();
119  };
120
121  /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
122  /// This class tracks them.
123  class DeltaTreeInteriorNode : public DeltaTreeNode {
124    friend class DeltaTreeNode;
125
126    DeltaTreeNode *Children[2*WidthFactor];
127
128    ~DeltaTreeInteriorNode() {
129      for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i)
130        Children[i]->Destroy();
131    }
132
133  public:
134    DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
135
136    DeltaTreeInteriorNode(const InsertResult &IR)
137        : DeltaTreeNode(false /*nonleaf*/) {
138      Children[0] = IR.LHS;
139      Children[1] = IR.RHS;
140      Values[0] = IR.Split;
141      FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta;
142      NumValuesUsed = 1;
143    }
144
145    const DeltaTreeNode *getChild(unsigned i) const {
146      assert(i < getNumValuesUsed()+1 && "Invalid child");
147      return Children[i];
148    }
149
150    DeltaTreeNode *getChild(unsigned i) {
151      assert(i < getNumValuesUsed()+1 && "Invalid child");
152      return Children[i];
153    }
154
155    static bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
156  };
157
158} // namespace
159
160/// Destroy - A 'virtual' destructor.
161void DeltaTreeNode::Destroy() {
162  if (isLeaf())
163    delete this;
164  else
165    delete cast<DeltaTreeInteriorNode>(this);
166}
167
168/// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
169/// local walk over our contained deltas.
170void DeltaTreeNode::RecomputeFullDeltaLocally() {
171  int NewFullDelta = 0;
172  for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
173    NewFullDelta += Values[i].Delta;
174  if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this))
175    for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i)
176      NewFullDelta += IN->getChild(i)->getFullDelta();
177  FullDelta = NewFullDelta;
178}
179
180/// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
181/// this node.  If insertion is easy, do it and return false.  Otherwise,
182/// split the node, populate InsertRes with info about the split, and return
183/// true.
184bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
185                                InsertResult *InsertRes) {
186  // Maintain full delta for this node.
187  FullDelta += Delta;
188
189  // Find the insertion point, the first delta whose index is >= FileIndex.
190  unsigned i = 0, e = getNumValuesUsed();
191  while (i != e && FileIndex > getValue(i).FileLoc)
192    ++i;
193
194  // If we found an a record for exactly this file index, just merge this
195  // value into the pre-existing record and finish early.
196  if (i != e && getValue(i).FileLoc == FileIndex) {
197    // NOTE: Delta could drop to zero here.  This means that the delta entry is
198    // useless and could be removed.  Supporting erases is more complex than
199    // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
200    // the tree.
201    Values[i].Delta += Delta;
202    return false;
203  }
204
205  // Otherwise, we found an insertion point, and we know that the value at the
206  // specified index is > FileIndex.  Handle the leaf case first.
207  if (isLeaf()) {
208    if (!isFull()) {
209      // For an insertion into a non-full leaf node, just insert the value in
210      // its sorted position.  This requires moving later values over.
211      if (i != e)
212        memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
213      Values[i] = SourceDelta::get(FileIndex, Delta);
214      ++NumValuesUsed;
215      return false;
216    }
217
218    // Otherwise, if this is leaf is full, split the node at its median, insert
219    // the value into one of the children, and return the result.
220    assert(InsertRes && "No result location specified");
221    DoSplit(*InsertRes);
222
223    if (InsertRes->Split.FileLoc > FileIndex)
224      InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
225    else
226      InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
227    return true;
228  }
229
230  // Otherwise, this is an interior node.  Send the request down the tree.
231  auto *IN = cast<DeltaTreeInteriorNode>(this);
232  if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
233    return false; // If there was space in the child, just return.
234
235  // Okay, this split the subtree, producing a new value and two children to
236  // insert here.  If this node is non-full, we can just insert it directly.
237  if (!isFull()) {
238    // Now that we have two nodes and a new element, insert the perclated value
239    // into ourself by moving all the later values/children down, then inserting
240    // the new one.
241    if (i != e)
242      memmove(&IN->Children[i+2], &IN->Children[i+1],
243              (e-i)*sizeof(IN->Children[0]));
244    IN->Children[i] = InsertRes->LHS;
245    IN->Children[i+1] = InsertRes->RHS;
246
247    if (e != i)
248      memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0]));
249    Values[i] = InsertRes->Split;
250    ++NumValuesUsed;
251    return false;
252  }
253
254  // Finally, if this interior node was full and a node is percolated up, split
255  // ourself and return that up the chain.  Start by saving all our info to
256  // avoid having the split clobber it.
257  IN->Children[i] = InsertRes->LHS;
258  DeltaTreeNode *SubRHS = InsertRes->RHS;
259  SourceDelta SubSplit = InsertRes->Split;
260
261  // Do the split.
262  DoSplit(*InsertRes);
263
264  // Figure out where to insert SubRHS/NewSplit.
265  DeltaTreeInteriorNode *InsertSide;
266  if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
267    InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
268  else
269    InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
270
271  // We now have a non-empty interior node 'InsertSide' to insert
272  // SubRHS/SubSplit into.  Find out where to insert SubSplit.
273
274  // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
275  i = 0; e = InsertSide->getNumValuesUsed();
276  while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
277    ++i;
278
279  // Now we know that i is the place to insert the split value into.  Insert it
280  // and the child right after it.
281  if (i != e)
282    memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1],
283            (e-i)*sizeof(IN->Children[0]));
284  InsertSide->Children[i+1] = SubRHS;
285
286  if (e != i)
287    memmove(&InsertSide->Values[i+1], &InsertSide->Values[i],
288            (e-i)*sizeof(Values[0]));
289  InsertSide->Values[i] = SubSplit;
290  ++InsertSide->NumValuesUsed;
291  InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
292  return true;
293}
294
295/// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
296/// into two subtrees each with "WidthFactor-1" values and a pivot value.
297/// Return the pieces in InsertRes.
298void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
299  assert(isFull() && "Why split a non-full node?");
300
301  // Since this node is full, it contains 2*WidthFactor-1 values.  We move
302  // the first 'WidthFactor-1' values to the LHS child (which we leave in this
303  // node), propagate one value up, and move the last 'WidthFactor-1' values
304  // into the RHS child.
305
306  // Create the new child node.
307  DeltaTreeNode *NewNode;
308  if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
309    // If this is an interior node, also move over 'WidthFactor' children
310    // into the new node.
311    DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
312    memcpy(&New->Children[0], &IN->Children[WidthFactor],
313           WidthFactor*sizeof(IN->Children[0]));
314    NewNode = New;
315  } else {
316    // Just create the new leaf node.
317    NewNode = new DeltaTreeNode();
318  }
319
320  // Move over the last 'WidthFactor-1' values from here to NewNode.
321  memcpy(&NewNode->Values[0], &Values[WidthFactor],
322         (WidthFactor-1)*sizeof(Values[0]));
323
324  // Decrease the number of values in the two nodes.
325  NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1;
326
327  // Recompute the two nodes' full delta.
328  NewNode->RecomputeFullDeltaLocally();
329  RecomputeFullDeltaLocally();
330
331  InsertRes.LHS = this;
332  InsertRes.RHS = NewNode;
333  InsertRes.Split = Values[WidthFactor-1];
334}
335
336//===----------------------------------------------------------------------===//
337//                        DeltaTree Implementation
338//===----------------------------------------------------------------------===//
339
340//#define VERIFY_TREE
341
342#ifdef VERIFY_TREE
343/// VerifyTree - Walk the btree performing assertions on various properties to
344/// verify consistency.  This is useful for debugging new changes to the tree.
345static void VerifyTree(const DeltaTreeNode *N) {
346  const auto *IN = dyn_cast<DeltaTreeInteriorNode>(N);
347  if (IN == 0) {
348    // Verify leaves, just ensure that FullDelta matches up and the elements
349    // are in proper order.
350    int FullDelta = 0;
351    for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
352      if (i)
353        assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc);
354      FullDelta += N->getValue(i).Delta;
355    }
356    assert(FullDelta == N->getFullDelta());
357    return;
358  }
359
360  // Verify interior nodes: Ensure that FullDelta matches up and the
361  // elements are in proper order and the children are in proper order.
362  int FullDelta = 0;
363  for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
364    const SourceDelta &IVal = N->getValue(i);
365    const DeltaTreeNode *IChild = IN->getChild(i);
366    if (i)
367      assert(IN->getValue(i-1).FileLoc < IVal.FileLoc);
368    FullDelta += IVal.Delta;
369    FullDelta += IChild->getFullDelta();
370
371    // The largest value in child #i should be smaller than FileLoc.
372    assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc <
373           IVal.FileLoc);
374
375    // The smallest value in child #i+1 should be larger than FileLoc.
376    assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc);
377    VerifyTree(IChild);
378  }
379
380  FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
381
382  assert(FullDelta == N->getFullDelta());
383}
384#endif  // VERIFY_TREE
385
386static DeltaTreeNode *getRoot(void *Root) {
387  return (DeltaTreeNode*)Root;
388}
389
390DeltaTree::DeltaTree() {
391  Root = new DeltaTreeNode();
392}
393
394DeltaTree::DeltaTree(const DeltaTree &RHS) {
395  // Currently we only support copying when the RHS is empty.
396  assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
397         "Can only copy empty tree");
398  Root = new DeltaTreeNode();
399}
400
401DeltaTree::~DeltaTree() {
402  getRoot(Root)->Destroy();
403}
404
405/// getDeltaAt - Return the accumulated delta at the specified file offset.
406/// This includes all insertions or delections that occurred *before* the
407/// specified file index.
408int DeltaTree::getDeltaAt(unsigned FileIndex) const {
409  const DeltaTreeNode *Node = getRoot(Root);
410
411  int Result = 0;
412
413  // Walk down the tree.
414  while (true) {
415    // For all nodes, include any local deltas before the specified file
416    // index by summing them up directly.  Keep track of how many were
417    // included.
418    unsigned NumValsGreater = 0;
419    for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
420         ++NumValsGreater) {
421      const SourceDelta &Val = Node->getValue(NumValsGreater);
422
423      if (Val.FileLoc >= FileIndex)
424        break;
425      Result += Val.Delta;
426    }
427
428    // If we have an interior node, include information about children and
429    // recurse.  Otherwise, if we have a leaf, we're done.
430    const auto *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
431    if (!IN) return Result;
432
433    // Include any children to the left of the values we skipped, all of
434    // their deltas should be included as well.
435    for (unsigned i = 0; i != NumValsGreater; ++i)
436      Result += IN->getChild(i)->getFullDelta();
437
438    // If we found exactly the value we were looking for, break off the
439    // search early.  There is no need to search the RHS of the value for
440    // partial results.
441    if (NumValsGreater != Node->getNumValuesUsed() &&
442        Node->getValue(NumValsGreater).FileLoc == FileIndex)
443      return Result+IN->getChild(NumValsGreater)->getFullDelta();
444
445    // Otherwise, traverse down the tree.  The selected subtree may be
446    // partially included in the range.
447    Node = IN->getChild(NumValsGreater);
448  }
449  // NOT REACHED.
450}
451
452/// AddDelta - When a change is made that shifts around the text buffer,
453/// this method is used to record that info.  It inserts a delta of 'Delta'
454/// into the current DeltaTree at offset FileIndex.
455void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
456  assert(Delta && "Adding a noop?");
457  DeltaTreeNode *MyRoot = getRoot(Root);
458
459  DeltaTreeNode::InsertResult InsertRes;
460  if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
461    Root = new DeltaTreeInteriorNode(InsertRes);
462#ifdef VERIFY_TREE
463    MyRoot = Root;
464#endif
465  }
466
467#ifdef VERIFY_TREE
468  VerifyTree(MyRoot);
469#endif
470}
471