1//===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Provides the Expression parsing implementation.
11///
12/// Expressions in C99 basically consist of a bunch of binary operators with
13/// unary operators and other random stuff at the leaves.
14///
15/// In the C99 grammar, these unary operators bind tightest and are represented
16/// as the 'cast-expression' production.  Everything else is either a binary
17/// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
18/// handled by ParseCastExpression, the higher level pieces are handled by
19/// ParseBinaryExpression.
20///
21//===----------------------------------------------------------------------===//
22
23#include "clang/Parse/Parser.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/Basic/PrettyStackTrace.h"
27#include "clang/Parse/RAIIObjectsForParser.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Sema/Scope.h"
31#include "clang/Sema/TypoCorrection.h"
32#include "llvm/ADT/SmallVector.h"
33using namespace clang;
34
35/// Simple precedence-based parser for binary/ternary operators.
36///
37/// Note: we diverge from the C99 grammar when parsing the assignment-expression
38/// production.  C99 specifies that the LHS of an assignment operator should be
39/// parsed as a unary-expression, but consistency dictates that it be a
40/// conditional-expession.  In practice, the important thing here is that the
41/// LHS of an assignment has to be an l-value, which productions between
42/// unary-expression and conditional-expression don't produce.  Because we want
43/// consistency, we parse the LHS as a conditional-expression, then check for
44/// l-value-ness in semantic analysis stages.
45///
46/// \verbatim
47///       pm-expression: [C++ 5.5]
48///         cast-expression
49///         pm-expression '.*' cast-expression
50///         pm-expression '->*' cast-expression
51///
52///       multiplicative-expression: [C99 6.5.5]
53///     Note: in C++, apply pm-expression instead of cast-expression
54///         cast-expression
55///         multiplicative-expression '*' cast-expression
56///         multiplicative-expression '/' cast-expression
57///         multiplicative-expression '%' cast-expression
58///
59///       additive-expression: [C99 6.5.6]
60///         multiplicative-expression
61///         additive-expression '+' multiplicative-expression
62///         additive-expression '-' multiplicative-expression
63///
64///       shift-expression: [C99 6.5.7]
65///         additive-expression
66///         shift-expression '<<' additive-expression
67///         shift-expression '>>' additive-expression
68///
69///       compare-expression: [C++20 expr.spaceship]
70///         shift-expression
71///         compare-expression '<=>' shift-expression
72///
73///       relational-expression: [C99 6.5.8]
74///         compare-expression
75///         relational-expression '<' compare-expression
76///         relational-expression '>' compare-expression
77///         relational-expression '<=' compare-expression
78///         relational-expression '>=' compare-expression
79///
80///       equality-expression: [C99 6.5.9]
81///         relational-expression
82///         equality-expression '==' relational-expression
83///         equality-expression '!=' relational-expression
84///
85///       AND-expression: [C99 6.5.10]
86///         equality-expression
87///         AND-expression '&' equality-expression
88///
89///       exclusive-OR-expression: [C99 6.5.11]
90///         AND-expression
91///         exclusive-OR-expression '^' AND-expression
92///
93///       inclusive-OR-expression: [C99 6.5.12]
94///         exclusive-OR-expression
95///         inclusive-OR-expression '|' exclusive-OR-expression
96///
97///       logical-AND-expression: [C99 6.5.13]
98///         inclusive-OR-expression
99///         logical-AND-expression '&&' inclusive-OR-expression
100///
101///       logical-OR-expression: [C99 6.5.14]
102///         logical-AND-expression
103///         logical-OR-expression '||' logical-AND-expression
104///
105///       conditional-expression: [C99 6.5.15]
106///         logical-OR-expression
107///         logical-OR-expression '?' expression ':' conditional-expression
108/// [GNU]   logical-OR-expression '?' ':' conditional-expression
109/// [C++] the third operand is an assignment-expression
110///
111///       assignment-expression: [C99 6.5.16]
112///         conditional-expression
113///         unary-expression assignment-operator assignment-expression
114/// [C++]   throw-expression [C++ 15]
115///
116///       assignment-operator: one of
117///         = *= /= %= += -= <<= >>= &= ^= |=
118///
119///       expression: [C99 6.5.17]
120///         assignment-expression ...[opt]
121///         expression ',' assignment-expression ...[opt]
122/// \endverbatim
123ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
124  ExprResult LHS(ParseAssignmentExpression(isTypeCast));
125  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
126}
127
128/// This routine is called when the '@' is seen and consumed.
129/// Current token is an Identifier and is not a 'try'. This
130/// routine is necessary to disambiguate \@try-statement from,
131/// for example, \@encode-expression.
132///
133ExprResult
134Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
135  ExprResult LHS(ParseObjCAtExpression(AtLoc));
136  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
137}
138
139/// This routine is called when a leading '__extension__' is seen and
140/// consumed.  This is necessary because the token gets consumed in the
141/// process of disambiguating between an expression and a declaration.
142ExprResult
143Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
144  ExprResult LHS(true);
145  {
146    // Silence extension warnings in the sub-expression
147    ExtensionRAIIObject O(Diags);
148
149    LHS = ParseCastExpression(AnyCastExpr);
150  }
151
152  if (!LHS.isInvalid())
153    LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
154                               LHS.get());
155
156  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
157}
158
159/// Parse an expr that doesn't include (top-level) commas.
160ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
161  if (Tok.is(tok::code_completion)) {
162    cutOffParsing();
163    Actions.CodeCompleteExpression(getCurScope(),
164                                   PreferredType.get(Tok.getLocation()));
165    return ExprError();
166  }
167
168  if (Tok.is(tok::kw_throw))
169    return ParseThrowExpression();
170  if (Tok.is(tok::kw_co_yield))
171    return ParseCoyieldExpression();
172
173  ExprResult LHS = ParseCastExpression(AnyCastExpr,
174                                       /*isAddressOfOperand=*/false,
175                                       isTypeCast);
176  return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
177}
178
179/// Parse an assignment expression where part of an Objective-C message
180/// send has already been parsed.
181///
182/// In this case \p LBracLoc indicates the location of the '[' of the message
183/// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
184/// the receiver of the message.
185///
186/// Since this handles full assignment-expression's, it handles postfix
187/// expressions and other binary operators for these expressions as well.
188ExprResult
189Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
190                                                    SourceLocation SuperLoc,
191                                                    ParsedType ReceiverType,
192                                                    Expr *ReceiverExpr) {
193  ExprResult R
194    = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
195                                     ReceiverType, ReceiverExpr);
196  R = ParsePostfixExpressionSuffix(R);
197  return ParseRHSOfBinaryExpression(R, prec::Assignment);
198}
199
200ExprResult
201Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
202  assert(Actions.ExprEvalContexts.back().Context ==
203             Sema::ExpressionEvaluationContext::ConstantEvaluated &&
204         "Call this function only if your ExpressionEvaluationContext is "
205         "already ConstantEvaluated");
206  ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast));
207  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
208  return Actions.ActOnConstantExpression(Res);
209}
210
211ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
212  // C++03 [basic.def.odr]p2:
213  //   An expression is potentially evaluated unless it appears where an
214  //   integral constant expression is required (see 5.19) [...].
215  // C++98 and C++11 have no such rule, but this is only a defect in C++98.
216  EnterExpressionEvaluationContext ConstantEvaluated(
217      Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
218  return ParseConstantExpressionInExprEvalContext(isTypeCast);
219}
220
221ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
222  EnterExpressionEvaluationContext ConstantEvaluated(
223      Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
224  ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast));
225  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
226  return Actions.ActOnCaseExpr(CaseLoc, Res);
227}
228
229/// Parse a constraint-expression.
230///
231/// \verbatim
232///       constraint-expression: C++2a[temp.constr.decl]p1
233///         logical-or-expression
234/// \endverbatim
235ExprResult Parser::ParseConstraintExpression() {
236  EnterExpressionEvaluationContext ConstantEvaluated(
237      Actions, Sema::ExpressionEvaluationContext::Unevaluated);
238  ExprResult LHS(ParseCastExpression(AnyCastExpr));
239  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
240  if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) {
241    Actions.CorrectDelayedTyposInExpr(Res);
242    return ExprError();
243  }
244  return Res;
245}
246
247/// \brief Parse a constraint-logical-and-expression.
248///
249/// \verbatim
250///       C++2a[temp.constr.decl]p1
251///       constraint-logical-and-expression:
252///         primary-expression
253///         constraint-logical-and-expression '&&' primary-expression
254///
255/// \endverbatim
256ExprResult
257Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) {
258  EnterExpressionEvaluationContext ConstantEvaluated(
259      Actions, Sema::ExpressionEvaluationContext::Unevaluated);
260  bool NotPrimaryExpression = false;
261  auto ParsePrimary = [&] () {
262    ExprResult E = ParseCastExpression(PrimaryExprOnly,
263                                       /*isAddressOfOperand=*/false,
264                                       /*isTypeCast=*/NotTypeCast,
265                                       /*isVectorLiteral=*/false,
266                                       &NotPrimaryExpression);
267    if (E.isInvalid())
268      return ExprError();
269    auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) {
270        E = ParsePostfixExpressionSuffix(E);
271        // Use InclusiveOr, the precedence just after '&&' to not parse the
272        // next arguments to the logical and.
273        E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr);
274        if (!E.isInvalid())
275          Diag(E.get()->getExprLoc(),
276               Note
277               ? diag::note_unparenthesized_non_primary_expr_in_requires_clause
278               : diag::err_unparenthesized_non_primary_expr_in_requires_clause)
279               << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(")
280               << FixItHint::CreateInsertion(
281                   PP.getLocForEndOfToken(E.get()->getEndLoc()), ")")
282               << E.get()->getSourceRange();
283        return E;
284    };
285
286    if (NotPrimaryExpression ||
287        // Check if the following tokens must be a part of a non-primary
288        // expression
289        getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
290                           /*CPlusPlus11=*/true) > prec::LogicalAnd ||
291        // Postfix operators other than '(' (which will be checked for in
292        // CheckConstraintExpression).
293        Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) ||
294        (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) {
295      E = RecoverFromNonPrimary(E, /*Note=*/false);
296      if (E.isInvalid())
297        return ExprError();
298      NotPrimaryExpression = false;
299    }
300    bool PossibleNonPrimary;
301    bool IsConstraintExpr =
302        Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary,
303                                          IsTrailingRequiresClause);
304    if (!IsConstraintExpr || PossibleNonPrimary) {
305      // Atomic constraint might be an unparenthesized non-primary expression
306      // (such as a binary operator), in which case we might get here (e.g. in
307      // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore
308      // the rest of the addition expression). Try to parse the rest of it here.
309      if (PossibleNonPrimary)
310        E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr);
311      Actions.CorrectDelayedTyposInExpr(E);
312      return ExprError();
313    }
314    return E;
315  };
316  ExprResult LHS = ParsePrimary();
317  if (LHS.isInvalid())
318    return ExprError();
319  while (Tok.is(tok::ampamp)) {
320    SourceLocation LogicalAndLoc = ConsumeToken();
321    ExprResult RHS = ParsePrimary();
322    if (RHS.isInvalid()) {
323      Actions.CorrectDelayedTyposInExpr(LHS);
324      return ExprError();
325    }
326    ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc,
327                                       tok::ampamp, LHS.get(), RHS.get());
328    if (!Op.isUsable()) {
329      Actions.CorrectDelayedTyposInExpr(RHS);
330      Actions.CorrectDelayedTyposInExpr(LHS);
331      return ExprError();
332    }
333    LHS = Op;
334  }
335  return LHS;
336}
337
338/// \brief Parse a constraint-logical-or-expression.
339///
340/// \verbatim
341///       C++2a[temp.constr.decl]p1
342///       constraint-logical-or-expression:
343///         constraint-logical-and-expression
344///         constraint-logical-or-expression '||'
345///             constraint-logical-and-expression
346///
347/// \endverbatim
348ExprResult
349Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) {
350  ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause));
351  if (!LHS.isUsable())
352    return ExprError();
353  while (Tok.is(tok::pipepipe)) {
354    SourceLocation LogicalOrLoc = ConsumeToken();
355    ExprResult RHS =
356        ParseConstraintLogicalAndExpression(IsTrailingRequiresClause);
357    if (!RHS.isUsable()) {
358      Actions.CorrectDelayedTyposInExpr(LHS);
359      return ExprError();
360    }
361    ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc,
362                                       tok::pipepipe, LHS.get(), RHS.get());
363    if (!Op.isUsable()) {
364      Actions.CorrectDelayedTyposInExpr(RHS);
365      Actions.CorrectDelayedTyposInExpr(LHS);
366      return ExprError();
367    }
368    LHS = Op;
369  }
370  return LHS;
371}
372
373bool Parser::isNotExpressionStart() {
374  tok::TokenKind K = Tok.getKind();
375  if (K == tok::l_brace || K == tok::r_brace  ||
376      K == tok::kw_for  || K == tok::kw_while ||
377      K == tok::kw_if   || K == tok::kw_else  ||
378      K == tok::kw_goto || K == tok::kw_try)
379    return true;
380  // If this is a decl-specifier, we can't be at the start of an expression.
381  return isKnownToBeDeclarationSpecifier();
382}
383
384bool Parser::isFoldOperator(prec::Level Level) const {
385  return Level > prec::Unknown && Level != prec::Conditional &&
386         Level != prec::Spaceship;
387}
388
389bool Parser::isFoldOperator(tok::TokenKind Kind) const {
390  return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
391}
392
393/// Parse a binary expression that starts with \p LHS and has a
394/// precedence of at least \p MinPrec.
395ExprResult
396Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
397  prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
398                                               GreaterThanIsOperator,
399                                               getLangOpts().CPlusPlus11);
400  SourceLocation ColonLoc;
401
402  auto SavedType = PreferredType;
403  while (1) {
404    // Every iteration may rely on a preferred type for the whole expression.
405    PreferredType = SavedType;
406    // If this token has a lower precedence than we are allowed to parse (e.g.
407    // because we are called recursively, or because the token is not a binop),
408    // then we are done!
409    if (NextTokPrec < MinPrec)
410      return LHS;
411
412    // Consume the operator, saving the operator token for error reporting.
413    Token OpToken = Tok;
414    ConsumeToken();
415
416    if (OpToken.is(tok::caretcaret)) {
417      return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
418    }
419
420    // If we're potentially in a template-id, we may now be able to determine
421    // whether we're actually in one or not.
422    if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
423                        tok::greatergreatergreater) &&
424        checkPotentialAngleBracketDelimiter(OpToken))
425      return ExprError();
426
427    // Bail out when encountering a comma followed by a token which can't
428    // possibly be the start of an expression. For instance:
429    //   int f() { return 1, }
430    // We can't do this before consuming the comma, because
431    // isNotExpressionStart() looks at the token stream.
432    if (OpToken.is(tok::comma) && isNotExpressionStart()) {
433      PP.EnterToken(Tok, /*IsReinject*/true);
434      Tok = OpToken;
435      return LHS;
436    }
437
438    // If the next token is an ellipsis, then this is a fold-expression. Leave
439    // it alone so we can handle it in the paren expression.
440    if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
441      // FIXME: We can't check this via lookahead before we consume the token
442      // because that tickles a lexer bug.
443      PP.EnterToken(Tok, /*IsReinject*/true);
444      Tok = OpToken;
445      return LHS;
446    }
447
448    // In Objective-C++, alternative operator tokens can be used as keyword args
449    // in message expressions. Unconsume the token so that it can reinterpreted
450    // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
451    //   [foo meth:0 and:0];
452    //   [foo not_eq];
453    if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
454        Tok.isOneOf(tok::colon, tok::r_square) &&
455        OpToken.getIdentifierInfo() != nullptr) {
456      PP.EnterToken(Tok, /*IsReinject*/true);
457      Tok = OpToken;
458      return LHS;
459    }
460
461    // Special case handling for the ternary operator.
462    ExprResult TernaryMiddle(true);
463    if (NextTokPrec == prec::Conditional) {
464      if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
465        // Parse a braced-init-list here for error recovery purposes.
466        SourceLocation BraceLoc = Tok.getLocation();
467        TernaryMiddle = ParseBraceInitializer();
468        if (!TernaryMiddle.isInvalid()) {
469          Diag(BraceLoc, diag::err_init_list_bin_op)
470              << /*RHS*/ 1 << PP.getSpelling(OpToken)
471              << Actions.getExprRange(TernaryMiddle.get());
472          TernaryMiddle = ExprError();
473        }
474      } else if (Tok.isNot(tok::colon)) {
475        // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
476        ColonProtectionRAIIObject X(*this);
477
478        // Handle this production specially:
479        //   logical-OR-expression '?' expression ':' conditional-expression
480        // In particular, the RHS of the '?' is 'expression', not
481        // 'logical-OR-expression' as we might expect.
482        TernaryMiddle = ParseExpression();
483      } else {
484        // Special case handling of "X ? Y : Z" where Y is empty:
485        //   logical-OR-expression '?' ':' conditional-expression   [GNU]
486        TernaryMiddle = nullptr;
487        Diag(Tok, diag::ext_gnu_conditional_expr);
488      }
489
490      if (TernaryMiddle.isInvalid()) {
491        Actions.CorrectDelayedTyposInExpr(LHS);
492        LHS = ExprError();
493        TernaryMiddle = nullptr;
494      }
495
496      if (!TryConsumeToken(tok::colon, ColonLoc)) {
497        // Otherwise, we're missing a ':'.  Assume that this was a typo that
498        // the user forgot. If we're not in a macro expansion, we can suggest
499        // a fixit hint. If there were two spaces before the current token,
500        // suggest inserting the colon in between them, otherwise insert ": ".
501        SourceLocation FILoc = Tok.getLocation();
502        const char *FIText = ": ";
503        const SourceManager &SM = PP.getSourceManager();
504        if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
505          assert(FILoc.isFileID());
506          bool IsInvalid = false;
507          const char *SourcePtr =
508            SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
509          if (!IsInvalid && *SourcePtr == ' ') {
510            SourcePtr =
511              SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
512            if (!IsInvalid && *SourcePtr == ' ') {
513              FILoc = FILoc.getLocWithOffset(-1);
514              FIText = ":";
515            }
516          }
517        }
518
519        Diag(Tok, diag::err_expected)
520            << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
521        Diag(OpToken, diag::note_matching) << tok::question;
522        ColonLoc = Tok.getLocation();
523      }
524    }
525
526    PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
527                              OpToken.getKind());
528    // Parse another leaf here for the RHS of the operator.
529    // ParseCastExpression works here because all RHS expressions in C have it
530    // as a prefix, at least. However, in C++, an assignment-expression could
531    // be a throw-expression, which is not a valid cast-expression.
532    // Therefore we need some special-casing here.
533    // Also note that the third operand of the conditional operator is
534    // an assignment-expression in C++, and in C++11, we can have a
535    // braced-init-list on the RHS of an assignment. For better diagnostics,
536    // parse as if we were allowed braced-init-lists everywhere, and check that
537    // they only appear on the RHS of assignments later.
538    ExprResult RHS;
539    bool RHSIsInitList = false;
540    if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
541      RHS = ParseBraceInitializer();
542      RHSIsInitList = true;
543    } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
544      RHS = ParseAssignmentExpression();
545    else
546      RHS = ParseCastExpression(AnyCastExpr);
547
548    if (RHS.isInvalid()) {
549      // FIXME: Errors generated by the delayed typo correction should be
550      // printed before errors from parsing the RHS, not after.
551      Actions.CorrectDelayedTyposInExpr(LHS);
552      if (TernaryMiddle.isUsable())
553        TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
554      LHS = ExprError();
555    }
556
557    // Remember the precedence of this operator and get the precedence of the
558    // operator immediately to the right of the RHS.
559    prec::Level ThisPrec = NextTokPrec;
560    NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
561                                     getLangOpts().CPlusPlus11);
562
563    // Assignment and conditional expressions are right-associative.
564    bool isRightAssoc = ThisPrec == prec::Conditional ||
565                        ThisPrec == prec::Assignment;
566
567    // Get the precedence of the operator to the right of the RHS.  If it binds
568    // more tightly with RHS than we do, evaluate it completely first.
569    if (ThisPrec < NextTokPrec ||
570        (ThisPrec == NextTokPrec && isRightAssoc)) {
571      if (!RHS.isInvalid() && RHSIsInitList) {
572        Diag(Tok, diag::err_init_list_bin_op)
573          << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
574        RHS = ExprError();
575      }
576      // If this is left-associative, only parse things on the RHS that bind
577      // more tightly than the current operator.  If it is left-associative, it
578      // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
579      // A=(B=(C=D)), where each paren is a level of recursion here.
580      // The function takes ownership of the RHS.
581      RHS = ParseRHSOfBinaryExpression(RHS,
582                            static_cast<prec::Level>(ThisPrec + !isRightAssoc));
583      RHSIsInitList = false;
584
585      if (RHS.isInvalid()) {
586        // FIXME: Errors generated by the delayed typo correction should be
587        // printed before errors from ParseRHSOfBinaryExpression, not after.
588        Actions.CorrectDelayedTyposInExpr(LHS);
589        if (TernaryMiddle.isUsable())
590          TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
591        LHS = ExprError();
592      }
593
594      NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
595                                       getLangOpts().CPlusPlus11);
596    }
597
598    if (!RHS.isInvalid() && RHSIsInitList) {
599      if (ThisPrec == prec::Assignment) {
600        Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
601          << Actions.getExprRange(RHS.get());
602      } else if (ColonLoc.isValid()) {
603        Diag(ColonLoc, diag::err_init_list_bin_op)
604          << /*RHS*/1 << ":"
605          << Actions.getExprRange(RHS.get());
606        LHS = ExprError();
607      } else {
608        Diag(OpToken, diag::err_init_list_bin_op)
609          << /*RHS*/1 << PP.getSpelling(OpToken)
610          << Actions.getExprRange(RHS.get());
611        LHS = ExprError();
612      }
613    }
614
615    ExprResult OrigLHS = LHS;
616    if (!LHS.isInvalid()) {
617      // Combine the LHS and RHS into the LHS (e.g. build AST).
618      if (TernaryMiddle.isInvalid()) {
619        // If we're using '>>' as an operator within a template
620        // argument list (in C++98), suggest the addition of
621        // parentheses so that the code remains well-formed in C++0x.
622        if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
623          SuggestParentheses(OpToken.getLocation(),
624                             diag::warn_cxx11_right_shift_in_template_arg,
625                         SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
626                                     Actions.getExprRange(RHS.get()).getEnd()));
627
628        ExprResult BinOp =
629            Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
630                               OpToken.getKind(), LHS.get(), RHS.get());
631        if (BinOp.isInvalid())
632          BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
633                                             RHS.get()->getEndLoc(),
634                                             {LHS.get(), RHS.get()});
635
636        LHS = BinOp;
637      } else {
638        ExprResult CondOp = Actions.ActOnConditionalOp(
639            OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(),
640            RHS.get());
641        if (CondOp.isInvalid()) {
642          std::vector<clang::Expr *> Args;
643          // TernaryMiddle can be null for the GNU conditional expr extension.
644          if (TernaryMiddle.get())
645            Args = {LHS.get(), TernaryMiddle.get(), RHS.get()};
646          else
647            Args = {LHS.get(), RHS.get()};
648          CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
649                                              RHS.get()->getEndLoc(), Args);
650        }
651
652        LHS = CondOp;
653      }
654      // In this case, ActOnBinOp or ActOnConditionalOp performed the
655      // CorrectDelayedTyposInExpr check.
656      if (!getLangOpts().CPlusPlus)
657        continue;
658    }
659
660    // Ensure potential typos aren't left undiagnosed.
661    if (LHS.isInvalid()) {
662      Actions.CorrectDelayedTyposInExpr(OrigLHS);
663      Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
664      Actions.CorrectDelayedTyposInExpr(RHS);
665    }
666  }
667}
668
669/// Parse a cast-expression, unary-expression or primary-expression, based
670/// on \p ExprType.
671///
672/// \p isAddressOfOperand exists because an id-expression that is the
673/// operand of address-of gets special treatment due to member pointers.
674///
675ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
676                                       bool isAddressOfOperand,
677                                       TypeCastState isTypeCast,
678                                       bool isVectorLiteral,
679                                       bool *NotPrimaryExpression) {
680  bool NotCastExpr;
681  ExprResult Res = ParseCastExpression(ParseKind,
682                                       isAddressOfOperand,
683                                       NotCastExpr,
684                                       isTypeCast,
685                                       isVectorLiteral,
686                                       NotPrimaryExpression);
687  if (NotCastExpr)
688    Diag(Tok, diag::err_expected_expression);
689  return Res;
690}
691
692namespace {
693class CastExpressionIdValidator final : public CorrectionCandidateCallback {
694 public:
695  CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
696      : NextToken(Next), AllowNonTypes(AllowNonTypes) {
697    WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
698  }
699
700  bool ValidateCandidate(const TypoCorrection &candidate) override {
701    NamedDecl *ND = candidate.getCorrectionDecl();
702    if (!ND)
703      return candidate.isKeyword();
704
705    if (isa<TypeDecl>(ND))
706      return WantTypeSpecifiers;
707
708    if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
709      return false;
710
711    if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
712      return true;
713
714    for (auto *C : candidate) {
715      NamedDecl *ND = C->getUnderlyingDecl();
716      if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
717        return true;
718    }
719    return false;
720  }
721
722  std::unique_ptr<CorrectionCandidateCallback> clone() override {
723    return std::make_unique<CastExpressionIdValidator>(*this);
724  }
725
726 private:
727  Token NextToken;
728  bool AllowNonTypes;
729};
730}
731
732/// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
733/// a unary-expression.
734///
735/// \p isAddressOfOperand exists because an id-expression that is the operand
736/// of address-of gets special treatment due to member pointers. NotCastExpr
737/// is set to true if the token is not the start of a cast-expression, and no
738/// diagnostic is emitted in this case and no tokens are consumed.
739///
740/// \verbatim
741///       cast-expression: [C99 6.5.4]
742///         unary-expression
743///         '(' type-name ')' cast-expression
744///
745///       unary-expression:  [C99 6.5.3]
746///         postfix-expression
747///         '++' unary-expression
748///         '--' unary-expression
749/// [Coro]  'co_await' cast-expression
750///         unary-operator cast-expression
751///         'sizeof' unary-expression
752///         'sizeof' '(' type-name ')'
753/// [C++11] 'sizeof' '...' '(' identifier ')'
754/// [GNU]   '__alignof' unary-expression
755/// [GNU]   '__alignof' '(' type-name ')'
756/// [C11]   '_Alignof' '(' type-name ')'
757/// [C++11] 'alignof' '(' type-id ')'
758/// [GNU]   '&&' identifier
759/// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
760/// [C++]   new-expression
761/// [C++]   delete-expression
762///
763///       unary-operator: one of
764///         '&'  '*'  '+'  '-'  '~'  '!'
765/// [GNU]   '__extension__'  '__real'  '__imag'
766///
767///       primary-expression: [C99 6.5.1]
768/// [C99]   identifier
769/// [C++]   id-expression
770///         constant
771///         string-literal
772/// [C++]   boolean-literal  [C++ 2.13.5]
773/// [C++11] 'nullptr'        [C++11 2.14.7]
774/// [C++11] user-defined-literal
775///         '(' expression ')'
776/// [C11]   generic-selection
777/// [C++2a] requires-expression
778///         '__func__'        [C99 6.4.2.2]
779/// [GNU]   '__FUNCTION__'
780/// [MS]    '__FUNCDNAME__'
781/// [MS]    'L__FUNCTION__'
782/// [MS]    '__FUNCSIG__'
783/// [MS]    'L__FUNCSIG__'
784/// [GNU]   '__PRETTY_FUNCTION__'
785/// [GNU]   '(' compound-statement ')'
786/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
787/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
788/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
789///                                     assign-expr ')'
790/// [GNU]   '__builtin_FILE' '(' ')'
791/// [GNU]   '__builtin_FUNCTION' '(' ')'
792/// [GNU]   '__builtin_LINE' '(' ')'
793/// [CLANG] '__builtin_COLUMN' '(' ')'
794/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
795/// [GNU]   '__null'
796/// [OBJC]  '[' objc-message-expr ']'
797/// [OBJC]  '\@selector' '(' objc-selector-arg ')'
798/// [OBJC]  '\@protocol' '(' identifier ')'
799/// [OBJC]  '\@encode' '(' type-name ')'
800/// [OBJC]  objc-string-literal
801/// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
802/// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
803/// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
804/// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
805/// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
806/// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
807/// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
808/// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
809/// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
810/// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
811/// [C++]   'this'          [C++ 9.3.2]
812/// [G++]   unary-type-trait '(' type-id ')'
813/// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
814/// [EMBT]  array-type-trait '(' type-id ',' integer ')'
815/// [clang] '^' block-literal
816///
817///       constant: [C99 6.4.4]
818///         integer-constant
819///         floating-constant
820///         enumeration-constant -> identifier
821///         character-constant
822///
823///       id-expression: [C++ 5.1]
824///                   unqualified-id
825///                   qualified-id
826///
827///       unqualified-id: [C++ 5.1]
828///                   identifier
829///                   operator-function-id
830///                   conversion-function-id
831///                   '~' class-name
832///                   template-id
833///
834///       new-expression: [C++ 5.3.4]
835///                   '::'[opt] 'new' new-placement[opt] new-type-id
836///                                     new-initializer[opt]
837///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
838///                                     new-initializer[opt]
839///
840///       delete-expression: [C++ 5.3.5]
841///                   '::'[opt] 'delete' cast-expression
842///                   '::'[opt] 'delete' '[' ']' cast-expression
843///
844/// [GNU/Embarcadero] unary-type-trait:
845///                   '__is_arithmetic'
846///                   '__is_floating_point'
847///                   '__is_integral'
848///                   '__is_lvalue_expr'
849///                   '__is_rvalue_expr'
850///                   '__is_complete_type'
851///                   '__is_void'
852///                   '__is_array'
853///                   '__is_function'
854///                   '__is_reference'
855///                   '__is_lvalue_reference'
856///                   '__is_rvalue_reference'
857///                   '__is_fundamental'
858///                   '__is_object'
859///                   '__is_scalar'
860///                   '__is_compound'
861///                   '__is_pointer'
862///                   '__is_member_object_pointer'
863///                   '__is_member_function_pointer'
864///                   '__is_member_pointer'
865///                   '__is_const'
866///                   '__is_volatile'
867///                   '__is_trivial'
868///                   '__is_standard_layout'
869///                   '__is_signed'
870///                   '__is_unsigned'
871///
872/// [GNU] unary-type-trait:
873///                   '__has_nothrow_assign'
874///                   '__has_nothrow_copy'
875///                   '__has_nothrow_constructor'
876///                   '__has_trivial_assign'                  [TODO]
877///                   '__has_trivial_copy'                    [TODO]
878///                   '__has_trivial_constructor'
879///                   '__has_trivial_destructor'
880///                   '__has_virtual_destructor'
881///                   '__is_abstract'                         [TODO]
882///                   '__is_class'
883///                   '__is_empty'                            [TODO]
884///                   '__is_enum'
885///                   '__is_final'
886///                   '__is_pod'
887///                   '__is_polymorphic'
888///                   '__is_sealed'                           [MS]
889///                   '__is_trivial'
890///                   '__is_union'
891///                   '__has_unique_object_representations'
892///
893/// [Clang] unary-type-trait:
894///                   '__is_aggregate'
895///                   '__trivially_copyable'
896///
897///       binary-type-trait:
898/// [GNU]             '__is_base_of'
899/// [MS]              '__is_convertible_to'
900///                   '__is_convertible'
901///                   '__is_same'
902///
903/// [Embarcadero] array-type-trait:
904///                   '__array_rank'
905///                   '__array_extent'
906///
907/// [Embarcadero] expression-trait:
908///                   '__is_lvalue_expr'
909///                   '__is_rvalue_expr'
910/// \endverbatim
911///
912ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
913                                       bool isAddressOfOperand,
914                                       bool &NotCastExpr,
915                                       TypeCastState isTypeCast,
916                                       bool isVectorLiteral,
917                                       bool *NotPrimaryExpression) {
918  ExprResult Res;
919  tok::TokenKind SavedKind = Tok.getKind();
920  auto SavedType = PreferredType;
921  NotCastExpr = false;
922
923  // Are postfix-expression suffix operators permitted after this
924  // cast-expression? If not, and we find some, we'll parse them anyway and
925  // diagnose them.
926  bool AllowSuffix = true;
927
928  // This handles all of cast-expression, unary-expression, postfix-expression,
929  // and primary-expression.  We handle them together like this for efficiency
930  // and to simplify handling of an expression starting with a '(' token: which
931  // may be one of a parenthesized expression, cast-expression, compound literal
932  // expression, or statement expression.
933  //
934  // If the parsed tokens consist of a primary-expression, the cases below
935  // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
936  // to handle the postfix expression suffixes.  Cases that cannot be followed
937  // by postfix exprs should set AllowSuffix to false.
938  switch (SavedKind) {
939  case tok::l_paren: {
940    // If this expression is limited to being a unary-expression, the paren can
941    // not start a cast expression.
942    ParenParseOption ParenExprType;
943    switch (ParseKind) {
944      case CastParseKind::UnaryExprOnly:
945        if (!getLangOpts().CPlusPlus)
946          ParenExprType = CompoundLiteral;
947        LLVM_FALLTHROUGH;
948      case CastParseKind::AnyCastExpr:
949        ParenExprType = ParenParseOption::CastExpr;
950        break;
951      case CastParseKind::PrimaryExprOnly:
952        ParenExprType = FoldExpr;
953        break;
954    }
955    ParsedType CastTy;
956    SourceLocation RParenLoc;
957    Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
958                               isTypeCast == IsTypeCast, CastTy, RParenLoc);
959
960    // FIXME: What should we do if a vector literal is followed by a
961    // postfix-expression suffix? Usually postfix operators are permitted on
962    // literals.
963    if (isVectorLiteral)
964      return Res;
965
966    switch (ParenExprType) {
967    case SimpleExpr:   break;    // Nothing else to do.
968    case CompoundStmt: break;  // Nothing else to do.
969    case CompoundLiteral:
970      // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
971      // postfix-expression exist, parse them now.
972      break;
973    case CastExpr:
974      // We have parsed the cast-expression and no postfix-expr pieces are
975      // following.
976      return Res;
977    case FoldExpr:
978      // We only parsed a fold-expression. There might be postfix-expr pieces
979      // afterwards; parse them now.
980      break;
981    }
982
983    break;
984  }
985
986    // primary-expression
987  case tok::numeric_constant:
988    // constant: integer-constant
989    // constant: floating-constant
990
991    Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
992    ConsumeToken();
993    break;
994
995  case tok::kw_true:
996  case tok::kw_false:
997    Res = ParseCXXBoolLiteral();
998    break;
999
1000  case tok::kw___objc_yes:
1001  case tok::kw___objc_no:
1002    Res = ParseObjCBoolLiteral();
1003    break;
1004
1005  case tok::kw_nullptr:
1006    Diag(Tok, diag::warn_cxx98_compat_nullptr);
1007    Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
1008    break;
1009
1010  case tok::annot_primary_expr:
1011  case tok::annot_overload_set:
1012    Res = getExprAnnotation(Tok);
1013    if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set)
1014      Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get());
1015    ConsumeAnnotationToken();
1016    if (!Res.isInvalid() && Tok.is(tok::less))
1017      checkPotentialAngleBracket(Res);
1018    break;
1019
1020  case tok::annot_non_type:
1021  case tok::annot_non_type_dependent:
1022  case tok::annot_non_type_undeclared: {
1023    CXXScopeSpec SS;
1024    Token Replacement;
1025    Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
1026    assert(!Res.isUnset() &&
1027           "should not perform typo correction on annotation token");
1028    break;
1029  }
1030
1031  case tok::kw___super:
1032  case tok::kw_decltype:
1033    // Annotate the token and tail recurse.
1034    if (TryAnnotateTypeOrScopeToken())
1035      return ExprError();
1036    assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
1037    return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1038                               isVectorLiteral, NotPrimaryExpression);
1039
1040  case tok::identifier: {      // primary-expression: identifier
1041                               // unqualified-id: identifier
1042                               // constant: enumeration-constant
1043    // Turn a potentially qualified name into a annot_typename or
1044    // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
1045    if (getLangOpts().CPlusPlus) {
1046      // Avoid the unnecessary parse-time lookup in the common case
1047      // where the syntax forbids a type.
1048      const Token &Next = NextToken();
1049
1050      // If this identifier was reverted from a token ID, and the next token
1051      // is a parenthesis, this is likely to be a use of a type trait. Check
1052      // those tokens.
1053      if (Next.is(tok::l_paren) &&
1054          Tok.is(tok::identifier) &&
1055          Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
1056        IdentifierInfo *II = Tok.getIdentifierInfo();
1057        // Build up the mapping of revertible type traits, for future use.
1058        if (RevertibleTypeTraits.empty()) {
1059#define RTT_JOIN(X,Y) X##Y
1060#define REVERTIBLE_TYPE_TRAIT(Name)                         \
1061          RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
1062            = RTT_JOIN(tok::kw_,Name)
1063
1064          REVERTIBLE_TYPE_TRAIT(__is_abstract);
1065          REVERTIBLE_TYPE_TRAIT(__is_aggregate);
1066          REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
1067          REVERTIBLE_TYPE_TRAIT(__is_array);
1068          REVERTIBLE_TYPE_TRAIT(__is_assignable);
1069          REVERTIBLE_TYPE_TRAIT(__is_base_of);
1070          REVERTIBLE_TYPE_TRAIT(__is_class);
1071          REVERTIBLE_TYPE_TRAIT(__is_complete_type);
1072          REVERTIBLE_TYPE_TRAIT(__is_compound);
1073          REVERTIBLE_TYPE_TRAIT(__is_const);
1074          REVERTIBLE_TYPE_TRAIT(__is_constructible);
1075          REVERTIBLE_TYPE_TRAIT(__is_convertible);
1076          REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
1077          REVERTIBLE_TYPE_TRAIT(__is_destructible);
1078          REVERTIBLE_TYPE_TRAIT(__is_empty);
1079          REVERTIBLE_TYPE_TRAIT(__is_enum);
1080          REVERTIBLE_TYPE_TRAIT(__is_floating_point);
1081          REVERTIBLE_TYPE_TRAIT(__is_final);
1082          REVERTIBLE_TYPE_TRAIT(__is_function);
1083          REVERTIBLE_TYPE_TRAIT(__is_fundamental);
1084          REVERTIBLE_TYPE_TRAIT(__is_integral);
1085          REVERTIBLE_TYPE_TRAIT(__is_interface_class);
1086          REVERTIBLE_TYPE_TRAIT(__is_literal);
1087          REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
1088          REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
1089          REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
1090          REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
1091          REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
1092          REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
1093          REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
1094          REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
1095          REVERTIBLE_TYPE_TRAIT(__is_object);
1096          REVERTIBLE_TYPE_TRAIT(__is_pod);
1097          REVERTIBLE_TYPE_TRAIT(__is_pointer);
1098          REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
1099          REVERTIBLE_TYPE_TRAIT(__is_reference);
1100          REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
1101          REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
1102          REVERTIBLE_TYPE_TRAIT(__is_same);
1103          REVERTIBLE_TYPE_TRAIT(__is_scalar);
1104          REVERTIBLE_TYPE_TRAIT(__is_sealed);
1105          REVERTIBLE_TYPE_TRAIT(__is_signed);
1106          REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
1107          REVERTIBLE_TYPE_TRAIT(__is_trivial);
1108          REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
1109          REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
1110          REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
1111          REVERTIBLE_TYPE_TRAIT(__is_union);
1112          REVERTIBLE_TYPE_TRAIT(__is_unsigned);
1113          REVERTIBLE_TYPE_TRAIT(__is_void);
1114          REVERTIBLE_TYPE_TRAIT(__is_volatile);
1115#undef REVERTIBLE_TYPE_TRAIT
1116#undef RTT_JOIN
1117        }
1118
1119        // If we find that this is in fact the name of a type trait,
1120        // update the token kind in place and parse again to treat it as
1121        // the appropriate kind of type trait.
1122        llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
1123          = RevertibleTypeTraits.find(II);
1124        if (Known != RevertibleTypeTraits.end()) {
1125          Tok.setKind(Known->second);
1126          return ParseCastExpression(ParseKind, isAddressOfOperand,
1127                                     NotCastExpr, isTypeCast,
1128                                     isVectorLiteral, NotPrimaryExpression);
1129        }
1130      }
1131
1132      if ((!ColonIsSacred && Next.is(tok::colon)) ||
1133          Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
1134                       tok::l_brace)) {
1135        // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1136        if (TryAnnotateTypeOrScopeToken())
1137          return ExprError();
1138        if (!Tok.is(tok::identifier))
1139          return ParseCastExpression(ParseKind, isAddressOfOperand,
1140                                     NotCastExpr, isTypeCast,
1141                                     isVectorLiteral,
1142                                     NotPrimaryExpression);
1143      }
1144    }
1145
1146    // Consume the identifier so that we can see if it is followed by a '(' or
1147    // '.'.
1148    IdentifierInfo &II = *Tok.getIdentifierInfo();
1149    SourceLocation ILoc = ConsumeToken();
1150
1151    // Support 'Class.property' and 'super.property' notation.
1152    if (getLangOpts().ObjC && Tok.is(tok::period) &&
1153        (Actions.getTypeName(II, ILoc, getCurScope()) ||
1154         // Allow the base to be 'super' if in an objc-method.
1155         (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
1156      ConsumeToken();
1157
1158      if (Tok.is(tok::code_completion) && &II != Ident_super) {
1159        cutOffParsing();
1160        Actions.CodeCompleteObjCClassPropertyRefExpr(
1161            getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
1162        return ExprError();
1163      }
1164      // Allow either an identifier or the keyword 'class' (in C++).
1165      if (Tok.isNot(tok::identifier) &&
1166          !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
1167        Diag(Tok, diag::err_expected_property_name);
1168        return ExprError();
1169      }
1170      IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
1171      SourceLocation PropertyLoc = ConsumeToken();
1172
1173      Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
1174                                              ILoc, PropertyLoc);
1175      break;
1176    }
1177
1178    // In an Objective-C method, if we have "super" followed by an identifier,
1179    // the token sequence is ill-formed. However, if there's a ':' or ']' after
1180    // that identifier, this is probably a message send with a missing open
1181    // bracket. Treat it as such.
1182    if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1183        getCurScope()->isInObjcMethodScope() &&
1184        ((Tok.is(tok::identifier) &&
1185         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1186         Tok.is(tok::code_completion))) {
1187      Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1188                                           nullptr);
1189      break;
1190    }
1191
1192    // If we have an Objective-C class name followed by an identifier
1193    // and either ':' or ']', this is an Objective-C class message
1194    // send that's missing the opening '['. Recovery
1195    // appropriately. Also take this path if we're performing code
1196    // completion after an Objective-C class name.
1197    if (getLangOpts().ObjC &&
1198        ((Tok.is(tok::identifier) && !InMessageExpression) ||
1199         Tok.is(tok::code_completion))) {
1200      const Token& Next = NextToken();
1201      if (Tok.is(tok::code_completion) ||
1202          Next.is(tok::colon) || Next.is(tok::r_square))
1203        if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1204          if (Typ.get()->isObjCObjectOrInterfaceType()) {
1205            // Fake up a Declarator to use with ActOnTypeName.
1206            DeclSpec DS(AttrFactory);
1207            DS.SetRangeStart(ILoc);
1208            DS.SetRangeEnd(ILoc);
1209            const char *PrevSpec = nullptr;
1210            unsigned DiagID;
1211            DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1212                               Actions.getASTContext().getPrintingPolicy());
1213
1214            Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
1215            TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
1216                                                  DeclaratorInfo);
1217            if (Ty.isInvalid())
1218              break;
1219
1220            Res = ParseObjCMessageExpressionBody(SourceLocation(),
1221                                                 SourceLocation(),
1222                                                 Ty.get(), nullptr);
1223            break;
1224          }
1225    }
1226
1227    // Make sure to pass down the right value for isAddressOfOperand.
1228    if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1229      isAddressOfOperand = false;
1230
1231    // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1232    // need to know whether or not this identifier is a function designator or
1233    // not.
1234    UnqualifiedId Name;
1235    CXXScopeSpec ScopeSpec;
1236    SourceLocation TemplateKWLoc;
1237    Token Replacement;
1238    CastExpressionIdValidator Validator(
1239        /*Next=*/Tok,
1240        /*AllowTypes=*/isTypeCast != NotTypeCast,
1241        /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1242    Validator.IsAddressOfOperand = isAddressOfOperand;
1243    if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1244      Validator.WantExpressionKeywords = false;
1245      Validator.WantRemainingKeywords = false;
1246    } else {
1247      Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1248    }
1249    Name.setIdentifier(&II, ILoc);
1250    Res = Actions.ActOnIdExpression(
1251        getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1252        isAddressOfOperand, &Validator,
1253        /*IsInlineAsmIdentifier=*/false,
1254        Tok.is(tok::r_paren) ? nullptr : &Replacement);
1255    if (!Res.isInvalid() && Res.isUnset()) {
1256      UnconsumeToken(Replacement);
1257      return ParseCastExpression(ParseKind, isAddressOfOperand,
1258                                 NotCastExpr, isTypeCast,
1259                                 /*isVectorLiteral=*/false,
1260                                 NotPrimaryExpression);
1261    }
1262    if (!Res.isInvalid() && Tok.is(tok::less))
1263      checkPotentialAngleBracket(Res);
1264    break;
1265  }
1266  case tok::char_constant:     // constant: character-constant
1267  case tok::wide_char_constant:
1268  case tok::utf8_char_constant:
1269  case tok::utf16_char_constant:
1270  case tok::utf32_char_constant:
1271    Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1272    ConsumeToken();
1273    break;
1274  case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
1275  case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
1276  case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
1277  case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
1278  case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
1279  case tok::kw_L__FUNCSIG__:    // primary-expression: L__FUNCSIG__ [MS]
1280  case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
1281    Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1282    ConsumeToken();
1283    break;
1284  case tok::string_literal:    // primary-expression: string-literal
1285  case tok::wide_string_literal:
1286  case tok::utf8_string_literal:
1287  case tok::utf16_string_literal:
1288  case tok::utf32_string_literal:
1289    Res = ParseStringLiteralExpression(true);
1290    break;
1291  case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
1292    Res = ParseGenericSelectionExpression();
1293    break;
1294  case tok::kw___builtin_available:
1295    Res = ParseAvailabilityCheckExpr(Tok.getLocation());
1296    break;
1297  case tok::kw___builtin_va_arg:
1298  case tok::kw___builtin_offsetof:
1299  case tok::kw___builtin_choose_expr:
1300  case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1301  case tok::kw___builtin_convertvector:
1302  case tok::kw___builtin_COLUMN:
1303  case tok::kw___builtin_FILE:
1304  case tok::kw___builtin_FUNCTION:
1305  case tok::kw___builtin_LINE:
1306    if (NotPrimaryExpression)
1307      *NotPrimaryExpression = true;
1308    // This parses the complete suffix; we can return early.
1309    return ParseBuiltinPrimaryExpression();
1310  case tok::kw___null:
1311    Res = Actions.ActOnGNUNullExpr(ConsumeToken());
1312    break;
1313
1314  case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
1315  case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
1316    if (NotPrimaryExpression)
1317      *NotPrimaryExpression = true;
1318    // C++ [expr.unary] has:
1319    //   unary-expression:
1320    //     ++ cast-expression
1321    //     -- cast-expression
1322    Token SavedTok = Tok;
1323    ConsumeToken();
1324
1325    PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1326                             SavedTok.getLocation());
1327    // One special case is implicitly handled here: if the preceding tokens are
1328    // an ambiguous cast expression, such as "(T())++", then we recurse to
1329    // determine whether the '++' is prefix or postfix.
1330    Res = ParseCastExpression(getLangOpts().CPlusPlus ?
1331                                  UnaryExprOnly : AnyCastExpr,
1332                              /*isAddressOfOperand*/false, NotCastExpr,
1333                              NotTypeCast);
1334    if (NotCastExpr) {
1335      // If we return with NotCastExpr = true, we must not consume any tokens,
1336      // so put the token back where we found it.
1337      assert(Res.isInvalid());
1338      UnconsumeToken(SavedTok);
1339      return ExprError();
1340    }
1341    if (!Res.isInvalid()) {
1342      Expr *Arg = Res.get();
1343      Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1344                                 SavedKind, Arg);
1345      if (Res.isInvalid())
1346        Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(),
1347                                         Arg->getEndLoc(), Arg);
1348    }
1349    return Res;
1350  }
1351  case tok::amp: {         // unary-expression: '&' cast-expression
1352    if (NotPrimaryExpression)
1353      *NotPrimaryExpression = true;
1354    // Special treatment because of member pointers
1355    SourceLocation SavedLoc = ConsumeToken();
1356    PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1357    Res = ParseCastExpression(AnyCastExpr, true);
1358    if (!Res.isInvalid()) {
1359      Expr *Arg = Res.get();
1360      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1361      if (Res.isInvalid())
1362        Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(),
1363                                         Arg);
1364    }
1365    return Res;
1366  }
1367
1368  case tok::star:          // unary-expression: '*' cast-expression
1369  case tok::plus:          // unary-expression: '+' cast-expression
1370  case tok::minus:         // unary-expression: '-' cast-expression
1371  case tok::tilde:         // unary-expression: '~' cast-expression
1372  case tok::exclaim:       // unary-expression: '!' cast-expression
1373  case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
1374  case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
1375    if (NotPrimaryExpression)
1376      *NotPrimaryExpression = true;
1377    SourceLocation SavedLoc = ConsumeToken();
1378    PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1379    Res = ParseCastExpression(AnyCastExpr);
1380    if (!Res.isInvalid()) {
1381      Expr *Arg = Res.get();
1382      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1383      if (Res.isInvalid())
1384        Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg);
1385    }
1386    return Res;
1387  }
1388
1389  case tok::kw_co_await: {  // unary-expression: 'co_await' cast-expression
1390    if (NotPrimaryExpression)
1391      *NotPrimaryExpression = true;
1392    SourceLocation CoawaitLoc = ConsumeToken();
1393    Res = ParseCastExpression(AnyCastExpr);
1394    if (!Res.isInvalid())
1395      Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1396    return Res;
1397  }
1398
1399  case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1400    // __extension__ silences extension warnings in the subexpression.
1401    if (NotPrimaryExpression)
1402      *NotPrimaryExpression = true;
1403    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1404    SourceLocation SavedLoc = ConsumeToken();
1405    Res = ParseCastExpression(AnyCastExpr);
1406    if (!Res.isInvalid())
1407      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1408    return Res;
1409  }
1410  case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
1411    if (!getLangOpts().C11)
1412      Diag(Tok, diag::ext_c11_feature) << Tok.getName();
1413    LLVM_FALLTHROUGH;
1414  case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
1415  case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
1416                           // unary-expression: '__alignof' '(' type-name ')'
1417  case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
1418                           // unary-expression: 'sizeof' '(' type-name ')'
1419  case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
1420  // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1421  case tok::kw___builtin_omp_required_simd_align:
1422    if (NotPrimaryExpression)
1423      *NotPrimaryExpression = true;
1424    AllowSuffix = false;
1425    Res = ParseUnaryExprOrTypeTraitExpression();
1426    break;
1427  case tok::ampamp: {      // unary-expression: '&&' identifier
1428    if (NotPrimaryExpression)
1429      *NotPrimaryExpression = true;
1430    SourceLocation AmpAmpLoc = ConsumeToken();
1431    if (Tok.isNot(tok::identifier))
1432      return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1433
1434    if (getCurScope()->getFnParent() == nullptr)
1435      return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1436
1437    Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1438    LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1439                                                Tok.getLocation());
1440    Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1441    ConsumeToken();
1442    AllowSuffix = false;
1443    break;
1444  }
1445  case tok::kw_const_cast:
1446  case tok::kw_dynamic_cast:
1447  case tok::kw_reinterpret_cast:
1448  case tok::kw_static_cast:
1449  case tok::kw_addrspace_cast:
1450    if (NotPrimaryExpression)
1451      *NotPrimaryExpression = true;
1452    Res = ParseCXXCasts();
1453    break;
1454  case tok::kw___builtin_bit_cast:
1455    if (NotPrimaryExpression)
1456      *NotPrimaryExpression = true;
1457    Res = ParseBuiltinBitCast();
1458    break;
1459  case tok::kw_typeid:
1460    if (NotPrimaryExpression)
1461      *NotPrimaryExpression = true;
1462    Res = ParseCXXTypeid();
1463    break;
1464  case tok::kw___uuidof:
1465    if (NotPrimaryExpression)
1466      *NotPrimaryExpression = true;
1467    Res = ParseCXXUuidof();
1468    break;
1469  case tok::kw_this:
1470    Res = ParseCXXThis();
1471    break;
1472
1473  case tok::annot_typename:
1474    if (isStartOfObjCClassMessageMissingOpenBracket()) {
1475      TypeResult Type = getTypeAnnotation(Tok);
1476
1477      // Fake up a Declarator to use with ActOnTypeName.
1478      DeclSpec DS(AttrFactory);
1479      DS.SetRangeStart(Tok.getLocation());
1480      DS.SetRangeEnd(Tok.getLastLoc());
1481
1482      const char *PrevSpec = nullptr;
1483      unsigned DiagID;
1484      DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1485                         PrevSpec, DiagID, Type,
1486                         Actions.getASTContext().getPrintingPolicy());
1487
1488      Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
1489      TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1490      if (Ty.isInvalid())
1491        break;
1492
1493      ConsumeAnnotationToken();
1494      Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1495                                           Ty.get(), nullptr);
1496      break;
1497    }
1498    LLVM_FALLTHROUGH;
1499
1500  case tok::annot_decltype:
1501  case tok::kw_char:
1502  case tok::kw_wchar_t:
1503  case tok::kw_char8_t:
1504  case tok::kw_char16_t:
1505  case tok::kw_char32_t:
1506  case tok::kw_bool:
1507  case tok::kw_short:
1508  case tok::kw_int:
1509  case tok::kw_long:
1510  case tok::kw___int64:
1511  case tok::kw___int128:
1512  case tok::kw__ExtInt:
1513  case tok::kw_signed:
1514  case tok::kw_unsigned:
1515  case tok::kw_half:
1516  case tok::kw_float:
1517  case tok::kw_double:
1518  case tok::kw___bf16:
1519  case tok::kw__Float16:
1520  case tok::kw___float128:
1521  case tok::kw_void:
1522  case tok::kw_typename:
1523  case tok::kw_typeof:
1524  case tok::kw___vector:
1525#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1526#include "clang/Basic/OpenCLImageTypes.def"
1527  {
1528    if (!getLangOpts().CPlusPlus) {
1529      Diag(Tok, diag::err_expected_expression);
1530      return ExprError();
1531    }
1532
1533    // Everything henceforth is a postfix-expression.
1534    if (NotPrimaryExpression)
1535      *NotPrimaryExpression = true;
1536
1537    if (SavedKind == tok::kw_typename) {
1538      // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1539      //                     typename-specifier braced-init-list
1540      if (TryAnnotateTypeOrScopeToken())
1541        return ExprError();
1542
1543      if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1544        // We are trying to parse a simple-type-specifier but might not get such
1545        // a token after error recovery.
1546        return ExprError();
1547    }
1548
1549    // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1550    //                     simple-type-specifier braced-init-list
1551    //
1552    DeclSpec DS(AttrFactory);
1553
1554    ParseCXXSimpleTypeSpecifier(DS);
1555    if (Tok.isNot(tok::l_paren) &&
1556        (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1557      return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1558                         << DS.getSourceRange());
1559
1560    if (Tok.is(tok::l_brace))
1561      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1562
1563    Res = ParseCXXTypeConstructExpression(DS);
1564    break;
1565  }
1566
1567  case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1568    // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1569    // (We can end up in this situation after tentative parsing.)
1570    if (TryAnnotateTypeOrScopeToken())
1571      return ExprError();
1572    if (!Tok.is(tok::annot_cxxscope))
1573      return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1574                                 isTypeCast, isVectorLiteral,
1575                                 NotPrimaryExpression);
1576
1577    Token Next = NextToken();
1578    if (Next.is(tok::annot_template_id)) {
1579      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1580      if (TemplateId->Kind == TNK_Type_template) {
1581        // We have a qualified template-id that we know refers to a
1582        // type, translate it into a type and continue parsing as a
1583        // cast expression.
1584        CXXScopeSpec SS;
1585        ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
1586                                       /*ObjectHadErrors=*/false,
1587                                       /*EnteringContext=*/false);
1588        AnnotateTemplateIdTokenAsType(SS);
1589        return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1590                                   isTypeCast, isVectorLiteral,
1591                                   NotPrimaryExpression);
1592      }
1593    }
1594
1595    // Parse as an id-expression.
1596    Res = ParseCXXIdExpression(isAddressOfOperand);
1597    break;
1598  }
1599
1600  case tok::annot_template_id: { // [C++]          template-id
1601    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1602    if (TemplateId->Kind == TNK_Type_template) {
1603      // We have a template-id that we know refers to a type,
1604      // translate it into a type and continue parsing as a cast
1605      // expression.
1606      CXXScopeSpec SS;
1607      AnnotateTemplateIdTokenAsType(SS);
1608      return ParseCastExpression(ParseKind, isAddressOfOperand,
1609                                 NotCastExpr, isTypeCast, isVectorLiteral,
1610                                 NotPrimaryExpression);
1611    }
1612
1613    // Fall through to treat the template-id as an id-expression.
1614    LLVM_FALLTHROUGH;
1615  }
1616
1617  case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1618    Res = ParseCXXIdExpression(isAddressOfOperand);
1619    break;
1620
1621  case tok::coloncolon: {
1622    // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1623    // annotates the token, tail recurse.
1624    if (TryAnnotateTypeOrScopeToken())
1625      return ExprError();
1626    if (!Tok.is(tok::coloncolon))
1627      return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1628                                 isVectorLiteral, NotPrimaryExpression);
1629
1630    // ::new -> [C++] new-expression
1631    // ::delete -> [C++] delete-expression
1632    SourceLocation CCLoc = ConsumeToken();
1633    if (Tok.is(tok::kw_new)) {
1634      if (NotPrimaryExpression)
1635        *NotPrimaryExpression = true;
1636      Res = ParseCXXNewExpression(true, CCLoc);
1637      AllowSuffix = false;
1638      break;
1639    }
1640    if (Tok.is(tok::kw_delete)) {
1641      if (NotPrimaryExpression)
1642        *NotPrimaryExpression = true;
1643      Res = ParseCXXDeleteExpression(true, CCLoc);
1644      AllowSuffix = false;
1645      break;
1646    }
1647
1648    // This is not a type name or scope specifier, it is an invalid expression.
1649    Diag(CCLoc, diag::err_expected_expression);
1650    return ExprError();
1651  }
1652
1653  case tok::kw_new: // [C++] new-expression
1654    if (NotPrimaryExpression)
1655      *NotPrimaryExpression = true;
1656    Res = ParseCXXNewExpression(false, Tok.getLocation());
1657    AllowSuffix = false;
1658    break;
1659
1660  case tok::kw_delete: // [C++] delete-expression
1661    if (NotPrimaryExpression)
1662      *NotPrimaryExpression = true;
1663    Res = ParseCXXDeleteExpression(false, Tok.getLocation());
1664    AllowSuffix = false;
1665    break;
1666
1667  case tok::kw_requires: // [C++2a] requires-expression
1668    Res = ParseRequiresExpression();
1669    AllowSuffix = false;
1670    break;
1671
1672  case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1673    if (NotPrimaryExpression)
1674      *NotPrimaryExpression = true;
1675    Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1676    SourceLocation KeyLoc = ConsumeToken();
1677    BalancedDelimiterTracker T(*this, tok::l_paren);
1678
1679    if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1680      return ExprError();
1681    // C++11 [expr.unary.noexcept]p1:
1682    //   The noexcept operator determines whether the evaluation of its operand,
1683    //   which is an unevaluated operand, can throw an exception.
1684    EnterExpressionEvaluationContext Unevaluated(
1685        Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1686    Res = ParseExpression();
1687
1688    T.consumeClose();
1689
1690    if (!Res.isInvalid())
1691      Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(),
1692                                      T.getCloseLocation());
1693    AllowSuffix = false;
1694    break;
1695  }
1696
1697#define TYPE_TRAIT(N,Spelling,K) \
1698  case tok::kw_##Spelling:
1699#include "clang/Basic/TokenKinds.def"
1700    Res = ParseTypeTrait();
1701    break;
1702
1703  case tok::kw___array_rank:
1704  case tok::kw___array_extent:
1705    if (NotPrimaryExpression)
1706      *NotPrimaryExpression = true;
1707    Res = ParseArrayTypeTrait();
1708    break;
1709
1710  case tok::kw___is_lvalue_expr:
1711  case tok::kw___is_rvalue_expr:
1712    if (NotPrimaryExpression)
1713      *NotPrimaryExpression = true;
1714    Res = ParseExpressionTrait();
1715    break;
1716
1717  case tok::at: {
1718    if (NotPrimaryExpression)
1719      *NotPrimaryExpression = true;
1720    SourceLocation AtLoc = ConsumeToken();
1721    return ParseObjCAtExpression(AtLoc);
1722  }
1723  case tok::caret:
1724    Res = ParseBlockLiteralExpression();
1725    break;
1726  case tok::code_completion: {
1727    cutOffParsing();
1728    Actions.CodeCompleteExpression(getCurScope(),
1729                                   PreferredType.get(Tok.getLocation()));
1730    return ExprError();
1731  }
1732  case tok::l_square:
1733    if (getLangOpts().CPlusPlus11) {
1734      if (getLangOpts().ObjC) {
1735        // C++11 lambda expressions and Objective-C message sends both start with a
1736        // square bracket.  There are three possibilities here:
1737        // we have a valid lambda expression, we have an invalid lambda
1738        // expression, or we have something that doesn't appear to be a lambda.
1739        // If we're in the last case, we fall back to ParseObjCMessageExpression.
1740        Res = TryParseLambdaExpression();
1741        if (!Res.isInvalid() && !Res.get()) {
1742          // We assume Objective-C++ message expressions are not
1743          // primary-expressions.
1744          if (NotPrimaryExpression)
1745            *NotPrimaryExpression = true;
1746          Res = ParseObjCMessageExpression();
1747        }
1748        break;
1749      }
1750      Res = ParseLambdaExpression();
1751      break;
1752    }
1753    if (getLangOpts().ObjC) {
1754      Res = ParseObjCMessageExpression();
1755      break;
1756    }
1757    LLVM_FALLTHROUGH;
1758  default:
1759    NotCastExpr = true;
1760    return ExprError();
1761  }
1762
1763  // Check to see whether Res is a function designator only. If it is and we
1764  // are compiling for OpenCL, we need to return an error as this implies
1765  // that the address of the function is being taken, which is illegal in CL.
1766
1767  if (ParseKind == PrimaryExprOnly)
1768    // This is strictly a primary-expression - no postfix-expr pieces should be
1769    // parsed.
1770    return Res;
1771
1772  if (!AllowSuffix) {
1773    // FIXME: Don't parse a primary-expression suffix if we encountered a parse
1774    // error already.
1775    if (Res.isInvalid())
1776      return Res;
1777
1778    switch (Tok.getKind()) {
1779    case tok::l_square:
1780    case tok::l_paren:
1781    case tok::plusplus:
1782    case tok::minusminus:
1783      // "expected ';'" or similar is probably the right diagnostic here. Let
1784      // the caller decide what to do.
1785      if (Tok.isAtStartOfLine())
1786        return Res;
1787
1788      LLVM_FALLTHROUGH;
1789    case tok::period:
1790    case tok::arrow:
1791      break;
1792
1793    default:
1794      return Res;
1795    }
1796
1797    // This was a unary-expression for which a postfix-expression suffix is
1798    // not permitted by the grammar (eg, a sizeof expression or
1799    // new-expression or similar). Diagnose but parse the suffix anyway.
1800    Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens)
1801        << Tok.getKind() << Res.get()->getSourceRange()
1802        << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(")
1803        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation),
1804                                      ")");
1805  }
1806
1807  // These can be followed by postfix-expr pieces.
1808  PreferredType = SavedType;
1809  Res = ParsePostfixExpressionSuffix(Res);
1810  if (getLangOpts().OpenCL &&
1811      !getActions().getOpenCLOptions().isAvailableOption(
1812          "__cl_clang_function_pointers", getLangOpts()))
1813    if (Expr *PostfixExpr = Res.get()) {
1814      QualType Ty = PostfixExpr->getType();
1815      if (!Ty.isNull() && Ty->isFunctionType()) {
1816        Diag(PostfixExpr->getExprLoc(),
1817             diag::err_opencl_taking_function_address_parser);
1818        return ExprError();
1819      }
1820    }
1821
1822  return Res;
1823}
1824
1825/// Once the leading part of a postfix-expression is parsed, this
1826/// method parses any suffixes that apply.
1827///
1828/// \verbatim
1829///       postfix-expression: [C99 6.5.2]
1830///         primary-expression
1831///         postfix-expression '[' expression ']'
1832///         postfix-expression '[' braced-init-list ']'
1833///         postfix-expression '(' argument-expression-list[opt] ')'
1834///         postfix-expression '.' identifier
1835///         postfix-expression '->' identifier
1836///         postfix-expression '++'
1837///         postfix-expression '--'
1838///         '(' type-name ')' '{' initializer-list '}'
1839///         '(' type-name ')' '{' initializer-list ',' '}'
1840///
1841///       argument-expression-list: [C99 6.5.2]
1842///         argument-expression ...[opt]
1843///         argument-expression-list ',' assignment-expression ...[opt]
1844/// \endverbatim
1845ExprResult
1846Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1847  // Now that the primary-expression piece of the postfix-expression has been
1848  // parsed, see if there are any postfix-expression pieces here.
1849  SourceLocation Loc;
1850  auto SavedType = PreferredType;
1851  while (1) {
1852    // Each iteration relies on preferred type for the whole expression.
1853    PreferredType = SavedType;
1854    switch (Tok.getKind()) {
1855    case tok::code_completion:
1856      if (InMessageExpression)
1857        return LHS;
1858
1859      cutOffParsing();
1860      Actions.CodeCompletePostfixExpression(
1861          getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1862      return ExprError();
1863
1864    case tok::identifier:
1865      // If we see identifier: after an expression, and we're not already in a
1866      // message send, then this is probably a message send with a missing
1867      // opening bracket '['.
1868      if (getLangOpts().ObjC && !InMessageExpression &&
1869          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1870        LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1871                                             nullptr, LHS.get());
1872        break;
1873      }
1874      // Fall through; this isn't a message send.
1875      LLVM_FALLTHROUGH;
1876
1877    default:  // Not a postfix-expression suffix.
1878      return LHS;
1879    case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1880      // If we have a array postfix expression that starts on a new line and
1881      // Objective-C is enabled, it is highly likely that the user forgot a
1882      // semicolon after the base expression and that the array postfix-expr is
1883      // actually another message send.  In this case, do some look-ahead to see
1884      // if the contents of the square brackets are obviously not a valid
1885      // expression and recover by pretending there is no suffix.
1886      if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
1887          isSimpleObjCMessageExpression())
1888        return LHS;
1889
1890      // Reject array indices starting with a lambda-expression. '[[' is
1891      // reserved for attributes.
1892      if (CheckProhibitedCXX11Attribute()) {
1893        (void)Actions.CorrectDelayedTyposInExpr(LHS);
1894        return ExprError();
1895      }
1896
1897      BalancedDelimiterTracker T(*this, tok::l_square);
1898      T.consumeOpen();
1899      Loc = T.getOpenLocation();
1900      ExprResult Idx, Length, Stride;
1901      SourceLocation ColonLocFirst, ColonLocSecond;
1902      PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
1903      if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1904        Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1905        Idx = ParseBraceInitializer();
1906      } else if (getLangOpts().OpenMP) {
1907        ColonProtectionRAIIObject RAII(*this);
1908        // Parse [: or [ expr or [ expr :
1909        if (!Tok.is(tok::colon)) {
1910          // [ expr
1911          Idx = ParseExpression();
1912        }
1913        if (Tok.is(tok::colon)) {
1914          // Consume ':'
1915          ColonLocFirst = ConsumeToken();
1916          if (Tok.isNot(tok::r_square) &&
1917              (getLangOpts().OpenMP < 50 ||
1918               ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50))))
1919            Length = ParseExpression();
1920        }
1921        if (getLangOpts().OpenMP >= 50 &&
1922            (OMPClauseKind == llvm::omp::Clause::OMPC_to ||
1923             OMPClauseKind == llvm::omp::Clause::OMPC_from) &&
1924            Tok.is(tok::colon)) {
1925          // Consume ':'
1926          ColonLocSecond = ConsumeToken();
1927          if (Tok.isNot(tok::r_square)) {
1928            Stride = ParseExpression();
1929          }
1930        }
1931      } else
1932        Idx = ParseExpression();
1933
1934      SourceLocation RLoc = Tok.getLocation();
1935
1936      LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1937      Idx = Actions.CorrectDelayedTyposInExpr(Idx);
1938      Length = Actions.CorrectDelayedTyposInExpr(Length);
1939      if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() &&
1940          !Stride.isInvalid() && Tok.is(tok::r_square)) {
1941        if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) {
1942          LHS = Actions.ActOnOMPArraySectionExpr(
1943              LHS.get(), Loc, Idx.get(), ColonLocFirst, ColonLocSecond,
1944              Length.get(), Stride.get(), RLoc);
1945        } else {
1946          LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1947                                                Idx.get(), RLoc);
1948        }
1949      } else {
1950        LHS = ExprError();
1951        Idx = ExprError();
1952      }
1953
1954      // Match the ']'.
1955      T.consumeClose();
1956      break;
1957    }
1958
1959    case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
1960    case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
1961                               //   '(' argument-expression-list[opt] ')'
1962      tok::TokenKind OpKind = Tok.getKind();
1963      InMessageExpressionRAIIObject InMessage(*this, false);
1964
1965      Expr *ExecConfig = nullptr;
1966
1967      BalancedDelimiterTracker PT(*this, tok::l_paren);
1968
1969      if (OpKind == tok::lesslessless) {
1970        ExprVector ExecConfigExprs;
1971        CommaLocsTy ExecConfigCommaLocs;
1972        SourceLocation OpenLoc = ConsumeToken();
1973
1974        if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1975          (void)Actions.CorrectDelayedTyposInExpr(LHS);
1976          LHS = ExprError();
1977        }
1978
1979        SourceLocation CloseLoc;
1980        if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1981        } else if (LHS.isInvalid()) {
1982          SkipUntil(tok::greatergreatergreater, StopAtSemi);
1983        } else {
1984          // There was an error closing the brackets
1985          Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1986          Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1987          SkipUntil(tok::greatergreatergreater, StopAtSemi);
1988          LHS = ExprError();
1989        }
1990
1991        if (!LHS.isInvalid()) {
1992          if (ExpectAndConsume(tok::l_paren))
1993            LHS = ExprError();
1994          else
1995            Loc = PrevTokLocation;
1996        }
1997
1998        if (!LHS.isInvalid()) {
1999          ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
2000                                    OpenLoc,
2001                                    ExecConfigExprs,
2002                                    CloseLoc);
2003          if (ECResult.isInvalid())
2004            LHS = ExprError();
2005          else
2006            ExecConfig = ECResult.get();
2007        }
2008      } else {
2009        PT.consumeOpen();
2010        Loc = PT.getOpenLocation();
2011      }
2012
2013      ExprVector ArgExprs;
2014      CommaLocsTy CommaLocs;
2015      auto RunSignatureHelp = [&]() -> QualType {
2016        QualType PreferredType = Actions.ProduceCallSignatureHelp(
2017            getCurScope(), LHS.get(), ArgExprs, PT.getOpenLocation());
2018        CalledSignatureHelp = true;
2019        return PreferredType;
2020      };
2021      if (OpKind == tok::l_paren || !LHS.isInvalid()) {
2022        if (Tok.isNot(tok::r_paren)) {
2023          if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
2024                PreferredType.enterFunctionArgument(Tok.getLocation(),
2025                                                    RunSignatureHelp);
2026              })) {
2027            (void)Actions.CorrectDelayedTyposInExpr(LHS);
2028            // If we got an error when parsing expression list, we don't call
2029            // the CodeCompleteCall handler inside the parser. So call it here
2030            // to make sure we get overload suggestions even when we are in the
2031            // middle of a parameter.
2032            if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2033              RunSignatureHelp();
2034            LHS = ExprError();
2035          } else if (LHS.isInvalid()) {
2036            for (auto &E : ArgExprs)
2037              Actions.CorrectDelayedTyposInExpr(E);
2038          }
2039        }
2040      }
2041
2042      // Match the ')'.
2043      if (LHS.isInvalid()) {
2044        SkipUntil(tok::r_paren, StopAtSemi);
2045      } else if (Tok.isNot(tok::r_paren)) {
2046        bool HadDelayedTypo = false;
2047        if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
2048          HadDelayedTypo = true;
2049        for (auto &E : ArgExprs)
2050          if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
2051            HadDelayedTypo = true;
2052        // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
2053        // instead of PT.consumeClose() to avoid emitting extra diagnostics for
2054        // the unmatched l_paren.
2055        if (HadDelayedTypo)
2056          SkipUntil(tok::r_paren, StopAtSemi);
2057        else
2058          PT.consumeClose();
2059        LHS = ExprError();
2060      } else {
2061        assert(
2062            (ArgExprs.size() == 0 || ArgExprs.size() - 1 == CommaLocs.size()) &&
2063            "Unexpected number of commas!");
2064        Expr *Fn = LHS.get();
2065        SourceLocation RParLoc = Tok.getLocation();
2066        LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc,
2067                                    ExecConfig);
2068        if (LHS.isInvalid()) {
2069          ArgExprs.insert(ArgExprs.begin(), Fn);
2070          LHS =
2071              Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs);
2072        }
2073        PT.consumeClose();
2074      }
2075
2076      break;
2077    }
2078    case tok::arrow:
2079    case tok::period: {
2080      // postfix-expression: p-e '->' template[opt] id-expression
2081      // postfix-expression: p-e '.' template[opt] id-expression
2082      tok::TokenKind OpKind = Tok.getKind();
2083      SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
2084
2085      CXXScopeSpec SS;
2086      ParsedType ObjectType;
2087      bool MayBePseudoDestructor = false;
2088      Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
2089
2090      PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
2091
2092      if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
2093        Expr *Base = OrigLHS;
2094        const Type* BaseType = Base->getType().getTypePtrOrNull();
2095        if (BaseType && Tok.is(tok::l_paren) &&
2096            (BaseType->isFunctionType() ||
2097             BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
2098          Diag(OpLoc, diag::err_function_is_not_record)
2099              << OpKind << Base->getSourceRange()
2100              << FixItHint::CreateRemoval(OpLoc);
2101          return ParsePostfixExpressionSuffix(Base);
2102        }
2103
2104        LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc,
2105                                                   OpKind, ObjectType,
2106                                                   MayBePseudoDestructor);
2107        if (LHS.isInvalid()) {
2108          // Clang will try to perform expression based completion as a
2109          // fallback, which is confusing in case of member references. So we
2110          // stop here without any completions.
2111          if (Tok.is(tok::code_completion)) {
2112            cutOffParsing();
2113            return ExprError();
2114          }
2115          break;
2116        }
2117        ParseOptionalCXXScopeSpecifier(
2118            SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2119            /*EnteringContext=*/false, &MayBePseudoDestructor);
2120        if (SS.isNotEmpty())
2121          ObjectType = nullptr;
2122      }
2123
2124      if (Tok.is(tok::code_completion)) {
2125        tok::TokenKind CorrectedOpKind =
2126            OpKind == tok::arrow ? tok::period : tok::arrow;
2127        ExprResult CorrectedLHS(/*Invalid=*/true);
2128        if (getLangOpts().CPlusPlus && OrigLHS) {
2129          // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
2130          // hack.
2131          Sema::TentativeAnalysisScope Trap(Actions);
2132          CorrectedLHS = Actions.ActOnStartCXXMemberReference(
2133              getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
2134              MayBePseudoDestructor);
2135        }
2136
2137        Expr *Base = LHS.get();
2138        Expr *CorrectedBase = CorrectedLHS.get();
2139        if (!CorrectedBase && !getLangOpts().CPlusPlus)
2140          CorrectedBase = Base;
2141
2142        // Code completion for a member access expression.
2143        cutOffParsing();
2144        Actions.CodeCompleteMemberReferenceExpr(
2145            getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
2146            Base && ExprStatementTokLoc == Base->getBeginLoc(),
2147            PreferredType.get(Tok.getLocation()));
2148
2149        return ExprError();
2150      }
2151
2152      if (MayBePseudoDestructor && !LHS.isInvalid()) {
2153        LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
2154                                       ObjectType);
2155        break;
2156      }
2157
2158      // Either the action has told us that this cannot be a
2159      // pseudo-destructor expression (based on the type of base
2160      // expression), or we didn't see a '~' in the right place. We
2161      // can still parse a destructor name here, but in that case it
2162      // names a real destructor.
2163      // Allow explicit constructor calls in Microsoft mode.
2164      // FIXME: Add support for explicit call of template constructor.
2165      SourceLocation TemplateKWLoc;
2166      UnqualifiedId Name;
2167      if (getLangOpts().ObjC && OpKind == tok::period &&
2168          Tok.is(tok::kw_class)) {
2169        // Objective-C++:
2170        //   After a '.' in a member access expression, treat the keyword
2171        //   'class' as if it were an identifier.
2172        //
2173        // This hack allows property access to the 'class' method because it is
2174        // such a common method name. For other C++ keywords that are
2175        // Objective-C method names, one must use the message send syntax.
2176        IdentifierInfo *Id = Tok.getIdentifierInfo();
2177        SourceLocation Loc = ConsumeToken();
2178        Name.setIdentifier(Id, Loc);
2179      } else if (ParseUnqualifiedId(
2180                     SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2181                     /*EnteringContext=*/false,
2182                     /*AllowDestructorName=*/true,
2183                     /*AllowConstructorName=*/
2184                     getLangOpts().MicrosoftExt && SS.isNotEmpty(),
2185                     /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) {
2186        (void)Actions.CorrectDelayedTyposInExpr(LHS);
2187        LHS = ExprError();
2188      }
2189
2190      if (!LHS.isInvalid())
2191        LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
2192                                            OpKind, SS, TemplateKWLoc, Name,
2193                                 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
2194                                                   : nullptr);
2195      if (!LHS.isInvalid()) {
2196        if (Tok.is(tok::less))
2197          checkPotentialAngleBracket(LHS);
2198      } else if (OrigLHS && Name.isValid()) {
2199        // Preserve the LHS if the RHS is an invalid member.
2200        LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(),
2201                                         Name.getEndLoc(), {OrigLHS});
2202      }
2203      break;
2204    }
2205    case tok::plusplus:    // postfix-expression: postfix-expression '++'
2206    case tok::minusminus:  // postfix-expression: postfix-expression '--'
2207      if (!LHS.isInvalid()) {
2208        Expr *Arg = LHS.get();
2209        LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
2210                                          Tok.getKind(), Arg);
2211        if (LHS.isInvalid())
2212          LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(),
2213                                           Tok.getLocation(), Arg);
2214      }
2215      ConsumeToken();
2216      break;
2217    }
2218  }
2219}
2220
2221/// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
2222/// vec_step and we are at the start of an expression or a parenthesized
2223/// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
2224/// expression (isCastExpr == false) or the type (isCastExpr == true).
2225///
2226/// \verbatim
2227///       unary-expression:  [C99 6.5.3]
2228///         'sizeof' unary-expression
2229///         'sizeof' '(' type-name ')'
2230/// [GNU]   '__alignof' unary-expression
2231/// [GNU]   '__alignof' '(' type-name ')'
2232/// [C11]   '_Alignof' '(' type-name ')'
2233/// [C++0x] 'alignof' '(' type-id ')'
2234///
2235/// [GNU]   typeof-specifier:
2236///           typeof ( expressions )
2237///           typeof ( type-name )
2238/// [GNU/C++] typeof unary-expression
2239///
2240/// [OpenCL 1.1 6.11.12] vec_step built-in function:
2241///           vec_step ( expressions )
2242///           vec_step ( type-name )
2243/// \endverbatim
2244ExprResult
2245Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
2246                                           bool &isCastExpr,
2247                                           ParsedType &CastTy,
2248                                           SourceRange &CastRange) {
2249
2250  assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof,
2251                       tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
2252                       tok::kw___builtin_omp_required_simd_align) &&
2253         "Not a typeof/sizeof/alignof/vec_step expression!");
2254
2255  ExprResult Operand;
2256
2257  // If the operand doesn't start with an '(', it must be an expression.
2258  if (Tok.isNot(tok::l_paren)) {
2259    // If construct allows a form without parenthesis, user may forget to put
2260    // pathenthesis around type name.
2261    if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2262                      tok::kw__Alignof)) {
2263      if (isTypeIdUnambiguously()) {
2264        DeclSpec DS(AttrFactory);
2265        ParseSpecifierQualifierList(DS);
2266        Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
2267        ParseDeclarator(DeclaratorInfo);
2268
2269        SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
2270        SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
2271        if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) {
2272          Diag(OpTok.getLocation(),
2273               diag::err_expected_parentheses_around_typename)
2274              << OpTok.getName();
2275        } else {
2276          Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
2277              << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(")
2278              << FixItHint::CreateInsertion(RParenLoc, ")");
2279        }
2280        isCastExpr = true;
2281        return ExprEmpty();
2282      }
2283    }
2284
2285    isCastExpr = false;
2286    if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
2287      Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
2288                                          << tok::l_paren;
2289      return ExprError();
2290    }
2291
2292    Operand = ParseCastExpression(UnaryExprOnly);
2293  } else {
2294    // If it starts with a '(', we know that it is either a parenthesized
2295    // type-name, or it is a unary-expression that starts with a compound
2296    // literal, or starts with a primary-expression that is a parenthesized
2297    // expression.
2298    ParenParseOption ExprType = CastExpr;
2299    SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
2300
2301    Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
2302                                   false, CastTy, RParenLoc);
2303    CastRange = SourceRange(LParenLoc, RParenLoc);
2304
2305    // If ParseParenExpression parsed a '(typename)' sequence only, then this is
2306    // a type.
2307    if (ExprType == CastExpr) {
2308      isCastExpr = true;
2309      return ExprEmpty();
2310    }
2311
2312    if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
2313      // GNU typeof in C requires the expression to be parenthesized. Not so for
2314      // sizeof/alignof or in C++. Therefore, the parenthesized expression is
2315      // the start of a unary-expression, but doesn't include any postfix
2316      // pieces. Parse these now if present.
2317      if (!Operand.isInvalid())
2318        Operand = ParsePostfixExpressionSuffix(Operand.get());
2319    }
2320  }
2321
2322  // If we get here, the operand to the typeof/sizeof/alignof was an expression.
2323  isCastExpr = false;
2324  return Operand;
2325}
2326
2327
2328/// Parse a sizeof or alignof expression.
2329///
2330/// \verbatim
2331///       unary-expression:  [C99 6.5.3]
2332///         'sizeof' unary-expression
2333///         'sizeof' '(' type-name ')'
2334/// [C++11] 'sizeof' '...' '(' identifier ')'
2335/// [GNU]   '__alignof' unary-expression
2336/// [GNU]   '__alignof' '(' type-name ')'
2337/// [C11]   '_Alignof' '(' type-name ')'
2338/// [C++11] 'alignof' '(' type-id ')'
2339/// \endverbatim
2340ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
2341  assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2342                     tok::kw__Alignof, tok::kw_vec_step,
2343                     tok::kw___builtin_omp_required_simd_align) &&
2344         "Not a sizeof/alignof/vec_step expression!");
2345  Token OpTok = Tok;
2346  ConsumeToken();
2347
2348  // [C++11] 'sizeof' '...' '(' identifier ')'
2349  if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
2350    SourceLocation EllipsisLoc = ConsumeToken();
2351    SourceLocation LParenLoc, RParenLoc;
2352    IdentifierInfo *Name = nullptr;
2353    SourceLocation NameLoc;
2354    if (Tok.is(tok::l_paren)) {
2355      BalancedDelimiterTracker T(*this, tok::l_paren);
2356      T.consumeOpen();
2357      LParenLoc = T.getOpenLocation();
2358      if (Tok.is(tok::identifier)) {
2359        Name = Tok.getIdentifierInfo();
2360        NameLoc = ConsumeToken();
2361        T.consumeClose();
2362        RParenLoc = T.getCloseLocation();
2363        if (RParenLoc.isInvalid())
2364          RParenLoc = PP.getLocForEndOfToken(NameLoc);
2365      } else {
2366        Diag(Tok, diag::err_expected_parameter_pack);
2367        SkipUntil(tok::r_paren, StopAtSemi);
2368      }
2369    } else if (Tok.is(tok::identifier)) {
2370      Name = Tok.getIdentifierInfo();
2371      NameLoc = ConsumeToken();
2372      LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2373      RParenLoc = PP.getLocForEndOfToken(NameLoc);
2374      Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2375        << Name
2376        << FixItHint::CreateInsertion(LParenLoc, "(")
2377        << FixItHint::CreateInsertion(RParenLoc, ")");
2378    } else {
2379      Diag(Tok, diag::err_sizeof_parameter_pack);
2380    }
2381
2382    if (!Name)
2383      return ExprError();
2384
2385    EnterExpressionEvaluationContext Unevaluated(
2386        Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2387        Sema::ReuseLambdaContextDecl);
2388
2389    return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2390                                                OpTok.getLocation(),
2391                                                *Name, NameLoc,
2392                                                RParenLoc);
2393  }
2394
2395  if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2396    Diag(OpTok, diag::warn_cxx98_compat_alignof);
2397
2398  EnterExpressionEvaluationContext Unevaluated(
2399      Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2400      Sema::ReuseLambdaContextDecl);
2401
2402  bool isCastExpr;
2403  ParsedType CastTy;
2404  SourceRange CastRange;
2405  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2406                                                          isCastExpr,
2407                                                          CastTy,
2408                                                          CastRange);
2409
2410  UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2411  if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2412    ExprKind = UETT_AlignOf;
2413  else if (OpTok.is(tok::kw___alignof))
2414    ExprKind = UETT_PreferredAlignOf;
2415  else if (OpTok.is(tok::kw_vec_step))
2416    ExprKind = UETT_VecStep;
2417  else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
2418    ExprKind = UETT_OpenMPRequiredSimdAlign;
2419
2420  if (isCastExpr)
2421    return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2422                                                 ExprKind,
2423                                                 /*IsType=*/true,
2424                                                 CastTy.getAsOpaquePtr(),
2425                                                 CastRange);
2426
2427  if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2428    Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2429
2430  // If we get here, the operand to the sizeof/alignof was an expression.
2431  if (!Operand.isInvalid())
2432    Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2433                                                    ExprKind,
2434                                                    /*IsType=*/false,
2435                                                    Operand.get(),
2436                                                    CastRange);
2437  return Operand;
2438}
2439
2440/// ParseBuiltinPrimaryExpression
2441///
2442/// \verbatim
2443///       primary-expression: [C99 6.5.1]
2444/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2445/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2446/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2447///                                     assign-expr ')'
2448/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2449/// [GNU]   '__builtin_FILE' '(' ')'
2450/// [GNU]   '__builtin_FUNCTION' '(' ')'
2451/// [GNU]   '__builtin_LINE' '(' ')'
2452/// [CLANG] '__builtin_COLUMN' '(' ')'
2453/// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
2454///
2455/// [GNU] offsetof-member-designator:
2456/// [GNU]   identifier
2457/// [GNU]   offsetof-member-designator '.' identifier
2458/// [GNU]   offsetof-member-designator '[' expression ']'
2459/// \endverbatim
2460ExprResult Parser::ParseBuiltinPrimaryExpression() {
2461  ExprResult Res;
2462  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2463
2464  tok::TokenKind T = Tok.getKind();
2465  SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
2466
2467  // All of these start with an open paren.
2468  if (Tok.isNot(tok::l_paren))
2469    return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2470                                                         << tok::l_paren);
2471
2472  BalancedDelimiterTracker PT(*this, tok::l_paren);
2473  PT.consumeOpen();
2474
2475  // TODO: Build AST.
2476
2477  switch (T) {
2478  default: llvm_unreachable("Not a builtin primary expression!");
2479  case tok::kw___builtin_va_arg: {
2480    ExprResult Expr(ParseAssignmentExpression());
2481
2482    if (ExpectAndConsume(tok::comma)) {
2483      SkipUntil(tok::r_paren, StopAtSemi);
2484      Expr = ExprError();
2485    }
2486
2487    TypeResult Ty = ParseTypeName();
2488
2489    if (Tok.isNot(tok::r_paren)) {
2490      Diag(Tok, diag::err_expected) << tok::r_paren;
2491      Expr = ExprError();
2492    }
2493
2494    if (Expr.isInvalid() || Ty.isInvalid())
2495      Res = ExprError();
2496    else
2497      Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2498    break;
2499  }
2500  case tok::kw___builtin_offsetof: {
2501    SourceLocation TypeLoc = Tok.getLocation();
2502    TypeResult Ty = ParseTypeName();
2503    if (Ty.isInvalid()) {
2504      SkipUntil(tok::r_paren, StopAtSemi);
2505      return ExprError();
2506    }
2507
2508    if (ExpectAndConsume(tok::comma)) {
2509      SkipUntil(tok::r_paren, StopAtSemi);
2510      return ExprError();
2511    }
2512
2513    // We must have at least one identifier here.
2514    if (Tok.isNot(tok::identifier)) {
2515      Diag(Tok, diag::err_expected) << tok::identifier;
2516      SkipUntil(tok::r_paren, StopAtSemi);
2517      return ExprError();
2518    }
2519
2520    // Keep track of the various subcomponents we see.
2521    SmallVector<Sema::OffsetOfComponent, 4> Comps;
2522
2523    Comps.push_back(Sema::OffsetOfComponent());
2524    Comps.back().isBrackets = false;
2525    Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2526    Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2527
2528    // FIXME: This loop leaks the index expressions on error.
2529    while (1) {
2530      if (Tok.is(tok::period)) {
2531        // offsetof-member-designator: offsetof-member-designator '.' identifier
2532        Comps.push_back(Sema::OffsetOfComponent());
2533        Comps.back().isBrackets = false;
2534        Comps.back().LocStart = ConsumeToken();
2535
2536        if (Tok.isNot(tok::identifier)) {
2537          Diag(Tok, diag::err_expected) << tok::identifier;
2538          SkipUntil(tok::r_paren, StopAtSemi);
2539          return ExprError();
2540        }
2541        Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2542        Comps.back().LocEnd = ConsumeToken();
2543
2544      } else if (Tok.is(tok::l_square)) {
2545        if (CheckProhibitedCXX11Attribute())
2546          return ExprError();
2547
2548        // offsetof-member-designator: offsetof-member-design '[' expression ']'
2549        Comps.push_back(Sema::OffsetOfComponent());
2550        Comps.back().isBrackets = true;
2551        BalancedDelimiterTracker ST(*this, tok::l_square);
2552        ST.consumeOpen();
2553        Comps.back().LocStart = ST.getOpenLocation();
2554        Res = ParseExpression();
2555        if (Res.isInvalid()) {
2556          SkipUntil(tok::r_paren, StopAtSemi);
2557          return Res;
2558        }
2559        Comps.back().U.E = Res.get();
2560
2561        ST.consumeClose();
2562        Comps.back().LocEnd = ST.getCloseLocation();
2563      } else {
2564        if (Tok.isNot(tok::r_paren)) {
2565          PT.consumeClose();
2566          Res = ExprError();
2567        } else if (Ty.isInvalid()) {
2568          Res = ExprError();
2569        } else {
2570          PT.consumeClose();
2571          Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2572                                             Ty.get(), Comps,
2573                                             PT.getCloseLocation());
2574        }
2575        break;
2576      }
2577    }
2578    break;
2579  }
2580  case tok::kw___builtin_choose_expr: {
2581    ExprResult Cond(ParseAssignmentExpression());
2582    if (Cond.isInvalid()) {
2583      SkipUntil(tok::r_paren, StopAtSemi);
2584      return Cond;
2585    }
2586    if (ExpectAndConsume(tok::comma)) {
2587      SkipUntil(tok::r_paren, StopAtSemi);
2588      return ExprError();
2589    }
2590
2591    ExprResult Expr1(ParseAssignmentExpression());
2592    if (Expr1.isInvalid()) {
2593      SkipUntil(tok::r_paren, StopAtSemi);
2594      return Expr1;
2595    }
2596    if (ExpectAndConsume(tok::comma)) {
2597      SkipUntil(tok::r_paren, StopAtSemi);
2598      return ExprError();
2599    }
2600
2601    ExprResult Expr2(ParseAssignmentExpression());
2602    if (Expr2.isInvalid()) {
2603      SkipUntil(tok::r_paren, StopAtSemi);
2604      return Expr2;
2605    }
2606    if (Tok.isNot(tok::r_paren)) {
2607      Diag(Tok, diag::err_expected) << tok::r_paren;
2608      return ExprError();
2609    }
2610    Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2611                                  Expr2.get(), ConsumeParen());
2612    break;
2613  }
2614  case tok::kw___builtin_astype: {
2615    // The first argument is an expression to be converted, followed by a comma.
2616    ExprResult Expr(ParseAssignmentExpression());
2617    if (Expr.isInvalid()) {
2618      SkipUntil(tok::r_paren, StopAtSemi);
2619      return ExprError();
2620    }
2621
2622    if (ExpectAndConsume(tok::comma)) {
2623      SkipUntil(tok::r_paren, StopAtSemi);
2624      return ExprError();
2625    }
2626
2627    // Second argument is the type to bitcast to.
2628    TypeResult DestTy = ParseTypeName();
2629    if (DestTy.isInvalid())
2630      return ExprError();
2631
2632    // Attempt to consume the r-paren.
2633    if (Tok.isNot(tok::r_paren)) {
2634      Diag(Tok, diag::err_expected) << tok::r_paren;
2635      SkipUntil(tok::r_paren, StopAtSemi);
2636      return ExprError();
2637    }
2638
2639    Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2640                                  ConsumeParen());
2641    break;
2642  }
2643  case tok::kw___builtin_convertvector: {
2644    // The first argument is an expression to be converted, followed by a comma.
2645    ExprResult Expr(ParseAssignmentExpression());
2646    if (Expr.isInvalid()) {
2647      SkipUntil(tok::r_paren, StopAtSemi);
2648      return ExprError();
2649    }
2650
2651    if (ExpectAndConsume(tok::comma)) {
2652      SkipUntil(tok::r_paren, StopAtSemi);
2653      return ExprError();
2654    }
2655
2656    // Second argument is the type to bitcast to.
2657    TypeResult DestTy = ParseTypeName();
2658    if (DestTy.isInvalid())
2659      return ExprError();
2660
2661    // Attempt to consume the r-paren.
2662    if (Tok.isNot(tok::r_paren)) {
2663      Diag(Tok, diag::err_expected) << tok::r_paren;
2664      SkipUntil(tok::r_paren, StopAtSemi);
2665      return ExprError();
2666    }
2667
2668    Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2669                                         ConsumeParen());
2670    break;
2671  }
2672  case tok::kw___builtin_COLUMN:
2673  case tok::kw___builtin_FILE:
2674  case tok::kw___builtin_FUNCTION:
2675  case tok::kw___builtin_LINE: {
2676    // Attempt to consume the r-paren.
2677    if (Tok.isNot(tok::r_paren)) {
2678      Diag(Tok, diag::err_expected) << tok::r_paren;
2679      SkipUntil(tok::r_paren, StopAtSemi);
2680      return ExprError();
2681    }
2682    SourceLocExpr::IdentKind Kind = [&] {
2683      switch (T) {
2684      case tok::kw___builtin_FILE:
2685        return SourceLocExpr::File;
2686      case tok::kw___builtin_FUNCTION:
2687        return SourceLocExpr::Function;
2688      case tok::kw___builtin_LINE:
2689        return SourceLocExpr::Line;
2690      case tok::kw___builtin_COLUMN:
2691        return SourceLocExpr::Column;
2692      default:
2693        llvm_unreachable("invalid keyword");
2694      }
2695    }();
2696    Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2697    break;
2698  }
2699  }
2700
2701  if (Res.isInvalid())
2702    return ExprError();
2703
2704  // These can be followed by postfix-expr pieces because they are
2705  // primary-expressions.
2706  return ParsePostfixExpressionSuffix(Res.get());
2707}
2708
2709bool Parser::tryParseOpenMPArrayShapingCastPart() {
2710  assert(Tok.is(tok::l_square) && "Expected open bracket");
2711  bool ErrorFound = true;
2712  TentativeParsingAction TPA(*this);
2713  do {
2714    if (Tok.isNot(tok::l_square))
2715      break;
2716    // Consume '['
2717    ConsumeBracket();
2718    // Skip inner expression.
2719    while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end,
2720                      StopAtSemi | StopBeforeMatch))
2721      ;
2722    if (Tok.isNot(tok::r_square))
2723      break;
2724    // Consume ']'
2725    ConsumeBracket();
2726    // Found ')' - done.
2727    if (Tok.is(tok::r_paren)) {
2728      ErrorFound = false;
2729      break;
2730    }
2731  } while (Tok.isNot(tok::annot_pragma_openmp_end));
2732  TPA.Revert();
2733  return !ErrorFound;
2734}
2735
2736/// ParseParenExpression - This parses the unit that starts with a '(' token,
2737/// based on what is allowed by ExprType.  The actual thing parsed is returned
2738/// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2739/// not the parsed cast-expression.
2740///
2741/// \verbatim
2742///       primary-expression: [C99 6.5.1]
2743///         '(' expression ')'
2744/// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
2745///       postfix-expression: [C99 6.5.2]
2746///         '(' type-name ')' '{' initializer-list '}'
2747///         '(' type-name ')' '{' initializer-list ',' '}'
2748///       cast-expression: [C99 6.5.4]
2749///         '(' type-name ')' cast-expression
2750/// [ARC]   bridged-cast-expression
2751/// [ARC] bridged-cast-expression:
2752///         (__bridge type-name) cast-expression
2753///         (__bridge_transfer type-name) cast-expression
2754///         (__bridge_retained type-name) cast-expression
2755///       fold-expression: [C++1z]
2756///         '(' cast-expression fold-operator '...' ')'
2757///         '(' '...' fold-operator cast-expression ')'
2758///         '(' cast-expression fold-operator '...'
2759///                 fold-operator cast-expression ')'
2760/// [OPENMP] Array shaping operation
2761///       '(' '[' expression ']' { '[' expression ']' } cast-expression
2762/// \endverbatim
2763ExprResult
2764Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2765                             bool isTypeCast, ParsedType &CastTy,
2766                             SourceLocation &RParenLoc) {
2767  assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2768  ColonProtectionRAIIObject ColonProtection(*this, false);
2769  BalancedDelimiterTracker T(*this, tok::l_paren);
2770  if (T.consumeOpen())
2771    return ExprError();
2772  SourceLocation OpenLoc = T.getOpenLocation();
2773
2774  PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
2775
2776  ExprResult Result(true);
2777  bool isAmbiguousTypeId;
2778  CastTy = nullptr;
2779
2780  if (Tok.is(tok::code_completion)) {
2781    cutOffParsing();
2782    Actions.CodeCompleteExpression(
2783        getCurScope(), PreferredType.get(Tok.getLocation()),
2784        /*IsParenthesized=*/ExprType >= CompoundLiteral);
2785    return ExprError();
2786  }
2787
2788  // Diagnose use of bridge casts in non-arc mode.
2789  bool BridgeCast = (getLangOpts().ObjC &&
2790                     Tok.isOneOf(tok::kw___bridge,
2791                                 tok::kw___bridge_transfer,
2792                                 tok::kw___bridge_retained,
2793                                 tok::kw___bridge_retain));
2794  if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2795    if (!TryConsumeToken(tok::kw___bridge)) {
2796      StringRef BridgeCastName = Tok.getName();
2797      SourceLocation BridgeKeywordLoc = ConsumeToken();
2798      if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2799        Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2800          << BridgeCastName
2801          << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2802    }
2803    BridgeCast = false;
2804  }
2805
2806  // None of these cases should fall through with an invalid Result
2807  // unless they've already reported an error.
2808  if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2809    Diag(Tok, diag::ext_gnu_statement_expr);
2810
2811    checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin);
2812
2813    if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2814      Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2815    } else {
2816      // Find the nearest non-record decl context. Variables declared in a
2817      // statement expression behave as if they were declared in the enclosing
2818      // function, block, or other code construct.
2819      DeclContext *CodeDC = Actions.CurContext;
2820      while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2821        CodeDC = CodeDC->getParent();
2822        assert(CodeDC && !CodeDC->isFileContext() &&
2823               "statement expr not in code context");
2824      }
2825      Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2826
2827      Actions.ActOnStartStmtExpr();
2828
2829      StmtResult Stmt(ParseCompoundStatement(true));
2830      ExprType = CompoundStmt;
2831
2832      // If the substmt parsed correctly, build the AST node.
2833      if (!Stmt.isInvalid()) {
2834        Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(),
2835                                       Tok.getLocation());
2836      } else {
2837        Actions.ActOnStmtExprError();
2838      }
2839    }
2840  } else if (ExprType >= CompoundLiteral && BridgeCast) {
2841    tok::TokenKind tokenKind = Tok.getKind();
2842    SourceLocation BridgeKeywordLoc = ConsumeToken();
2843
2844    // Parse an Objective-C ARC ownership cast expression.
2845    ObjCBridgeCastKind Kind;
2846    if (tokenKind == tok::kw___bridge)
2847      Kind = OBC_Bridge;
2848    else if (tokenKind == tok::kw___bridge_transfer)
2849      Kind = OBC_BridgeTransfer;
2850    else if (tokenKind == tok::kw___bridge_retained)
2851      Kind = OBC_BridgeRetained;
2852    else {
2853      // As a hopefully temporary workaround, allow __bridge_retain as
2854      // a synonym for __bridge_retained, but only in system headers.
2855      assert(tokenKind == tok::kw___bridge_retain);
2856      Kind = OBC_BridgeRetained;
2857      if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2858        Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2859          << FixItHint::CreateReplacement(BridgeKeywordLoc,
2860                                          "__bridge_retained");
2861    }
2862
2863    TypeResult Ty = ParseTypeName();
2864    T.consumeClose();
2865    ColonProtection.restore();
2866    RParenLoc = T.getCloseLocation();
2867
2868    PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
2869    ExprResult SubExpr = ParseCastExpression(AnyCastExpr);
2870
2871    if (Ty.isInvalid() || SubExpr.isInvalid())
2872      return ExprError();
2873
2874    return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2875                                        BridgeKeywordLoc, Ty.get(),
2876                                        RParenLoc, SubExpr.get());
2877  } else if (ExprType >= CompoundLiteral &&
2878             isTypeIdInParens(isAmbiguousTypeId)) {
2879
2880    // Otherwise, this is a compound literal expression or cast expression.
2881
2882    // In C++, if the type-id is ambiguous we disambiguate based on context.
2883    // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2884    // in which case we should treat it as type-id.
2885    // if stopIfCastExpr is false, we need to determine the context past the
2886    // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2887    if (isAmbiguousTypeId && !stopIfCastExpr) {
2888      ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2889                                                        ColonProtection);
2890      RParenLoc = T.getCloseLocation();
2891      return res;
2892    }
2893
2894    // Parse the type declarator.
2895    DeclSpec DS(AttrFactory);
2896    ParseSpecifierQualifierList(DS);
2897    Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
2898    ParseDeclarator(DeclaratorInfo);
2899
2900    // If our type is followed by an identifier and either ':' or ']', then
2901    // this is probably an Objective-C message send where the leading '[' is
2902    // missing. Recover as if that were the case.
2903    if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2904        !InMessageExpression && getLangOpts().ObjC &&
2905        (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2906      TypeResult Ty;
2907      {
2908        InMessageExpressionRAIIObject InMessage(*this, false);
2909        Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2910      }
2911      Result = ParseObjCMessageExpressionBody(SourceLocation(),
2912                                              SourceLocation(),
2913                                              Ty.get(), nullptr);
2914    } else {
2915      // Match the ')'.
2916      T.consumeClose();
2917      ColonProtection.restore();
2918      RParenLoc = T.getCloseLocation();
2919      if (Tok.is(tok::l_brace)) {
2920        ExprType = CompoundLiteral;
2921        TypeResult Ty;
2922        {
2923          InMessageExpressionRAIIObject InMessage(*this, false);
2924          Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2925        }
2926        return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2927      }
2928
2929      if (Tok.is(tok::l_paren)) {
2930        // This could be OpenCL vector Literals
2931        if (getLangOpts().OpenCL)
2932        {
2933          TypeResult Ty;
2934          {
2935            InMessageExpressionRAIIObject InMessage(*this, false);
2936            Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2937          }
2938          if(Ty.isInvalid())
2939          {
2940             return ExprError();
2941          }
2942          QualType QT = Ty.get().get().getCanonicalType();
2943          if (QT->isVectorType())
2944          {
2945            // We parsed '(' vector-type-name ')' followed by '('
2946
2947            // Parse the cast-expression that follows it next.
2948            // isVectorLiteral = true will make sure we don't parse any
2949            // Postfix expression yet
2950            Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
2951                                         /*isAddressOfOperand=*/false,
2952                                         /*isTypeCast=*/IsTypeCast,
2953                                         /*isVectorLiteral=*/true);
2954
2955            if (!Result.isInvalid()) {
2956              Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2957                                             DeclaratorInfo, CastTy,
2958                                             RParenLoc, Result.get());
2959            }
2960
2961            // After we performed the cast we can check for postfix-expr pieces.
2962            if (!Result.isInvalid()) {
2963              Result = ParsePostfixExpressionSuffix(Result);
2964            }
2965
2966            return Result;
2967          }
2968        }
2969      }
2970
2971      if (ExprType == CastExpr) {
2972        // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2973
2974        if (DeclaratorInfo.isInvalidType())
2975          return ExprError();
2976
2977        // Note that this doesn't parse the subsequent cast-expression, it just
2978        // returns the parsed type to the callee.
2979        if (stopIfCastExpr) {
2980          TypeResult Ty;
2981          {
2982            InMessageExpressionRAIIObject InMessage(*this, false);
2983            Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2984          }
2985          CastTy = Ty.get();
2986          return ExprResult();
2987        }
2988
2989        // Reject the cast of super idiom in ObjC.
2990        if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
2991            Tok.getIdentifierInfo() == Ident_super &&
2992            getCurScope()->isInObjcMethodScope() &&
2993            GetLookAheadToken(1).isNot(tok::period)) {
2994          Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2995            << SourceRange(OpenLoc, RParenLoc);
2996          return ExprError();
2997        }
2998
2999        PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
3000        // Parse the cast-expression that follows it next.
3001        // TODO: For cast expression with CastTy.
3002        Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3003                                     /*isAddressOfOperand=*/false,
3004                                     /*isTypeCast=*/IsTypeCast);
3005        if (!Result.isInvalid()) {
3006          Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3007                                         DeclaratorInfo, CastTy,
3008                                         RParenLoc, Result.get());
3009        }
3010        return Result;
3011      }
3012
3013      Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
3014      return ExprError();
3015    }
3016  } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
3017             isFoldOperator(NextToken().getKind())) {
3018    ExprType = FoldExpr;
3019    return ParseFoldExpression(ExprResult(), T);
3020  } else if (isTypeCast) {
3021    // Parse the expression-list.
3022    InMessageExpressionRAIIObject InMessage(*this, false);
3023
3024    ExprVector ArgExprs;
3025    CommaLocsTy CommaLocs;
3026
3027    if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
3028      // FIXME: If we ever support comma expressions as operands to
3029      // fold-expressions, we'll need to allow multiple ArgExprs here.
3030      if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
3031          isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
3032        ExprType = FoldExpr;
3033        return ParseFoldExpression(ArgExprs[0], T);
3034      }
3035
3036      ExprType = SimpleExpr;
3037      Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
3038                                          ArgExprs);
3039    }
3040  } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing &&
3041             ExprType == CastExpr && Tok.is(tok::l_square) &&
3042             tryParseOpenMPArrayShapingCastPart()) {
3043    bool ErrorFound = false;
3044    SmallVector<Expr *, 4> OMPDimensions;
3045    SmallVector<SourceRange, 4> OMPBracketsRanges;
3046    do {
3047      BalancedDelimiterTracker TS(*this, tok::l_square);
3048      TS.consumeOpen();
3049      ExprResult NumElements =
3050          Actions.CorrectDelayedTyposInExpr(ParseExpression());
3051      if (!NumElements.isUsable()) {
3052        ErrorFound = true;
3053        while (!SkipUntil(tok::r_square, tok::r_paren,
3054                          StopAtSemi | StopBeforeMatch))
3055          ;
3056      }
3057      TS.consumeClose();
3058      OMPDimensions.push_back(NumElements.get());
3059      OMPBracketsRanges.push_back(TS.getRange());
3060    } while (Tok.isNot(tok::r_paren));
3061    // Match the ')'.
3062    T.consumeClose();
3063    RParenLoc = T.getCloseLocation();
3064    Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3065    if (ErrorFound) {
3066      Result = ExprError();
3067    } else if (!Result.isInvalid()) {
3068      Result = Actions.ActOnOMPArrayShapingExpr(
3069          Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges);
3070    }
3071    return Result;
3072  } else {
3073    InMessageExpressionRAIIObject InMessage(*this, false);
3074
3075    Result = ParseExpression(MaybeTypeCast);
3076    if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
3077      // Correct typos in non-C++ code earlier so that implicit-cast-like
3078      // expressions are parsed correctly.
3079      Result = Actions.CorrectDelayedTyposInExpr(Result);
3080    }
3081
3082    if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
3083        NextToken().is(tok::ellipsis)) {
3084      ExprType = FoldExpr;
3085      return ParseFoldExpression(Result, T);
3086    }
3087    ExprType = SimpleExpr;
3088
3089    // Don't build a paren expression unless we actually match a ')'.
3090    if (!Result.isInvalid() && Tok.is(tok::r_paren))
3091      Result =
3092          Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
3093  }
3094
3095  // Match the ')'.
3096  if (Result.isInvalid()) {
3097    SkipUntil(tok::r_paren, StopAtSemi);
3098    return ExprError();
3099  }
3100
3101  T.consumeClose();
3102  RParenLoc = T.getCloseLocation();
3103  return Result;
3104}
3105
3106/// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
3107/// and we are at the left brace.
3108///
3109/// \verbatim
3110///       postfix-expression: [C99 6.5.2]
3111///         '(' type-name ')' '{' initializer-list '}'
3112///         '(' type-name ')' '{' initializer-list ',' '}'
3113/// \endverbatim
3114ExprResult
3115Parser::ParseCompoundLiteralExpression(ParsedType Ty,
3116                                       SourceLocation LParenLoc,
3117                                       SourceLocation RParenLoc) {
3118  assert(Tok.is(tok::l_brace) && "Not a compound literal!");
3119  if (!getLangOpts().C99)   // Compound literals don't exist in C90.
3120    Diag(LParenLoc, diag::ext_c99_compound_literal);
3121  PreferredType.enterTypeCast(Tok.getLocation(), Ty.get());
3122  ExprResult Result = ParseInitializer();
3123  if (!Result.isInvalid() && Ty)
3124    return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
3125  return Result;
3126}
3127
3128/// ParseStringLiteralExpression - This handles the various token types that
3129/// form string literals, and also handles string concatenation [C99 5.1.1.2,
3130/// translation phase #6].
3131///
3132/// \verbatim
3133///       primary-expression: [C99 6.5.1]
3134///         string-literal
3135/// \verbatim
3136ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
3137  assert(isTokenStringLiteral() && "Not a string literal!");
3138
3139  // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
3140  // considered to be strings for concatenation purposes.
3141  SmallVector<Token, 4> StringToks;
3142
3143  do {
3144    StringToks.push_back(Tok);
3145    ConsumeStringToken();
3146  } while (isTokenStringLiteral());
3147
3148  // Pass the set of string tokens, ready for concatenation, to the actions.
3149  return Actions.ActOnStringLiteral(StringToks,
3150                                    AllowUserDefinedLiteral ? getCurScope()
3151                                                            : nullptr);
3152}
3153
3154/// ParseGenericSelectionExpression - Parse a C11 generic-selection
3155/// [C11 6.5.1.1].
3156///
3157/// \verbatim
3158///    generic-selection:
3159///           _Generic ( assignment-expression , generic-assoc-list )
3160///    generic-assoc-list:
3161///           generic-association
3162///           generic-assoc-list , generic-association
3163///    generic-association:
3164///           type-name : assignment-expression
3165///           default : assignment-expression
3166/// \endverbatim
3167ExprResult Parser::ParseGenericSelectionExpression() {
3168  assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
3169  if (!getLangOpts().C11)
3170    Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3171
3172  SourceLocation KeyLoc = ConsumeToken();
3173  BalancedDelimiterTracker T(*this, tok::l_paren);
3174  if (T.expectAndConsume())
3175    return ExprError();
3176
3177  ExprResult ControllingExpr;
3178  {
3179    // C11 6.5.1.1p3 "The controlling expression of a generic selection is
3180    // not evaluated."
3181    EnterExpressionEvaluationContext Unevaluated(
3182        Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3183    ControllingExpr =
3184        Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3185    if (ControllingExpr.isInvalid()) {
3186      SkipUntil(tok::r_paren, StopAtSemi);
3187      return ExprError();
3188    }
3189  }
3190
3191  if (ExpectAndConsume(tok::comma)) {
3192    SkipUntil(tok::r_paren, StopAtSemi);
3193    return ExprError();
3194  }
3195
3196  SourceLocation DefaultLoc;
3197  TypeVector Types;
3198  ExprVector Exprs;
3199  do {
3200    ParsedType Ty;
3201    if (Tok.is(tok::kw_default)) {
3202      // C11 6.5.1.1p2 "A generic selection shall have no more than one default
3203      // generic association."
3204      if (!DefaultLoc.isInvalid()) {
3205        Diag(Tok, diag::err_duplicate_default_assoc);
3206        Diag(DefaultLoc, diag::note_previous_default_assoc);
3207        SkipUntil(tok::r_paren, StopAtSemi);
3208        return ExprError();
3209      }
3210      DefaultLoc = ConsumeToken();
3211      Ty = nullptr;
3212    } else {
3213      ColonProtectionRAIIObject X(*this);
3214      TypeResult TR = ParseTypeName();
3215      if (TR.isInvalid()) {
3216        SkipUntil(tok::r_paren, StopAtSemi);
3217        return ExprError();
3218      }
3219      Ty = TR.get();
3220    }
3221    Types.push_back(Ty);
3222
3223    if (ExpectAndConsume(tok::colon)) {
3224      SkipUntil(tok::r_paren, StopAtSemi);
3225      return ExprError();
3226    }
3227
3228    // FIXME: These expressions should be parsed in a potentially potentially
3229    // evaluated context.
3230    ExprResult ER(
3231        Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3232    if (ER.isInvalid()) {
3233      SkipUntil(tok::r_paren, StopAtSemi);
3234      return ExprError();
3235    }
3236    Exprs.push_back(ER.get());
3237  } while (TryConsumeToken(tok::comma));
3238
3239  T.consumeClose();
3240  if (T.getCloseLocation().isInvalid())
3241    return ExprError();
3242
3243  return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
3244                                           T.getCloseLocation(),
3245                                           ControllingExpr.get(),
3246                                           Types, Exprs);
3247}
3248
3249/// Parse A C++1z fold-expression after the opening paren and optional
3250/// left-hand-side expression.
3251///
3252/// \verbatim
3253///   fold-expression:
3254///       ( cast-expression fold-operator ... )
3255///       ( ... fold-operator cast-expression )
3256///       ( cast-expression fold-operator ... fold-operator cast-expression )
3257ExprResult Parser::ParseFoldExpression(ExprResult LHS,
3258                                       BalancedDelimiterTracker &T) {
3259  if (LHS.isInvalid()) {
3260    T.skipToEnd();
3261    return true;
3262  }
3263
3264  tok::TokenKind Kind = tok::unknown;
3265  SourceLocation FirstOpLoc;
3266  if (LHS.isUsable()) {
3267    Kind = Tok.getKind();
3268    assert(isFoldOperator(Kind) && "missing fold-operator");
3269    FirstOpLoc = ConsumeToken();
3270  }
3271
3272  assert(Tok.is(tok::ellipsis) && "not a fold-expression");
3273  SourceLocation EllipsisLoc = ConsumeToken();
3274
3275  ExprResult RHS;
3276  if (Tok.isNot(tok::r_paren)) {
3277    if (!isFoldOperator(Tok.getKind()))
3278      return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
3279
3280    if (Kind != tok::unknown && Tok.getKind() != Kind)
3281      Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
3282        << SourceRange(FirstOpLoc);
3283    Kind = Tok.getKind();
3284    ConsumeToken();
3285
3286    RHS = ParseExpression();
3287    if (RHS.isInvalid()) {
3288      T.skipToEnd();
3289      return true;
3290    }
3291  }
3292
3293  Diag(EllipsisLoc, getLangOpts().CPlusPlus17
3294                        ? diag::warn_cxx14_compat_fold_expression
3295                        : diag::ext_fold_expression);
3296
3297  T.consumeClose();
3298  return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(),
3299                                  Kind, EllipsisLoc, RHS.get(),
3300                                  T.getCloseLocation());
3301}
3302
3303/// ParseExpressionList - Used for C/C++ (argument-)expression-list.
3304///
3305/// \verbatim
3306///       argument-expression-list:
3307///         assignment-expression
3308///         argument-expression-list , assignment-expression
3309///
3310/// [C++] expression-list:
3311/// [C++]   assignment-expression
3312/// [C++]   expression-list , assignment-expression
3313///
3314/// [C++0x] expression-list:
3315/// [C++0x]   initializer-list
3316///
3317/// [C++0x] initializer-list
3318/// [C++0x]   initializer-clause ...[opt]
3319/// [C++0x]   initializer-list , initializer-clause ...[opt]
3320///
3321/// [C++0x] initializer-clause:
3322/// [C++0x]   assignment-expression
3323/// [C++0x]   braced-init-list
3324/// \endverbatim
3325bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
3326                                 SmallVectorImpl<SourceLocation> &CommaLocs,
3327                                 llvm::function_ref<void()> ExpressionStarts) {
3328  bool SawError = false;
3329  while (1) {
3330    if (ExpressionStarts)
3331      ExpressionStarts();
3332
3333    ExprResult Expr;
3334    if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
3335      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
3336      Expr = ParseBraceInitializer();
3337    } else
3338      Expr = ParseAssignmentExpression();
3339
3340    if (Tok.is(tok::ellipsis))
3341      Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
3342    else if (Tok.is(tok::code_completion)) {
3343      // There's nothing to suggest in here as we parsed a full expression.
3344      // Instead fail and propogate the error since caller might have something
3345      // the suggest, e.g. signature help in function call. Note that this is
3346      // performed before pushing the \p Expr, so that signature help can report
3347      // current argument correctly.
3348      SawError = true;
3349      cutOffParsing();
3350      break;
3351    }
3352    if (Expr.isInvalid()) {
3353      SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
3354      SawError = true;
3355    } else {
3356      Exprs.push_back(Expr.get());
3357    }
3358
3359    if (Tok.isNot(tok::comma))
3360      break;
3361    // Move to the next argument, remember where the comma was.
3362    Token Comma = Tok;
3363    CommaLocs.push_back(ConsumeToken());
3364
3365    checkPotentialAngleBracketDelimiter(Comma);
3366  }
3367  if (SawError) {
3368    // Ensure typos get diagnosed when errors were encountered while parsing the
3369    // expression list.
3370    for (auto &E : Exprs) {
3371      ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
3372      if (Expr.isUsable()) E = Expr.get();
3373    }
3374  }
3375  return SawError;
3376}
3377
3378/// ParseSimpleExpressionList - A simple comma-separated list of expressions,
3379/// used for misc language extensions.
3380///
3381/// \verbatim
3382///       simple-expression-list:
3383///         assignment-expression
3384///         simple-expression-list , assignment-expression
3385/// \endverbatim
3386bool
3387Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
3388                                  SmallVectorImpl<SourceLocation> &CommaLocs) {
3389  while (1) {
3390    ExprResult Expr = ParseAssignmentExpression();
3391    if (Expr.isInvalid())
3392      return true;
3393
3394    Exprs.push_back(Expr.get());
3395
3396    if (Tok.isNot(tok::comma))
3397      return false;
3398
3399    // Move to the next argument, remember where the comma was.
3400    Token Comma = Tok;
3401    CommaLocs.push_back(ConsumeToken());
3402
3403    checkPotentialAngleBracketDelimiter(Comma);
3404  }
3405}
3406
3407/// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
3408///
3409/// \verbatim
3410/// [clang] block-id:
3411/// [clang]   specifier-qualifier-list block-declarator
3412/// \endverbatim
3413void Parser::ParseBlockId(SourceLocation CaretLoc) {
3414  if (Tok.is(tok::code_completion)) {
3415    cutOffParsing();
3416    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
3417    return;
3418  }
3419
3420  // Parse the specifier-qualifier-list piece.
3421  DeclSpec DS(AttrFactory);
3422  ParseSpecifierQualifierList(DS);
3423
3424  // Parse the block-declarator.
3425  Declarator DeclaratorInfo(DS, DeclaratorContext::BlockLiteral);
3426  DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3427  ParseDeclarator(DeclaratorInfo);
3428
3429  MaybeParseGNUAttributes(DeclaratorInfo);
3430
3431  // Inform sema that we are starting a block.
3432  Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
3433}
3434
3435/// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
3436/// like ^(int x){ return x+1; }
3437///
3438/// \verbatim
3439///         block-literal:
3440/// [clang]   '^' block-args[opt] compound-statement
3441/// [clang]   '^' block-id compound-statement
3442/// [clang] block-args:
3443/// [clang]   '(' parameter-list ')'
3444/// \endverbatim
3445ExprResult Parser::ParseBlockLiteralExpression() {
3446  assert(Tok.is(tok::caret) && "block literal starts with ^");
3447  SourceLocation CaretLoc = ConsumeToken();
3448
3449  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3450                                "block literal parsing");
3451
3452  // Enter a scope to hold everything within the block.  This includes the
3453  // argument decls, decls within the compound expression, etc.  This also
3454  // allows determining whether a variable reference inside the block is
3455  // within or outside of the block.
3456  ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3457                                  Scope::CompoundStmtScope | Scope::DeclScope);
3458
3459  // Inform sema that we are starting a block.
3460  Actions.ActOnBlockStart(CaretLoc, getCurScope());
3461
3462  // Parse the return type if present.
3463  DeclSpec DS(AttrFactory);
3464  Declarator ParamInfo(DS, DeclaratorContext::BlockLiteral);
3465  ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3466  // FIXME: Since the return type isn't actually parsed, it can't be used to
3467  // fill ParamInfo with an initial valid range, so do it manually.
3468  ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3469
3470  // If this block has arguments, parse them.  There is no ambiguity here with
3471  // the expression case, because the expression case requires a parameter list.
3472  if (Tok.is(tok::l_paren)) {
3473    ParseParenDeclarator(ParamInfo);
3474    // Parse the pieces after the identifier as if we had "int(...)".
3475    // SetIdentifier sets the source range end, but in this case we're past
3476    // that location.
3477    SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3478    ParamInfo.SetIdentifier(nullptr, CaretLoc);
3479    ParamInfo.SetRangeEnd(Tmp);
3480    if (ParamInfo.isInvalidType()) {
3481      // If there was an error parsing the arguments, they may have
3482      // tried to use ^(x+y) which requires an argument list.  Just
3483      // skip the whole block literal.
3484      Actions.ActOnBlockError(CaretLoc, getCurScope());
3485      return ExprError();
3486    }
3487
3488    MaybeParseGNUAttributes(ParamInfo);
3489
3490    // Inform sema that we are starting a block.
3491    Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3492  } else if (!Tok.is(tok::l_brace)) {
3493    ParseBlockId(CaretLoc);
3494  } else {
3495    // Otherwise, pretend we saw (void).
3496    SourceLocation NoLoc;
3497    ParamInfo.AddTypeInfo(
3498        DeclaratorChunk::getFunction(/*HasProto=*/true,
3499                                     /*IsAmbiguous=*/false,
3500                                     /*RParenLoc=*/NoLoc,
3501                                     /*ArgInfo=*/nullptr,
3502                                     /*NumParams=*/0,
3503                                     /*EllipsisLoc=*/NoLoc,
3504                                     /*RParenLoc=*/NoLoc,
3505                                     /*RefQualifierIsLvalueRef=*/true,
3506                                     /*RefQualifierLoc=*/NoLoc,
3507                                     /*MutableLoc=*/NoLoc, EST_None,
3508                                     /*ESpecRange=*/SourceRange(),
3509                                     /*Exceptions=*/nullptr,
3510                                     /*ExceptionRanges=*/nullptr,
3511                                     /*NumExceptions=*/0,
3512                                     /*NoexceptExpr=*/nullptr,
3513                                     /*ExceptionSpecTokens=*/nullptr,
3514                                     /*DeclsInPrototype=*/None, CaretLoc,
3515                                     CaretLoc, ParamInfo),
3516        CaretLoc);
3517
3518    MaybeParseGNUAttributes(ParamInfo);
3519
3520    // Inform sema that we are starting a block.
3521    Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3522  }
3523
3524
3525  ExprResult Result(true);
3526  if (!Tok.is(tok::l_brace)) {
3527    // Saw something like: ^expr
3528    Diag(Tok, diag::err_expected_expression);
3529    Actions.ActOnBlockError(CaretLoc, getCurScope());
3530    return ExprError();
3531  }
3532
3533  StmtResult Stmt(ParseCompoundStatementBody());
3534  BlockScope.Exit();
3535  if (!Stmt.isInvalid())
3536    Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3537  else
3538    Actions.ActOnBlockError(CaretLoc, getCurScope());
3539  return Result;
3540}
3541
3542/// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3543///
3544///         '__objc_yes'
3545///         '__objc_no'
3546ExprResult Parser::ParseObjCBoolLiteral() {
3547  tok::TokenKind Kind = Tok.getKind();
3548  return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3549}
3550
3551/// Validate availability spec list, emitting diagnostics if necessary. Returns
3552/// true if invalid.
3553static bool CheckAvailabilitySpecList(Parser &P,
3554                                      ArrayRef<AvailabilitySpec> AvailSpecs) {
3555  llvm::SmallSet<StringRef, 4> Platforms;
3556  bool HasOtherPlatformSpec = false;
3557  bool Valid = true;
3558  for (const auto &Spec : AvailSpecs) {
3559    if (Spec.isOtherPlatformSpec()) {
3560      if (HasOtherPlatformSpec) {
3561        P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3562        Valid = false;
3563      }
3564
3565      HasOtherPlatformSpec = true;
3566      continue;
3567    }
3568
3569    bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3570    if (!Inserted) {
3571      // Rule out multiple version specs referring to the same platform.
3572      // For example, we emit an error for:
3573      // @available(macos 10.10, macos 10.11, *)
3574      StringRef Platform = Spec.getPlatform();
3575      P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3576          << Spec.getEndLoc() << Platform;
3577      Valid = false;
3578    }
3579  }
3580
3581  if (!HasOtherPlatformSpec) {
3582    SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3583    P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3584        << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3585    return true;
3586  }
3587
3588  return !Valid;
3589}
3590
3591/// Parse availability query specification.
3592///
3593///  availability-spec:
3594///     '*'
3595///     identifier version-tuple
3596Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3597  if (Tok.is(tok::star)) {
3598    return AvailabilitySpec(ConsumeToken());
3599  } else {
3600    // Parse the platform name.
3601    if (Tok.is(tok::code_completion)) {
3602      cutOffParsing();
3603      Actions.CodeCompleteAvailabilityPlatformName();
3604      return None;
3605    }
3606    if (Tok.isNot(tok::identifier)) {
3607      Diag(Tok, diag::err_avail_query_expected_platform_name);
3608      return None;
3609    }
3610
3611    IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3612    SourceRange VersionRange;
3613    VersionTuple Version = ParseVersionTuple(VersionRange);
3614
3615    if (Version.empty())
3616      return None;
3617
3618    StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3619    StringRef Platform =
3620        AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3621
3622    if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3623      Diag(PlatformIdentifier->Loc,
3624           diag::err_avail_query_unrecognized_platform_name)
3625          << GivenPlatform;
3626      return None;
3627    }
3628
3629    return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3630                            VersionRange.getEnd());
3631  }
3632}
3633
3634ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3635  assert(Tok.is(tok::kw___builtin_available) ||
3636         Tok.isObjCAtKeyword(tok::objc_available));
3637
3638  // Eat the available or __builtin_available.
3639  ConsumeToken();
3640
3641  BalancedDelimiterTracker Parens(*this, tok::l_paren);
3642  if (Parens.expectAndConsume())
3643    return ExprError();
3644
3645  SmallVector<AvailabilitySpec, 4> AvailSpecs;
3646  bool HasError = false;
3647  while (true) {
3648    Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3649    if (!Spec)
3650      HasError = true;
3651    else
3652      AvailSpecs.push_back(*Spec);
3653
3654    if (!TryConsumeToken(tok::comma))
3655      break;
3656  }
3657
3658  if (HasError) {
3659    SkipUntil(tok::r_paren, StopAtSemi);
3660    return ExprError();
3661  }
3662
3663  CheckAvailabilitySpecList(*this, AvailSpecs);
3664
3665  if (Parens.consumeClose())
3666    return ExprError();
3667
3668  return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3669                                                Parens.getCloseLocation());
3670}
3671