1//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "clang/Driver/Driver.h"
10#include "InputInfo.h"
11#include "ToolChains/AIX.h"
12#include "ToolChains/AMDGPU.h"
13#include "ToolChains/AMDGPUOpenMP.h"
14#include "ToolChains/AVR.h"
15#include "ToolChains/Ananas.h"
16#include "ToolChains/BareMetal.h"
17#include "ToolChains/Clang.h"
18#include "ToolChains/CloudABI.h"
19#include "ToolChains/Contiki.h"
20#include "ToolChains/CrossWindows.h"
21#include "ToolChains/Cuda.h"
22#include "ToolChains/Darwin.h"
23#include "ToolChains/DragonFly.h"
24#include "ToolChains/FreeBSD.h"
25#include "ToolChains/Fuchsia.h"
26#include "ToolChains/Gnu.h"
27#include "ToolChains/HIP.h"
28#include "ToolChains/Haiku.h"
29#include "ToolChains/Hexagon.h"
30#include "ToolChains/Hurd.h"
31#include "ToolChains/Lanai.h"
32#include "ToolChains/Linux.h"
33#include "ToolChains/MSP430.h"
34#include "ToolChains/MSVC.h"
35#include "ToolChains/MinGW.h"
36#include "ToolChains/Minix.h"
37#include "ToolChains/MipsLinux.h"
38#include "ToolChains/Myriad.h"
39#include "ToolChains/NaCl.h"
40#include "ToolChains/NetBSD.h"
41#include "ToolChains/OpenBSD.h"
42#include "ToolChains/PPCLinux.h"
43#include "ToolChains/PS4CPU.h"
44#include "ToolChains/RISCVToolchain.h"
45#include "ToolChains/Solaris.h"
46#include "ToolChains/TCE.h"
47#include "ToolChains/VEToolchain.h"
48#include "ToolChains/WebAssembly.h"
49#include "ToolChains/XCore.h"
50#include "ToolChains/ZOS.h"
51#include "clang/Basic/TargetID.h"
52#include "clang/Basic/Version.h"
53#include "clang/Config/config.h"
54#include "clang/Driver/Action.h"
55#include "clang/Driver/Compilation.h"
56#include "clang/Driver/DriverDiagnostic.h"
57#include "clang/Driver/Job.h"
58#include "clang/Driver/Options.h"
59#include "clang/Driver/SanitizerArgs.h"
60#include "clang/Driver/Tool.h"
61#include "clang/Driver/ToolChain.h"
62#include "llvm/ADT/ArrayRef.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallSet.h"
65#include "llvm/ADT/StringExtras.h"
66#include "llvm/ADT/StringSet.h"
67#include "llvm/ADT/StringSwitch.h"
68#include "llvm/Config/llvm-config.h"
69#include "llvm/Option/Arg.h"
70#include "llvm/Option/ArgList.h"
71#include "llvm/Option/OptSpecifier.h"
72#include "llvm/Option/OptTable.h"
73#include "llvm/Option/Option.h"
74#include "llvm/Support/CommandLine.h"
75#include "llvm/Support/ErrorHandling.h"
76#include "llvm/Support/ExitCodes.h"
77#include "llvm/Support/FileSystem.h"
78#include "llvm/Support/FormatVariadic.h"
79#include "llvm/Support/Host.h"
80#include "llvm/Support/MD5.h"
81#include "llvm/Support/Path.h"
82#include "llvm/Support/PrettyStackTrace.h"
83#include "llvm/Support/Process.h"
84#include "llvm/Support/Program.h"
85#include "llvm/Support/StringSaver.h"
86#include "llvm/Support/TargetRegistry.h"
87#include "llvm/Support/VirtualFileSystem.h"
88#include "llvm/Support/raw_ostream.h"
89#include <map>
90#include <memory>
91#include <utility>
92#if LLVM_ON_UNIX
93#include <unistd.h> // getpid
94#endif
95
96using namespace clang::driver;
97using namespace clang;
98using namespace llvm::opt;
99
100static llvm::Triple getHIPOffloadTargetTriple() {
101  static const llvm::Triple T("amdgcn-amd-amdhsa");
102  return T;
103}
104
105// static
106std::string Driver::GetResourcesPath(StringRef BinaryPath,
107                                     StringRef CustomResourceDir) {
108  // Since the resource directory is embedded in the module hash, it's important
109  // that all places that need it call this function, so that they get the
110  // exact same string ("a/../b/" and "b/" get different hashes, for example).
111
112  // Dir is bin/ or lib/, depending on where BinaryPath is.
113  std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
114
115  SmallString<128> P(Dir);
116  if (CustomResourceDir != "") {
117    llvm::sys::path::append(P, CustomResourceDir);
118  } else {
119    // On Windows, libclang.dll is in bin/.
120    // On non-Windows, libclang.so/.dylib is in lib/.
121    // With a static-library build of libclang, LibClangPath will contain the
122    // path of the embedding binary, which for LLVM binaries will be in bin/.
123    // ../lib gets us to lib/ in both cases.
124    P = llvm::sys::path::parent_path(Dir);
125    llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
126                            CLANG_VERSION_STRING);
127  }
128
129  return std::string(P.str());
130}
131
132Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
133               DiagnosticsEngine &Diags, std::string Title,
134               IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
135    : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
136      SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
137      ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
138      DriverTitle(Title), CCPrintStatReportFilename(), CCPrintOptionsFilename(),
139      CCPrintHeadersFilename(), CCLogDiagnosticsFilename(),
140      CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false),
141      CCLogDiagnostics(false), CCGenDiagnostics(false),
142      CCPrintProcessStats(false), TargetTriple(TargetTriple),
143      CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
144      GenReproducer(false), SuppressMissingInputWarning(false) {
145  // Provide a sane fallback if no VFS is specified.
146  if (!this->VFS)
147    this->VFS = llvm::vfs::getRealFileSystem();
148
149  Name = std::string(llvm::sys::path::filename(ClangExecutable));
150  Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
151  InstalledDir = Dir; // Provide a sensible default installed dir.
152
153  if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
154    // Prepend InstalledDir if SysRoot is relative
155    SmallString<128> P(InstalledDir);
156    llvm::sys::path::append(P, SysRoot);
157    SysRoot = std::string(P);
158  }
159
160#if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
161  SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
162#endif
163#if defined(CLANG_CONFIG_FILE_USER_DIR)
164  UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
165#endif
166
167  // Compute the path to the resource directory.
168  ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
169}
170
171void Driver::ParseDriverMode(StringRef ProgramName,
172                             ArrayRef<const char *> Args) {
173  if (ClangNameParts.isEmpty())
174    ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName);
175  setDriverModeFromOption(ClangNameParts.DriverMode);
176
177  for (const char *ArgPtr : Args) {
178    // Ignore nullptrs, they are the response file's EOL markers.
179    if (ArgPtr == nullptr)
180      continue;
181    const StringRef Arg = ArgPtr;
182    setDriverModeFromOption(Arg);
183  }
184}
185
186void Driver::setDriverModeFromOption(StringRef Opt) {
187  const std::string OptName =
188      getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
189  if (!Opt.startswith(OptName))
190    return;
191  StringRef Value = Opt.drop_front(OptName.size());
192
193  if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
194                   .Case("gcc", GCCMode)
195                   .Case("g++", GXXMode)
196                   .Case("cpp", CPPMode)
197                   .Case("cl", CLMode)
198                   .Case("flang", FlangMode)
199                   .Default(None))
200    Mode = *M;
201  else
202    Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
203}
204
205InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
206                                     bool IsClCompatMode,
207                                     bool &ContainsError) {
208  llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
209  ContainsError = false;
210
211  unsigned IncludedFlagsBitmask;
212  unsigned ExcludedFlagsBitmask;
213  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
214      getIncludeExcludeOptionFlagMasks(IsClCompatMode);
215
216  // Make sure that Flang-only options don't pollute the Clang output
217  // TODO: Make sure that Clang-only options don't pollute Flang output
218  if (!IsFlangMode())
219    ExcludedFlagsBitmask |= options::FlangOnlyOption;
220
221  unsigned MissingArgIndex, MissingArgCount;
222  InputArgList Args =
223      getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
224                          IncludedFlagsBitmask, ExcludedFlagsBitmask);
225
226  // Check for missing argument error.
227  if (MissingArgCount) {
228    Diag(diag::err_drv_missing_argument)
229        << Args.getArgString(MissingArgIndex) << MissingArgCount;
230    ContainsError |=
231        Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
232                                 SourceLocation()) > DiagnosticsEngine::Warning;
233  }
234
235  // Check for unsupported options.
236  for (const Arg *A : Args) {
237    if (A->getOption().hasFlag(options::Unsupported)) {
238      unsigned DiagID;
239      auto ArgString = A->getAsString(Args);
240      std::string Nearest;
241      if (getOpts().findNearest(
242            ArgString, Nearest, IncludedFlagsBitmask,
243            ExcludedFlagsBitmask | options::Unsupported) > 1) {
244        DiagID = diag::err_drv_unsupported_opt;
245        Diag(DiagID) << ArgString;
246      } else {
247        DiagID = diag::err_drv_unsupported_opt_with_suggestion;
248        Diag(DiagID) << ArgString << Nearest;
249      }
250      ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
251                       DiagnosticsEngine::Warning;
252      continue;
253    }
254
255    // Warn about -mcpu= without an argument.
256    if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
257      Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
258      ContainsError |= Diags.getDiagnosticLevel(
259                           diag::warn_drv_empty_joined_argument,
260                           SourceLocation()) > DiagnosticsEngine::Warning;
261    }
262  }
263
264  for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
265    unsigned DiagID;
266    auto ArgString = A->getAsString(Args);
267    std::string Nearest;
268    if (getOpts().findNearest(
269          ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
270      DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
271                          : diag::err_drv_unknown_argument;
272      Diags.Report(DiagID) << ArgString;
273    } else {
274      DiagID = IsCLMode()
275                   ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
276                   : diag::err_drv_unknown_argument_with_suggestion;
277      Diags.Report(DiagID) << ArgString << Nearest;
278    }
279    ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
280                     DiagnosticsEngine::Warning;
281  }
282
283  return Args;
284}
285
286// Determine which compilation mode we are in. We look for options which
287// affect the phase, starting with the earliest phases, and record which
288// option we used to determine the final phase.
289phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
290                                 Arg **FinalPhaseArg) const {
291  Arg *PhaseArg = nullptr;
292  phases::ID FinalPhase;
293
294  // -{E,EP,P,M,MM} only run the preprocessor.
295  if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
296      (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
297      (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
298      (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
299    FinalPhase = phases::Preprocess;
300
301  // --precompile only runs up to precompilation.
302  } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
303    FinalPhase = phases::Precompile;
304
305  // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
306  } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
307             (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
308             (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
309             (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
310             (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
311             (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
312             (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
313             (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
314             (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
315    FinalPhase = phases::Compile;
316
317  // -S only runs up to the backend.
318  } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
319    FinalPhase = phases::Backend;
320
321  // -c compilation only runs up to the assembler.
322  } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
323    FinalPhase = phases::Assemble;
324
325  // Otherwise do everything.
326  } else
327    FinalPhase = phases::Link;
328
329  if (FinalPhaseArg)
330    *FinalPhaseArg = PhaseArg;
331
332  return FinalPhase;
333}
334
335static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
336                         StringRef Value, bool Claim = true) {
337  Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
338                   Args.getBaseArgs().MakeIndex(Value), Value.data());
339  Args.AddSynthesizedArg(A);
340  if (Claim)
341    A->claim();
342  return A;
343}
344
345DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
346  const llvm::opt::OptTable &Opts = getOpts();
347  DerivedArgList *DAL = new DerivedArgList(Args);
348
349  bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
350  bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
351  bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
352  for (Arg *A : Args) {
353    // Unfortunately, we have to parse some forwarding options (-Xassembler,
354    // -Xlinker, -Xpreprocessor) because we either integrate their functionality
355    // (assembler and preprocessor), or bypass a previous driver ('collect2').
356
357    // Rewrite linker options, to replace --no-demangle with a custom internal
358    // option.
359    if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
360         A->getOption().matches(options::OPT_Xlinker)) &&
361        A->containsValue("--no-demangle")) {
362      // Add the rewritten no-demangle argument.
363      DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
364
365      // Add the remaining values as Xlinker arguments.
366      for (StringRef Val : A->getValues())
367        if (Val != "--no-demangle")
368          DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
369
370      continue;
371    }
372
373    // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
374    // some build systems. We don't try to be complete here because we don't
375    // care to encourage this usage model.
376    if (A->getOption().matches(options::OPT_Wp_COMMA) &&
377        (A->getValue(0) == StringRef("-MD") ||
378         A->getValue(0) == StringRef("-MMD"))) {
379      // Rewrite to -MD/-MMD along with -MF.
380      if (A->getValue(0) == StringRef("-MD"))
381        DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
382      else
383        DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
384      if (A->getNumValues() == 2)
385        DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
386      continue;
387    }
388
389    // Rewrite reserved library names.
390    if (A->getOption().matches(options::OPT_l)) {
391      StringRef Value = A->getValue();
392
393      // Rewrite unless -nostdlib is present.
394      if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
395          Value == "stdc++") {
396        DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
397        continue;
398      }
399
400      // Rewrite unconditionally.
401      if (Value == "cc_kext") {
402        DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
403        continue;
404      }
405    }
406
407    // Pick up inputs via the -- option.
408    if (A->getOption().matches(options::OPT__DASH_DASH)) {
409      A->claim();
410      for (StringRef Val : A->getValues())
411        DAL->append(MakeInputArg(*DAL, Opts, Val, false));
412      continue;
413    }
414
415    DAL->append(A);
416  }
417
418  // Enforce -static if -miamcu is present.
419  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
420    DAL->AddFlagArg(0, Opts.getOption(options::OPT_static));
421
422// Add a default value of -mlinker-version=, if one was given and the user
423// didn't specify one.
424#if defined(HOST_LINK_VERSION)
425  if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
426      strlen(HOST_LINK_VERSION) > 0) {
427    DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
428                      HOST_LINK_VERSION);
429    DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
430  }
431#endif
432
433  return DAL;
434}
435
436/// Compute target triple from args.
437///
438/// This routine provides the logic to compute a target triple from various
439/// args passed to the driver and the default triple string.
440static llvm::Triple computeTargetTriple(const Driver &D,
441                                        StringRef TargetTriple,
442                                        const ArgList &Args,
443                                        StringRef DarwinArchName = "") {
444  // FIXME: Already done in Compilation *Driver::BuildCompilation
445  if (const Arg *A = Args.getLastArg(options::OPT_target))
446    TargetTriple = A->getValue();
447
448  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
449
450  // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
451  // -gnu* only, and we can not change this, so we have to detect that case as
452  // being the Hurd OS.
453  if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
454      TargetTriple.find("-pc-gnu") != StringRef::npos)
455    Target.setOSName("hurd");
456
457  // Handle Apple-specific options available here.
458  if (Target.isOSBinFormatMachO()) {
459    // If an explicit Darwin arch name is given, that trumps all.
460    if (!DarwinArchName.empty()) {
461      tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
462      return Target;
463    }
464
465    // Handle the Darwin '-arch' flag.
466    if (Arg *A = Args.getLastArg(options::OPT_arch)) {
467      StringRef ArchName = A->getValue();
468      tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
469    }
470  }
471
472  // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
473  // '-mbig-endian'/'-EB'.
474  if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
475                               options::OPT_mbig_endian)) {
476    if (A->getOption().matches(options::OPT_mlittle_endian)) {
477      llvm::Triple LE = Target.getLittleEndianArchVariant();
478      if (LE.getArch() != llvm::Triple::UnknownArch)
479        Target = std::move(LE);
480    } else {
481      llvm::Triple BE = Target.getBigEndianArchVariant();
482      if (BE.getArch() != llvm::Triple::UnknownArch)
483        Target = std::move(BE);
484    }
485  }
486
487  // Skip further flag support on OSes which don't support '-m32' or '-m64'.
488  if (Target.getArch() == llvm::Triple::tce ||
489      Target.getOS() == llvm::Triple::Minix)
490    return Target;
491
492  // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
493  if (Target.isOSAIX()) {
494    if (Optional<std::string> ObjectModeValue =
495            llvm::sys::Process::GetEnv("OBJECT_MODE")) {
496      StringRef ObjectMode = *ObjectModeValue;
497      llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
498
499      if (ObjectMode.equals("64")) {
500        AT = Target.get64BitArchVariant().getArch();
501      } else if (ObjectMode.equals("32")) {
502        AT = Target.get32BitArchVariant().getArch();
503      } else {
504        D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
505      }
506
507      if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
508        Target.setArch(AT);
509    }
510  }
511
512  // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
513  Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
514                           options::OPT_m32, options::OPT_m16);
515  if (A) {
516    llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
517
518    if (A->getOption().matches(options::OPT_m64)) {
519      AT = Target.get64BitArchVariant().getArch();
520      if (Target.getEnvironment() == llvm::Triple::GNUX32)
521        Target.setEnvironment(llvm::Triple::GNU);
522    } else if (A->getOption().matches(options::OPT_mx32) &&
523               Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
524      AT = llvm::Triple::x86_64;
525      Target.setEnvironment(llvm::Triple::GNUX32);
526    } else if (A->getOption().matches(options::OPT_m32)) {
527      AT = Target.get32BitArchVariant().getArch();
528      if (Target.getEnvironment() == llvm::Triple::GNUX32)
529        Target.setEnvironment(llvm::Triple::GNU);
530    } else if (A->getOption().matches(options::OPT_m16) &&
531               Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
532      AT = llvm::Triple::x86;
533      Target.setEnvironment(llvm::Triple::CODE16);
534    }
535
536    if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
537      Target.setArch(AT);
538  }
539
540  // Handle -miamcu flag.
541  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
542    if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
543      D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
544                                                       << Target.str();
545
546    if (A && !A->getOption().matches(options::OPT_m32))
547      D.Diag(diag::err_drv_argument_not_allowed_with)
548          << "-miamcu" << A->getBaseArg().getAsString(Args);
549
550    Target.setArch(llvm::Triple::x86);
551    Target.setArchName("i586");
552    Target.setEnvironment(llvm::Triple::UnknownEnvironment);
553    Target.setEnvironmentName("");
554    Target.setOS(llvm::Triple::ELFIAMCU);
555    Target.setVendor(llvm::Triple::UnknownVendor);
556    Target.setVendorName("intel");
557  }
558
559  // If target is MIPS adjust the target triple
560  // accordingly to provided ABI name.
561  A = Args.getLastArg(options::OPT_mabi_EQ);
562  if (A && Target.isMIPS()) {
563    StringRef ABIName = A->getValue();
564    if (ABIName == "32") {
565      Target = Target.get32BitArchVariant();
566      if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
567          Target.getEnvironment() == llvm::Triple::GNUABIN32)
568        Target.setEnvironment(llvm::Triple::GNU);
569    } else if (ABIName == "n32") {
570      Target = Target.get64BitArchVariant();
571      if (Target.getEnvironment() == llvm::Triple::GNU ||
572          Target.getEnvironment() == llvm::Triple::GNUABI64)
573        Target.setEnvironment(llvm::Triple::GNUABIN32);
574    } else if (ABIName == "64") {
575      Target = Target.get64BitArchVariant();
576      if (Target.getEnvironment() == llvm::Triple::GNU ||
577          Target.getEnvironment() == llvm::Triple::GNUABIN32)
578        Target.setEnvironment(llvm::Triple::GNUABI64);
579    }
580  }
581
582  // If target is RISC-V adjust the target triple according to
583  // provided architecture name
584  A = Args.getLastArg(options::OPT_march_EQ);
585  if (A && Target.isRISCV()) {
586    StringRef ArchName = A->getValue();
587    if (ArchName.startswith_lower("rv32"))
588      Target.setArch(llvm::Triple::riscv32);
589    else if (ArchName.startswith_lower("rv64"))
590      Target.setArch(llvm::Triple::riscv64);
591  }
592
593  return Target;
594}
595
596// Parse the LTO options and record the type of LTO compilation
597// based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
598// option occurs last.
599static llvm::Optional<driver::LTOKind>
600parseLTOMode(Driver &D, const llvm::opt::ArgList &Args, OptSpecifier OptPos,
601             OptSpecifier OptNeg, OptSpecifier OptEq, bool IsOffload) {
602  driver::LTOKind LTOMode = LTOK_None;
603  // Non-offload LTO allows -flto=auto and -flto=jobserver. Offload LTO does
604  // not support those options.
605  if (!Args.hasFlag(OptPos, OptEq, OptNeg, false) &&
606      (IsOffload ||
607       (!Args.hasFlag(options::OPT_flto_EQ_auto, options::OPT_fno_lto, false) &&
608        !Args.hasFlag(options::OPT_flto_EQ_jobserver, options::OPT_fno_lto,
609                      false))))
610    return None;
611
612  StringRef LTOName("full");
613
614  const Arg *A = Args.getLastArg(OptEq);
615  if (A)
616    LTOName = A->getValue();
617
618  LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
619                .Case("full", LTOK_Full)
620                .Case("thin", LTOK_Thin)
621                .Default(LTOK_Unknown);
622
623  if (LTOMode == LTOK_Unknown) {
624    assert(A);
625    D.Diag(diag::err_drv_unsupported_option_argument)
626        << A->getOption().getName() << A->getValue();
627    return None;
628  }
629  return LTOMode;
630}
631
632// Parse the LTO options.
633void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
634  LTOMode = LTOK_None;
635  if (auto M = parseLTOMode(*this, Args, options::OPT_flto,
636                            options::OPT_fno_lto, options::OPT_flto_EQ,
637                            /*IsOffload=*/false))
638    LTOMode = M.getValue();
639
640  OffloadLTOMode = LTOK_None;
641  if (auto M = parseLTOMode(*this, Args, options::OPT_foffload_lto,
642                            options::OPT_fno_offload_lto,
643                            options::OPT_foffload_lto_EQ,
644                            /*IsOffload=*/true))
645    OffloadLTOMode = M.getValue();
646}
647
648/// Compute the desired OpenMP runtime from the flags provided.
649Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
650  StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
651
652  const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
653  if (A)
654    RuntimeName = A->getValue();
655
656  auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
657                .Case("libomp", OMPRT_OMP)
658                .Case("libgomp", OMPRT_GOMP)
659                .Case("libiomp5", OMPRT_IOMP5)
660                .Default(OMPRT_Unknown);
661
662  if (RT == OMPRT_Unknown) {
663    if (A)
664      Diag(diag::err_drv_unsupported_option_argument)
665          << A->getOption().getName() << A->getValue();
666    else
667      // FIXME: We could use a nicer diagnostic here.
668      Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
669  }
670
671  return RT;
672}
673
674void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
675                                              InputList &Inputs) {
676
677  //
678  // CUDA/HIP
679  //
680  // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
681  // or HIP type. However, mixed CUDA/HIP compilation is not supported.
682  bool IsCuda =
683      llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
684        return types::isCuda(I.first);
685      });
686  bool IsHIP =
687      llvm::any_of(Inputs,
688                   [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
689                     return types::isHIP(I.first);
690                   }) ||
691      C.getInputArgs().hasArg(options::OPT_hip_link);
692  if (IsCuda && IsHIP) {
693    Diag(clang::diag::err_drv_mix_cuda_hip);
694    return;
695  }
696  if (IsCuda) {
697    const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
698    const llvm::Triple &HostTriple = HostTC->getTriple();
699    StringRef DeviceTripleStr;
700    auto OFK = Action::OFK_Cuda;
701    DeviceTripleStr =
702        HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
703    llvm::Triple CudaTriple(DeviceTripleStr);
704    // Use the CUDA and host triples as the key into the ToolChains map,
705    // because the device toolchain we create depends on both.
706    auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
707    if (!CudaTC) {
708      CudaTC = std::make_unique<toolchains::CudaToolChain>(
709          *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
710    }
711    C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
712  } else if (IsHIP) {
713    const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
714    const llvm::Triple &HostTriple = HostTC->getTriple();
715    auto OFK = Action::OFK_HIP;
716    llvm::Triple HIPTriple = getHIPOffloadTargetTriple();
717    // Use the HIP and host triples as the key into the ToolChains map,
718    // because the device toolchain we create depends on both.
719    auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
720    if (!HIPTC) {
721      HIPTC = std::make_unique<toolchains::HIPToolChain>(
722          *this, HIPTriple, *HostTC, C.getInputArgs());
723    }
724    C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
725  }
726
727  //
728  // OpenMP
729  //
730  // We need to generate an OpenMP toolchain if the user specified targets with
731  // the -fopenmp-targets option.
732  if (Arg *OpenMPTargets =
733          C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
734    if (OpenMPTargets->getNumValues()) {
735      // We expect that -fopenmp-targets is always used in conjunction with the
736      // option -fopenmp specifying a valid runtime with offloading support,
737      // i.e. libomp or libiomp.
738      bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
739          options::OPT_fopenmp, options::OPT_fopenmp_EQ,
740          options::OPT_fno_openmp, false);
741      if (HasValidOpenMPRuntime) {
742        OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
743        HasValidOpenMPRuntime =
744            OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
745      }
746
747      if (HasValidOpenMPRuntime) {
748        llvm::StringMap<const char *> FoundNormalizedTriples;
749        for (const char *Val : OpenMPTargets->getValues()) {
750          llvm::Triple TT(Val);
751          std::string NormalizedName = TT.normalize();
752
753          // Make sure we don't have a duplicate triple.
754          auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
755          if (Duplicate != FoundNormalizedTriples.end()) {
756            Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
757                << Val << Duplicate->second;
758            continue;
759          }
760
761          // Store the current triple so that we can check for duplicates in the
762          // following iterations.
763          FoundNormalizedTriples[NormalizedName] = Val;
764
765          // If the specified target is invalid, emit a diagnostic.
766          if (TT.getArch() == llvm::Triple::UnknownArch)
767            Diag(clang::diag::err_drv_invalid_omp_target) << Val;
768          else {
769            const ToolChain *TC;
770            // Device toolchains have to be selected differently. They pair host
771            // and device in their implementation.
772            if (TT.isNVPTX() || TT.isAMDGCN()) {
773              const ToolChain *HostTC =
774                  C.getSingleOffloadToolChain<Action::OFK_Host>();
775              assert(HostTC && "Host toolchain should be always defined.");
776              auto &DeviceTC =
777                  ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
778              if (!DeviceTC) {
779                if (TT.isNVPTX())
780                  DeviceTC = std::make_unique<toolchains::CudaToolChain>(
781                      *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
782                else if (TT.isAMDGCN())
783                  DeviceTC =
784                      std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
785                          *this, TT, *HostTC, C.getInputArgs());
786                else
787                  assert(DeviceTC && "Device toolchain not defined.");
788              }
789
790              TC = DeviceTC.get();
791            } else
792              TC = &getToolChain(C.getInputArgs(), TT);
793            C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
794          }
795        }
796      } else
797        Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
798    } else
799      Diag(clang::diag::warn_drv_empty_joined_argument)
800          << OpenMPTargets->getAsString(C.getInputArgs());
801  }
802
803  //
804  // TODO: Add support for other offloading programming models here.
805  //
806}
807
808/// Looks the given directories for the specified file.
809///
810/// \param[out] FilePath File path, if the file was found.
811/// \param[in]  Dirs Directories used for the search.
812/// \param[in]  FileName Name of the file to search for.
813/// \return True if file was found.
814///
815/// Looks for file specified by FileName sequentially in directories specified
816/// by Dirs.
817///
818static bool searchForFile(SmallVectorImpl<char> &FilePath,
819                          ArrayRef<StringRef> Dirs, StringRef FileName) {
820  SmallString<128> WPath;
821  for (const StringRef &Dir : Dirs) {
822    if (Dir.empty())
823      continue;
824    WPath.clear();
825    llvm::sys::path::append(WPath, Dir, FileName);
826    llvm::sys::path::native(WPath);
827    if (llvm::sys::fs::is_regular_file(WPath)) {
828      FilePath = std::move(WPath);
829      return true;
830    }
831  }
832  return false;
833}
834
835bool Driver::readConfigFile(StringRef FileName) {
836  // Try reading the given file.
837  SmallVector<const char *, 32> NewCfgArgs;
838  if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
839    Diag(diag::err_drv_cannot_read_config_file) << FileName;
840    return true;
841  }
842
843  // Read options from config file.
844  llvm::SmallString<128> CfgFileName(FileName);
845  llvm::sys::path::native(CfgFileName);
846  ConfigFile = std::string(CfgFileName);
847  bool ContainErrors;
848  CfgOptions = std::make_unique<InputArgList>(
849      ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
850  if (ContainErrors) {
851    CfgOptions.reset();
852    return true;
853  }
854
855  if (CfgOptions->hasArg(options::OPT_config)) {
856    CfgOptions.reset();
857    Diag(diag::err_drv_nested_config_file);
858    return true;
859  }
860
861  // Claim all arguments that come from a configuration file so that the driver
862  // does not warn on any that is unused.
863  for (Arg *A : *CfgOptions)
864    A->claim();
865  return false;
866}
867
868bool Driver::loadConfigFile() {
869  std::string CfgFileName;
870  bool FileSpecifiedExplicitly = false;
871
872  // Process options that change search path for config files.
873  if (CLOptions) {
874    if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
875      SmallString<128> CfgDir;
876      CfgDir.append(
877          CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
878      if (!CfgDir.empty()) {
879        if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
880          SystemConfigDir.clear();
881        else
882          SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
883      }
884    }
885    if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
886      SmallString<128> CfgDir;
887      CfgDir.append(
888          CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
889      if (!CfgDir.empty()) {
890        if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
891          UserConfigDir.clear();
892        else
893          UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
894      }
895    }
896  }
897
898  // First try to find config file specified in command line.
899  if (CLOptions) {
900    std::vector<std::string> ConfigFiles =
901        CLOptions->getAllArgValues(options::OPT_config);
902    if (ConfigFiles.size() > 1) {
903      if (!std::all_of(ConfigFiles.begin(), ConfigFiles.end(),
904                       [ConfigFiles](const std::string &s) {
905                         return s == ConfigFiles[0];
906                       })) {
907        Diag(diag::err_drv_duplicate_config);
908        return true;
909      }
910    }
911
912    if (!ConfigFiles.empty()) {
913      CfgFileName = ConfigFiles.front();
914      assert(!CfgFileName.empty());
915
916      // If argument contains directory separator, treat it as a path to
917      // configuration file.
918      if (llvm::sys::path::has_parent_path(CfgFileName)) {
919        SmallString<128> CfgFilePath;
920        if (llvm::sys::path::is_relative(CfgFileName))
921          llvm::sys::fs::current_path(CfgFilePath);
922        llvm::sys::path::append(CfgFilePath, CfgFileName);
923        if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
924          Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
925          return true;
926        }
927        return readConfigFile(CfgFilePath);
928      }
929
930      FileSpecifiedExplicitly = true;
931    }
932  }
933
934  // If config file is not specified explicitly, try to deduce configuration
935  // from executable name. For instance, an executable 'armv7l-clang' will
936  // search for config file 'armv7l-clang.cfg'.
937  if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
938    CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
939
940  if (CfgFileName.empty())
941    return false;
942
943  // Determine architecture part of the file name, if it is present.
944  StringRef CfgFileArch = CfgFileName;
945  size_t ArchPrefixLen = CfgFileArch.find('-');
946  if (ArchPrefixLen == StringRef::npos)
947    ArchPrefixLen = CfgFileArch.size();
948  llvm::Triple CfgTriple;
949  CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
950  CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
951  if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
952    ArchPrefixLen = 0;
953
954  if (!StringRef(CfgFileName).endswith(".cfg"))
955    CfgFileName += ".cfg";
956
957  // If config file starts with architecture name and command line options
958  // redefine architecture (with options like -m32 -LE etc), try finding new
959  // config file with that architecture.
960  SmallString<128> FixedConfigFile;
961  size_t FixedArchPrefixLen = 0;
962  if (ArchPrefixLen) {
963    // Get architecture name from config file name like 'i386.cfg' or
964    // 'armv7l-clang.cfg'.
965    // Check if command line options changes effective triple.
966    llvm::Triple EffectiveTriple = computeTargetTriple(*this,
967                                             CfgTriple.getTriple(), *CLOptions);
968    if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
969      FixedConfigFile = EffectiveTriple.getArchName();
970      FixedArchPrefixLen = FixedConfigFile.size();
971      // Append the rest of original file name so that file name transforms
972      // like: i386-clang.cfg -> x86_64-clang.cfg.
973      if (ArchPrefixLen < CfgFileName.size())
974        FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
975    }
976  }
977
978  // Prepare list of directories where config file is searched for.
979  StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
980
981  // Try to find config file. First try file with corrected architecture.
982  llvm::SmallString<128> CfgFilePath;
983  if (!FixedConfigFile.empty()) {
984    if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
985      return readConfigFile(CfgFilePath);
986    // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
987    FixedConfigFile.resize(FixedArchPrefixLen);
988    FixedConfigFile.append(".cfg");
989    if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
990      return readConfigFile(CfgFilePath);
991  }
992
993  // Then try original file name.
994  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
995    return readConfigFile(CfgFilePath);
996
997  // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
998  if (!ClangNameParts.ModeSuffix.empty() &&
999      !ClangNameParts.TargetPrefix.empty()) {
1000    CfgFileName.assign(ClangNameParts.TargetPrefix);
1001    CfgFileName.append(".cfg");
1002    if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
1003      return readConfigFile(CfgFilePath);
1004  }
1005
1006  // Report error but only if config file was specified explicitly, by option
1007  // --config. If it was deduced from executable name, it is not an error.
1008  if (FileSpecifiedExplicitly) {
1009    Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1010    for (const StringRef &SearchDir : CfgFileSearchDirs)
1011      if (!SearchDir.empty())
1012        Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1013    return true;
1014  }
1015
1016  return false;
1017}
1018
1019Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1020  llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1021
1022  // FIXME: Handle environment options which affect driver behavior, somewhere
1023  // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1024
1025  // We look for the driver mode option early, because the mode can affect
1026  // how other options are parsed.
1027  ParseDriverMode(ClangExecutable, ArgList.slice(1));
1028
1029  // FIXME: What are we going to do with -V and -b?
1030
1031  // Arguments specified in command line.
1032  bool ContainsError;
1033  CLOptions = std::make_unique<InputArgList>(
1034      ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
1035
1036  // Try parsing configuration file.
1037  if (!ContainsError)
1038    ContainsError = loadConfigFile();
1039  bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1040
1041  // All arguments, from both config file and command line.
1042  InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1043                                              : std::move(*CLOptions));
1044
1045  // The args for config files or /clang: flags belong to different InputArgList
1046  // objects than Args. This copies an Arg from one of those other InputArgLists
1047  // to the ownership of Args.
1048  auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
1049    unsigned Index = Args.MakeIndex(Opt->getSpelling());
1050    Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
1051                                   Index, BaseArg);
1052    Copy->getValues() = Opt->getValues();
1053    if (Opt->isClaimed())
1054      Copy->claim();
1055    Copy->setOwnsValues(Opt->getOwnsValues());
1056    Opt->setOwnsValues(false);
1057    Args.append(Copy);
1058  };
1059
1060  if (HasConfigFile)
1061    for (auto *Opt : *CLOptions) {
1062      if (Opt->getOption().matches(options::OPT_config))
1063        continue;
1064      const Arg *BaseArg = &Opt->getBaseArg();
1065      if (BaseArg == Opt)
1066        BaseArg = nullptr;
1067      appendOneArg(Opt, BaseArg);
1068    }
1069
1070  // In CL mode, look for any pass-through arguments
1071  if (IsCLMode() && !ContainsError) {
1072    SmallVector<const char *, 16> CLModePassThroughArgList;
1073    for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1074      A->claim();
1075      CLModePassThroughArgList.push_back(A->getValue());
1076    }
1077
1078    if (!CLModePassThroughArgList.empty()) {
1079      // Parse any pass through args using default clang processing rather
1080      // than clang-cl processing.
1081      auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1082          ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1083
1084      if (!ContainsError)
1085        for (auto *Opt : *CLModePassThroughOptions) {
1086          appendOneArg(Opt, nullptr);
1087        }
1088    }
1089  }
1090
1091  // Check for working directory option before accessing any files
1092  if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1093    if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1094      Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1095
1096  // FIXME: This stuff needs to go into the Compilation, not the driver.
1097  bool CCCPrintPhases;
1098
1099  // Silence driver warnings if requested
1100  Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1101
1102  // -no-canonical-prefixes is used very early in main.
1103  Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1104
1105  // f(no-)integated-cc1 is also used very early in main.
1106  Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1107  Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1108
1109  // Ignore -pipe.
1110  Args.ClaimAllArgs(options::OPT_pipe);
1111
1112  // Extract -ccc args.
1113  //
1114  // FIXME: We need to figure out where this behavior should live. Most of it
1115  // should be outside in the client; the parts that aren't should have proper
1116  // options, either by introducing new ones or by overloading gcc ones like -V
1117  // or -b.
1118  CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1119  CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1120  if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1121    CCCGenericGCCName = A->getValue();
1122  GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1123                               options::OPT_fno_crash_diagnostics,
1124                               !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1125
1126  // Process -fproc-stat-report options.
1127  if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1128    CCPrintProcessStats = true;
1129    CCPrintStatReportFilename = A->getValue();
1130  }
1131  if (Args.hasArg(options::OPT_fproc_stat_report))
1132    CCPrintProcessStats = true;
1133
1134  // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1135  // and getToolChain is const.
1136  if (IsCLMode()) {
1137    // clang-cl targets MSVC-style Win32.
1138    llvm::Triple T(TargetTriple);
1139    T.setOS(llvm::Triple::Win32);
1140    T.setVendor(llvm::Triple::PC);
1141    T.setEnvironment(llvm::Triple::MSVC);
1142    T.setObjectFormat(llvm::Triple::COFF);
1143    TargetTriple = T.str();
1144  }
1145  if (const Arg *A = Args.getLastArg(options::OPT_target))
1146    TargetTriple = A->getValue();
1147  if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1148    Dir = InstalledDir = A->getValue();
1149  for (const Arg *A : Args.filtered(options::OPT_B)) {
1150    A->claim();
1151    PrefixDirs.push_back(A->getValue(0));
1152  }
1153  if (Optional<std::string> CompilerPathValue =
1154          llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1155    StringRef CompilerPath = *CompilerPathValue;
1156    while (!CompilerPath.empty()) {
1157      std::pair<StringRef, StringRef> Split =
1158          CompilerPath.split(llvm::sys::EnvPathSeparator);
1159      PrefixDirs.push_back(std::string(Split.first));
1160      CompilerPath = Split.second;
1161    }
1162  }
1163  if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1164    SysRoot = A->getValue();
1165  if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1166    DyldPrefix = A->getValue();
1167
1168  if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1169    ResourceDir = A->getValue();
1170
1171  if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1172    SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1173                    .Case("cwd", SaveTempsCwd)
1174                    .Case("obj", SaveTempsObj)
1175                    .Default(SaveTempsCwd);
1176  }
1177
1178  setLTOMode(Args);
1179
1180  // Process -fembed-bitcode= flags.
1181  if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1182    StringRef Name = A->getValue();
1183    unsigned Model = llvm::StringSwitch<unsigned>(Name)
1184        .Case("off", EmbedNone)
1185        .Case("all", EmbedBitcode)
1186        .Case("bitcode", EmbedBitcode)
1187        .Case("marker", EmbedMarker)
1188        .Default(~0U);
1189    if (Model == ~0U) {
1190      Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1191                                                << Name;
1192    } else
1193      BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1194  }
1195
1196  std::unique_ptr<llvm::opt::InputArgList> UArgs =
1197      std::make_unique<InputArgList>(std::move(Args));
1198
1199  // Perform the default argument translations.
1200  DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1201
1202  // Owned by the host.
1203  const ToolChain &TC = getToolChain(
1204      *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1205
1206  // The compilation takes ownership of Args.
1207  Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1208                                   ContainsError);
1209
1210  if (!HandleImmediateArgs(*C))
1211    return C;
1212
1213  // Construct the list of inputs.
1214  InputList Inputs;
1215  BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1216
1217  // Populate the tool chains for the offloading devices, if any.
1218  CreateOffloadingDeviceToolChains(*C, Inputs);
1219
1220  // Construct the list of abstract actions to perform for this compilation. On
1221  // MachO targets this uses the driver-driver and universal actions.
1222  if (TC.getTriple().isOSBinFormatMachO())
1223    BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1224  else
1225    BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1226
1227  if (CCCPrintPhases) {
1228    PrintActions(*C);
1229    return C;
1230  }
1231
1232  BuildJobs(*C);
1233
1234  return C;
1235}
1236
1237static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1238  llvm::opt::ArgStringList ASL;
1239  for (const auto *A : Args)
1240    A->render(Args, ASL);
1241
1242  for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1243    if (I != ASL.begin())
1244      OS << ' ';
1245    llvm::sys::printArg(OS, *I, true);
1246  }
1247  OS << '\n';
1248}
1249
1250bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1251                                    SmallString<128> &CrashDiagDir) {
1252  using namespace llvm::sys;
1253  assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1254         "Only knows about .crash files on Darwin");
1255
1256  // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1257  // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1258  // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1259  path::home_directory(CrashDiagDir);
1260  if (CrashDiagDir.startswith("/var/root"))
1261    CrashDiagDir = "/";
1262  path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1263  int PID =
1264#if LLVM_ON_UNIX
1265      getpid();
1266#else
1267      0;
1268#endif
1269  std::error_code EC;
1270  fs::file_status FileStatus;
1271  TimePoint<> LastAccessTime;
1272  SmallString<128> CrashFilePath;
1273  // Lookup the .crash files and get the one generated by a subprocess spawned
1274  // by this driver invocation.
1275  for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1276       File != FileEnd && !EC; File.increment(EC)) {
1277    StringRef FileName = path::filename(File->path());
1278    if (!FileName.startswith(Name))
1279      continue;
1280    if (fs::status(File->path(), FileStatus))
1281      continue;
1282    llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1283        llvm::MemoryBuffer::getFile(File->path());
1284    if (!CrashFile)
1285      continue;
1286    // The first line should start with "Process:", otherwise this isn't a real
1287    // .crash file.
1288    StringRef Data = CrashFile.get()->getBuffer();
1289    if (!Data.startswith("Process:"))
1290      continue;
1291    // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1292    size_t ParentProcPos = Data.find("Parent Process:");
1293    if (ParentProcPos == StringRef::npos)
1294      continue;
1295    size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1296    if (LineEnd == StringRef::npos)
1297      continue;
1298    StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1299    int OpenBracket = -1, CloseBracket = -1;
1300    for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1301      if (ParentProcess[i] == '[')
1302        OpenBracket = i;
1303      if (ParentProcess[i] == ']')
1304        CloseBracket = i;
1305    }
1306    // Extract the parent process PID from the .crash file and check whether
1307    // it matches this driver invocation pid.
1308    int CrashPID;
1309    if (OpenBracket < 0 || CloseBracket < 0 ||
1310        ParentProcess.slice(OpenBracket + 1, CloseBracket)
1311            .getAsInteger(10, CrashPID) || CrashPID != PID) {
1312      continue;
1313    }
1314
1315    // Found a .crash file matching the driver pid. To avoid getting an older
1316    // and misleading crash file, continue looking for the most recent.
1317    // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1318    // multiple crashes poiting to the same parent process. Since the driver
1319    // does not collect pid information for the dispatched invocation there's
1320    // currently no way to distinguish among them.
1321    const auto FileAccessTime = FileStatus.getLastModificationTime();
1322    if (FileAccessTime > LastAccessTime) {
1323      CrashFilePath.assign(File->path());
1324      LastAccessTime = FileAccessTime;
1325    }
1326  }
1327
1328  // If found, copy it over to the location of other reproducer files.
1329  if (!CrashFilePath.empty()) {
1330    EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1331    if (EC)
1332      return false;
1333    return true;
1334  }
1335
1336  return false;
1337}
1338
1339// When clang crashes, produce diagnostic information including the fully
1340// preprocessed source file(s).  Request that the developer attach the
1341// diagnostic information to a bug report.
1342void Driver::generateCompilationDiagnostics(
1343    Compilation &C, const Command &FailingCommand,
1344    StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1345  if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1346    return;
1347
1348  // Don't try to generate diagnostics for link or dsymutil jobs.
1349  if (FailingCommand.getCreator().isLinkJob() ||
1350      FailingCommand.getCreator().isDsymutilJob())
1351    return;
1352
1353  // Print the version of the compiler.
1354  PrintVersion(C, llvm::errs());
1355
1356  // Suppress driver output and emit preprocessor output to temp file.
1357  Mode = CPPMode;
1358  CCGenDiagnostics = true;
1359
1360  // Save the original job command(s).
1361  Command Cmd = FailingCommand;
1362
1363  // Keep track of whether we produce any errors while trying to produce
1364  // preprocessed sources.
1365  DiagnosticErrorTrap Trap(Diags);
1366
1367  // Suppress tool output.
1368  C.initCompilationForDiagnostics();
1369
1370  // Construct the list of inputs.
1371  InputList Inputs;
1372  BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1373
1374  for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1375    bool IgnoreInput = false;
1376
1377    // Ignore input from stdin or any inputs that cannot be preprocessed.
1378    // Check type first as not all linker inputs have a value.
1379    if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1380      IgnoreInput = true;
1381    } else if (!strcmp(it->second->getValue(), "-")) {
1382      Diag(clang::diag::note_drv_command_failed_diag_msg)
1383          << "Error generating preprocessed source(s) - "
1384             "ignoring input from stdin.";
1385      IgnoreInput = true;
1386    }
1387
1388    if (IgnoreInput) {
1389      it = Inputs.erase(it);
1390      ie = Inputs.end();
1391    } else {
1392      ++it;
1393    }
1394  }
1395
1396  if (Inputs.empty()) {
1397    Diag(clang::diag::note_drv_command_failed_diag_msg)
1398        << "Error generating preprocessed source(s) - "
1399           "no preprocessable inputs.";
1400    return;
1401  }
1402
1403  // Don't attempt to generate preprocessed files if multiple -arch options are
1404  // used, unless they're all duplicates.
1405  llvm::StringSet<> ArchNames;
1406  for (const Arg *A : C.getArgs()) {
1407    if (A->getOption().matches(options::OPT_arch)) {
1408      StringRef ArchName = A->getValue();
1409      ArchNames.insert(ArchName);
1410    }
1411  }
1412  if (ArchNames.size() > 1) {
1413    Diag(clang::diag::note_drv_command_failed_diag_msg)
1414        << "Error generating preprocessed source(s) - cannot generate "
1415           "preprocessed source with multiple -arch options.";
1416    return;
1417  }
1418
1419  // Construct the list of abstract actions to perform for this compilation. On
1420  // Darwin OSes this uses the driver-driver and builds universal actions.
1421  const ToolChain &TC = C.getDefaultToolChain();
1422  if (TC.getTriple().isOSBinFormatMachO())
1423    BuildUniversalActions(C, TC, Inputs);
1424  else
1425    BuildActions(C, C.getArgs(), Inputs, C.getActions());
1426
1427  BuildJobs(C);
1428
1429  // If there were errors building the compilation, quit now.
1430  if (Trap.hasErrorOccurred()) {
1431    Diag(clang::diag::note_drv_command_failed_diag_msg)
1432        << "Error generating preprocessed source(s).";
1433    return;
1434  }
1435
1436  // Generate preprocessed output.
1437  SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1438  C.ExecuteJobs(C.getJobs(), FailingCommands);
1439
1440  // If any of the preprocessing commands failed, clean up and exit.
1441  if (!FailingCommands.empty()) {
1442    Diag(clang::diag::note_drv_command_failed_diag_msg)
1443        << "Error generating preprocessed source(s).";
1444    return;
1445  }
1446
1447  const ArgStringList &TempFiles = C.getTempFiles();
1448  if (TempFiles.empty()) {
1449    Diag(clang::diag::note_drv_command_failed_diag_msg)
1450        << "Error generating preprocessed source(s).";
1451    return;
1452  }
1453
1454  Diag(clang::diag::note_drv_command_failed_diag_msg)
1455      << "\n********************\n\n"
1456         "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1457         "Preprocessed source(s) and associated run script(s) are located at:";
1458
1459  SmallString<128> VFS;
1460  SmallString<128> ReproCrashFilename;
1461  for (const char *TempFile : TempFiles) {
1462    Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1463    if (Report)
1464      Report->TemporaryFiles.push_back(TempFile);
1465    if (ReproCrashFilename.empty()) {
1466      ReproCrashFilename = TempFile;
1467      llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1468    }
1469    if (StringRef(TempFile).endswith(".cache")) {
1470      // In some cases (modules) we'll dump extra data to help with reproducing
1471      // the crash into a directory next to the output.
1472      VFS = llvm::sys::path::filename(TempFile);
1473      llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1474    }
1475  }
1476
1477  // Assume associated files are based off of the first temporary file.
1478  CrashReportInfo CrashInfo(TempFiles[0], VFS);
1479
1480  llvm::SmallString<128> Script(CrashInfo.Filename);
1481  llvm::sys::path::replace_extension(Script, "sh");
1482  std::error_code EC;
1483  llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1484                                llvm::sys::fs::FA_Write,
1485                                llvm::sys::fs::OF_Text);
1486  if (EC) {
1487    Diag(clang::diag::note_drv_command_failed_diag_msg)
1488        << "Error generating run script: " << Script << " " << EC.message();
1489  } else {
1490    ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1491             << "# Driver args: ";
1492    printArgList(ScriptOS, C.getInputArgs());
1493    ScriptOS << "# Original command: ";
1494    Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1495    Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1496    if (!AdditionalInformation.empty())
1497      ScriptOS << "\n# Additional information: " << AdditionalInformation
1498               << "\n";
1499    if (Report)
1500      Report->TemporaryFiles.push_back(std::string(Script.str()));
1501    Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1502  }
1503
1504  // On darwin, provide information about the .crash diagnostic report.
1505  if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1506    SmallString<128> CrashDiagDir;
1507    if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1508      Diag(clang::diag::note_drv_command_failed_diag_msg)
1509          << ReproCrashFilename.str();
1510    } else { // Suggest a directory for the user to look for .crash files.
1511      llvm::sys::path::append(CrashDiagDir, Name);
1512      CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1513      Diag(clang::diag::note_drv_command_failed_diag_msg)
1514          << "Crash backtrace is located in";
1515      Diag(clang::diag::note_drv_command_failed_diag_msg)
1516          << CrashDiagDir.str();
1517      Diag(clang::diag::note_drv_command_failed_diag_msg)
1518          << "(choose the .crash file that corresponds to your crash)";
1519    }
1520  }
1521
1522  for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file_EQ))
1523    Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1524
1525  Diag(clang::diag::note_drv_command_failed_diag_msg)
1526      << "\n\n********************";
1527}
1528
1529void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1530  // Since commandLineFitsWithinSystemLimits() may underestimate system's
1531  // capacity if the tool does not support response files, there is a chance/
1532  // that things will just work without a response file, so we silently just
1533  // skip it.
1534  if (Cmd.getResponseFileSupport().ResponseKind ==
1535          ResponseFileSupport::RF_None ||
1536      llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1537                                                   Cmd.getArguments()))
1538    return;
1539
1540  std::string TmpName = GetTemporaryPath("response", "txt");
1541  Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1542}
1543
1544int Driver::ExecuteCompilation(
1545    Compilation &C,
1546    SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1547  // Just print if -### was present.
1548  if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1549    C.getJobs().Print(llvm::errs(), "\n", true);
1550    return 0;
1551  }
1552
1553  // If there were errors building the compilation, quit now.
1554  if (Diags.hasErrorOccurred())
1555    return 1;
1556
1557  // Set up response file names for each command, if necessary
1558  for (auto &Job : C.getJobs())
1559    setUpResponseFiles(C, Job);
1560
1561  C.ExecuteJobs(C.getJobs(), FailingCommands);
1562
1563  // If the command succeeded, we are done.
1564  if (FailingCommands.empty())
1565    return 0;
1566
1567  // Otherwise, remove result files and print extra information about abnormal
1568  // failures.
1569  int Res = 0;
1570  for (const auto &CmdPair : FailingCommands) {
1571    int CommandRes = CmdPair.first;
1572    const Command *FailingCommand = CmdPair.second;
1573
1574    // Remove result files if we're not saving temps.
1575    if (!isSaveTempsEnabled()) {
1576      const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1577      C.CleanupFileMap(C.getResultFiles(), JA, true);
1578
1579      // Failure result files are valid unless we crashed.
1580      if (CommandRes < 0)
1581        C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1582    }
1583
1584#if LLVM_ON_UNIX
1585    // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1586    // for SIGPIPE. Do not print diagnostics for this case.
1587    if (CommandRes == EX_IOERR) {
1588      Res = CommandRes;
1589      continue;
1590    }
1591#endif
1592
1593    // Print extra information about abnormal failures, if possible.
1594    //
1595    // This is ad-hoc, but we don't want to be excessively noisy. If the result
1596    // status was 1, assume the command failed normally. In particular, if it
1597    // was the compiler then assume it gave a reasonable error code. Failures
1598    // in other tools are less common, and they generally have worse
1599    // diagnostics, so always print the diagnostic there.
1600    const Tool &FailingTool = FailingCommand->getCreator();
1601
1602    if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1603      // FIXME: See FIXME above regarding result code interpretation.
1604      if (CommandRes < 0)
1605        Diag(clang::diag::err_drv_command_signalled)
1606            << FailingTool.getShortName();
1607      else
1608        Diag(clang::diag::err_drv_command_failed)
1609            << FailingTool.getShortName() << CommandRes;
1610    }
1611  }
1612  return Res;
1613}
1614
1615void Driver::PrintHelp(bool ShowHidden) const {
1616  unsigned IncludedFlagsBitmask;
1617  unsigned ExcludedFlagsBitmask;
1618  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1619      getIncludeExcludeOptionFlagMasks(IsCLMode());
1620
1621  ExcludedFlagsBitmask |= options::NoDriverOption;
1622  if (!ShowHidden)
1623    ExcludedFlagsBitmask |= HelpHidden;
1624
1625  if (IsFlangMode())
1626    IncludedFlagsBitmask |= options::FlangOption;
1627  else
1628    ExcludedFlagsBitmask |= options::FlangOnlyOption;
1629
1630  std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1631  getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1632                      IncludedFlagsBitmask, ExcludedFlagsBitmask,
1633                      /*ShowAllAliases=*/false);
1634}
1635
1636void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1637  if (IsFlangMode()) {
1638    OS << getClangToolFullVersion("flang-new") << '\n';
1639  } else {
1640    // FIXME: The following handlers should use a callback mechanism, we don't
1641    // know what the client would like to do.
1642    OS << getClangFullVersion() << '\n';
1643  }
1644  const ToolChain &TC = C.getDefaultToolChain();
1645  OS << "Target: " << TC.getTripleString() << '\n';
1646
1647  // Print the threading model.
1648  if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1649    // Don't print if the ToolChain would have barfed on it already
1650    if (TC.isThreadModelSupported(A->getValue()))
1651      OS << "Thread model: " << A->getValue();
1652  } else
1653    OS << "Thread model: " << TC.getThreadModel();
1654  OS << '\n';
1655
1656  // Print out the install directory.
1657  OS << "InstalledDir: " << InstalledDir << '\n';
1658
1659  // If configuration file was used, print its path.
1660  if (!ConfigFile.empty())
1661    OS << "Configuration file: " << ConfigFile << '\n';
1662}
1663
1664/// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1665/// option.
1666static void PrintDiagnosticCategories(raw_ostream &OS) {
1667  // Skip the empty category.
1668  for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1669       ++i)
1670    OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1671}
1672
1673void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1674  if (PassedFlags == "")
1675    return;
1676  // Print out all options that start with a given argument. This is used for
1677  // shell autocompletion.
1678  std::vector<std::string> SuggestedCompletions;
1679  std::vector<std::string> Flags;
1680
1681  unsigned int DisableFlags =
1682      options::NoDriverOption | options::Unsupported | options::Ignored;
1683
1684  // Make sure that Flang-only options don't pollute the Clang output
1685  // TODO: Make sure that Clang-only options don't pollute Flang output
1686  if (!IsFlangMode())
1687    DisableFlags |= options::FlangOnlyOption;
1688
1689  // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1690  // because the latter indicates that the user put space before pushing tab
1691  // which should end up in a file completion.
1692  const bool HasSpace = PassedFlags.endswith(",");
1693
1694  // Parse PassedFlags by "," as all the command-line flags are passed to this
1695  // function separated by ","
1696  StringRef TargetFlags = PassedFlags;
1697  while (TargetFlags != "") {
1698    StringRef CurFlag;
1699    std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1700    Flags.push_back(std::string(CurFlag));
1701  }
1702
1703  // We want to show cc1-only options only when clang is invoked with -cc1 or
1704  // -Xclang.
1705  if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1706    DisableFlags &= ~options::NoDriverOption;
1707
1708  const llvm::opt::OptTable &Opts = getOpts();
1709  StringRef Cur;
1710  Cur = Flags.at(Flags.size() - 1);
1711  StringRef Prev;
1712  if (Flags.size() >= 2) {
1713    Prev = Flags.at(Flags.size() - 2);
1714    SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1715  }
1716
1717  if (SuggestedCompletions.empty())
1718    SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1719
1720  // If Flags were empty, it means the user typed `clang [tab]` where we should
1721  // list all possible flags. If there was no value completion and the user
1722  // pressed tab after a space, we should fall back to a file completion.
1723  // We're printing a newline to be consistent with what we print at the end of
1724  // this function.
1725  if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1726    llvm::outs() << '\n';
1727    return;
1728  }
1729
1730  // When flag ends with '=' and there was no value completion, return empty
1731  // string and fall back to the file autocompletion.
1732  if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1733    // If the flag is in the form of "--autocomplete=-foo",
1734    // we were requested to print out all option names that start with "-foo".
1735    // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1736    SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1737
1738    // We have to query the -W flags manually as they're not in the OptTable.
1739    // TODO: Find a good way to add them to OptTable instead and them remove
1740    // this code.
1741    for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1742      if (S.startswith(Cur))
1743        SuggestedCompletions.push_back(std::string(S));
1744  }
1745
1746  // Sort the autocomplete candidates so that shells print them out in a
1747  // deterministic order. We could sort in any way, but we chose
1748  // case-insensitive sorting for consistency with the -help option
1749  // which prints out options in the case-insensitive alphabetical order.
1750  llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1751    if (int X = A.compare_lower(B))
1752      return X < 0;
1753    return A.compare(B) > 0;
1754  });
1755
1756  llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1757}
1758
1759bool Driver::HandleImmediateArgs(const Compilation &C) {
1760  // The order these options are handled in gcc is all over the place, but we
1761  // don't expect inconsistencies w.r.t. that to matter in practice.
1762
1763  if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1764    llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1765    return false;
1766  }
1767
1768  if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1769    // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1770    // return an answer which matches our definition of __VERSION__.
1771    llvm::outs() << CLANG_VERSION_STRING << "\n";
1772    return false;
1773  }
1774
1775  if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1776    PrintDiagnosticCategories(llvm::outs());
1777    return false;
1778  }
1779
1780  if (C.getArgs().hasArg(options::OPT_help) ||
1781      C.getArgs().hasArg(options::OPT__help_hidden)) {
1782    PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1783    return false;
1784  }
1785
1786  if (C.getArgs().hasArg(options::OPT__version)) {
1787    // Follow gcc behavior and use stdout for --version and stderr for -v.
1788    PrintVersion(C, llvm::outs());
1789    return false;
1790  }
1791
1792  if (C.getArgs().hasArg(options::OPT_v) ||
1793      C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1794      C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1795    PrintVersion(C, llvm::errs());
1796    SuppressMissingInputWarning = true;
1797  }
1798
1799  if (C.getArgs().hasArg(options::OPT_v)) {
1800    if (!SystemConfigDir.empty())
1801      llvm::errs() << "System configuration file directory: "
1802                   << SystemConfigDir << "\n";
1803    if (!UserConfigDir.empty())
1804      llvm::errs() << "User configuration file directory: "
1805                   << UserConfigDir << "\n";
1806  }
1807
1808  const ToolChain &TC = C.getDefaultToolChain();
1809
1810  if (C.getArgs().hasArg(options::OPT_v))
1811    TC.printVerboseInfo(llvm::errs());
1812
1813  if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1814    llvm::outs() << ResourceDir << '\n';
1815    return false;
1816  }
1817
1818  if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1819    llvm::outs() << "programs: =";
1820    bool separator = false;
1821    // Print -B and COMPILER_PATH.
1822    for (const std::string &Path : PrefixDirs) {
1823      if (separator)
1824        llvm::outs() << llvm::sys::EnvPathSeparator;
1825      llvm::outs() << Path;
1826      separator = true;
1827    }
1828    for (const std::string &Path : TC.getProgramPaths()) {
1829      if (separator)
1830        llvm::outs() << llvm::sys::EnvPathSeparator;
1831      llvm::outs() << Path;
1832      separator = true;
1833    }
1834    llvm::outs() << "\n";
1835    llvm::outs() << "libraries: =" << ResourceDir;
1836
1837    StringRef sysroot = C.getSysRoot();
1838
1839    for (const std::string &Path : TC.getFilePaths()) {
1840      // Always print a separator. ResourceDir was the first item shown.
1841      llvm::outs() << llvm::sys::EnvPathSeparator;
1842      // Interpretation of leading '=' is needed only for NetBSD.
1843      if (Path[0] == '=')
1844        llvm::outs() << sysroot << Path.substr(1);
1845      else
1846        llvm::outs() << Path;
1847    }
1848    llvm::outs() << "\n";
1849    return false;
1850  }
1851
1852  if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
1853    std::string CandidateRuntimePath = TC.getRuntimePath();
1854    if (getVFS().exists(CandidateRuntimePath))
1855      llvm::outs() << CandidateRuntimePath << '\n';
1856    else
1857      llvm::outs() << TC.getCompilerRTPath() << '\n';
1858    return false;
1859  }
1860
1861  // FIXME: The following handlers should use a callback mechanism, we don't
1862  // know what the client would like to do.
1863  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1864    llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1865    return false;
1866  }
1867
1868  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1869    StringRef ProgName = A->getValue();
1870
1871    // Null program name cannot have a path.
1872    if (! ProgName.empty())
1873      llvm::outs() << GetProgramPath(ProgName, TC);
1874
1875    llvm::outs() << "\n";
1876    return false;
1877  }
1878
1879  if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1880    StringRef PassedFlags = A->getValue();
1881    HandleAutocompletions(PassedFlags);
1882    return false;
1883  }
1884
1885  if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1886    ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1887    const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1888    RegisterEffectiveTriple TripleRAII(TC, Triple);
1889    switch (RLT) {
1890    case ToolChain::RLT_CompilerRT:
1891      llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1892      break;
1893    case ToolChain::RLT_Libgcc:
1894      llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1895      break;
1896    }
1897    return false;
1898  }
1899
1900  if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1901    for (const Multilib &Multilib : TC.getMultilibs())
1902      llvm::outs() << Multilib << "\n";
1903    return false;
1904  }
1905
1906  if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1907    const Multilib &Multilib = TC.getMultilib();
1908    if (Multilib.gccSuffix().empty())
1909      llvm::outs() << ".\n";
1910    else {
1911      StringRef Suffix(Multilib.gccSuffix());
1912      assert(Suffix.front() == '/');
1913      llvm::outs() << Suffix.substr(1) << "\n";
1914    }
1915    return false;
1916  }
1917
1918  if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1919    llvm::outs() << TC.getTripleString() << "\n";
1920    return false;
1921  }
1922
1923  if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1924    const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1925    llvm::outs() << Triple.getTriple() << "\n";
1926    return false;
1927  }
1928
1929  if (C.getArgs().hasArg(options::OPT_print_multiarch)) {
1930    llvm::outs() << TC.getMultiarchTriple(*this, TC.getTriple(), SysRoot)
1931                 << "\n";
1932    return false;
1933  }
1934
1935  if (C.getArgs().hasArg(options::OPT_print_targets)) {
1936    llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
1937    return false;
1938  }
1939
1940  return true;
1941}
1942
1943enum {
1944  TopLevelAction = 0,
1945  HeadSibAction = 1,
1946  OtherSibAction = 2,
1947};
1948
1949// Display an action graph human-readably.  Action A is the "sink" node
1950// and latest-occuring action. Traversal is in pre-order, visiting the
1951// inputs to each action before printing the action itself.
1952static unsigned PrintActions1(const Compilation &C, Action *A,
1953                              std::map<Action *, unsigned> &Ids,
1954                              Twine Indent = {}, int Kind = TopLevelAction) {
1955  if (Ids.count(A)) // A was already visited.
1956    return Ids[A];
1957
1958  std::string str;
1959  llvm::raw_string_ostream os(str);
1960
1961  auto getSibIndent = [](int K) -> Twine {
1962    return (K == HeadSibAction) ? "   " : (K == OtherSibAction) ? "|  " : "";
1963  };
1964
1965  Twine SibIndent = Indent + getSibIndent(Kind);
1966  int SibKind = HeadSibAction;
1967  os << Action::getClassName(A->getKind()) << ", ";
1968  if (InputAction *IA = dyn_cast<InputAction>(A)) {
1969    os << "\"" << IA->getInputArg().getValue() << "\"";
1970  } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1971    os << '"' << BIA->getArchName() << '"' << ", {"
1972       << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
1973  } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1974    bool IsFirst = true;
1975    OA->doOnEachDependence(
1976        [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1977          assert(TC && "Unknown host toolchain");
1978          // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1979          // sm_35 this will generate:
1980          // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1981          // (nvptx64-nvidia-cuda:sm_35) {#ID}
1982          if (!IsFirst)
1983            os << ", ";
1984          os << '"';
1985          os << A->getOffloadingKindPrefix();
1986          os << " (";
1987          os << TC->getTriple().normalize();
1988          if (BoundArch)
1989            os << ":" << BoundArch;
1990          os << ")";
1991          os << '"';
1992          os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
1993          IsFirst = false;
1994          SibKind = OtherSibAction;
1995        });
1996  } else {
1997    const ActionList *AL = &A->getInputs();
1998
1999    if (AL->size()) {
2000      const char *Prefix = "{";
2001      for (Action *PreRequisite : *AL) {
2002        os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2003        Prefix = ", ";
2004        SibKind = OtherSibAction;
2005      }
2006      os << "}";
2007    } else
2008      os << "{}";
2009  }
2010
2011  // Append offload info for all options other than the offloading action
2012  // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2013  std::string offload_str;
2014  llvm::raw_string_ostream offload_os(offload_str);
2015  if (!isa<OffloadAction>(A)) {
2016    auto S = A->getOffloadingKindPrefix();
2017    if (!S.empty()) {
2018      offload_os << ", (" << S;
2019      if (A->getOffloadingArch())
2020        offload_os << ", " << A->getOffloadingArch();
2021      offload_os << ")";
2022    }
2023  }
2024
2025  auto getSelfIndent = [](int K) -> Twine {
2026    return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2027  };
2028
2029  unsigned Id = Ids.size();
2030  Ids[A] = Id;
2031  llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2032               << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2033
2034  return Id;
2035}
2036
2037// Print the action graphs in a compilation C.
2038// For example "clang -c file1.c file2.c" is composed of two subgraphs.
2039void Driver::PrintActions(const Compilation &C) const {
2040  std::map<Action *, unsigned> Ids;
2041  for (Action *A : C.getActions())
2042    PrintActions1(C, A, Ids);
2043}
2044
2045/// Check whether the given input tree contains any compilation or
2046/// assembly actions.
2047static bool ContainsCompileOrAssembleAction(const Action *A) {
2048  if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2049      isa<AssembleJobAction>(A))
2050    return true;
2051
2052  for (const Action *Input : A->inputs())
2053    if (ContainsCompileOrAssembleAction(Input))
2054      return true;
2055
2056  return false;
2057}
2058
2059void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2060                                   const InputList &BAInputs) const {
2061  DerivedArgList &Args = C.getArgs();
2062  ActionList &Actions = C.getActions();
2063  llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2064  // Collect the list of architectures. Duplicates are allowed, but should only
2065  // be handled once (in the order seen).
2066  llvm::StringSet<> ArchNames;
2067  SmallVector<const char *, 4> Archs;
2068  for (Arg *A : Args) {
2069    if (A->getOption().matches(options::OPT_arch)) {
2070      // Validate the option here; we don't save the type here because its
2071      // particular spelling may participate in other driver choices.
2072      llvm::Triple::ArchType Arch =
2073          tools::darwin::getArchTypeForMachOArchName(A->getValue());
2074      if (Arch == llvm::Triple::UnknownArch) {
2075        Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2076        continue;
2077      }
2078
2079      A->claim();
2080      if (ArchNames.insert(A->getValue()).second)
2081        Archs.push_back(A->getValue());
2082    }
2083  }
2084
2085  // When there is no explicit arch for this platform, make sure we still bind
2086  // the architecture (to the default) so that -Xarch_ is handled correctly.
2087  if (!Archs.size())
2088    Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2089
2090  ActionList SingleActions;
2091  BuildActions(C, Args, BAInputs, SingleActions);
2092
2093  // Add in arch bindings for every top level action, as well as lipo and
2094  // dsymutil steps if needed.
2095  for (Action* Act : SingleActions) {
2096    // Make sure we can lipo this kind of output. If not (and it is an actual
2097    // output) then we disallow, since we can't create an output file with the
2098    // right name without overwriting it. We could remove this oddity by just
2099    // changing the output names to include the arch, which would also fix
2100    // -save-temps. Compatibility wins for now.
2101
2102    if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2103      Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2104          << types::getTypeName(Act->getType());
2105
2106    ActionList Inputs;
2107    for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2108      Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2109
2110    // Lipo if necessary, we do it this way because we need to set the arch flag
2111    // so that -Xarch_ gets overwritten.
2112    if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2113      Actions.append(Inputs.begin(), Inputs.end());
2114    else
2115      Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2116
2117    // Handle debug info queries.
2118    Arg *A = Args.getLastArg(options::OPT_g_Group);
2119    bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2120                            !A->getOption().matches(options::OPT_gstabs);
2121    if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2122        ContainsCompileOrAssembleAction(Actions.back())) {
2123
2124      // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2125      // have a compile input. We need to run 'dsymutil' ourselves in such cases
2126      // because the debug info will refer to a temporary object file which
2127      // will be removed at the end of the compilation process.
2128      if (Act->getType() == types::TY_Image) {
2129        ActionList Inputs;
2130        Inputs.push_back(Actions.back());
2131        Actions.pop_back();
2132        Actions.push_back(
2133            C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2134      }
2135
2136      // Verify the debug info output.
2137      if (Args.hasArg(options::OPT_verify_debug_info)) {
2138        Action* LastAction = Actions.back();
2139        Actions.pop_back();
2140        Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2141            LastAction, types::TY_Nothing));
2142      }
2143    }
2144  }
2145}
2146
2147bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2148                                    types::ID Ty, bool TypoCorrect) const {
2149  if (!getCheckInputsExist())
2150    return true;
2151
2152  // stdin always exists.
2153  if (Value == "-")
2154    return true;
2155
2156  if (getVFS().exists(Value))
2157    return true;
2158
2159  if (IsCLMode()) {
2160    if (!llvm::sys::path::is_absolute(Twine(Value)) &&
2161        llvm::sys::Process::FindInEnvPath("LIB", Value, ';'))
2162      return true;
2163
2164    if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2165      // Arguments to the /link flag might cause the linker to search for object
2166      // and library files in paths we don't know about. Don't error in such
2167      // cases.
2168      return true;
2169    }
2170  }
2171
2172  if (TypoCorrect) {
2173    // Check if the filename is a typo for an option flag. OptTable thinks
2174    // that all args that are not known options and that start with / are
2175    // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2176    // the option `/diagnostics:caret` than a reference to a file in the root
2177    // directory.
2178    unsigned IncludedFlagsBitmask;
2179    unsigned ExcludedFlagsBitmask;
2180    std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2181        getIncludeExcludeOptionFlagMasks(IsCLMode());
2182    std::string Nearest;
2183    if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2184                              ExcludedFlagsBitmask) <= 1) {
2185      Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2186          << Value << Nearest;
2187      return false;
2188    }
2189  }
2190
2191  Diag(clang::diag::err_drv_no_such_file) << Value;
2192  return false;
2193}
2194
2195// Construct a the list of inputs and their types.
2196void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2197                         InputList &Inputs) const {
2198  const llvm::opt::OptTable &Opts = getOpts();
2199  // Track the current user specified (-x) input. We also explicitly track the
2200  // argument used to set the type; we only want to claim the type when we
2201  // actually use it, so we warn about unused -x arguments.
2202  types::ID InputType = types::TY_Nothing;
2203  Arg *InputTypeArg = nullptr;
2204
2205  // The last /TC or /TP option sets the input type to C or C++ globally.
2206  if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2207                                         options::OPT__SLASH_TP)) {
2208    InputTypeArg = TCTP;
2209    InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2210                    ? types::TY_C
2211                    : types::TY_CXX;
2212
2213    Arg *Previous = nullptr;
2214    bool ShowNote = false;
2215    for (Arg *A :
2216         Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2217      if (Previous) {
2218        Diag(clang::diag::warn_drv_overriding_flag_option)
2219          << Previous->getSpelling() << A->getSpelling();
2220        ShowNote = true;
2221      }
2222      Previous = A;
2223    }
2224    if (ShowNote)
2225      Diag(clang::diag::note_drv_t_option_is_global);
2226
2227    // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2228    assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2229  }
2230
2231  for (Arg *A : Args) {
2232    if (A->getOption().getKind() == Option::InputClass) {
2233      const char *Value = A->getValue();
2234      types::ID Ty = types::TY_INVALID;
2235
2236      // Infer the input type if necessary.
2237      if (InputType == types::TY_Nothing) {
2238        // If there was an explicit arg for this, claim it.
2239        if (InputTypeArg)
2240          InputTypeArg->claim();
2241
2242        // stdin must be handled specially.
2243        if (memcmp(Value, "-", 2) == 0) {
2244          if (IsFlangMode()) {
2245            Ty = types::TY_Fortran;
2246          } else {
2247            // If running with -E, treat as a C input (this changes the
2248            // builtin macros, for example). This may be overridden by -ObjC
2249            // below.
2250            //
2251            // Otherwise emit an error but still use a valid type to avoid
2252            // spurious errors (e.g., no inputs).
2253            if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2254              Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2255                              : clang::diag::err_drv_unknown_stdin_type);
2256            Ty = types::TY_C;
2257          }
2258        } else {
2259          // Otherwise lookup by extension.
2260          // Fallback is C if invoked as C preprocessor, C++ if invoked with
2261          // clang-cl /E, or Object otherwise.
2262          // We use a host hook here because Darwin at least has its own
2263          // idea of what .s is.
2264          if (const char *Ext = strrchr(Value, '.'))
2265            Ty = TC.LookupTypeForExtension(Ext + 1);
2266
2267          if (Ty == types::TY_INVALID) {
2268            if (CCCIsCPP())
2269              Ty = types::TY_C;
2270            else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2271              Ty = types::TY_CXX;
2272            else
2273              Ty = types::TY_Object;
2274          }
2275
2276          // If the driver is invoked as C++ compiler (like clang++ or c++) it
2277          // should autodetect some input files as C++ for g++ compatibility.
2278          if (CCCIsCXX()) {
2279            types::ID OldTy = Ty;
2280            Ty = types::lookupCXXTypeForCType(Ty);
2281
2282            if (Ty != OldTy)
2283              Diag(clang::diag::warn_drv_treating_input_as_cxx)
2284                  << getTypeName(OldTy) << getTypeName(Ty);
2285          }
2286
2287          // If running with -fthinlto-index=, extensions that normally identify
2288          // native object files actually identify LLVM bitcode files.
2289          if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2290              Ty == types::TY_Object)
2291            Ty = types::TY_LLVM_BC;
2292        }
2293
2294        // -ObjC and -ObjC++ override the default language, but only for "source
2295        // files". We just treat everything that isn't a linker input as a
2296        // source file.
2297        //
2298        // FIXME: Clean this up if we move the phase sequence into the type.
2299        if (Ty != types::TY_Object) {
2300          if (Args.hasArg(options::OPT_ObjC))
2301            Ty = types::TY_ObjC;
2302          else if (Args.hasArg(options::OPT_ObjCXX))
2303            Ty = types::TY_ObjCXX;
2304        }
2305      } else {
2306        assert(InputTypeArg && "InputType set w/o InputTypeArg");
2307        if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2308          // If emulating cl.exe, make sure that /TC and /TP don't affect input
2309          // object files.
2310          const char *Ext = strrchr(Value, '.');
2311          if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2312            Ty = types::TY_Object;
2313        }
2314        if (Ty == types::TY_INVALID) {
2315          Ty = InputType;
2316          InputTypeArg->claim();
2317        }
2318      }
2319
2320      if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2321        Inputs.push_back(std::make_pair(Ty, A));
2322
2323    } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2324      StringRef Value = A->getValue();
2325      if (DiagnoseInputExistence(Args, Value, types::TY_C,
2326                                 /*TypoCorrect=*/false)) {
2327        Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2328        Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2329      }
2330      A->claim();
2331    } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2332      StringRef Value = A->getValue();
2333      if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2334                                 /*TypoCorrect=*/false)) {
2335        Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2336        Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2337      }
2338      A->claim();
2339    } else if (A->getOption().hasFlag(options::LinkerInput)) {
2340      // Just treat as object type, we could make a special type for this if
2341      // necessary.
2342      Inputs.push_back(std::make_pair(types::TY_Object, A));
2343
2344    } else if (A->getOption().matches(options::OPT_x)) {
2345      InputTypeArg = A;
2346      InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2347      A->claim();
2348
2349      // Follow gcc behavior and treat as linker input for invalid -x
2350      // options. Its not clear why we shouldn't just revert to unknown; but
2351      // this isn't very important, we might as well be bug compatible.
2352      if (!InputType) {
2353        Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2354        InputType = types::TY_Object;
2355      }
2356    } else if (A->getOption().getID() == options::OPT_U) {
2357      assert(A->getNumValues() == 1 && "The /U option has one value.");
2358      StringRef Val = A->getValue(0);
2359      if (Val.find_first_of("/\\") != StringRef::npos) {
2360        // Warn about e.g. "/Users/me/myfile.c".
2361        Diag(diag::warn_slash_u_filename) << Val;
2362        Diag(diag::note_use_dashdash);
2363      }
2364    }
2365  }
2366  if (CCCIsCPP() && Inputs.empty()) {
2367    // If called as standalone preprocessor, stdin is processed
2368    // if no other input is present.
2369    Arg *A = MakeInputArg(Args, Opts, "-");
2370    Inputs.push_back(std::make_pair(types::TY_C, A));
2371  }
2372}
2373
2374namespace {
2375/// Provides a convenient interface for different programming models to generate
2376/// the required device actions.
2377class OffloadingActionBuilder final {
2378  /// Flag used to trace errors in the builder.
2379  bool IsValid = false;
2380
2381  /// The compilation that is using this builder.
2382  Compilation &C;
2383
2384  /// Map between an input argument and the offload kinds used to process it.
2385  std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2386
2387  /// Builder interface. It doesn't build anything or keep any state.
2388  class DeviceActionBuilder {
2389  public:
2390    typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2391
2392    enum ActionBuilderReturnCode {
2393      // The builder acted successfully on the current action.
2394      ABRT_Success,
2395      // The builder didn't have to act on the current action.
2396      ABRT_Inactive,
2397      // The builder was successful and requested the host action to not be
2398      // generated.
2399      ABRT_Ignore_Host,
2400    };
2401
2402  protected:
2403    /// Compilation associated with this builder.
2404    Compilation &C;
2405
2406    /// Tool chains associated with this builder. The same programming
2407    /// model may have associated one or more tool chains.
2408    SmallVector<const ToolChain *, 2> ToolChains;
2409
2410    /// The derived arguments associated with this builder.
2411    DerivedArgList &Args;
2412
2413    /// The inputs associated with this builder.
2414    const Driver::InputList &Inputs;
2415
2416    /// The associated offload kind.
2417    Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2418
2419  public:
2420    DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2421                        const Driver::InputList &Inputs,
2422                        Action::OffloadKind AssociatedOffloadKind)
2423        : C(C), Args(Args), Inputs(Inputs),
2424          AssociatedOffloadKind(AssociatedOffloadKind) {}
2425    virtual ~DeviceActionBuilder() {}
2426
2427    /// Fill up the array \a DA with all the device dependences that should be
2428    /// added to the provided host action \a HostAction. By default it is
2429    /// inactive.
2430    virtual ActionBuilderReturnCode
2431    getDeviceDependences(OffloadAction::DeviceDependences &DA,
2432                         phases::ID CurPhase, phases::ID FinalPhase,
2433                         PhasesTy &Phases) {
2434      return ABRT_Inactive;
2435    }
2436
2437    /// Update the state to include the provided host action \a HostAction as a
2438    /// dependency of the current device action. By default it is inactive.
2439    virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2440      return ABRT_Inactive;
2441    }
2442
2443    /// Append top level actions generated by the builder.
2444    virtual void appendTopLevelActions(ActionList &AL) {}
2445
2446    /// Append linker device actions generated by the builder.
2447    virtual void appendLinkDeviceActions(ActionList &AL) {}
2448
2449    /// Append linker host action generated by the builder.
2450    virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2451
2452    /// Append linker actions generated by the builder.
2453    virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2454
2455    /// Initialize the builder. Return true if any initialization errors are
2456    /// found.
2457    virtual bool initialize() { return false; }
2458
2459    /// Return true if the builder can use bundling/unbundling.
2460    virtual bool canUseBundlerUnbundler() const { return false; }
2461
2462    /// Return true if this builder is valid. We have a valid builder if we have
2463    /// associated device tool chains.
2464    bool isValid() { return !ToolChains.empty(); }
2465
2466    /// Return the associated offload kind.
2467    Action::OffloadKind getAssociatedOffloadKind() {
2468      return AssociatedOffloadKind;
2469    }
2470  };
2471
2472  /// Base class for CUDA/HIP action builder. It injects device code in
2473  /// the host backend action.
2474  class CudaActionBuilderBase : public DeviceActionBuilder {
2475  protected:
2476    /// Flags to signal if the user requested host-only or device-only
2477    /// compilation.
2478    bool CompileHostOnly = false;
2479    bool CompileDeviceOnly = false;
2480    bool EmitLLVM = false;
2481    bool EmitAsm = false;
2482
2483    /// ID to identify each device compilation. For CUDA it is simply the
2484    /// GPU arch string. For HIP it is either the GPU arch string or GPU
2485    /// arch string plus feature strings delimited by a plus sign, e.g.
2486    /// gfx906+xnack.
2487    struct TargetID {
2488      /// Target ID string which is persistent throughout the compilation.
2489      const char *ID;
2490      TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
2491      TargetID(const char *ID) : ID(ID) {}
2492      operator const char *() { return ID; }
2493      operator StringRef() { return StringRef(ID); }
2494    };
2495    /// List of GPU architectures to use in this compilation.
2496    SmallVector<TargetID, 4> GpuArchList;
2497
2498    /// The CUDA actions for the current input.
2499    ActionList CudaDeviceActions;
2500
2501    /// The CUDA fat binary if it was generated for the current input.
2502    Action *CudaFatBinary = nullptr;
2503
2504    /// Flag that is set to true if this builder acted on the current input.
2505    bool IsActive = false;
2506
2507    /// Flag for -fgpu-rdc.
2508    bool Relocatable = false;
2509
2510    /// Default GPU architecture if there's no one specified.
2511    CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2512
2513    /// Method to generate compilation unit ID specified by option
2514    /// '-fuse-cuid='.
2515    enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2516    UseCUIDKind UseCUID = CUID_Hash;
2517
2518    /// Compilation unit ID specified by option '-cuid='.
2519    StringRef FixedCUID;
2520
2521  public:
2522    CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2523                          const Driver::InputList &Inputs,
2524                          Action::OffloadKind OFKind)
2525        : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2526
2527    ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2528      // While generating code for CUDA, we only depend on the host input action
2529      // to trigger the creation of all the CUDA device actions.
2530
2531      // If we are dealing with an input action, replicate it for each GPU
2532      // architecture. If we are in host-only mode we return 'success' so that
2533      // the host uses the CUDA offload kind.
2534      if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2535        assert(!GpuArchList.empty() &&
2536               "We should have at least one GPU architecture.");
2537
2538        // If the host input is not CUDA or HIP, we don't need to bother about
2539        // this input.
2540        if (!(IA->getType() == types::TY_CUDA ||
2541              IA->getType() == types::TY_HIP ||
2542              IA->getType() == types::TY_PP_HIP)) {
2543          // The builder will ignore this input.
2544          IsActive = false;
2545          return ABRT_Inactive;
2546        }
2547
2548        // Set the flag to true, so that the builder acts on the current input.
2549        IsActive = true;
2550
2551        if (CompileHostOnly)
2552          return ABRT_Success;
2553
2554        // Replicate inputs for each GPU architecture.
2555        auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2556                                                 : types::TY_CUDA_DEVICE;
2557        std::string CUID = FixedCUID.str();
2558        if (CUID.empty()) {
2559          if (UseCUID == CUID_Random)
2560            CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2561                                   /*LowerCase=*/true);
2562          else if (UseCUID == CUID_Hash) {
2563            llvm::MD5 Hasher;
2564            llvm::MD5::MD5Result Hash;
2565            SmallString<256> RealPath;
2566            llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2567                                     /*expand_tilde=*/true);
2568            Hasher.update(RealPath);
2569            for (auto *A : Args) {
2570              if (A->getOption().matches(options::OPT_INPUT))
2571                continue;
2572              Hasher.update(A->getAsString(Args));
2573            }
2574            Hasher.final(Hash);
2575            CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
2576          }
2577        }
2578        IA->setId(CUID);
2579
2580        for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2581          CudaDeviceActions.push_back(
2582              C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
2583        }
2584
2585        return ABRT_Success;
2586      }
2587
2588      // If this is an unbundling action use it as is for each CUDA toolchain.
2589      if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2590
2591        // If -fgpu-rdc is disabled, should not unbundle since there is no
2592        // device code to link.
2593        if (UA->getType() == types::TY_Object && !Relocatable)
2594          return ABRT_Inactive;
2595
2596        CudaDeviceActions.clear();
2597        auto *IA = cast<InputAction>(UA->getInputs().back());
2598        std::string FileName = IA->getInputArg().getAsString(Args);
2599        // Check if the type of the file is the same as the action. Do not
2600        // unbundle it if it is not. Do not unbundle .so files, for example,
2601        // which are not object files.
2602        if (IA->getType() == types::TY_Object &&
2603            (!llvm::sys::path::has_extension(FileName) ||
2604             types::lookupTypeForExtension(
2605                 llvm::sys::path::extension(FileName).drop_front()) !=
2606                 types::TY_Object))
2607          return ABRT_Inactive;
2608
2609        for (auto Arch : GpuArchList) {
2610          CudaDeviceActions.push_back(UA);
2611          UA->registerDependentActionInfo(ToolChains[0], Arch,
2612                                          AssociatedOffloadKind);
2613        }
2614        return ABRT_Success;
2615      }
2616
2617      return IsActive ? ABRT_Success : ABRT_Inactive;
2618    }
2619
2620    void appendTopLevelActions(ActionList &AL) override {
2621      // Utility to append actions to the top level list.
2622      auto AddTopLevel = [&](Action *A, TargetID TargetID) {
2623        OffloadAction::DeviceDependences Dep;
2624        Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
2625        AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2626      };
2627
2628      // If we have a fat binary, add it to the list.
2629      if (CudaFatBinary) {
2630        AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
2631        CudaDeviceActions.clear();
2632        CudaFatBinary = nullptr;
2633        return;
2634      }
2635
2636      if (CudaDeviceActions.empty())
2637        return;
2638
2639      // If we have CUDA actions at this point, that's because we have a have
2640      // partial compilation, so we should have an action for each GPU
2641      // architecture.
2642      assert(CudaDeviceActions.size() == GpuArchList.size() &&
2643             "Expecting one action per GPU architecture.");
2644      assert(ToolChains.size() == 1 &&
2645             "Expecting to have a sing CUDA toolchain.");
2646      for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2647        AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2648
2649      CudaDeviceActions.clear();
2650    }
2651
2652    /// Get canonicalized offload arch option. \returns empty StringRef if the
2653    /// option is invalid.
2654    virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
2655
2656    virtual llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2657    getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
2658
2659    bool initialize() override {
2660      assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2661             AssociatedOffloadKind == Action::OFK_HIP);
2662
2663      // We don't need to support CUDA.
2664      if (AssociatedOffloadKind == Action::OFK_Cuda &&
2665          !C.hasOffloadToolChain<Action::OFK_Cuda>())
2666        return false;
2667
2668      // We don't need to support HIP.
2669      if (AssociatedOffloadKind == Action::OFK_HIP &&
2670          !C.hasOffloadToolChain<Action::OFK_HIP>())
2671        return false;
2672
2673      Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2674          options::OPT_fno_gpu_rdc, /*Default=*/false);
2675
2676      const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2677      assert(HostTC && "No toolchain for host compilation.");
2678      if (HostTC->getTriple().isNVPTX() ||
2679          HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2680        // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2681        // an error and abort pipeline construction early so we don't trip
2682        // asserts that assume device-side compilation.
2683        C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2684            << HostTC->getTriple().getArchName();
2685        return true;
2686      }
2687
2688      ToolChains.push_back(
2689          AssociatedOffloadKind == Action::OFK_Cuda
2690              ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2691              : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2692
2693      Arg *PartialCompilationArg = Args.getLastArg(
2694          options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2695          options::OPT_cuda_compile_host_device);
2696      CompileHostOnly = PartialCompilationArg &&
2697                        PartialCompilationArg->getOption().matches(
2698                            options::OPT_cuda_host_only);
2699      CompileDeviceOnly = PartialCompilationArg &&
2700                          PartialCompilationArg->getOption().matches(
2701                              options::OPT_cuda_device_only);
2702      EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2703      EmitAsm = Args.getLastArg(options::OPT_S);
2704      FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
2705      if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
2706        StringRef UseCUIDStr = A->getValue();
2707        UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
2708                      .Case("hash", CUID_Hash)
2709                      .Case("random", CUID_Random)
2710                      .Case("none", CUID_None)
2711                      .Default(CUID_Invalid);
2712        if (UseCUID == CUID_Invalid) {
2713          C.getDriver().Diag(diag::err_drv_invalid_value)
2714              << A->getAsString(Args) << UseCUIDStr;
2715          C.setContainsError();
2716          return true;
2717        }
2718      }
2719
2720      // Collect all cuda_gpu_arch parameters, removing duplicates.
2721      std::set<StringRef> GpuArchs;
2722      bool Error = false;
2723      for (Arg *A : Args) {
2724        if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
2725              A->getOption().matches(options::OPT_no_offload_arch_EQ)))
2726          continue;
2727        A->claim();
2728
2729        StringRef ArchStr = A->getValue();
2730        if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
2731            ArchStr == "all") {
2732          GpuArchs.clear();
2733          continue;
2734        }
2735        ArchStr = getCanonicalOffloadArch(ArchStr);
2736        if (ArchStr.empty()) {
2737          Error = true;
2738        } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
2739          GpuArchs.insert(ArchStr);
2740        else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
2741          GpuArchs.erase(ArchStr);
2742        else
2743          llvm_unreachable("Unexpected option.");
2744      }
2745
2746      auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
2747      if (ConflictingArchs) {
2748        C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
2749            << ConflictingArchs.getValue().first
2750            << ConflictingArchs.getValue().second;
2751        C.setContainsError();
2752        return true;
2753      }
2754
2755      // Collect list of GPUs remaining in the set.
2756      for (auto Arch : GpuArchs)
2757        GpuArchList.push_back(Arch.data());
2758
2759      // Default to sm_20 which is the lowest common denominator for
2760      // supported GPUs.  sm_20 code should work correctly, if
2761      // suboptimally, on all newer GPUs.
2762      if (GpuArchList.empty())
2763        GpuArchList.push_back(DefaultCudaArch);
2764
2765      return Error;
2766    }
2767  };
2768
2769  /// \brief CUDA action builder. It injects device code in the host backend
2770  /// action.
2771  class CudaActionBuilder final : public CudaActionBuilderBase {
2772  public:
2773    CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2774                      const Driver::InputList &Inputs)
2775        : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
2776      DefaultCudaArch = CudaArch::SM_20;
2777    }
2778
2779    StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
2780      CudaArch Arch = StringToCudaArch(ArchStr);
2781      if (Arch == CudaArch::UNKNOWN) {
2782        C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2783        return StringRef();
2784      }
2785      return CudaArchToString(Arch);
2786    }
2787
2788    llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2789    getConflictOffloadArchCombination(
2790        const std::set<StringRef> &GpuArchs) override {
2791      return llvm::None;
2792    }
2793
2794    ActionBuilderReturnCode
2795    getDeviceDependences(OffloadAction::DeviceDependences &DA,
2796                         phases::ID CurPhase, phases::ID FinalPhase,
2797                         PhasesTy &Phases) override {
2798      if (!IsActive)
2799        return ABRT_Inactive;
2800
2801      // If we don't have more CUDA actions, we don't have any dependences to
2802      // create for the host.
2803      if (CudaDeviceActions.empty())
2804        return ABRT_Success;
2805
2806      assert(CudaDeviceActions.size() == GpuArchList.size() &&
2807             "Expecting one action per GPU architecture.");
2808      assert(!CompileHostOnly &&
2809             "Not expecting CUDA actions in host-only compilation.");
2810
2811      // If we are generating code for the device or we are in a backend phase,
2812      // we attempt to generate the fat binary. We compile each arch to ptx and
2813      // assemble to cubin, then feed the cubin *and* the ptx into a device
2814      // "link" action, which uses fatbinary to combine these cubins into one
2815      // fatbin.  The fatbin is then an input to the host action if not in
2816      // device-only mode.
2817      if (CompileDeviceOnly || CurPhase == phases::Backend) {
2818        ActionList DeviceActions;
2819        for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2820          // Produce the device action from the current phase up to the assemble
2821          // phase.
2822          for (auto Ph : Phases) {
2823            // Skip the phases that were already dealt with.
2824            if (Ph < CurPhase)
2825              continue;
2826            // We have to be consistent with the host final phase.
2827            if (Ph > FinalPhase)
2828              break;
2829
2830            CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2831                C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2832
2833            if (Ph == phases::Assemble)
2834              break;
2835          }
2836
2837          // If we didn't reach the assemble phase, we can't generate the fat
2838          // binary. We don't need to generate the fat binary if we are not in
2839          // device-only mode.
2840          if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2841              CompileDeviceOnly)
2842            continue;
2843
2844          Action *AssembleAction = CudaDeviceActions[I];
2845          assert(AssembleAction->getType() == types::TY_Object);
2846          assert(AssembleAction->getInputs().size() == 1);
2847
2848          Action *BackendAction = AssembleAction->getInputs()[0];
2849          assert(BackendAction->getType() == types::TY_PP_Asm);
2850
2851          for (auto &A : {AssembleAction, BackendAction}) {
2852            OffloadAction::DeviceDependences DDep;
2853            DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
2854            DeviceActions.push_back(
2855                C.MakeAction<OffloadAction>(DDep, A->getType()));
2856          }
2857        }
2858
2859        // We generate the fat binary if we have device input actions.
2860        if (!DeviceActions.empty()) {
2861          CudaFatBinary =
2862              C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2863
2864          if (!CompileDeviceOnly) {
2865            DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2866                   Action::OFK_Cuda);
2867            // Clear the fat binary, it is already a dependence to an host
2868            // action.
2869            CudaFatBinary = nullptr;
2870          }
2871
2872          // Remove the CUDA actions as they are already connected to an host
2873          // action or fat binary.
2874          CudaDeviceActions.clear();
2875        }
2876
2877        // We avoid creating host action in device-only mode.
2878        return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2879      } else if (CurPhase > phases::Backend) {
2880        // If we are past the backend phase and still have a device action, we
2881        // don't have to do anything as this action is already a device
2882        // top-level action.
2883        return ABRT_Success;
2884      }
2885
2886      assert(CurPhase < phases::Backend && "Generating single CUDA "
2887                                           "instructions should only occur "
2888                                           "before the backend phase!");
2889
2890      // By default, we produce an action for each device arch.
2891      for (Action *&A : CudaDeviceActions)
2892        A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2893
2894      return ABRT_Success;
2895    }
2896  };
2897  /// \brief HIP action builder. It injects device code in the host backend
2898  /// action.
2899  class HIPActionBuilder final : public CudaActionBuilderBase {
2900    /// The linker inputs obtained for each device arch.
2901    SmallVector<ActionList, 8> DeviceLinkerInputs;
2902    bool GPUSanitize;
2903
2904  public:
2905    HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2906                     const Driver::InputList &Inputs)
2907        : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
2908      DefaultCudaArch = CudaArch::GFX803;
2909      GPUSanitize = Args.hasFlag(options::OPT_fgpu_sanitize,
2910                                 options::OPT_fno_gpu_sanitize, false);
2911    }
2912
2913    bool canUseBundlerUnbundler() const override { return true; }
2914
2915    StringRef getCanonicalOffloadArch(StringRef IdStr) override {
2916      llvm::StringMap<bool> Features;
2917      auto ArchStr =
2918          parseTargetID(getHIPOffloadTargetTriple(), IdStr, &Features);
2919      if (!ArchStr) {
2920        C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
2921        C.setContainsError();
2922        return StringRef();
2923      }
2924      auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features);
2925      return Args.MakeArgStringRef(CanId);
2926    };
2927
2928    llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2929    getConflictOffloadArchCombination(
2930        const std::set<StringRef> &GpuArchs) override {
2931      return getConflictTargetIDCombination(GpuArchs);
2932    }
2933
2934    ActionBuilderReturnCode
2935    getDeviceDependences(OffloadAction::DeviceDependences &DA,
2936                         phases::ID CurPhase, phases::ID FinalPhase,
2937                         PhasesTy &Phases) override {
2938      // amdgcn does not support linking of object files, therefore we skip
2939      // backend and assemble phases to output LLVM IR. Except for generating
2940      // non-relocatable device coee, where we generate fat binary for device
2941      // code and pass to host in Backend phase.
2942      if (CudaDeviceActions.empty())
2943        return ABRT_Success;
2944
2945      assert(((CurPhase == phases::Link && Relocatable) ||
2946              CudaDeviceActions.size() == GpuArchList.size()) &&
2947             "Expecting one action per GPU architecture.");
2948      assert(!CompileHostOnly &&
2949             "Not expecting CUDA actions in host-only compilation.");
2950
2951      if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
2952          !EmitAsm) {
2953        // If we are in backend phase, we attempt to generate the fat binary.
2954        // We compile each arch to IR and use a link action to generate code
2955        // object containing ISA. Then we use a special "link" action to create
2956        // a fat binary containing all the code objects for different GPU's.
2957        // The fat binary is then an input to the host action.
2958        for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2959          if (GPUSanitize || C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
2960            // When GPU sanitizer is enabled, since we need to link in the
2961            // the sanitizer runtime library after the sanitize pass, we have
2962            // to skip the backend and assemble phases and use lld to link
2963            // the bitcode. The same happens if users request to use LTO
2964            // explicitly.
2965            ActionList AL;
2966            AL.push_back(CudaDeviceActions[I]);
2967            // Create a link action to link device IR with device library
2968            // and generate ISA.
2969            CudaDeviceActions[I] =
2970                C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2971          } else {
2972            // When GPU sanitizer is not enabled, we follow the conventional
2973            // compiler phases, including backend and assemble phases.
2974            ActionList AL;
2975            auto BackendAction = C.getDriver().ConstructPhaseAction(
2976                C, Args, phases::Backend, CudaDeviceActions[I],
2977                AssociatedOffloadKind);
2978            auto AssembleAction = C.getDriver().ConstructPhaseAction(
2979                C, Args, phases::Assemble, BackendAction,
2980                AssociatedOffloadKind);
2981            AL.push_back(AssembleAction);
2982            // Create a link action to link device IR with device library
2983            // and generate ISA.
2984            CudaDeviceActions[I] =
2985                C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2986          }
2987
2988          // OffloadingActionBuilder propagates device arch until an offload
2989          // action. Since the next action for creating fatbin does
2990          // not have device arch, whereas the above link action and its input
2991          // have device arch, an offload action is needed to stop the null
2992          // device arch of the next action being propagated to the above link
2993          // action.
2994          OffloadAction::DeviceDependences DDep;
2995          DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
2996                   AssociatedOffloadKind);
2997          CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2998              DDep, CudaDeviceActions[I]->getType());
2999        }
3000        // Create HIP fat binary with a special "link" action.
3001        CudaFatBinary =
3002            C.MakeAction<LinkJobAction>(CudaDeviceActions,
3003                types::TY_HIP_FATBIN);
3004
3005        if (!CompileDeviceOnly) {
3006          DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3007                 AssociatedOffloadKind);
3008          // Clear the fat binary, it is already a dependence to an host
3009          // action.
3010          CudaFatBinary = nullptr;
3011        }
3012
3013        // Remove the CUDA actions as they are already connected to an host
3014        // action or fat binary.
3015        CudaDeviceActions.clear();
3016
3017        return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3018      } else if (CurPhase == phases::Link) {
3019        // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3020        // This happens to each device action originated from each input file.
3021        // Later on, device actions in DeviceLinkerInputs are used to create
3022        // device link actions in appendLinkDependences and the created device
3023        // link actions are passed to the offload action as device dependence.
3024        DeviceLinkerInputs.resize(CudaDeviceActions.size());
3025        auto LI = DeviceLinkerInputs.begin();
3026        for (auto *A : CudaDeviceActions) {
3027          LI->push_back(A);
3028          ++LI;
3029        }
3030
3031        // We will pass the device action as a host dependence, so we don't
3032        // need to do anything else with them.
3033        CudaDeviceActions.clear();
3034        return ABRT_Success;
3035      }
3036
3037      // By default, we produce an action for each device arch.
3038      for (Action *&A : CudaDeviceActions)
3039        A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3040                                               AssociatedOffloadKind);
3041
3042      return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
3043                                                           : ABRT_Success;
3044    }
3045
3046    void appendLinkDeviceActions(ActionList &AL) override {
3047      if (DeviceLinkerInputs.size() == 0)
3048        return;
3049
3050      assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3051             "Linker inputs and GPU arch list sizes do not match.");
3052
3053      // Append a new link action for each device.
3054      unsigned I = 0;
3055      for (auto &LI : DeviceLinkerInputs) {
3056        // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3057        auto *DeviceLinkAction =
3058            C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3059        // Linking all inputs for the current GPU arch.
3060        // LI contains all the inputs for the linker.
3061        OffloadAction::DeviceDependences DeviceLinkDeps;
3062        DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3063            GpuArchList[I], AssociatedOffloadKind);
3064        AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3065            DeviceLinkAction->getType()));
3066        ++I;
3067      }
3068      DeviceLinkerInputs.clear();
3069
3070      // Create a host object from all the device images by embedding them
3071      // in a fat binary.
3072      OffloadAction::DeviceDependences DDeps;
3073      auto *TopDeviceLinkAction =
3074          C.MakeAction<LinkJobAction>(AL, types::TY_Object);
3075      DDeps.add(*TopDeviceLinkAction, *ToolChains[0],
3076          nullptr, AssociatedOffloadKind);
3077
3078      // Offload the host object to the host linker.
3079      AL.push_back(C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3080    }
3081
3082    Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3083
3084    void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3085  };
3086
3087  /// OpenMP action builder. The host bitcode is passed to the device frontend
3088  /// and all the device linked images are passed to the host link phase.
3089  class OpenMPActionBuilder final : public DeviceActionBuilder {
3090    /// The OpenMP actions for the current input.
3091    ActionList OpenMPDeviceActions;
3092
3093    /// The linker inputs obtained for each toolchain.
3094    SmallVector<ActionList, 8> DeviceLinkerInputs;
3095
3096  public:
3097    OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
3098                        const Driver::InputList &Inputs)
3099        : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
3100
3101    ActionBuilderReturnCode
3102    getDeviceDependences(OffloadAction::DeviceDependences &DA,
3103                         phases::ID CurPhase, phases::ID FinalPhase,
3104                         PhasesTy &Phases) override {
3105      if (OpenMPDeviceActions.empty())
3106        return ABRT_Inactive;
3107
3108      // We should always have an action for each input.
3109      assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3110             "Number of OpenMP actions and toolchains do not match.");
3111
3112      // The host only depends on device action in the linking phase, when all
3113      // the device images have to be embedded in the host image.
3114      if (CurPhase == phases::Link) {
3115        assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3116               "Toolchains and linker inputs sizes do not match.");
3117        auto LI = DeviceLinkerInputs.begin();
3118        for (auto *A : OpenMPDeviceActions) {
3119          LI->push_back(A);
3120          ++LI;
3121        }
3122
3123        // We passed the device action as a host dependence, so we don't need to
3124        // do anything else with them.
3125        OpenMPDeviceActions.clear();
3126        return ABRT_Success;
3127      }
3128
3129      // By default, we produce an action for each device arch.
3130      for (Action *&A : OpenMPDeviceActions)
3131        A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3132
3133      return ABRT_Success;
3134    }
3135
3136    ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
3137
3138      // If this is an input action replicate it for each OpenMP toolchain.
3139      if (auto *IA = dyn_cast<InputAction>(HostAction)) {
3140        OpenMPDeviceActions.clear();
3141        for (unsigned I = 0; I < ToolChains.size(); ++I)
3142          OpenMPDeviceActions.push_back(
3143              C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
3144        return ABRT_Success;
3145      }
3146
3147      // If this is an unbundling action use it as is for each OpenMP toolchain.
3148      if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3149        OpenMPDeviceActions.clear();
3150        auto *IA = cast<InputAction>(UA->getInputs().back());
3151        std::string FileName = IA->getInputArg().getAsString(Args);
3152        // Check if the type of the file is the same as the action. Do not
3153        // unbundle it if it is not. Do not unbundle .so files, for example,
3154        // which are not object files.
3155        if (IA->getType() == types::TY_Object &&
3156            (!llvm::sys::path::has_extension(FileName) ||
3157             types::lookupTypeForExtension(
3158                 llvm::sys::path::extension(FileName).drop_front()) !=
3159                 types::TY_Object))
3160          return ABRT_Inactive;
3161        for (unsigned I = 0; I < ToolChains.size(); ++I) {
3162          OpenMPDeviceActions.push_back(UA);
3163          UA->registerDependentActionInfo(
3164              ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
3165        }
3166        return ABRT_Success;
3167      }
3168
3169      // When generating code for OpenMP we use the host compile phase result as
3170      // a dependence to the device compile phase so that it can learn what
3171      // declarations should be emitted. However, this is not the only use for
3172      // the host action, so we prevent it from being collapsed.
3173      if (isa<CompileJobAction>(HostAction)) {
3174        HostAction->setCannotBeCollapsedWithNextDependentAction();
3175        assert(ToolChains.size() == OpenMPDeviceActions.size() &&
3176               "Toolchains and device action sizes do not match.");
3177        OffloadAction::HostDependence HDep(
3178            *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3179            /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3180        auto TC = ToolChains.begin();
3181        for (Action *&A : OpenMPDeviceActions) {
3182          assert(isa<CompileJobAction>(A));
3183          OffloadAction::DeviceDependences DDep;
3184          DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3185          A = C.MakeAction<OffloadAction>(HDep, DDep);
3186          ++TC;
3187        }
3188      }
3189      return ABRT_Success;
3190    }
3191
3192    void appendTopLevelActions(ActionList &AL) override {
3193      if (OpenMPDeviceActions.empty())
3194        return;
3195
3196      // We should always have an action for each input.
3197      assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3198             "Number of OpenMP actions and toolchains do not match.");
3199
3200      // Append all device actions followed by the proper offload action.
3201      auto TI = ToolChains.begin();
3202      for (auto *A : OpenMPDeviceActions) {
3203        OffloadAction::DeviceDependences Dep;
3204        Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3205        AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3206        ++TI;
3207      }
3208      // We no longer need the action stored in this builder.
3209      OpenMPDeviceActions.clear();
3210    }
3211
3212    void appendLinkDeviceActions(ActionList &AL) override {
3213      assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3214             "Toolchains and linker inputs sizes do not match.");
3215
3216      // Append a new link action for each device.
3217      auto TC = ToolChains.begin();
3218      for (auto &LI : DeviceLinkerInputs) {
3219        auto *DeviceLinkAction =
3220            C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3221        OffloadAction::DeviceDependences DeviceLinkDeps;
3222        DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
3223		        Action::OFK_OpenMP);
3224        AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3225            DeviceLinkAction->getType()));
3226        ++TC;
3227      }
3228      DeviceLinkerInputs.clear();
3229    }
3230
3231    Action* appendLinkHostActions(ActionList &AL) override {
3232      // Create wrapper bitcode from the result of device link actions and compile
3233      // it to an object which will be added to the host link command.
3234      auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC);
3235      auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3236      return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3237    }
3238
3239    void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3240
3241    bool initialize() override {
3242      // Get the OpenMP toolchains. If we don't get any, the action builder will
3243      // know there is nothing to do related to OpenMP offloading.
3244      auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
3245      for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
3246           ++TI)
3247        ToolChains.push_back(TI->second);
3248
3249      DeviceLinkerInputs.resize(ToolChains.size());
3250      return false;
3251    }
3252
3253    bool canUseBundlerUnbundler() const override {
3254      // OpenMP should use bundled files whenever possible.
3255      return true;
3256    }
3257  };
3258
3259  ///
3260  /// TODO: Add the implementation for other specialized builders here.
3261  ///
3262
3263  /// Specialized builders being used by this offloading action builder.
3264  SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3265
3266  /// Flag set to true if all valid builders allow file bundling/unbundling.
3267  bool CanUseBundler;
3268
3269public:
3270  OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3271                          const Driver::InputList &Inputs)
3272      : C(C) {
3273    // Create a specialized builder for each device toolchain.
3274
3275    IsValid = true;
3276
3277    // Create a specialized builder for CUDA.
3278    SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3279
3280    // Create a specialized builder for HIP.
3281    SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3282
3283    // Create a specialized builder for OpenMP.
3284    SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
3285
3286    //
3287    // TODO: Build other specialized builders here.
3288    //
3289
3290    // Initialize all the builders, keeping track of errors. If all valid
3291    // builders agree that we can use bundling, set the flag to true.
3292    unsigned ValidBuilders = 0u;
3293    unsigned ValidBuildersSupportingBundling = 0u;
3294    for (auto *SB : SpecializedBuilders) {
3295      IsValid = IsValid && !SB->initialize();
3296
3297      // Update the counters if the builder is valid.
3298      if (SB->isValid()) {
3299        ++ValidBuilders;
3300        if (SB->canUseBundlerUnbundler())
3301          ++ValidBuildersSupportingBundling;
3302      }
3303    }
3304    CanUseBundler =
3305        ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3306  }
3307
3308  ~OffloadingActionBuilder() {
3309    for (auto *SB : SpecializedBuilders)
3310      delete SB;
3311  }
3312
3313  /// Generate an action that adds device dependences (if any) to a host action.
3314  /// If no device dependence actions exist, just return the host action \a
3315  /// HostAction. If an error is found or if no builder requires the host action
3316  /// to be generated, return nullptr.
3317  Action *
3318  addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3319                                   phases::ID CurPhase, phases::ID FinalPhase,
3320                                   DeviceActionBuilder::PhasesTy &Phases) {
3321    if (!IsValid)
3322      return nullptr;
3323
3324    if (SpecializedBuilders.empty())
3325      return HostAction;
3326
3327    assert(HostAction && "Invalid host action!");
3328
3329    OffloadAction::DeviceDependences DDeps;
3330    // Check if all the programming models agree we should not emit the host
3331    // action. Also, keep track of the offloading kinds employed.
3332    auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3333    unsigned InactiveBuilders = 0u;
3334    unsigned IgnoringBuilders = 0u;
3335    for (auto *SB : SpecializedBuilders) {
3336      if (!SB->isValid()) {
3337        ++InactiveBuilders;
3338        continue;
3339      }
3340
3341      auto RetCode =
3342          SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3343
3344      // If the builder explicitly says the host action should be ignored,
3345      // we need to increment the variable that tracks the builders that request
3346      // the host object to be ignored.
3347      if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3348        ++IgnoringBuilders;
3349
3350      // Unless the builder was inactive for this action, we have to record the
3351      // offload kind because the host will have to use it.
3352      if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3353        OffloadKind |= SB->getAssociatedOffloadKind();
3354    }
3355
3356    // If all builders agree that the host object should be ignored, just return
3357    // nullptr.
3358    if (IgnoringBuilders &&
3359        SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3360      return nullptr;
3361
3362    if (DDeps.getActions().empty())
3363      return HostAction;
3364
3365    // We have dependences we need to bundle together. We use an offload action
3366    // for that.
3367    OffloadAction::HostDependence HDep(
3368        *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3369        /*BoundArch=*/nullptr, DDeps);
3370    return C.MakeAction<OffloadAction>(HDep, DDeps);
3371  }
3372
3373  /// Generate an action that adds a host dependence to a device action. The
3374  /// results will be kept in this action builder. Return true if an error was
3375  /// found.
3376  bool addHostDependenceToDeviceActions(Action *&HostAction,
3377                                        const Arg *InputArg) {
3378    if (!IsValid)
3379      return true;
3380
3381    // If we are supporting bundling/unbundling and the current action is an
3382    // input action of non-source file, we replace the host action by the
3383    // unbundling action. The bundler tool has the logic to detect if an input
3384    // is a bundle or not and if the input is not a bundle it assumes it is a
3385    // host file. Therefore it is safe to create an unbundling action even if
3386    // the input is not a bundle.
3387    if (CanUseBundler && isa<InputAction>(HostAction) &&
3388        InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3389        (!types::isSrcFile(HostAction->getType()) ||
3390         HostAction->getType() == types::TY_PP_HIP)) {
3391      auto UnbundlingHostAction =
3392          C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3393      UnbundlingHostAction->registerDependentActionInfo(
3394          C.getSingleOffloadToolChain<Action::OFK_Host>(),
3395          /*BoundArch=*/StringRef(), Action::OFK_Host);
3396      HostAction = UnbundlingHostAction;
3397    }
3398
3399    assert(HostAction && "Invalid host action!");
3400
3401    // Register the offload kinds that are used.
3402    auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3403    for (auto *SB : SpecializedBuilders) {
3404      if (!SB->isValid())
3405        continue;
3406
3407      auto RetCode = SB->addDeviceDepences(HostAction);
3408
3409      // Host dependences for device actions are not compatible with that same
3410      // action being ignored.
3411      assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3412             "Host dependence not expected to be ignored.!");
3413
3414      // Unless the builder was inactive for this action, we have to record the
3415      // offload kind because the host will have to use it.
3416      if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3417        OffloadKind |= SB->getAssociatedOffloadKind();
3418    }
3419
3420    // Do not use unbundler if the Host does not depend on device action.
3421    if (OffloadKind == Action::OFK_None && CanUseBundler)
3422      if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3423        HostAction = UA->getInputs().back();
3424
3425    return false;
3426  }
3427
3428  /// Add the offloading top level actions to the provided action list. This
3429  /// function can replace the host action by a bundling action if the
3430  /// programming models allow it.
3431  bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3432                             const Arg *InputArg) {
3433    // Get the device actions to be appended.
3434    ActionList OffloadAL;
3435    for (auto *SB : SpecializedBuilders) {
3436      if (!SB->isValid())
3437        continue;
3438      SB->appendTopLevelActions(OffloadAL);
3439    }
3440
3441    // If we can use the bundler, replace the host action by the bundling one in
3442    // the resulting list. Otherwise, just append the device actions. For
3443    // device only compilation, HostAction is a null pointer, therefore only do
3444    // this when HostAction is not a null pointer.
3445    if (CanUseBundler && HostAction &&
3446        HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3447      // Add the host action to the list in order to create the bundling action.
3448      OffloadAL.push_back(HostAction);
3449
3450      // We expect that the host action was just appended to the action list
3451      // before this method was called.
3452      assert(HostAction == AL.back() && "Host action not in the list??");
3453      HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3454      AL.back() = HostAction;
3455    } else
3456      AL.append(OffloadAL.begin(), OffloadAL.end());
3457
3458    // Propagate to the current host action (if any) the offload information
3459    // associated with the current input.
3460    if (HostAction)
3461      HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3462                                           /*BoundArch=*/nullptr);
3463    return false;
3464  }
3465
3466  Action* makeHostLinkAction() {
3467    // Build a list of device linking actions.
3468    ActionList DeviceAL;
3469    for (DeviceActionBuilder *SB : SpecializedBuilders) {
3470      if (!SB->isValid())
3471        continue;
3472      SB->appendLinkDeviceActions(DeviceAL);
3473    }
3474
3475    if (DeviceAL.empty())
3476      return nullptr;
3477
3478    // Let builders add host linking actions.
3479    Action* HA = nullptr;
3480    for (DeviceActionBuilder *SB : SpecializedBuilders) {
3481      if (!SB->isValid())
3482        continue;
3483      HA = SB->appendLinkHostActions(DeviceAL);
3484    }
3485    return HA;
3486  }
3487
3488  /// Processes the host linker action. This currently consists of replacing it
3489  /// with an offload action if there are device link objects and propagate to
3490  /// the host action all the offload kinds used in the current compilation. The
3491  /// resulting action is returned.
3492  Action *processHostLinkAction(Action *HostAction) {
3493    // Add all the dependences from the device linking actions.
3494    OffloadAction::DeviceDependences DDeps;
3495    for (auto *SB : SpecializedBuilders) {
3496      if (!SB->isValid())
3497        continue;
3498
3499      SB->appendLinkDependences(DDeps);
3500    }
3501
3502    // Calculate all the offload kinds used in the current compilation.
3503    unsigned ActiveOffloadKinds = 0u;
3504    for (auto &I : InputArgToOffloadKindMap)
3505      ActiveOffloadKinds |= I.second;
3506
3507    // If we don't have device dependencies, we don't have to create an offload
3508    // action.
3509    if (DDeps.getActions().empty()) {
3510      // Propagate all the active kinds to host action. Given that it is a link
3511      // action it is assumed to depend on all actions generated so far.
3512      HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3513                                           /*BoundArch=*/nullptr);
3514      return HostAction;
3515    }
3516
3517    // Create the offload action with all dependences. When an offload action
3518    // is created the kinds are propagated to the host action, so we don't have
3519    // to do that explicitly here.
3520    OffloadAction::HostDependence HDep(
3521        *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3522        /*BoundArch*/ nullptr, ActiveOffloadKinds);
3523    return C.MakeAction<OffloadAction>(HDep, DDeps);
3524  }
3525};
3526} // anonymous namespace.
3527
3528void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3529                             const InputList &Inputs,
3530                             ActionList &Actions) const {
3531
3532  // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3533  Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3534  Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3535  if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3536    Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3537    Args.eraseArg(options::OPT__SLASH_Yc);
3538    Args.eraseArg(options::OPT__SLASH_Yu);
3539    YcArg = YuArg = nullptr;
3540  }
3541  if (YcArg && Inputs.size() > 1) {
3542    Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3543    Args.eraseArg(options::OPT__SLASH_Yc);
3544    YcArg = nullptr;
3545  }
3546
3547  Arg *FinalPhaseArg;
3548  phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3549
3550  if (FinalPhase == phases::Link) {
3551    if (Args.hasArg(options::OPT_emit_llvm))
3552      Diag(clang::diag::err_drv_emit_llvm_link);
3553    if (IsCLMode() && LTOMode != LTOK_None &&
3554        !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3555      Diag(clang::diag::err_drv_lto_without_lld);
3556  }
3557
3558  if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3559    // If only preprocessing or /Y- is used, all pch handling is disabled.
3560    // Rather than check for it everywhere, just remove clang-cl pch-related
3561    // flags here.
3562    Args.eraseArg(options::OPT__SLASH_Fp);
3563    Args.eraseArg(options::OPT__SLASH_Yc);
3564    Args.eraseArg(options::OPT__SLASH_Yu);
3565    YcArg = YuArg = nullptr;
3566  }
3567
3568  unsigned LastPLSize = 0;
3569  for (auto &I : Inputs) {
3570    types::ID InputType = I.first;
3571    const Arg *InputArg = I.second;
3572
3573    auto PL = types::getCompilationPhases(InputType);
3574    LastPLSize = PL.size();
3575
3576    // If the first step comes after the final phase we are doing as part of
3577    // this compilation, warn the user about it.
3578    phases::ID InitialPhase = PL[0];
3579    if (InitialPhase > FinalPhase) {
3580      if (InputArg->isClaimed())
3581        continue;
3582
3583      // Claim here to avoid the more general unused warning.
3584      InputArg->claim();
3585
3586      // Suppress all unused style warnings with -Qunused-arguments
3587      if (Args.hasArg(options::OPT_Qunused_arguments))
3588        continue;
3589
3590      // Special case when final phase determined by binary name, rather than
3591      // by a command-line argument with a corresponding Arg.
3592      if (CCCIsCPP())
3593        Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3594            << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3595      // Special case '-E' warning on a previously preprocessed file to make
3596      // more sense.
3597      else if (InitialPhase == phases::Compile &&
3598               (Args.getLastArg(options::OPT__SLASH_EP,
3599                                options::OPT__SLASH_P) ||
3600                Args.getLastArg(options::OPT_E) ||
3601                Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3602               getPreprocessedType(InputType) == types::TY_INVALID)
3603        Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3604            << InputArg->getAsString(Args) << !!FinalPhaseArg
3605            << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3606      else
3607        Diag(clang::diag::warn_drv_input_file_unused)
3608            << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3609            << !!FinalPhaseArg
3610            << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3611      continue;
3612    }
3613
3614    if (YcArg) {
3615      // Add a separate precompile phase for the compile phase.
3616      if (FinalPhase >= phases::Compile) {
3617        const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3618        // Build the pipeline for the pch file.
3619        Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3620        for (phases::ID Phase : types::getCompilationPhases(HeaderType))
3621          ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3622        assert(ClangClPch);
3623        Actions.push_back(ClangClPch);
3624        // The driver currently exits after the first failed command.  This
3625        // relies on that behavior, to make sure if the pch generation fails,
3626        // the main compilation won't run.
3627        // FIXME: If the main compilation fails, the PCH generation should
3628        // probably not be considered successful either.
3629      }
3630    }
3631  }
3632
3633  // If we are linking, claim any options which are obviously only used for
3634  // compilation.
3635  // FIXME: Understand why the last Phase List length is used here.
3636  if (FinalPhase == phases::Link && LastPLSize == 1) {
3637    Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3638    Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3639  }
3640}
3641
3642void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3643                          const InputList &Inputs, ActionList &Actions) const {
3644  llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3645
3646  if (!SuppressMissingInputWarning && Inputs.empty()) {
3647    Diag(clang::diag::err_drv_no_input_files);
3648    return;
3649  }
3650
3651  // Reject -Z* at the top level, these options should never have been exposed
3652  // by gcc.
3653  if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3654    Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3655
3656  // Diagnose misuse of /Fo.
3657  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3658    StringRef V = A->getValue();
3659    if (Inputs.size() > 1 && !V.empty() &&
3660        !llvm::sys::path::is_separator(V.back())) {
3661      // Check whether /Fo tries to name an output file for multiple inputs.
3662      Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3663          << A->getSpelling() << V;
3664      Args.eraseArg(options::OPT__SLASH_Fo);
3665    }
3666  }
3667
3668  // Diagnose misuse of /Fa.
3669  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3670    StringRef V = A->getValue();
3671    if (Inputs.size() > 1 && !V.empty() &&
3672        !llvm::sys::path::is_separator(V.back())) {
3673      // Check whether /Fa tries to name an asm file for multiple inputs.
3674      Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3675          << A->getSpelling() << V;
3676      Args.eraseArg(options::OPT__SLASH_Fa);
3677    }
3678  }
3679
3680  // Diagnose misuse of /o.
3681  if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3682    if (A->getValue()[0] == '\0') {
3683      // It has to have a value.
3684      Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3685      Args.eraseArg(options::OPT__SLASH_o);
3686    }
3687  }
3688
3689  handleArguments(C, Args, Inputs, Actions);
3690
3691  // Builder to be used to build offloading actions.
3692  OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3693
3694  // Construct the actions to perform.
3695  HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3696  ActionList LinkerInputs;
3697  ActionList MergerInputs;
3698
3699  for (auto &I : Inputs) {
3700    types::ID InputType = I.first;
3701    const Arg *InputArg = I.second;
3702
3703    auto PL = types::getCompilationPhases(*this, Args, InputType);
3704    if (PL.empty())
3705      continue;
3706
3707    auto FullPL = types::getCompilationPhases(InputType);
3708
3709    // Build the pipeline for this file.
3710    Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3711
3712    // Use the current host action in any of the offloading actions, if
3713    // required.
3714    if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3715      break;
3716
3717    for (phases::ID Phase : PL) {
3718
3719      // Add any offload action the host action depends on.
3720      Current = OffloadBuilder.addDeviceDependencesToHostAction(
3721          Current, InputArg, Phase, PL.back(), FullPL);
3722      if (!Current)
3723        break;
3724
3725      // Queue linker inputs.
3726      if (Phase == phases::Link) {
3727        assert(Phase == PL.back() && "linking must be final compilation step.");
3728        LinkerInputs.push_back(Current);
3729        Current = nullptr;
3730        break;
3731      }
3732
3733      // TODO: Consider removing this because the merged may not end up being
3734      // the final Phase in the pipeline. Perhaps the merged could just merge
3735      // and then pass an artifact of some sort to the Link Phase.
3736      // Queue merger inputs.
3737      if (Phase == phases::IfsMerge) {
3738        assert(Phase == PL.back() && "merging must be final compilation step.");
3739        MergerInputs.push_back(Current);
3740        Current = nullptr;
3741        break;
3742      }
3743
3744      // Each precompiled header file after a module file action is a module
3745      // header of that same module file, rather than being compiled to a
3746      // separate PCH.
3747      if (Phase == phases::Precompile && HeaderModuleAction &&
3748          getPrecompiledType(InputType) == types::TY_PCH) {
3749        HeaderModuleAction->addModuleHeaderInput(Current);
3750        Current = nullptr;
3751        break;
3752      }
3753
3754      // FIXME: Should we include any prior module file outputs as inputs of
3755      // later actions in the same command line?
3756
3757      // Otherwise construct the appropriate action.
3758      Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3759
3760      // We didn't create a new action, so we will just move to the next phase.
3761      if (NewCurrent == Current)
3762        continue;
3763
3764      if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3765        HeaderModuleAction = HMA;
3766
3767      Current = NewCurrent;
3768
3769      // Use the current host action in any of the offloading actions, if
3770      // required.
3771      if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3772        break;
3773
3774      if (Current->getType() == types::TY_Nothing)
3775        break;
3776    }
3777
3778    // If we ended with something, add to the output list.
3779    if (Current)
3780      Actions.push_back(Current);
3781
3782    // Add any top level actions generated for offloading.
3783    OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3784  }
3785
3786  // Add a link action if necessary.
3787  if (!LinkerInputs.empty()) {
3788    if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
3789      LinkerInputs.push_back(Wrapper);
3790    Action *LA;
3791    // Check if this Linker Job should emit a static library.
3792    if (ShouldEmitStaticLibrary(Args)) {
3793      LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
3794    } else {
3795      LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3796    }
3797    LA = OffloadBuilder.processHostLinkAction(LA);
3798    Actions.push_back(LA);
3799  }
3800
3801  // Add an interface stubs merge action if necessary.
3802  if (!MergerInputs.empty())
3803    Actions.push_back(
3804        C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3805
3806  if (Args.hasArg(options::OPT_emit_interface_stubs)) {
3807    auto PhaseList = types::getCompilationPhases(
3808        types::TY_IFS_CPP,
3809        Args.hasArg(options::OPT_c) ? phases::Compile : phases::LastPhase);
3810
3811    ActionList MergerInputs;
3812
3813    for (auto &I : Inputs) {
3814      types::ID InputType = I.first;
3815      const Arg *InputArg = I.second;
3816
3817      // Currently clang and the llvm assembler do not support generating symbol
3818      // stubs from assembly, so we skip the input on asm files. For ifs files
3819      // we rely on the normal pipeline setup in the pipeline setup code above.
3820      if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
3821          InputType == types::TY_Asm)
3822        continue;
3823
3824      Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3825
3826      for (auto Phase : PhaseList) {
3827        switch (Phase) {
3828        default:
3829          llvm_unreachable(
3830              "IFS Pipeline can only consist of Compile followed by IfsMerge.");
3831        case phases::Compile: {
3832          // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
3833          // files where the .o file is located. The compile action can not
3834          // handle this.
3835          if (InputType == types::TY_Object)
3836            break;
3837
3838          Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
3839          break;
3840        }
3841        case phases::IfsMerge: {
3842          assert(Phase == PhaseList.back() &&
3843                 "merging must be final compilation step.");
3844          MergerInputs.push_back(Current);
3845          Current = nullptr;
3846          break;
3847        }
3848        }
3849      }
3850
3851      // If we ended with something, add to the output list.
3852      if (Current)
3853        Actions.push_back(Current);
3854    }
3855
3856    // Add an interface stubs merge action if necessary.
3857    if (!MergerInputs.empty())
3858      Actions.push_back(
3859          C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3860  }
3861
3862  // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3863  // Compile phase that prints out supported cpu models and quits.
3864  if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3865    // Use the -mcpu=? flag as the dummy input to cc1.
3866    Actions.clear();
3867    Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3868    Actions.push_back(
3869        C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3870    for (auto &I : Inputs)
3871      I.second->claim();
3872  }
3873
3874  // Claim ignored clang-cl options.
3875  Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3876
3877  // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3878  // to non-CUDA compilations and should not trigger warnings there.
3879  Args.ClaimAllArgs(options::OPT_cuda_host_only);
3880  Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3881}
3882
3883Action *Driver::ConstructPhaseAction(
3884    Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3885    Action::OffloadKind TargetDeviceOffloadKind) const {
3886  llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3887
3888  // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3889  // encode this in the steps because the intermediate type depends on
3890  // arguments. Just special case here.
3891  if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3892    return Input;
3893
3894  // Build the appropriate action.
3895  switch (Phase) {
3896  case phases::Link:
3897    llvm_unreachable("link action invalid here.");
3898  case phases::IfsMerge:
3899    llvm_unreachable("ifsmerge action invalid here.");
3900  case phases::Preprocess: {
3901    types::ID OutputTy;
3902    // -M and -MM specify the dependency file name by altering the output type,
3903    // -if -MD and -MMD are not specified.
3904    if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
3905        !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
3906      OutputTy = types::TY_Dependencies;
3907    } else {
3908      OutputTy = Input->getType();
3909      if (!Args.hasFlag(options::OPT_frewrite_includes,
3910                        options::OPT_fno_rewrite_includes, false) &&
3911          !Args.hasFlag(options::OPT_frewrite_imports,
3912                        options::OPT_fno_rewrite_imports, false) &&
3913          !CCGenDiagnostics)
3914        OutputTy = types::getPreprocessedType(OutputTy);
3915      assert(OutputTy != types::TY_INVALID &&
3916             "Cannot preprocess this input type!");
3917    }
3918    return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3919  }
3920  case phases::Precompile: {
3921    types::ID OutputTy = getPrecompiledType(Input->getType());
3922    assert(OutputTy != types::TY_INVALID &&
3923           "Cannot precompile this input type!");
3924
3925    // If we're given a module name, precompile header file inputs as a
3926    // module, not as a precompiled header.
3927    const char *ModName = nullptr;
3928    if (OutputTy == types::TY_PCH) {
3929      if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3930        ModName = A->getValue();
3931      if (ModName)
3932        OutputTy = types::TY_ModuleFile;
3933    }
3934
3935    if (Args.hasArg(options::OPT_fsyntax_only)) {
3936      // Syntax checks should not emit a PCH file
3937      OutputTy = types::TY_Nothing;
3938    }
3939
3940    if (ModName)
3941      return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3942                                                           ModName);
3943    return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3944  }
3945  case phases::Compile: {
3946    if (Args.hasArg(options::OPT_fsyntax_only))
3947      return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3948    if (Args.hasArg(options::OPT_rewrite_objc))
3949      return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3950    if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3951      return C.MakeAction<CompileJobAction>(Input,
3952                                            types::TY_RewrittenLegacyObjC);
3953    if (Args.hasArg(options::OPT__analyze))
3954      return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3955    if (Args.hasArg(options::OPT__migrate))
3956      return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3957    if (Args.hasArg(options::OPT_emit_ast))
3958      return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3959    if (Args.hasArg(options::OPT_module_file_info))
3960      return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3961    if (Args.hasArg(options::OPT_verify_pch))
3962      return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3963    return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3964  }
3965  case phases::Backend: {
3966    if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3967      types::ID Output =
3968          Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3969      return C.MakeAction<BackendJobAction>(Input, Output);
3970    }
3971    if (Args.hasArg(options::OPT_emit_llvm) ||
3972        (TargetDeviceOffloadKind == Action::OFK_HIP &&
3973         Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
3974                      false))) {
3975      types::ID Output =
3976          Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3977      return C.MakeAction<BackendJobAction>(Input, Output);
3978    }
3979    return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3980  }
3981  case phases::Assemble:
3982    return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3983  }
3984
3985  llvm_unreachable("invalid phase in ConstructPhaseAction");
3986}
3987
3988void Driver::BuildJobs(Compilation &C) const {
3989  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3990
3991  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3992
3993  // It is an error to provide a -o option if we are making multiple output
3994  // files. There are exceptions:
3995  //
3996  // IfsMergeJob: when generating interface stubs enabled we want to be able to
3997  // generate the stub file at the same time that we generate the real
3998  // library/a.out. So when a .o, .so, etc are the output, with clang interface
3999  // stubs there will also be a .ifs and .ifso at the same location.
4000  //
4001  // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4002  // and -c is passed, we still want to be able to generate a .ifs file while
4003  // we are also generating .o files. So we allow more than one output file in
4004  // this case as well.
4005  //
4006  if (FinalOutput) {
4007    unsigned NumOutputs = 0;
4008    unsigned NumIfsOutputs = 0;
4009    for (const Action *A : C.getActions())
4010      if (A->getType() != types::TY_Nothing &&
4011          !(A->getKind() == Action::IfsMergeJobClass ||
4012            (A->getType() == clang::driver::types::TY_IFS_CPP &&
4013             A->getKind() == clang::driver::Action::CompileJobClass &&
4014             0 == NumIfsOutputs++) ||
4015            (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4016             A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4017        ++NumOutputs;
4018
4019    if (NumOutputs > 1) {
4020      Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4021      FinalOutput = nullptr;
4022    }
4023  }
4024
4025  const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4026  if (RawTriple.isOSAIX()) {
4027    if (Arg *A = C.getArgs().getLastArg(options::OPT_G))
4028      Diag(diag::err_drv_unsupported_opt_for_target)
4029          << A->getSpelling() << RawTriple.str();
4030    if (LTOMode == LTOK_Thin)
4031      Diag(diag::err_drv_clang_unsupported) << "thinLTO on AIX";
4032  }
4033
4034  // Collect the list of architectures.
4035  llvm::StringSet<> ArchNames;
4036  if (RawTriple.isOSBinFormatMachO())
4037    for (const Arg *A : C.getArgs())
4038      if (A->getOption().matches(options::OPT_arch))
4039        ArchNames.insert(A->getValue());
4040
4041  // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4042  std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
4043  for (Action *A : C.getActions()) {
4044    // If we are linking an image for multiple archs then the linker wants
4045    // -arch_multiple and -final_output <final image name>. Unfortunately, this
4046    // doesn't fit in cleanly because we have to pass this information down.
4047    //
4048    // FIXME: This is a hack; find a cleaner way to integrate this into the
4049    // process.
4050    const char *LinkingOutput = nullptr;
4051    if (isa<LipoJobAction>(A)) {
4052      if (FinalOutput)
4053        LinkingOutput = FinalOutput->getValue();
4054      else
4055        LinkingOutput = getDefaultImageName();
4056    }
4057
4058    BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4059                       /*BoundArch*/ StringRef(),
4060                       /*AtTopLevel*/ true,
4061                       /*MultipleArchs*/ ArchNames.size() > 1,
4062                       /*LinkingOutput*/ LinkingOutput, CachedResults,
4063                       /*TargetDeviceOffloadKind*/ Action::OFK_None);
4064  }
4065
4066  // If we have more than one job, then disable integrated-cc1 for now. Do this
4067  // also when we need to report process execution statistics.
4068  if (C.getJobs().size() > 1 || CCPrintProcessStats)
4069    for (auto &J : C.getJobs())
4070      J.InProcess = false;
4071
4072  if (CCPrintProcessStats) {
4073    C.setPostCallback([=](const Command &Cmd, int Res) {
4074      Optional<llvm::sys::ProcessStatistics> ProcStat =
4075          Cmd.getProcessStatistics();
4076      if (!ProcStat)
4077        return;
4078
4079      const char *LinkingOutput = nullptr;
4080      if (FinalOutput)
4081        LinkingOutput = FinalOutput->getValue();
4082      else if (!Cmd.getOutputFilenames().empty())
4083        LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4084      else
4085        LinkingOutput = getDefaultImageName();
4086
4087      if (CCPrintStatReportFilename.empty()) {
4088        using namespace llvm;
4089        // Human readable output.
4090        outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4091               << "output=" << LinkingOutput;
4092        outs() << ", total="
4093               << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4094               << ", user="
4095               << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4096               << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4097      } else {
4098        // CSV format.
4099        std::string Buffer;
4100        llvm::raw_string_ostream Out(Buffer);
4101        llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4102                            /*Quote*/ true);
4103        Out << ',';
4104        llvm::sys::printArg(Out, LinkingOutput, true);
4105        Out << ',' << ProcStat->TotalTime.count() << ','
4106            << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4107            << '\n';
4108        Out.flush();
4109        std::error_code EC;
4110        llvm::raw_fd_ostream OS(CCPrintStatReportFilename.c_str(), EC,
4111                                llvm::sys::fs::OF_Append |
4112                                    llvm::sys::fs::OF_Text);
4113        if (EC)
4114          return;
4115        auto L = OS.lock();
4116        if (!L) {
4117          llvm::errs() << "ERROR: Cannot lock file "
4118                       << CCPrintStatReportFilename << ": "
4119                       << toString(L.takeError()) << "\n";
4120          return;
4121        }
4122        OS << Buffer;
4123        OS.flush();
4124      }
4125    });
4126  }
4127
4128  // If the user passed -Qunused-arguments or there were errors, don't warn
4129  // about any unused arguments.
4130  if (Diags.hasErrorOccurred() ||
4131      C.getArgs().hasArg(options::OPT_Qunused_arguments))
4132    return;
4133
4134  // Claim -### here.
4135  (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4136
4137  // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4138  (void)C.getArgs().hasArg(options::OPT_driver_mode);
4139  (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4140
4141  for (Arg *A : C.getArgs()) {
4142    // FIXME: It would be nice to be able to send the argument to the
4143    // DiagnosticsEngine, so that extra values, position, and so on could be
4144    // printed.
4145    if (!A->isClaimed()) {
4146      if (A->getOption().hasFlag(options::NoArgumentUnused))
4147        continue;
4148
4149      // Suppress the warning automatically if this is just a flag, and it is an
4150      // instance of an argument we already claimed.
4151      const Option &Opt = A->getOption();
4152      if (Opt.getKind() == Option::FlagClass) {
4153        bool DuplicateClaimed = false;
4154
4155        for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4156          if (AA->isClaimed()) {
4157            DuplicateClaimed = true;
4158            break;
4159          }
4160        }
4161
4162        if (DuplicateClaimed)
4163          continue;
4164      }
4165
4166      // In clang-cl, don't mention unknown arguments here since they have
4167      // already been warned about.
4168      if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
4169        Diag(clang::diag::warn_drv_unused_argument)
4170            << A->getAsString(C.getArgs());
4171    }
4172  }
4173}
4174
4175namespace {
4176/// Utility class to control the collapse of dependent actions and select the
4177/// tools accordingly.
4178class ToolSelector final {
4179  /// The tool chain this selector refers to.
4180  const ToolChain &TC;
4181
4182  /// The compilation this selector refers to.
4183  const Compilation &C;
4184
4185  /// The base action this selector refers to.
4186  const JobAction *BaseAction;
4187
4188  /// Set to true if the current toolchain refers to host actions.
4189  bool IsHostSelector;
4190
4191  /// Set to true if save-temps and embed-bitcode functionalities are active.
4192  bool SaveTemps;
4193  bool EmbedBitcode;
4194
4195  /// Get previous dependent action or null if that does not exist. If
4196  /// \a CanBeCollapsed is false, that action must be legal to collapse or
4197  /// null will be returned.
4198  const JobAction *getPrevDependentAction(const ActionList &Inputs,
4199                                          ActionList &SavedOffloadAction,
4200                                          bool CanBeCollapsed = true) {
4201    // An option can be collapsed only if it has a single input.
4202    if (Inputs.size() != 1)
4203      return nullptr;
4204
4205    Action *CurAction = *Inputs.begin();
4206    if (CanBeCollapsed &&
4207        !CurAction->isCollapsingWithNextDependentActionLegal())
4208      return nullptr;
4209
4210    // If the input action is an offload action. Look through it and save any
4211    // offload action that can be dropped in the event of a collapse.
4212    if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
4213      // If the dependent action is a device action, we will attempt to collapse
4214      // only with other device actions. Otherwise, we would do the same but
4215      // with host actions only.
4216      if (!IsHostSelector) {
4217        if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
4218          CurAction =
4219              OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
4220          if (CanBeCollapsed &&
4221              !CurAction->isCollapsingWithNextDependentActionLegal())
4222            return nullptr;
4223          SavedOffloadAction.push_back(OA);
4224          return dyn_cast<JobAction>(CurAction);
4225        }
4226      } else if (OA->hasHostDependence()) {
4227        CurAction = OA->getHostDependence();
4228        if (CanBeCollapsed &&
4229            !CurAction->isCollapsingWithNextDependentActionLegal())
4230          return nullptr;
4231        SavedOffloadAction.push_back(OA);
4232        return dyn_cast<JobAction>(CurAction);
4233      }
4234      return nullptr;
4235    }
4236
4237    return dyn_cast<JobAction>(CurAction);
4238  }
4239
4240  /// Return true if an assemble action can be collapsed.
4241  bool canCollapseAssembleAction() const {
4242    return TC.useIntegratedAs() && !SaveTemps &&
4243           !C.getArgs().hasArg(options::OPT_via_file_asm) &&
4244           !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
4245           !C.getArgs().hasArg(options::OPT__SLASH_Fa);
4246  }
4247
4248  /// Return true if a preprocessor action can be collapsed.
4249  bool canCollapsePreprocessorAction() const {
4250    return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
4251           !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
4252           !C.getArgs().hasArg(options::OPT_rewrite_objc);
4253  }
4254
4255  /// Struct that relates an action with the offload actions that would be
4256  /// collapsed with it.
4257  struct JobActionInfo final {
4258    /// The action this info refers to.
4259    const JobAction *JA = nullptr;
4260    /// The offload actions we need to take care off if this action is
4261    /// collapsed.
4262    ActionList SavedOffloadAction;
4263  };
4264
4265  /// Append collapsed offload actions from the give nnumber of elements in the
4266  /// action info array.
4267  static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
4268                                           ArrayRef<JobActionInfo> &ActionInfo,
4269                                           unsigned ElementNum) {
4270    assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
4271    for (unsigned I = 0; I < ElementNum; ++I)
4272      CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
4273                                    ActionInfo[I].SavedOffloadAction.end());
4274  }
4275
4276  /// Functions that attempt to perform the combining. They detect if that is
4277  /// legal, and if so they update the inputs \a Inputs and the offload action
4278  /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
4279  /// the combined action is returned. If the combining is not legal or if the
4280  /// tool does not exist, null is returned.
4281  /// Currently three kinds of collapsing are supported:
4282  ///  - Assemble + Backend + Compile;
4283  ///  - Assemble + Backend ;
4284  ///  - Backend + Compile.
4285  const Tool *
4286  combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4287                                ActionList &Inputs,
4288                                ActionList &CollapsedOffloadAction) {
4289    if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
4290      return nullptr;
4291    auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4292    auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4293    auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
4294    if (!AJ || !BJ || !CJ)
4295      return nullptr;
4296
4297    // Get compiler tool.
4298    const Tool *T = TC.SelectTool(*CJ);
4299    if (!T)
4300      return nullptr;
4301
4302    // When using -fembed-bitcode, it is required to have the same tool (clang)
4303    // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4304    if (EmbedBitcode) {
4305      const Tool *BT = TC.SelectTool(*BJ);
4306      if (BT == T)
4307        return nullptr;
4308    }
4309
4310    if (!T->hasIntegratedAssembler())
4311      return nullptr;
4312
4313    Inputs = CJ->getInputs();
4314    AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4315                                 /*NumElements=*/3);
4316    return T;
4317  }
4318  const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
4319                                     ActionList &Inputs,
4320                                     ActionList &CollapsedOffloadAction) {
4321    if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
4322      return nullptr;
4323    auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4324    auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4325    if (!AJ || !BJ)
4326      return nullptr;
4327
4328    // Get backend tool.
4329    const Tool *T = TC.SelectTool(*BJ);
4330    if (!T)
4331      return nullptr;
4332
4333    if (!T->hasIntegratedAssembler())
4334      return nullptr;
4335
4336    Inputs = BJ->getInputs();
4337    AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4338                                 /*NumElements=*/2);
4339    return T;
4340  }
4341  const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4342                                    ActionList &Inputs,
4343                                    ActionList &CollapsedOffloadAction) {
4344    if (ActionInfo.size() < 2)
4345      return nullptr;
4346    auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
4347    auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
4348    if (!BJ || !CJ)
4349      return nullptr;
4350
4351    // Check if the initial input (to the compile job or its predessor if one
4352    // exists) is LLVM bitcode. In that case, no preprocessor step is required
4353    // and we can still collapse the compile and backend jobs when we have
4354    // -save-temps. I.e. there is no need for a separate compile job just to
4355    // emit unoptimized bitcode.
4356    bool InputIsBitcode = true;
4357    for (size_t i = 1; i < ActionInfo.size(); i++)
4358      if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
4359          ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
4360        InputIsBitcode = false;
4361        break;
4362      }
4363    if (!InputIsBitcode && !canCollapsePreprocessorAction())
4364      return nullptr;
4365
4366    // Get compiler tool.
4367    const Tool *T = TC.SelectTool(*CJ);
4368    if (!T)
4369      return nullptr;
4370
4371    if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
4372      return nullptr;
4373
4374    Inputs = CJ->getInputs();
4375    AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4376                                 /*NumElements=*/2);
4377    return T;
4378  }
4379
4380  /// Updates the inputs if the obtained tool supports combining with
4381  /// preprocessor action, and the current input is indeed a preprocessor
4382  /// action. If combining results in the collapse of offloading actions, those
4383  /// are appended to \a CollapsedOffloadAction.
4384  void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
4385                               ActionList &CollapsedOffloadAction) {
4386    if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
4387      return;
4388
4389    // Attempt to get a preprocessor action dependence.
4390    ActionList PreprocessJobOffloadActions;
4391    ActionList NewInputs;
4392    for (Action *A : Inputs) {
4393      auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
4394      if (!PJ || !isa<PreprocessJobAction>(PJ)) {
4395        NewInputs.push_back(A);
4396        continue;
4397      }
4398
4399      // This is legal to combine. Append any offload action we found and add the
4400      // current input to preprocessor inputs.
4401      CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
4402                                    PreprocessJobOffloadActions.end());
4403      NewInputs.append(PJ->input_begin(), PJ->input_end());
4404    }
4405    Inputs = NewInputs;
4406  }
4407
4408public:
4409  ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
4410               const Compilation &C, bool SaveTemps, bool EmbedBitcode)
4411      : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
4412        EmbedBitcode(EmbedBitcode) {
4413    assert(BaseAction && "Invalid base action.");
4414    IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
4415  }
4416
4417  /// Check if a chain of actions can be combined and return the tool that can
4418  /// handle the combination of actions. The pointer to the current inputs \a
4419  /// Inputs and the list of offload actions \a CollapsedOffloadActions
4420  /// connected to collapsed actions are updated accordingly. The latter enables
4421  /// the caller of the selector to process them afterwards instead of just
4422  /// dropping them. If no suitable tool is found, null will be returned.
4423  const Tool *getTool(ActionList &Inputs,
4424                      ActionList &CollapsedOffloadAction) {
4425    //
4426    // Get the largest chain of actions that we could combine.
4427    //
4428
4429    SmallVector<JobActionInfo, 5> ActionChain(1);
4430    ActionChain.back().JA = BaseAction;
4431    while (ActionChain.back().JA) {
4432      const Action *CurAction = ActionChain.back().JA;
4433
4434      // Grow the chain by one element.
4435      ActionChain.resize(ActionChain.size() + 1);
4436      JobActionInfo &AI = ActionChain.back();
4437
4438      // Attempt to fill it with the
4439      AI.JA =
4440          getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
4441    }
4442
4443    // Pop the last action info as it could not be filled.
4444    ActionChain.pop_back();
4445
4446    //
4447    // Attempt to combine actions. If all combining attempts failed, just return
4448    // the tool of the provided action. At the end we attempt to combine the
4449    // action with any preprocessor action it may depend on.
4450    //
4451
4452    const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
4453                                                  CollapsedOffloadAction);
4454    if (!T)
4455      T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
4456    if (!T)
4457      T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
4458    if (!T) {
4459      Inputs = BaseAction->getInputs();
4460      T = TC.SelectTool(*BaseAction);
4461    }
4462
4463    combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
4464    return T;
4465  }
4466};
4467}
4468
4469/// Return a string that uniquely identifies the result of a job. The bound arch
4470/// is not necessarily represented in the toolchain's triple -- for example,
4471/// armv7 and armv7s both map to the same triple -- so we need both in our map.
4472/// Also, we need to add the offloading device kind, as the same tool chain can
4473/// be used for host and device for some programming models, e.g. OpenMP.
4474static std::string GetTriplePlusArchString(const ToolChain *TC,
4475                                           StringRef BoundArch,
4476                                           Action::OffloadKind OffloadKind) {
4477  std::string TriplePlusArch = TC->getTriple().normalize();
4478  if (!BoundArch.empty()) {
4479    TriplePlusArch += "-";
4480    TriplePlusArch += BoundArch;
4481  }
4482  TriplePlusArch += "-";
4483  TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
4484  return TriplePlusArch;
4485}
4486
4487InputInfo Driver::BuildJobsForAction(
4488    Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4489    bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4490    std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4491    Action::OffloadKind TargetDeviceOffloadKind) const {
4492  std::pair<const Action *, std::string> ActionTC = {
4493      A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4494  auto CachedResult = CachedResults.find(ActionTC);
4495  if (CachedResult != CachedResults.end()) {
4496    return CachedResult->second;
4497  }
4498  InputInfo Result = BuildJobsForActionNoCache(
4499      C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
4500      CachedResults, TargetDeviceOffloadKind);
4501  CachedResults[ActionTC] = Result;
4502  return Result;
4503}
4504
4505InputInfo Driver::BuildJobsForActionNoCache(
4506    Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4507    bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4508    std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4509    Action::OffloadKind TargetDeviceOffloadKind) const {
4510  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4511
4512  InputInfoList OffloadDependencesInputInfo;
4513  bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
4514  if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
4515    // The 'Darwin' toolchain is initialized only when its arguments are
4516    // computed. Get the default arguments for OFK_None to ensure that
4517    // initialization is performed before processing the offload action.
4518    // FIXME: Remove when darwin's toolchain is initialized during construction.
4519    C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
4520
4521    // The offload action is expected to be used in four different situations.
4522    //
4523    // a) Set a toolchain/architecture/kind for a host action:
4524    //    Host Action 1 -> OffloadAction -> Host Action 2
4525    //
4526    // b) Set a toolchain/architecture/kind for a device action;
4527    //    Device Action 1 -> OffloadAction -> Device Action 2
4528    //
4529    // c) Specify a device dependence to a host action;
4530    //    Device Action 1  _
4531    //                      \
4532    //      Host Action 1  ---> OffloadAction -> Host Action 2
4533    //
4534    // d) Specify a host dependence to a device action.
4535    //      Host Action 1  _
4536    //                      \
4537    //    Device Action 1  ---> OffloadAction -> Device Action 2
4538    //
4539    // For a) and b), we just return the job generated for the dependence. For
4540    // c) and d) we override the current action with the host/device dependence
4541    // if the current toolchain is host/device and set the offload dependences
4542    // info with the jobs obtained from the device/host dependence(s).
4543
4544    // If there is a single device option, just generate the job for it.
4545    if (OA->hasSingleDeviceDependence()) {
4546      InputInfo DevA;
4547      OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4548                                       const char *DepBoundArch) {
4549        DevA =
4550            BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4551                               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4552                               CachedResults, DepA->getOffloadingDeviceKind());
4553      });
4554      return DevA;
4555    }
4556
4557    // If 'Action 2' is host, we generate jobs for the device dependences and
4558    // override the current action with the host dependence. Otherwise, we
4559    // generate the host dependences and override the action with the device
4560    // dependence. The dependences can't therefore be a top-level action.
4561    OA->doOnEachDependence(
4562        /*IsHostDependence=*/BuildingForOffloadDevice,
4563        [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4564          OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4565              C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4566              /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4567              DepA->getOffloadingDeviceKind()));
4568        });
4569
4570    A = BuildingForOffloadDevice
4571            ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4572            : OA->getHostDependence();
4573  }
4574
4575  if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4576    // FIXME: It would be nice to not claim this here; maybe the old scheme of
4577    // just using Args was better?
4578    const Arg &Input = IA->getInputArg();
4579    Input.claim();
4580    if (Input.getOption().matches(options::OPT_INPUT)) {
4581      const char *Name = Input.getValue();
4582      return InputInfo(A, Name, /* _BaseInput = */ Name);
4583    }
4584    return InputInfo(A, &Input, /* _BaseInput = */ "");
4585  }
4586
4587  if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4588    const ToolChain *TC;
4589    StringRef ArchName = BAA->getArchName();
4590
4591    if (!ArchName.empty())
4592      TC = &getToolChain(C.getArgs(),
4593                         computeTargetTriple(*this, TargetTriple,
4594                                             C.getArgs(), ArchName));
4595    else
4596      TC = &C.getDefaultToolChain();
4597
4598    return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4599                              MultipleArchs, LinkingOutput, CachedResults,
4600                              TargetDeviceOffloadKind);
4601  }
4602
4603
4604  ActionList Inputs = A->getInputs();
4605
4606  const JobAction *JA = cast<JobAction>(A);
4607  ActionList CollapsedOffloadActions;
4608
4609  ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4610                  embedBitcodeInObject() && !isUsingLTO());
4611  const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4612
4613  if (!T)
4614    return InputInfo();
4615
4616  if (BuildingForOffloadDevice &&
4617      A->getOffloadingDeviceKind() == Action::OFK_OpenMP) {
4618    if (TC->getTriple().isAMDGCN()) {
4619      // AMDGCN treats backend and assemble actions as no-op because
4620      // linker does not support object files.
4621      if (const BackendJobAction *BA = dyn_cast<BackendJobAction>(A)) {
4622        return BuildJobsForAction(C, *BA->input_begin(), TC, BoundArch,
4623                                  AtTopLevel, MultipleArchs, LinkingOutput,
4624                                  CachedResults, TargetDeviceOffloadKind);
4625      }
4626
4627      if (const AssembleJobAction *AA = dyn_cast<AssembleJobAction>(A)) {
4628        return BuildJobsForAction(C, *AA->input_begin(), TC, BoundArch,
4629                                  AtTopLevel, MultipleArchs, LinkingOutput,
4630                                  CachedResults, TargetDeviceOffloadKind);
4631      }
4632    }
4633  }
4634
4635  // If we've collapsed action list that contained OffloadAction we
4636  // need to build jobs for host/device-side inputs it may have held.
4637  for (const auto *OA : CollapsedOffloadActions)
4638    cast<OffloadAction>(OA)->doOnEachDependence(
4639        /*IsHostDependence=*/BuildingForOffloadDevice,
4640        [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4641          OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4642              C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4643              /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4644              DepA->getOffloadingDeviceKind()));
4645        });
4646
4647  // Only use pipes when there is exactly one input.
4648  InputInfoList InputInfos;
4649  for (const Action *Input : Inputs) {
4650    // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4651    // shouldn't get temporary output names.
4652    // FIXME: Clean this up.
4653    bool SubJobAtTopLevel =
4654        AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4655    InputInfos.push_back(BuildJobsForAction(
4656        C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4657        CachedResults, A->getOffloadingDeviceKind()));
4658  }
4659
4660  // Always use the first input as the base input.
4661  const char *BaseInput = InputInfos[0].getBaseInput();
4662
4663  // ... except dsymutil actions, which use their actual input as the base
4664  // input.
4665  if (JA->getType() == types::TY_dSYM)
4666    BaseInput = InputInfos[0].getFilename();
4667
4668  // ... and in header module compilations, which use the module name.
4669  if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4670    BaseInput = ModuleJA->getModuleName();
4671
4672  // Append outputs of offload device jobs to the input list
4673  if (!OffloadDependencesInputInfo.empty())
4674    InputInfos.append(OffloadDependencesInputInfo.begin(),
4675                      OffloadDependencesInputInfo.end());
4676
4677  // Set the effective triple of the toolchain for the duration of this job.
4678  llvm::Triple EffectiveTriple;
4679  const ToolChain &ToolTC = T->getToolChain();
4680  const ArgList &Args =
4681      C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4682  if (InputInfos.size() != 1) {
4683    EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4684  } else {
4685    // Pass along the input type if it can be unambiguously determined.
4686    EffectiveTriple = llvm::Triple(
4687        ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4688  }
4689  RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4690
4691  // Determine the place to write output to, if any.
4692  InputInfo Result;
4693  InputInfoList UnbundlingResults;
4694  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4695    // If we have an unbundling job, we need to create results for all the
4696    // outputs. We also update the results cache so that other actions using
4697    // this unbundling action can get the right results.
4698    for (auto &UI : UA->getDependentActionsInfo()) {
4699      assert(UI.DependentOffloadKind != Action::OFK_None &&
4700             "Unbundling with no offloading??");
4701
4702      // Unbundling actions are never at the top level. When we generate the
4703      // offloading prefix, we also do that for the host file because the
4704      // unbundling action does not change the type of the output which can
4705      // cause a overwrite.
4706      std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4707          UI.DependentOffloadKind,
4708          UI.DependentToolChain->getTriple().normalize(),
4709          /*CreatePrefixForHost=*/true);
4710      auto CurI = InputInfo(
4711          UA,
4712          GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4713                             /*AtTopLevel=*/false,
4714                             MultipleArchs ||
4715                                 UI.DependentOffloadKind == Action::OFK_HIP,
4716                             OffloadingPrefix),
4717          BaseInput);
4718      // Save the unbundling result.
4719      UnbundlingResults.push_back(CurI);
4720
4721      // Get the unique string identifier for this dependence and cache the
4722      // result.
4723      StringRef Arch;
4724      if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4725        if (UI.DependentOffloadKind == Action::OFK_Host)
4726          Arch = StringRef();
4727        else
4728          Arch = UI.DependentBoundArch;
4729      } else
4730        Arch = BoundArch;
4731
4732      CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4733                                                UI.DependentOffloadKind)}] =
4734          CurI;
4735    }
4736
4737    // Now that we have all the results generated, select the one that should be
4738    // returned for the current depending action.
4739    std::pair<const Action *, std::string> ActionTC = {
4740        A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4741    assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4742           "Result does not exist??");
4743    Result = CachedResults[ActionTC];
4744  } else if (JA->getType() == types::TY_Nothing)
4745    Result = InputInfo(A, BaseInput);
4746  else {
4747    // We only have to generate a prefix for the host if this is not a top-level
4748    // action.
4749    std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4750        A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4751        /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4752            !AtTopLevel);
4753    if (isa<OffloadWrapperJobAction>(JA)) {
4754      if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4755        BaseInput = FinalOutput->getValue();
4756      else
4757        BaseInput = getDefaultImageName();
4758      BaseInput =
4759          C.getArgs().MakeArgString(std::string(BaseInput) + "-wrapper");
4760    }
4761    Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4762                                             AtTopLevel, MultipleArchs,
4763                                             OffloadingPrefix),
4764                       BaseInput);
4765  }
4766
4767  if (CCCPrintBindings && !CCGenDiagnostics) {
4768    llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4769                 << " - \"" << T->getName() << "\", inputs: [";
4770    for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4771      llvm::errs() << InputInfos[i].getAsString();
4772      if (i + 1 != e)
4773        llvm::errs() << ", ";
4774    }
4775    if (UnbundlingResults.empty())
4776      llvm::errs() << "], output: " << Result.getAsString() << "\n";
4777    else {
4778      llvm::errs() << "], outputs: [";
4779      for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4780        llvm::errs() << UnbundlingResults[i].getAsString();
4781        if (i + 1 != e)
4782          llvm::errs() << ", ";
4783      }
4784      llvm::errs() << "] \n";
4785    }
4786  } else {
4787    if (UnbundlingResults.empty())
4788      T->ConstructJob(
4789          C, *JA, Result, InputInfos,
4790          C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4791          LinkingOutput);
4792    else
4793      T->ConstructJobMultipleOutputs(
4794          C, *JA, UnbundlingResults, InputInfos,
4795          C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4796          LinkingOutput);
4797  }
4798  return Result;
4799}
4800
4801const char *Driver::getDefaultImageName() const {
4802  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4803  return Target.isOSWindows() ? "a.exe" : "a.out";
4804}
4805
4806/// Create output filename based on ArgValue, which could either be a
4807/// full filename, filename without extension, or a directory. If ArgValue
4808/// does not provide a filename, then use BaseName, and use the extension
4809/// suitable for FileType.
4810static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4811                                        StringRef BaseName,
4812                                        types::ID FileType) {
4813  SmallString<128> Filename = ArgValue;
4814
4815  if (ArgValue.empty()) {
4816    // If the argument is empty, output to BaseName in the current dir.
4817    Filename = BaseName;
4818  } else if (llvm::sys::path::is_separator(Filename.back())) {
4819    // If the argument is a directory, output to BaseName in that dir.
4820    llvm::sys::path::append(Filename, BaseName);
4821  }
4822
4823  if (!llvm::sys::path::has_extension(ArgValue)) {
4824    // If the argument didn't provide an extension, then set it.
4825    const char *Extension = types::getTypeTempSuffix(FileType, true);
4826
4827    if (FileType == types::TY_Image &&
4828        Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4829      // The output file is a dll.
4830      Extension = "dll";
4831    }
4832
4833    llvm::sys::path::replace_extension(Filename, Extension);
4834  }
4835
4836  return Args.MakeArgString(Filename.c_str());
4837}
4838
4839static bool HasPreprocessOutput(const Action &JA) {
4840  if (isa<PreprocessJobAction>(JA))
4841    return true;
4842  if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
4843    return true;
4844  if (isa<OffloadBundlingJobAction>(JA) &&
4845      HasPreprocessOutput(*(JA.getInputs()[0])))
4846    return true;
4847  return false;
4848}
4849
4850const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
4851                                       const char *BaseInput,
4852                                       StringRef OrigBoundArch, bool AtTopLevel,
4853                                       bool MultipleArchs,
4854                                       StringRef OffloadingPrefix) const {
4855  std::string BoundArch = OrigBoundArch.str();
4856#if defined(_WIN32)
4857  // BoundArch may contains ':', which is invalid in file names on Windows,
4858  // therefore replace it with '%'.
4859  std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
4860#endif
4861
4862  llvm::PrettyStackTraceString CrashInfo("Computing output path");
4863  // Output to a user requested destination?
4864  if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4865    if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4866      return C.addResultFile(FinalOutput->getValue(), &JA);
4867  }
4868
4869  // For /P, preprocess to file named after BaseInput.
4870  if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4871    assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4872    StringRef BaseName = llvm::sys::path::filename(BaseInput);
4873    StringRef NameArg;
4874    if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4875      NameArg = A->getValue();
4876    return C.addResultFile(
4877        MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4878        &JA);
4879  }
4880
4881  // Default to writing to stdout?
4882  if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
4883    return "-";
4884  }
4885
4886  // Is this the assembly listing for /FA?
4887  if (JA.getType() == types::TY_PP_Asm &&
4888      (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4889       C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4890    // Use /Fa and the input filename to determine the asm file name.
4891    StringRef BaseName = llvm::sys::path::filename(BaseInput);
4892    StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4893    return C.addResultFile(
4894        MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4895        &JA);
4896  }
4897
4898  // Output to a temporary file?
4899  if ((!AtTopLevel && !isSaveTempsEnabled() &&
4900       !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4901      CCGenDiagnostics) {
4902    StringRef Name = llvm::sys::path::filename(BaseInput);
4903    std::pair<StringRef, StringRef> Split = Name.split('.');
4904    SmallString<128> TmpName;
4905    const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4906    Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4907    if (CCGenDiagnostics && A) {
4908      SmallString<128> CrashDirectory(A->getValue());
4909      if (!getVFS().exists(CrashDirectory))
4910        llvm::sys::fs::create_directories(CrashDirectory);
4911      llvm::sys::path::append(CrashDirectory, Split.first);
4912      const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4913      std::error_code EC = llvm::sys::fs::createUniqueFile(
4914          CrashDirectory + Middle + Suffix, TmpName);
4915      if (EC) {
4916        Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4917        return "";
4918      }
4919    } else {
4920      TmpName = GetTemporaryPath(Split.first, Suffix);
4921    }
4922    return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4923  }
4924
4925  SmallString<128> BasePath(BaseInput);
4926  SmallString<128> ExternalPath("");
4927  StringRef BaseName;
4928
4929  // Dsymutil actions should use the full path.
4930  if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
4931    ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
4932    // We use posix style here because the tests (specifically
4933    // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
4934    // even on Windows and if we don't then the similar test covering this
4935    // fails.
4936    llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
4937                            llvm::sys::path::filename(BasePath));
4938    BaseName = ExternalPath;
4939  } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4940    BaseName = BasePath;
4941  else
4942    BaseName = llvm::sys::path::filename(BasePath);
4943
4944  // Determine what the derived output name should be.
4945  const char *NamedOutput;
4946
4947  if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4948      C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4949    // The /Fo or /o flag decides the object filename.
4950    StringRef Val =
4951        C.getArgs()
4952            .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4953            ->getValue();
4954    NamedOutput =
4955        MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4956  } else if (JA.getType() == types::TY_Image &&
4957             C.getArgs().hasArg(options::OPT__SLASH_Fe,
4958                                options::OPT__SLASH_o)) {
4959    // The /Fe or /o flag names the linked file.
4960    StringRef Val =
4961        C.getArgs()
4962            .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4963            ->getValue();
4964    NamedOutput =
4965        MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4966  } else if (JA.getType() == types::TY_Image) {
4967    if (IsCLMode()) {
4968      // clang-cl uses BaseName for the executable name.
4969      NamedOutput =
4970          MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4971    } else {
4972      SmallString<128> Output(getDefaultImageName());
4973      // HIP image for device compilation with -fno-gpu-rdc is per compilation
4974      // unit.
4975      bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
4976                        !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
4977                                             options::OPT_fno_gpu_rdc, false);
4978      if (IsHIPNoRDC) {
4979        Output = BaseName;
4980        llvm::sys::path::replace_extension(Output, "");
4981      }
4982      Output += OffloadingPrefix;
4983      if (MultipleArchs && !BoundArch.empty()) {
4984        Output += "-";
4985        Output.append(BoundArch);
4986      }
4987      if (IsHIPNoRDC)
4988        Output += ".out";
4989      NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4990    }
4991  } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4992    NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4993  } else {
4994    const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4995    assert(Suffix && "All types used for output should have a suffix.");
4996
4997    std::string::size_type End = std::string::npos;
4998    if (!types::appendSuffixForType(JA.getType()))
4999      End = BaseName.rfind('.');
5000    SmallString<128> Suffixed(BaseName.substr(0, End));
5001    Suffixed += OffloadingPrefix;
5002    if (MultipleArchs && !BoundArch.empty()) {
5003      Suffixed += "-";
5004      Suffixed.append(BoundArch);
5005    }
5006    // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5007    // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5008    // optimized bitcode output.
5009    auto IsHIPRDCInCompilePhase = [](const JobAction &JA,
5010                                     const llvm::opt::DerivedArgList &Args) {
5011      // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
5012      // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
5013      // phase.)
5014      return isa<CompileJobAction>(JA) &&
5015             JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5016             Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5017                          false);
5018    };
5019    if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
5020        (C.getArgs().hasArg(options::OPT_emit_llvm) ||
5021         IsHIPRDCInCompilePhase(JA, C.getArgs())))
5022      Suffixed += ".tmp";
5023    Suffixed += '.';
5024    Suffixed += Suffix;
5025    NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
5026  }
5027
5028  // Prepend object file path if -save-temps=obj
5029  if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
5030      JA.getType() != types::TY_PCH) {
5031    Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5032    SmallString<128> TempPath(FinalOutput->getValue());
5033    llvm::sys::path::remove_filename(TempPath);
5034    StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
5035    llvm::sys::path::append(TempPath, OutputFileName);
5036    NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
5037  }
5038
5039  // If we're saving temps and the temp file conflicts with the input file,
5040  // then avoid overwriting input file.
5041  if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
5042    bool SameFile = false;
5043    SmallString<256> Result;
5044    llvm::sys::fs::current_path(Result);
5045    llvm::sys::path::append(Result, BaseName);
5046    llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
5047    // Must share the same path to conflict.
5048    if (SameFile) {
5049      StringRef Name = llvm::sys::path::filename(BaseInput);
5050      std::pair<StringRef, StringRef> Split = Name.split('.');
5051      std::string TmpName = GetTemporaryPath(
5052          Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
5053      return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5054    }
5055  }
5056
5057  // As an annoying special case, PCH generation doesn't strip the pathname.
5058  if (JA.getType() == types::TY_PCH && !IsCLMode()) {
5059    llvm::sys::path::remove_filename(BasePath);
5060    if (BasePath.empty())
5061      BasePath = NamedOutput;
5062    else
5063      llvm::sys::path::append(BasePath, NamedOutput);
5064    return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
5065  } else {
5066    return C.addResultFile(NamedOutput, &JA);
5067  }
5068}
5069
5070std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
5071  // Search for Name in a list of paths.
5072  auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
5073      -> llvm::Optional<std::string> {
5074    // Respect a limited subset of the '-Bprefix' functionality in GCC by
5075    // attempting to use this prefix when looking for file paths.
5076    for (const auto &Dir : P) {
5077      if (Dir.empty())
5078        continue;
5079      SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
5080      llvm::sys::path::append(P, Name);
5081      if (llvm::sys::fs::exists(Twine(P)))
5082        return std::string(P);
5083    }
5084    return None;
5085  };
5086
5087  if (auto P = SearchPaths(PrefixDirs))
5088    return *P;
5089
5090  SmallString<128> R(ResourceDir);
5091  llvm::sys::path::append(R, Name);
5092  if (llvm::sys::fs::exists(Twine(R)))
5093    return std::string(R.str());
5094
5095  SmallString<128> P(TC.getCompilerRTPath());
5096  llvm::sys::path::append(P, Name);
5097  if (llvm::sys::fs::exists(Twine(P)))
5098    return std::string(P.str());
5099
5100  SmallString<128> D(Dir);
5101  llvm::sys::path::append(D, "..", Name);
5102  if (llvm::sys::fs::exists(Twine(D)))
5103    return std::string(D.str());
5104
5105  if (auto P = SearchPaths(TC.getLibraryPaths()))
5106    return *P;
5107
5108  if (auto P = SearchPaths(TC.getFilePaths()))
5109    return *P;
5110
5111  return std::string(Name);
5112}
5113
5114void Driver::generatePrefixedToolNames(
5115    StringRef Tool, const ToolChain &TC,
5116    SmallVectorImpl<std::string> &Names) const {
5117  // FIXME: Needs a better variable than TargetTriple
5118  Names.emplace_back((TargetTriple + "-" + Tool).str());
5119  Names.emplace_back(Tool);
5120}
5121
5122static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
5123  llvm::sys::path::append(Dir, Name);
5124  if (llvm::sys::fs::can_execute(Twine(Dir)))
5125    return true;
5126  llvm::sys::path::remove_filename(Dir);
5127  return false;
5128}
5129
5130std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
5131  SmallVector<std::string, 2> TargetSpecificExecutables;
5132  generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
5133
5134  // Respect a limited subset of the '-Bprefix' functionality in GCC by
5135  // attempting to use this prefix when looking for program paths.
5136  for (const auto &PrefixDir : PrefixDirs) {
5137    if (llvm::sys::fs::is_directory(PrefixDir)) {
5138      SmallString<128> P(PrefixDir);
5139      if (ScanDirForExecutable(P, Name))
5140        return std::string(P.str());
5141    } else {
5142      SmallString<128> P((PrefixDir + Name).str());
5143      if (llvm::sys::fs::can_execute(Twine(P)))
5144        return std::string(P.str());
5145    }
5146  }
5147
5148  const ToolChain::path_list &List = TC.getProgramPaths();
5149  for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
5150    // For each possible name of the tool look for it in
5151    // program paths first, then the path.
5152    // Higher priority names will be first, meaning that
5153    // a higher priority name in the path will be found
5154    // instead of a lower priority name in the program path.
5155    // E.g. <triple>-gcc on the path will be found instead
5156    // of gcc in the program path
5157    for (const auto &Path : List) {
5158      SmallString<128> P(Path);
5159      if (ScanDirForExecutable(P, TargetSpecificExecutable))
5160        return std::string(P.str());
5161    }
5162
5163    // Fall back to the path
5164    if (llvm::ErrorOr<std::string> P =
5165            llvm::sys::findProgramByName(TargetSpecificExecutable))
5166      return *P;
5167  }
5168
5169  return std::string(Name);
5170}
5171
5172std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
5173  SmallString<128> Path;
5174  std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
5175  if (EC) {
5176    Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5177    return "";
5178  }
5179
5180  return std::string(Path.str());
5181}
5182
5183std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
5184  SmallString<128> Path;
5185  std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
5186  if (EC) {
5187    Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5188    return "";
5189  }
5190
5191  return std::string(Path.str());
5192}
5193
5194std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
5195  SmallString<128> Output;
5196  if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
5197    // FIXME: If anybody needs it, implement this obscure rule:
5198    // "If you specify a directory without a file name, the default file name
5199    // is VCx0.pch., where x is the major version of Visual C++ in use."
5200    Output = FpArg->getValue();
5201
5202    // "If you do not specify an extension as part of the path name, an
5203    // extension of .pch is assumed. "
5204    if (!llvm::sys::path::has_extension(Output))
5205      Output += ".pch";
5206  } else {
5207    if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
5208      Output = YcArg->getValue();
5209    if (Output.empty())
5210      Output = BaseName;
5211    llvm::sys::path::replace_extension(Output, ".pch");
5212  }
5213  return std::string(Output.str());
5214}
5215
5216const ToolChain &Driver::getToolChain(const ArgList &Args,
5217                                      const llvm::Triple &Target) const {
5218
5219  auto &TC = ToolChains[Target.str()];
5220  if (!TC) {
5221    switch (Target.getOS()) {
5222    case llvm::Triple::AIX:
5223      TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
5224      break;
5225    case llvm::Triple::Haiku:
5226      TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
5227      break;
5228    case llvm::Triple::Ananas:
5229      TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
5230      break;
5231    case llvm::Triple::CloudABI:
5232      TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
5233      break;
5234    case llvm::Triple::Darwin:
5235    case llvm::Triple::MacOSX:
5236    case llvm::Triple::IOS:
5237    case llvm::Triple::TvOS:
5238    case llvm::Triple::WatchOS:
5239      TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
5240      break;
5241    case llvm::Triple::DragonFly:
5242      TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
5243      break;
5244    case llvm::Triple::OpenBSD:
5245      TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
5246      break;
5247    case llvm::Triple::NetBSD:
5248      TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
5249      break;
5250    case llvm::Triple::FreeBSD:
5251      TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
5252      break;
5253    case llvm::Triple::Minix:
5254      TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
5255      break;
5256    case llvm::Triple::Linux:
5257    case llvm::Triple::ELFIAMCU:
5258      if (Target.getArch() == llvm::Triple::hexagon)
5259        TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5260                                                             Args);
5261      else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
5262               !Target.hasEnvironment())
5263        TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
5264                                                              Args);
5265      else if (Target.isPPC())
5266        TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
5267                                                              Args);
5268      else if (Target.getArch() == llvm::Triple::ve)
5269        TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5270
5271      else
5272        TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
5273      break;
5274    case llvm::Triple::NaCl:
5275      TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
5276      break;
5277    case llvm::Triple::Fuchsia:
5278      TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
5279      break;
5280    case llvm::Triple::Solaris:
5281      TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
5282      break;
5283    case llvm::Triple::AMDHSA:
5284      TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
5285      break;
5286    case llvm::Triple::AMDPAL:
5287    case llvm::Triple::Mesa3D:
5288      TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
5289      break;
5290    case llvm::Triple::Win32:
5291      switch (Target.getEnvironment()) {
5292      default:
5293        if (Target.isOSBinFormatELF())
5294          TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5295        else if (Target.isOSBinFormatMachO())
5296          TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5297        else
5298          TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5299        break;
5300      case llvm::Triple::GNU:
5301        TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
5302        break;
5303      case llvm::Triple::Itanium:
5304        TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
5305                                                                  Args);
5306        break;
5307      case llvm::Triple::MSVC:
5308      case llvm::Triple::UnknownEnvironment:
5309        if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
5310                .startswith_lower("bfd"))
5311          TC = std::make_unique<toolchains::CrossWindowsToolChain>(
5312              *this, Target, Args);
5313        else
5314          TC =
5315              std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
5316        break;
5317      }
5318      break;
5319    case llvm::Triple::PS4:
5320      TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
5321      break;
5322    case llvm::Triple::Contiki:
5323      TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
5324      break;
5325    case llvm::Triple::Hurd:
5326      TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
5327      break;
5328    case llvm::Triple::ZOS:
5329      TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
5330      break;
5331    default:
5332      // Of these targets, Hexagon is the only one that might have
5333      // an OS of Linux, in which case it got handled above already.
5334      switch (Target.getArch()) {
5335      case llvm::Triple::tce:
5336        TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
5337        break;
5338      case llvm::Triple::tcele:
5339        TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
5340        break;
5341      case llvm::Triple::hexagon:
5342        TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5343                                                             Args);
5344        break;
5345      case llvm::Triple::lanai:
5346        TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
5347        break;
5348      case llvm::Triple::xcore:
5349        TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
5350        break;
5351      case llvm::Triple::wasm32:
5352      case llvm::Triple::wasm64:
5353        TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
5354        break;
5355      case llvm::Triple::avr:
5356        TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
5357        break;
5358      case llvm::Triple::msp430:
5359        TC =
5360            std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
5361        break;
5362      case llvm::Triple::riscv32:
5363      case llvm::Triple::riscv64:
5364        if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
5365          TC =
5366              std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
5367        else
5368          TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5369        break;
5370      case llvm::Triple::ve:
5371        TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5372        break;
5373      default:
5374        if (Target.getVendor() == llvm::Triple::Myriad)
5375          TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
5376                                                              Args);
5377        else if (toolchains::BareMetal::handlesTarget(Target))
5378          TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5379        else if (Target.isOSBinFormatELF())
5380          TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5381        else if (Target.isOSBinFormatMachO())
5382          TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5383        else
5384          TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5385      }
5386    }
5387  }
5388
5389  // Intentionally omitted from the switch above: llvm::Triple::CUDA.  CUDA
5390  // compiles always need two toolchains, the CUDA toolchain and the host
5391  // toolchain.  So the only valid way to create a CUDA toolchain is via
5392  // CreateOffloadingDeviceToolChains.
5393
5394  return *TC;
5395}
5396
5397bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
5398  // Say "no" if there is not exactly one input of a type clang understands.
5399  if (JA.size() != 1 ||
5400      !types::isAcceptedByClang((*JA.input_begin())->getType()))
5401    return false;
5402
5403  // And say "no" if this is not a kind of action clang understands.
5404  if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
5405      !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5406    return false;
5407
5408  return true;
5409}
5410
5411bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
5412  // Say "no" if there is not exactly one input of a type flang understands.
5413  if (JA.size() != 1 ||
5414      !types::isFortran((*JA.input_begin())->getType()))
5415    return false;
5416
5417  // And say "no" if this is not a kind of action flang understands.
5418  if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5419    return false;
5420
5421  return true;
5422}
5423
5424bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
5425  // Only emit static library if the flag is set explicitly.
5426  if (Args.hasArg(options::OPT_emit_static_lib))
5427    return true;
5428  return false;
5429}
5430
5431/// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
5432/// grouped values as integers. Numbers which are not provided are set to 0.
5433///
5434/// \return True if the entire string was parsed (9.2), or all groups were
5435/// parsed (10.3.5extrastuff).
5436bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
5437                               unsigned &Micro, bool &HadExtra) {
5438  HadExtra = false;
5439
5440  Major = Minor = Micro = 0;
5441  if (Str.empty())
5442    return false;
5443
5444  if (Str.consumeInteger(10, Major))
5445    return false;
5446  if (Str.empty())
5447    return true;
5448  if (Str[0] != '.')
5449    return false;
5450
5451  Str = Str.drop_front(1);
5452
5453  if (Str.consumeInteger(10, Minor))
5454    return false;
5455  if (Str.empty())
5456    return true;
5457  if (Str[0] != '.')
5458    return false;
5459  Str = Str.drop_front(1);
5460
5461  if (Str.consumeInteger(10, Micro))
5462    return false;
5463  if (!Str.empty())
5464    HadExtra = true;
5465  return true;
5466}
5467
5468/// Parse digits from a string \p Str and fulfill \p Digits with
5469/// the parsed numbers. This method assumes that the max number of
5470/// digits to look for is equal to Digits.size().
5471///
5472/// \return True if the entire string was parsed and there are
5473/// no extra characters remaining at the end.
5474bool Driver::GetReleaseVersion(StringRef Str,
5475                               MutableArrayRef<unsigned> Digits) {
5476  if (Str.empty())
5477    return false;
5478
5479  unsigned CurDigit = 0;
5480  while (CurDigit < Digits.size()) {
5481    unsigned Digit;
5482    if (Str.consumeInteger(10, Digit))
5483      return false;
5484    Digits[CurDigit] = Digit;
5485    if (Str.empty())
5486      return true;
5487    if (Str[0] != '.')
5488      return false;
5489    Str = Str.drop_front(1);
5490    CurDigit++;
5491  }
5492
5493  // More digits than requested, bail out...
5494  return false;
5495}
5496
5497std::pair<unsigned, unsigned>
5498Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
5499  unsigned IncludedFlagsBitmask = 0;
5500  unsigned ExcludedFlagsBitmask = options::NoDriverOption;
5501
5502  if (IsClCompatMode) {
5503    // Include CL and Core options.
5504    IncludedFlagsBitmask |= options::CLOption;
5505    IncludedFlagsBitmask |= options::CoreOption;
5506  } else {
5507    ExcludedFlagsBitmask |= options::CLOption;
5508  }
5509
5510  return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
5511}
5512
5513bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
5514  return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
5515}
5516
5517bool clang::driver::willEmitRemarks(const ArgList &Args) {
5518  // -fsave-optimization-record enables it.
5519  if (Args.hasFlag(options::OPT_fsave_optimization_record,
5520                   options::OPT_fno_save_optimization_record, false))
5521    return true;
5522
5523  // -fsave-optimization-record=<format> enables it as well.
5524  if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
5525                   options::OPT_fno_save_optimization_record, false))
5526    return true;
5527
5528  // -foptimization-record-file alone enables it too.
5529  if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
5530                   options::OPT_fno_save_optimization_record, false))
5531    return true;
5532
5533  // -foptimization-record-passes alone enables it too.
5534  if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
5535                   options::OPT_fno_save_optimization_record, false))
5536    return true;
5537  return false;
5538}
5539