1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGCall.h"
16#include "CGCleanup.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "CGOpenMPRuntime.h"
20#include "CGRecordLayout.h"
21#include "CodeGenFunction.h"
22#include "CodeGenModule.h"
23#include "ConstantEmitter.h"
24#include "TargetInfo.h"
25#include "clang/AST/ASTContext.h"
26#include "clang/AST/Attr.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/NSAPI.h"
29#include "clang/Basic/Builtins.h"
30#include "clang/Basic/CodeGenOptions.h"
31#include "clang/Basic/SourceManager.h"
32#include "llvm/ADT/Hashing.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/IR/LLVMContext.h"
37#include "llvm/IR/MDBuilder.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/Path.h"
41#include "llvm/Support/SaveAndRestore.h"
42#include "llvm/Transforms/Utils/SanitizerStats.h"
43
44#include <string>
45
46using namespace clang;
47using namespace CodeGen;
48
49//===--------------------------------------------------------------------===//
50//                        Miscellaneous Helper Methods
51//===--------------------------------------------------------------------===//
52
53llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
54  unsigned addressSpace =
55      cast<llvm::PointerType>(value->getType())->getAddressSpace();
56
57  llvm::PointerType *destType = Int8PtrTy;
58  if (addressSpace)
59    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
60
61  if (value->getType() == destType) return value;
62  return Builder.CreateBitCast(value, destType);
63}
64
65/// CreateTempAlloca - This creates a alloca and inserts it into the entry
66/// block.
67Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
68                                                     CharUnits Align,
69                                                     const Twine &Name,
70                                                     llvm::Value *ArraySize) {
71  auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
72  Alloca->setAlignment(Align.getAsAlign());
73  return Address(Alloca, Align);
74}
75
76/// CreateTempAlloca - This creates a alloca and inserts it into the entry
77/// block. The alloca is casted to default address space if necessary.
78Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
79                                          const Twine &Name,
80                                          llvm::Value *ArraySize,
81                                          Address *AllocaAddr) {
82  auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
83  if (AllocaAddr)
84    *AllocaAddr = Alloca;
85  llvm::Value *V = Alloca.getPointer();
86  // Alloca always returns a pointer in alloca address space, which may
87  // be different from the type defined by the language. For example,
88  // in C++ the auto variables are in the default address space. Therefore
89  // cast alloca to the default address space when necessary.
90  if (getASTAllocaAddressSpace() != LangAS::Default) {
91    auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
92    llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
93    // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
94    // otherwise alloca is inserted at the current insertion point of the
95    // builder.
96    if (!ArraySize)
97      Builder.SetInsertPoint(AllocaInsertPt);
98    V = getTargetHooks().performAddrSpaceCast(
99        *this, V, getASTAllocaAddressSpace(), LangAS::Default,
100        Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
101  }
102
103  return Address(V, Align);
104}
105
106/// CreateTempAlloca - This creates an alloca and inserts it into the entry
107/// block if \p ArraySize is nullptr, otherwise inserts it at the current
108/// insertion point of the builder.
109llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
110                                                    const Twine &Name,
111                                                    llvm::Value *ArraySize) {
112  if (ArraySize)
113    return Builder.CreateAlloca(Ty, ArraySize, Name);
114  return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
115                              ArraySize, Name, AllocaInsertPt);
116}
117
118/// CreateDefaultAlignTempAlloca - This creates an alloca with the
119/// default alignment of the corresponding LLVM type, which is *not*
120/// guaranteed to be related in any way to the expected alignment of
121/// an AST type that might have been lowered to Ty.
122Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
123                                                      const Twine &Name) {
124  CharUnits Align =
125    CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
126  return CreateTempAlloca(Ty, Align, Name);
127}
128
129void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
130  auto *Alloca = Var.getPointer();
131  assert(isa<llvm::AllocaInst>(Alloca) ||
132         (isa<llvm::AddrSpaceCastInst>(Alloca) &&
133          isa<llvm::AllocaInst>(
134              cast<llvm::AddrSpaceCastInst>(Alloca)->getPointerOperand())));
135
136  auto *Store = new llvm::StoreInst(Init, Alloca, /*volatile*/ false,
137                                    Var.getAlignment().getAsAlign());
138  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
139  Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
140}
141
142Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
143  CharUnits Align = getContext().getTypeAlignInChars(Ty);
144  return CreateTempAlloca(ConvertType(Ty), Align, Name);
145}
146
147Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
148                                       Address *Alloca) {
149  // FIXME: Should we prefer the preferred type alignment here?
150  return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
151}
152
153Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
154                                       const Twine &Name, Address *Alloca) {
155  Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
156                                    /*ArraySize=*/nullptr, Alloca);
157
158  if (Ty->isConstantMatrixType()) {
159    auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
160    auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
161                                                ArrayTy->getNumElements());
162
163    Result = Address(
164        Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
165        Result.getAlignment());
166  }
167  return Result;
168}
169
170Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
171                                                  const Twine &Name) {
172  return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
173}
174
175Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
176                                                  const Twine &Name) {
177  return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
178                                  Name);
179}
180
181/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
182/// expression and compare the result against zero, returning an Int1Ty value.
183llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
184  PGO.setCurrentStmt(E);
185  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
186    llvm::Value *MemPtr = EmitScalarExpr(E);
187    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
188  }
189
190  QualType BoolTy = getContext().BoolTy;
191  SourceLocation Loc = E->getExprLoc();
192  CGFPOptionsRAII FPOptsRAII(*this, E);
193  if (!E->getType()->isAnyComplexType())
194    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
195
196  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
197                                       Loc);
198}
199
200/// EmitIgnoredExpr - Emit code to compute the specified expression,
201/// ignoring the result.
202void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
203  if (E->isRValue())
204    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
205
206  // Just emit it as an l-value and drop the result.
207  EmitLValue(E);
208}
209
210/// EmitAnyExpr - Emit code to compute the specified expression which
211/// can have any type.  The result is returned as an RValue struct.
212/// If this is an aggregate expression, AggSlot indicates where the
213/// result should be returned.
214RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
215                                    AggValueSlot aggSlot,
216                                    bool ignoreResult) {
217  switch (getEvaluationKind(E->getType())) {
218  case TEK_Scalar:
219    return RValue::get(EmitScalarExpr(E, ignoreResult));
220  case TEK_Complex:
221    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
222  case TEK_Aggregate:
223    if (!ignoreResult && aggSlot.isIgnored())
224      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
225    EmitAggExpr(E, aggSlot);
226    return aggSlot.asRValue();
227  }
228  llvm_unreachable("bad evaluation kind");
229}
230
231/// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
232/// always be accessible even if no aggregate location is provided.
233RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
234  AggValueSlot AggSlot = AggValueSlot::ignored();
235
236  if (hasAggregateEvaluationKind(E->getType()))
237    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
238  return EmitAnyExpr(E, AggSlot);
239}
240
241/// EmitAnyExprToMem - Evaluate an expression into a given memory
242/// location.
243void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
244                                       Address Location,
245                                       Qualifiers Quals,
246                                       bool IsInit) {
247  // FIXME: This function should take an LValue as an argument.
248  switch (getEvaluationKind(E->getType())) {
249  case TEK_Complex:
250    EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
251                              /*isInit*/ false);
252    return;
253
254  case TEK_Aggregate: {
255    EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
256                                         AggValueSlot::IsDestructed_t(IsInit),
257                                         AggValueSlot::DoesNotNeedGCBarriers,
258                                         AggValueSlot::IsAliased_t(!IsInit),
259                                         AggValueSlot::MayOverlap));
260    return;
261  }
262
263  case TEK_Scalar: {
264    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
265    LValue LV = MakeAddrLValue(Location, E->getType());
266    EmitStoreThroughLValue(RV, LV);
267    return;
268  }
269  }
270  llvm_unreachable("bad evaluation kind");
271}
272
273static void
274pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
275                     const Expr *E, Address ReferenceTemporary) {
276  // Objective-C++ ARC:
277  //   If we are binding a reference to a temporary that has ownership, we
278  //   need to perform retain/release operations on the temporary.
279  //
280  // FIXME: This should be looking at E, not M.
281  if (auto Lifetime = M->getType().getObjCLifetime()) {
282    switch (Lifetime) {
283    case Qualifiers::OCL_None:
284    case Qualifiers::OCL_ExplicitNone:
285      // Carry on to normal cleanup handling.
286      break;
287
288    case Qualifiers::OCL_Autoreleasing:
289      // Nothing to do; cleaned up by an autorelease pool.
290      return;
291
292    case Qualifiers::OCL_Strong:
293    case Qualifiers::OCL_Weak:
294      switch (StorageDuration Duration = M->getStorageDuration()) {
295      case SD_Static:
296        // Note: we intentionally do not register a cleanup to release
297        // the object on program termination.
298        return;
299
300      case SD_Thread:
301        // FIXME: We should probably register a cleanup in this case.
302        return;
303
304      case SD_Automatic:
305      case SD_FullExpression:
306        CodeGenFunction::Destroyer *Destroy;
307        CleanupKind CleanupKind;
308        if (Lifetime == Qualifiers::OCL_Strong) {
309          const ValueDecl *VD = M->getExtendingDecl();
310          bool Precise =
311              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
312          CleanupKind = CGF.getARCCleanupKind();
313          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
314                            : &CodeGenFunction::destroyARCStrongImprecise;
315        } else {
316          // __weak objects always get EH cleanups; otherwise, exceptions
317          // could cause really nasty crashes instead of mere leaks.
318          CleanupKind = NormalAndEHCleanup;
319          Destroy = &CodeGenFunction::destroyARCWeak;
320        }
321        if (Duration == SD_FullExpression)
322          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
323                          M->getType(), *Destroy,
324                          CleanupKind & EHCleanup);
325        else
326          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
327                                          M->getType(),
328                                          *Destroy, CleanupKind & EHCleanup);
329        return;
330
331      case SD_Dynamic:
332        llvm_unreachable("temporary cannot have dynamic storage duration");
333      }
334      llvm_unreachable("unknown storage duration");
335    }
336  }
337
338  CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
339  if (const RecordType *RT =
340          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
341    // Get the destructor for the reference temporary.
342    auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
343    if (!ClassDecl->hasTrivialDestructor())
344      ReferenceTemporaryDtor = ClassDecl->getDestructor();
345  }
346
347  if (!ReferenceTemporaryDtor)
348    return;
349
350  // Call the destructor for the temporary.
351  switch (M->getStorageDuration()) {
352  case SD_Static:
353  case SD_Thread: {
354    llvm::FunctionCallee CleanupFn;
355    llvm::Constant *CleanupArg;
356    if (E->getType()->isArrayType()) {
357      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
358          ReferenceTemporary, E->getType(),
359          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
360          dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
361      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
362    } else {
363      CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
364          GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
365      CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
366    }
367    CGF.CGM.getCXXABI().registerGlobalDtor(
368        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
369    break;
370  }
371
372  case SD_FullExpression:
373    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
374                    CodeGenFunction::destroyCXXObject,
375                    CGF.getLangOpts().Exceptions);
376    break;
377
378  case SD_Automatic:
379    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
380                                    ReferenceTemporary, E->getType(),
381                                    CodeGenFunction::destroyCXXObject,
382                                    CGF.getLangOpts().Exceptions);
383    break;
384
385  case SD_Dynamic:
386    llvm_unreachable("temporary cannot have dynamic storage duration");
387  }
388}
389
390static Address createReferenceTemporary(CodeGenFunction &CGF,
391                                        const MaterializeTemporaryExpr *M,
392                                        const Expr *Inner,
393                                        Address *Alloca = nullptr) {
394  auto &TCG = CGF.getTargetHooks();
395  switch (M->getStorageDuration()) {
396  case SD_FullExpression:
397  case SD_Automatic: {
398    // If we have a constant temporary array or record try to promote it into a
399    // constant global under the same rules a normal constant would've been
400    // promoted. This is easier on the optimizer and generally emits fewer
401    // instructions.
402    QualType Ty = Inner->getType();
403    if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
404        (Ty->isArrayType() || Ty->isRecordType()) &&
405        CGF.CGM.isTypeConstant(Ty, true))
406      if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
407        auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
408        auto *GV = new llvm::GlobalVariable(
409            CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
410            llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
411            llvm::GlobalValue::NotThreadLocal,
412            CGF.getContext().getTargetAddressSpace(AS));
413        CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
414        GV->setAlignment(alignment.getAsAlign());
415        llvm::Constant *C = GV;
416        if (AS != LangAS::Default)
417          C = TCG.performAddrSpaceCast(
418              CGF.CGM, GV, AS, LangAS::Default,
419              GV->getValueType()->getPointerTo(
420                  CGF.getContext().getTargetAddressSpace(LangAS::Default)));
421        // FIXME: Should we put the new global into a COMDAT?
422        return Address(C, alignment);
423      }
424    return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
425  }
426  case SD_Thread:
427  case SD_Static:
428    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
429
430  case SD_Dynamic:
431    llvm_unreachable("temporary can't have dynamic storage duration");
432  }
433  llvm_unreachable("unknown storage duration");
434}
435
436/// Helper method to check if the underlying ABI is AAPCS
437static bool isAAPCS(const TargetInfo &TargetInfo) {
438  return TargetInfo.getABI().startswith("aapcs");
439}
440
441LValue CodeGenFunction::
442EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
443  const Expr *E = M->getSubExpr();
444
445  assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
446          !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
447         "Reference should never be pseudo-strong!");
448
449  // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
450  // as that will cause the lifetime adjustment to be lost for ARC
451  auto ownership = M->getType().getObjCLifetime();
452  if (ownership != Qualifiers::OCL_None &&
453      ownership != Qualifiers::OCL_ExplicitNone) {
454    Address Object = createReferenceTemporary(*this, M, E);
455    if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
456      Object = Address(llvm::ConstantExpr::getBitCast(Var,
457                           ConvertTypeForMem(E->getType())
458                             ->getPointerTo(Object.getAddressSpace())),
459                       Object.getAlignment());
460
461      // createReferenceTemporary will promote the temporary to a global with a
462      // constant initializer if it can.  It can only do this to a value of
463      // ARC-manageable type if the value is global and therefore "immune" to
464      // ref-counting operations.  Therefore we have no need to emit either a
465      // dynamic initialization or a cleanup and we can just return the address
466      // of the temporary.
467      if (Var->hasInitializer())
468        return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
469
470      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
471    }
472    LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
473                                       AlignmentSource::Decl);
474
475    switch (getEvaluationKind(E->getType())) {
476    default: llvm_unreachable("expected scalar or aggregate expression");
477    case TEK_Scalar:
478      EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
479      break;
480    case TEK_Aggregate: {
481      EmitAggExpr(E, AggValueSlot::forAddr(Object,
482                                           E->getType().getQualifiers(),
483                                           AggValueSlot::IsDestructed,
484                                           AggValueSlot::DoesNotNeedGCBarriers,
485                                           AggValueSlot::IsNotAliased,
486                                           AggValueSlot::DoesNotOverlap));
487      break;
488    }
489    }
490
491    pushTemporaryCleanup(*this, M, E, Object);
492    return RefTempDst;
493  }
494
495  SmallVector<const Expr *, 2> CommaLHSs;
496  SmallVector<SubobjectAdjustment, 2> Adjustments;
497  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
498
499  for (const auto &Ignored : CommaLHSs)
500    EmitIgnoredExpr(Ignored);
501
502  if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
503    if (opaque->getType()->isRecordType()) {
504      assert(Adjustments.empty());
505      return EmitOpaqueValueLValue(opaque);
506    }
507  }
508
509  // Create and initialize the reference temporary.
510  Address Alloca = Address::invalid();
511  Address Object = createReferenceTemporary(*this, M, E, &Alloca);
512  if (auto *Var = dyn_cast<llvm::GlobalVariable>(
513          Object.getPointer()->stripPointerCasts())) {
514    Object = Address(llvm::ConstantExpr::getBitCast(
515                         cast<llvm::Constant>(Object.getPointer()),
516                         ConvertTypeForMem(E->getType())->getPointerTo()),
517                     Object.getAlignment());
518    // If the temporary is a global and has a constant initializer or is a
519    // constant temporary that we promoted to a global, we may have already
520    // initialized it.
521    if (!Var->hasInitializer()) {
522      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
523      EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
524    }
525  } else {
526    switch (M->getStorageDuration()) {
527    case SD_Automatic:
528      if (auto *Size = EmitLifetimeStart(
529              CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
530              Alloca.getPointer())) {
531        pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
532                                                  Alloca, Size);
533      }
534      break;
535
536    case SD_FullExpression: {
537      if (!ShouldEmitLifetimeMarkers)
538        break;
539
540      // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
541      // marker. Instead, start the lifetime of a conditional temporary earlier
542      // so that it's unconditional. Don't do this with sanitizers which need
543      // more precise lifetime marks.
544      ConditionalEvaluation *OldConditional = nullptr;
545      CGBuilderTy::InsertPoint OldIP;
546      if (isInConditionalBranch() && !E->getType().isDestructedType() &&
547          !SanOpts.has(SanitizerKind::HWAddress) &&
548          !SanOpts.has(SanitizerKind::Memory) &&
549          !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
550        OldConditional = OutermostConditional;
551        OutermostConditional = nullptr;
552
553        OldIP = Builder.saveIP();
554        llvm::BasicBlock *Block = OldConditional->getStartingBlock();
555        Builder.restoreIP(CGBuilderTy::InsertPoint(
556            Block, llvm::BasicBlock::iterator(Block->back())));
557      }
558
559      if (auto *Size = EmitLifetimeStart(
560              CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
561              Alloca.getPointer())) {
562        pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
563                                             Size);
564      }
565
566      if (OldConditional) {
567        OutermostConditional = OldConditional;
568        Builder.restoreIP(OldIP);
569      }
570      break;
571    }
572
573    default:
574      break;
575    }
576    EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
577  }
578  pushTemporaryCleanup(*this, M, E, Object);
579
580  // Perform derived-to-base casts and/or field accesses, to get from the
581  // temporary object we created (and, potentially, for which we extended
582  // the lifetime) to the subobject we're binding the reference to.
583  for (unsigned I = Adjustments.size(); I != 0; --I) {
584    SubobjectAdjustment &Adjustment = Adjustments[I-1];
585    switch (Adjustment.Kind) {
586    case SubobjectAdjustment::DerivedToBaseAdjustment:
587      Object =
588          GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
589                                Adjustment.DerivedToBase.BasePath->path_begin(),
590                                Adjustment.DerivedToBase.BasePath->path_end(),
591                                /*NullCheckValue=*/ false, E->getExprLoc());
592      break;
593
594    case SubobjectAdjustment::FieldAdjustment: {
595      LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
596      LV = EmitLValueForField(LV, Adjustment.Field);
597      assert(LV.isSimple() &&
598             "materialized temporary field is not a simple lvalue");
599      Object = LV.getAddress(*this);
600      break;
601    }
602
603    case SubobjectAdjustment::MemberPointerAdjustment: {
604      llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
605      Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
606                                               Adjustment.Ptr.MPT);
607      break;
608    }
609    }
610  }
611
612  return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
613}
614
615RValue
616CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
617  // Emit the expression as an lvalue.
618  LValue LV = EmitLValue(E);
619  assert(LV.isSimple());
620  llvm::Value *Value = LV.getPointer(*this);
621
622  if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
623    // C++11 [dcl.ref]p5 (as amended by core issue 453):
624    //   If a glvalue to which a reference is directly bound designates neither
625    //   an existing object or function of an appropriate type nor a region of
626    //   storage of suitable size and alignment to contain an object of the
627    //   reference's type, the behavior is undefined.
628    QualType Ty = E->getType();
629    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
630  }
631
632  return RValue::get(Value);
633}
634
635
636/// getAccessedFieldNo - Given an encoded value and a result number, return the
637/// input field number being accessed.
638unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
639                                             const llvm::Constant *Elts) {
640  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
641      ->getZExtValue();
642}
643
644/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
645static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
646                                    llvm::Value *High) {
647  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
648  llvm::Value *K47 = Builder.getInt64(47);
649  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
650  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
651  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
652  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
653  return Builder.CreateMul(B1, KMul);
654}
655
656bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
657  return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
658         TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
659}
660
661bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
662  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
663  return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
664         (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
665          TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
666          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
667}
668
669bool CodeGenFunction::sanitizePerformTypeCheck() const {
670  return SanOpts.has(SanitizerKind::Null) |
671         SanOpts.has(SanitizerKind::Alignment) |
672         SanOpts.has(SanitizerKind::ObjectSize) |
673         SanOpts.has(SanitizerKind::Vptr);
674}
675
676void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
677                                    llvm::Value *Ptr, QualType Ty,
678                                    CharUnits Alignment,
679                                    SanitizerSet SkippedChecks,
680                                    llvm::Value *ArraySize) {
681  if (!sanitizePerformTypeCheck())
682    return;
683
684  // Don't check pointers outside the default address space. The null check
685  // isn't correct, the object-size check isn't supported by LLVM, and we can't
686  // communicate the addresses to the runtime handler for the vptr check.
687  if (Ptr->getType()->getPointerAddressSpace())
688    return;
689
690  // Don't check pointers to volatile data. The behavior here is implementation-
691  // defined.
692  if (Ty.isVolatileQualified())
693    return;
694
695  SanitizerScope SanScope(this);
696
697  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
698  llvm::BasicBlock *Done = nullptr;
699
700  // Quickly determine whether we have a pointer to an alloca. It's possible
701  // to skip null checks, and some alignment checks, for these pointers. This
702  // can reduce compile-time significantly.
703  auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
704
705  llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
706  llvm::Value *IsNonNull = nullptr;
707  bool IsGuaranteedNonNull =
708      SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
709  bool AllowNullPointers = isNullPointerAllowed(TCK);
710  if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
711      !IsGuaranteedNonNull) {
712    // The glvalue must not be an empty glvalue.
713    IsNonNull = Builder.CreateIsNotNull(Ptr);
714
715    // The IR builder can constant-fold the null check if the pointer points to
716    // a constant.
717    IsGuaranteedNonNull = IsNonNull == True;
718
719    // Skip the null check if the pointer is known to be non-null.
720    if (!IsGuaranteedNonNull) {
721      if (AllowNullPointers) {
722        // When performing pointer casts, it's OK if the value is null.
723        // Skip the remaining checks in that case.
724        Done = createBasicBlock("null");
725        llvm::BasicBlock *Rest = createBasicBlock("not.null");
726        Builder.CreateCondBr(IsNonNull, Rest, Done);
727        EmitBlock(Rest);
728      } else {
729        Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
730      }
731    }
732  }
733
734  if (SanOpts.has(SanitizerKind::ObjectSize) &&
735      !SkippedChecks.has(SanitizerKind::ObjectSize) &&
736      !Ty->isIncompleteType()) {
737    uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
738    llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
739    if (ArraySize)
740      Size = Builder.CreateMul(Size, ArraySize);
741
742    // Degenerate case: new X[0] does not need an objectsize check.
743    llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
744    if (!ConstantSize || !ConstantSize->isNullValue()) {
745      // The glvalue must refer to a large enough storage region.
746      // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
747      //        to check this.
748      // FIXME: Get object address space
749      llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
750      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
751      llvm::Value *Min = Builder.getFalse();
752      llvm::Value *NullIsUnknown = Builder.getFalse();
753      llvm::Value *Dynamic = Builder.getFalse();
754      llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
755      llvm::Value *LargeEnough = Builder.CreateICmpUGE(
756          Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
757      Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
758    }
759  }
760
761  uint64_t AlignVal = 0;
762  llvm::Value *PtrAsInt = nullptr;
763
764  if (SanOpts.has(SanitizerKind::Alignment) &&
765      !SkippedChecks.has(SanitizerKind::Alignment)) {
766    AlignVal = Alignment.getQuantity();
767    if (!Ty->isIncompleteType() && !AlignVal)
768      AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
769                                             /*ForPointeeType=*/true)
770                     .getQuantity();
771
772    // The glvalue must be suitably aligned.
773    if (AlignVal > 1 &&
774        (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
775      PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
776      llvm::Value *Align = Builder.CreateAnd(
777          PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
778      llvm::Value *Aligned =
779          Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
780      if (Aligned != True)
781        Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
782    }
783  }
784
785  if (Checks.size() > 0) {
786    // Make sure we're not losing information. Alignment needs to be a power of
787    // 2
788    assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
789    llvm::Constant *StaticData[] = {
790        EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
791        llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
792        llvm::ConstantInt::get(Int8Ty, TCK)};
793    EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
794              PtrAsInt ? PtrAsInt : Ptr);
795  }
796
797  // If possible, check that the vptr indicates that there is a subobject of
798  // type Ty at offset zero within this object.
799  //
800  // C++11 [basic.life]p5,6:
801  //   [For storage which does not refer to an object within its lifetime]
802  //   The program has undefined behavior if:
803  //    -- the [pointer or glvalue] is used to access a non-static data member
804  //       or call a non-static member function
805  if (SanOpts.has(SanitizerKind::Vptr) &&
806      !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
807    // Ensure that the pointer is non-null before loading it. If there is no
808    // compile-time guarantee, reuse the run-time null check or emit a new one.
809    if (!IsGuaranteedNonNull) {
810      if (!IsNonNull)
811        IsNonNull = Builder.CreateIsNotNull(Ptr);
812      if (!Done)
813        Done = createBasicBlock("vptr.null");
814      llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
815      Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
816      EmitBlock(VptrNotNull);
817    }
818
819    // Compute a hash of the mangled name of the type.
820    //
821    // FIXME: This is not guaranteed to be deterministic! Move to a
822    //        fingerprinting mechanism once LLVM provides one. For the time
823    //        being the implementation happens to be deterministic.
824    SmallString<64> MangledName;
825    llvm::raw_svector_ostream Out(MangledName);
826    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
827                                                     Out);
828
829    // Contained in NoSanitizeList based on the mangled type.
830    if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
831                                                           Out.str())) {
832      llvm::hash_code TypeHash = hash_value(Out.str());
833
834      // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
835      llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
836      llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
837      Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
838      llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
839      llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
840
841      llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
842      Hash = Builder.CreateTrunc(Hash, IntPtrTy);
843
844      // Look the hash up in our cache.
845      const int CacheSize = 128;
846      llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
847      llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
848                                                     "__ubsan_vptr_type_cache");
849      llvm::Value *Slot = Builder.CreateAnd(Hash,
850                                            llvm::ConstantInt::get(IntPtrTy,
851                                                                   CacheSize-1));
852      llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
853      llvm::Value *CacheVal = Builder.CreateAlignedLoad(
854          IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
855          getPointerAlign());
856
857      // If the hash isn't in the cache, call a runtime handler to perform the
858      // hard work of checking whether the vptr is for an object of the right
859      // type. This will either fill in the cache and return, or produce a
860      // diagnostic.
861      llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
862      llvm::Constant *StaticData[] = {
863        EmitCheckSourceLocation(Loc),
864        EmitCheckTypeDescriptor(Ty),
865        CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
866        llvm::ConstantInt::get(Int8Ty, TCK)
867      };
868      llvm::Value *DynamicData[] = { Ptr, Hash };
869      EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
870                SanitizerHandler::DynamicTypeCacheMiss, StaticData,
871                DynamicData);
872    }
873  }
874
875  if (Done) {
876    Builder.CreateBr(Done);
877    EmitBlock(Done);
878  }
879}
880
881/// Determine whether this expression refers to a flexible array member in a
882/// struct. We disable array bounds checks for such members.
883static bool isFlexibleArrayMemberExpr(const Expr *E) {
884  // For compatibility with existing code, we treat arrays of length 0 or
885  // 1 as flexible array members.
886  // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
887  // the two mechanisms.
888  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
889  if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
890    // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
891    // was produced by macro expansion.
892    if (CAT->getSize().ugt(1))
893      return false;
894  } else if (!isa<IncompleteArrayType>(AT))
895    return false;
896
897  E = E->IgnoreParens();
898
899  // A flexible array member must be the last member in the class.
900  if (const auto *ME = dyn_cast<MemberExpr>(E)) {
901    // FIXME: If the base type of the member expr is not FD->getParent(),
902    // this should not be treated as a flexible array member access.
903    if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
904      // FIXME: Sema doesn't treat a T[1] union member as a flexible array
905      // member, only a T[0] or T[] member gets that treatment.
906      if (FD->getParent()->isUnion())
907        return true;
908      RecordDecl::field_iterator FI(
909          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
910      return ++FI == FD->getParent()->field_end();
911    }
912  } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
913    return IRE->getDecl()->getNextIvar() == nullptr;
914  }
915
916  return false;
917}
918
919llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
920                                                   QualType EltTy) {
921  ASTContext &C = getContext();
922  uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
923  if (!EltSize)
924    return nullptr;
925
926  auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
927  if (!ArrayDeclRef)
928    return nullptr;
929
930  auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
931  if (!ParamDecl)
932    return nullptr;
933
934  auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
935  if (!POSAttr)
936    return nullptr;
937
938  // Don't load the size if it's a lower bound.
939  int POSType = POSAttr->getType();
940  if (POSType != 0 && POSType != 1)
941    return nullptr;
942
943  // Find the implicit size parameter.
944  auto PassedSizeIt = SizeArguments.find(ParamDecl);
945  if (PassedSizeIt == SizeArguments.end())
946    return nullptr;
947
948  const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
949  assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
950  Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
951  llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
952                                              C.getSizeType(), E->getExprLoc());
953  llvm::Value *SizeOfElement =
954      llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
955  return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
956}
957
958/// If Base is known to point to the start of an array, return the length of
959/// that array. Return 0 if the length cannot be determined.
960static llvm::Value *getArrayIndexingBound(
961    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
962  // For the vector indexing extension, the bound is the number of elements.
963  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
964    IndexedType = Base->getType();
965    return CGF.Builder.getInt32(VT->getNumElements());
966  }
967
968  Base = Base->IgnoreParens();
969
970  if (const auto *CE = dyn_cast<CastExpr>(Base)) {
971    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
972        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
973      IndexedType = CE->getSubExpr()->getType();
974      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
975      if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
976        return CGF.Builder.getInt(CAT->getSize());
977      else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
978        return CGF.getVLASize(VAT).NumElts;
979      // Ignore pass_object_size here. It's not applicable on decayed pointers.
980    }
981  }
982
983  QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
984  if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
985    IndexedType = Base->getType();
986    return POS;
987  }
988
989  return nullptr;
990}
991
992void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
993                                      llvm::Value *Index, QualType IndexType,
994                                      bool Accessed) {
995  assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
996         "should not be called unless adding bounds checks");
997  SanitizerScope SanScope(this);
998
999  QualType IndexedType;
1000  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
1001  if (!Bound)
1002    return;
1003
1004  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1005  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1006  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1007
1008  llvm::Constant *StaticData[] = {
1009    EmitCheckSourceLocation(E->getExprLoc()),
1010    EmitCheckTypeDescriptor(IndexedType),
1011    EmitCheckTypeDescriptor(IndexType)
1012  };
1013  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1014                                : Builder.CreateICmpULE(IndexVal, BoundVal);
1015  EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1016            SanitizerHandler::OutOfBounds, StaticData, Index);
1017}
1018
1019
1020CodeGenFunction::ComplexPairTy CodeGenFunction::
1021EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1022                         bool isInc, bool isPre) {
1023  ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1024
1025  llvm::Value *NextVal;
1026  if (isa<llvm::IntegerType>(InVal.first->getType())) {
1027    uint64_t AmountVal = isInc ? 1 : -1;
1028    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1029
1030    // Add the inc/dec to the real part.
1031    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1032  } else {
1033    QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1034    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1035    if (!isInc)
1036      FVal.changeSign();
1037    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1038
1039    // Add the inc/dec to the real part.
1040    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1041  }
1042
1043  ComplexPairTy IncVal(NextVal, InVal.second);
1044
1045  // Store the updated result through the lvalue.
1046  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1047  if (getLangOpts().OpenMP)
1048    CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1049                                                              E->getSubExpr());
1050
1051  // If this is a postinc, return the value read from memory, otherwise use the
1052  // updated value.
1053  return isPre ? IncVal : InVal;
1054}
1055
1056void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1057                                             CodeGenFunction *CGF) {
1058  // Bind VLAs in the cast type.
1059  if (CGF && E->getType()->isVariablyModifiedType())
1060    CGF->EmitVariablyModifiedType(E->getType());
1061
1062  if (CGDebugInfo *DI = getModuleDebugInfo())
1063    DI->EmitExplicitCastType(E->getType());
1064}
1065
1066//===----------------------------------------------------------------------===//
1067//                         LValue Expression Emission
1068//===----------------------------------------------------------------------===//
1069
1070/// EmitPointerWithAlignment - Given an expression of pointer type, try to
1071/// derive a more accurate bound on the alignment of the pointer.
1072Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1073                                                  LValueBaseInfo *BaseInfo,
1074                                                  TBAAAccessInfo *TBAAInfo) {
1075  // We allow this with ObjC object pointers because of fragile ABIs.
1076  assert(E->getType()->isPointerType() ||
1077         E->getType()->isObjCObjectPointerType());
1078  E = E->IgnoreParens();
1079
1080  // Casts:
1081  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1082    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1083      CGM.EmitExplicitCastExprType(ECE, this);
1084
1085    switch (CE->getCastKind()) {
1086    // Non-converting casts (but not C's implicit conversion from void*).
1087    case CK_BitCast:
1088    case CK_NoOp:
1089    case CK_AddressSpaceConversion:
1090      if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1091        if (PtrTy->getPointeeType()->isVoidType())
1092          break;
1093
1094        LValueBaseInfo InnerBaseInfo;
1095        TBAAAccessInfo InnerTBAAInfo;
1096        Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1097                                                &InnerBaseInfo,
1098                                                &InnerTBAAInfo);
1099        if (BaseInfo) *BaseInfo = InnerBaseInfo;
1100        if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1101
1102        if (isa<ExplicitCastExpr>(CE)) {
1103          LValueBaseInfo TargetTypeBaseInfo;
1104          TBAAAccessInfo TargetTypeTBAAInfo;
1105          CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1106              E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1107          if (TBAAInfo)
1108            *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1109                                                 TargetTypeTBAAInfo);
1110          // If the source l-value is opaque, honor the alignment of the
1111          // casted-to type.
1112          if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1113            if (BaseInfo)
1114              BaseInfo->mergeForCast(TargetTypeBaseInfo);
1115            Addr = Address(Addr.getPointer(), Align);
1116          }
1117        }
1118
1119        if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1120            CE->getCastKind() == CK_BitCast) {
1121          if (auto PT = E->getType()->getAs<PointerType>())
1122            EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1123                                      /*MayBeNull=*/true,
1124                                      CodeGenFunction::CFITCK_UnrelatedCast,
1125                                      CE->getBeginLoc());
1126        }
1127        return CE->getCastKind() != CK_AddressSpaceConversion
1128                   ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1129                   : Builder.CreateAddrSpaceCast(Addr,
1130                                                 ConvertType(E->getType()));
1131      }
1132      break;
1133
1134    // Array-to-pointer decay.
1135    case CK_ArrayToPointerDecay:
1136      return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1137
1138    // Derived-to-base conversions.
1139    case CK_UncheckedDerivedToBase:
1140    case CK_DerivedToBase: {
1141      // TODO: Support accesses to members of base classes in TBAA. For now, we
1142      // conservatively pretend that the complete object is of the base class
1143      // type.
1144      if (TBAAInfo)
1145        *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1146      Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1147      auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1148      return GetAddressOfBaseClass(Addr, Derived,
1149                                   CE->path_begin(), CE->path_end(),
1150                                   ShouldNullCheckClassCastValue(CE),
1151                                   CE->getExprLoc());
1152    }
1153
1154    // TODO: Is there any reason to treat base-to-derived conversions
1155    // specially?
1156    default:
1157      break;
1158    }
1159  }
1160
1161  // Unary &.
1162  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1163    if (UO->getOpcode() == UO_AddrOf) {
1164      LValue LV = EmitLValue(UO->getSubExpr());
1165      if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1166      if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1167      return LV.getAddress(*this);
1168    }
1169  }
1170
1171  // TODO: conditional operators, comma.
1172
1173  // Otherwise, use the alignment of the type.
1174  CharUnits Align =
1175      CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1176  return Address(EmitScalarExpr(E), Align);
1177}
1178
1179llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1180  llvm::Value *V = RV.getScalarVal();
1181  if (auto MPT = T->getAs<MemberPointerType>())
1182    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1183  return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1184}
1185
1186RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1187  if (Ty->isVoidType())
1188    return RValue::get(nullptr);
1189
1190  switch (getEvaluationKind(Ty)) {
1191  case TEK_Complex: {
1192    llvm::Type *EltTy =
1193      ConvertType(Ty->castAs<ComplexType>()->getElementType());
1194    llvm::Value *U = llvm::UndefValue::get(EltTy);
1195    return RValue::getComplex(std::make_pair(U, U));
1196  }
1197
1198  // If this is a use of an undefined aggregate type, the aggregate must have an
1199  // identifiable address.  Just because the contents of the value are undefined
1200  // doesn't mean that the address can't be taken and compared.
1201  case TEK_Aggregate: {
1202    Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1203    return RValue::getAggregate(DestPtr);
1204  }
1205
1206  case TEK_Scalar:
1207    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1208  }
1209  llvm_unreachable("bad evaluation kind");
1210}
1211
1212RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1213                                              const char *Name) {
1214  ErrorUnsupported(E, Name);
1215  return GetUndefRValue(E->getType());
1216}
1217
1218LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1219                                              const char *Name) {
1220  ErrorUnsupported(E, Name);
1221  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1222  return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1223                        E->getType());
1224}
1225
1226bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1227  const Expr *Base = Obj;
1228  while (!isa<CXXThisExpr>(Base)) {
1229    // The result of a dynamic_cast can be null.
1230    if (isa<CXXDynamicCastExpr>(Base))
1231      return false;
1232
1233    if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1234      Base = CE->getSubExpr();
1235    } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1236      Base = PE->getSubExpr();
1237    } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1238      if (UO->getOpcode() == UO_Extension)
1239        Base = UO->getSubExpr();
1240      else
1241        return false;
1242    } else {
1243      return false;
1244    }
1245  }
1246  return true;
1247}
1248
1249LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1250  LValue LV;
1251  if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1252    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1253  else
1254    LV = EmitLValue(E);
1255  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1256    SanitizerSet SkippedChecks;
1257    if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1258      bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1259      if (IsBaseCXXThis)
1260        SkippedChecks.set(SanitizerKind::Alignment, true);
1261      if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1262        SkippedChecks.set(SanitizerKind::Null, true);
1263    }
1264    EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1265                  LV.getAlignment(), SkippedChecks);
1266  }
1267  return LV;
1268}
1269
1270/// EmitLValue - Emit code to compute a designator that specifies the location
1271/// of the expression.
1272///
1273/// This can return one of two things: a simple address or a bitfield reference.
1274/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1275/// an LLVM pointer type.
1276///
1277/// If this returns a bitfield reference, nothing about the pointee type of the
1278/// LLVM value is known: For example, it may not be a pointer to an integer.
1279///
1280/// If this returns a normal address, and if the lvalue's C type is fixed size,
1281/// this method guarantees that the returned pointer type will point to an LLVM
1282/// type of the same size of the lvalue's type.  If the lvalue has a variable
1283/// length type, this is not possible.
1284///
1285LValue CodeGenFunction::EmitLValue(const Expr *E) {
1286  ApplyDebugLocation DL(*this, E);
1287  switch (E->getStmtClass()) {
1288  default: return EmitUnsupportedLValue(E, "l-value expression");
1289
1290  case Expr::ObjCPropertyRefExprClass:
1291    llvm_unreachable("cannot emit a property reference directly");
1292
1293  case Expr::ObjCSelectorExprClass:
1294    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1295  case Expr::ObjCIsaExprClass:
1296    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1297  case Expr::BinaryOperatorClass:
1298    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1299  case Expr::CompoundAssignOperatorClass: {
1300    QualType Ty = E->getType();
1301    if (const AtomicType *AT = Ty->getAs<AtomicType>())
1302      Ty = AT->getValueType();
1303    if (!Ty->isAnyComplexType())
1304      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1305    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1306  }
1307  case Expr::CallExprClass:
1308  case Expr::CXXMemberCallExprClass:
1309  case Expr::CXXOperatorCallExprClass:
1310  case Expr::UserDefinedLiteralClass:
1311    return EmitCallExprLValue(cast<CallExpr>(E));
1312  case Expr::CXXRewrittenBinaryOperatorClass:
1313    return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1314  case Expr::VAArgExprClass:
1315    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1316  case Expr::DeclRefExprClass:
1317    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1318  case Expr::ConstantExprClass: {
1319    const ConstantExpr *CE = cast<ConstantExpr>(E);
1320    if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1321      QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1322                             ->getCallReturnType(getContext());
1323      return MakeNaturalAlignAddrLValue(Result, RetType);
1324    }
1325    return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1326  }
1327  case Expr::ParenExprClass:
1328    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1329  case Expr::GenericSelectionExprClass:
1330    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1331  case Expr::PredefinedExprClass:
1332    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1333  case Expr::StringLiteralClass:
1334    return EmitStringLiteralLValue(cast<StringLiteral>(E));
1335  case Expr::ObjCEncodeExprClass:
1336    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1337  case Expr::PseudoObjectExprClass:
1338    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1339  case Expr::InitListExprClass:
1340    return EmitInitListLValue(cast<InitListExpr>(E));
1341  case Expr::CXXTemporaryObjectExprClass:
1342  case Expr::CXXConstructExprClass:
1343    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1344  case Expr::CXXBindTemporaryExprClass:
1345    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1346  case Expr::CXXUuidofExprClass:
1347    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1348  case Expr::LambdaExprClass:
1349    return EmitAggExprToLValue(E);
1350
1351  case Expr::ExprWithCleanupsClass: {
1352    const auto *cleanups = cast<ExprWithCleanups>(E);
1353    RunCleanupsScope Scope(*this);
1354    LValue LV = EmitLValue(cleanups->getSubExpr());
1355    if (LV.isSimple()) {
1356      // Defend against branches out of gnu statement expressions surrounded by
1357      // cleanups.
1358      llvm::Value *V = LV.getPointer(*this);
1359      Scope.ForceCleanup({&V});
1360      return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1361                              getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1362    }
1363    // FIXME: Is it possible to create an ExprWithCleanups that produces a
1364    // bitfield lvalue or some other non-simple lvalue?
1365    return LV;
1366  }
1367
1368  case Expr::CXXDefaultArgExprClass: {
1369    auto *DAE = cast<CXXDefaultArgExpr>(E);
1370    CXXDefaultArgExprScope Scope(*this, DAE);
1371    return EmitLValue(DAE->getExpr());
1372  }
1373  case Expr::CXXDefaultInitExprClass: {
1374    auto *DIE = cast<CXXDefaultInitExpr>(E);
1375    CXXDefaultInitExprScope Scope(*this, DIE);
1376    return EmitLValue(DIE->getExpr());
1377  }
1378  case Expr::CXXTypeidExprClass:
1379    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1380
1381  case Expr::ObjCMessageExprClass:
1382    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1383  case Expr::ObjCIvarRefExprClass:
1384    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1385  case Expr::StmtExprClass:
1386    return EmitStmtExprLValue(cast<StmtExpr>(E));
1387  case Expr::UnaryOperatorClass:
1388    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1389  case Expr::ArraySubscriptExprClass:
1390    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1391  case Expr::MatrixSubscriptExprClass:
1392    return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1393  case Expr::OMPArraySectionExprClass:
1394    return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1395  case Expr::ExtVectorElementExprClass:
1396    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1397  case Expr::MemberExprClass:
1398    return EmitMemberExpr(cast<MemberExpr>(E));
1399  case Expr::CompoundLiteralExprClass:
1400    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1401  case Expr::ConditionalOperatorClass:
1402    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1403  case Expr::BinaryConditionalOperatorClass:
1404    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1405  case Expr::ChooseExprClass:
1406    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1407  case Expr::OpaqueValueExprClass:
1408    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1409  case Expr::SubstNonTypeTemplateParmExprClass:
1410    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1411  case Expr::ImplicitCastExprClass:
1412  case Expr::CStyleCastExprClass:
1413  case Expr::CXXFunctionalCastExprClass:
1414  case Expr::CXXStaticCastExprClass:
1415  case Expr::CXXDynamicCastExprClass:
1416  case Expr::CXXReinterpretCastExprClass:
1417  case Expr::CXXConstCastExprClass:
1418  case Expr::CXXAddrspaceCastExprClass:
1419  case Expr::ObjCBridgedCastExprClass:
1420    return EmitCastLValue(cast<CastExpr>(E));
1421
1422  case Expr::MaterializeTemporaryExprClass:
1423    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1424
1425  case Expr::CoawaitExprClass:
1426    return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1427  case Expr::CoyieldExprClass:
1428    return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1429  }
1430}
1431
1432/// Given an object of the given canonical type, can we safely copy a
1433/// value out of it based on its initializer?
1434static bool isConstantEmittableObjectType(QualType type) {
1435  assert(type.isCanonical());
1436  assert(!type->isReferenceType());
1437
1438  // Must be const-qualified but non-volatile.
1439  Qualifiers qs = type.getLocalQualifiers();
1440  if (!qs.hasConst() || qs.hasVolatile()) return false;
1441
1442  // Otherwise, all object types satisfy this except C++ classes with
1443  // mutable subobjects or non-trivial copy/destroy behavior.
1444  if (const auto *RT = dyn_cast<RecordType>(type))
1445    if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1446      if (RD->hasMutableFields() || !RD->isTrivial())
1447        return false;
1448
1449  return true;
1450}
1451
1452/// Can we constant-emit a load of a reference to a variable of the
1453/// given type?  This is different from predicates like
1454/// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1455/// in situations that don't necessarily satisfy the language's rules
1456/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1457/// to do this with const float variables even if those variables
1458/// aren't marked 'constexpr'.
1459enum ConstantEmissionKind {
1460  CEK_None,
1461  CEK_AsReferenceOnly,
1462  CEK_AsValueOrReference,
1463  CEK_AsValueOnly
1464};
1465static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1466  type = type.getCanonicalType();
1467  if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1468    if (isConstantEmittableObjectType(ref->getPointeeType()))
1469      return CEK_AsValueOrReference;
1470    return CEK_AsReferenceOnly;
1471  }
1472  if (isConstantEmittableObjectType(type))
1473    return CEK_AsValueOnly;
1474  return CEK_None;
1475}
1476
1477/// Try to emit a reference to the given value without producing it as
1478/// an l-value.  This is just an optimization, but it avoids us needing
1479/// to emit global copies of variables if they're named without triggering
1480/// a formal use in a context where we can't emit a direct reference to them,
1481/// for instance if a block or lambda or a member of a local class uses a
1482/// const int variable or constexpr variable from an enclosing function.
1483CodeGenFunction::ConstantEmission
1484CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1485  ValueDecl *value = refExpr->getDecl();
1486
1487  // The value needs to be an enum constant or a constant variable.
1488  ConstantEmissionKind CEK;
1489  if (isa<ParmVarDecl>(value)) {
1490    CEK = CEK_None;
1491  } else if (auto *var = dyn_cast<VarDecl>(value)) {
1492    CEK = checkVarTypeForConstantEmission(var->getType());
1493  } else if (isa<EnumConstantDecl>(value)) {
1494    CEK = CEK_AsValueOnly;
1495  } else {
1496    CEK = CEK_None;
1497  }
1498  if (CEK == CEK_None) return ConstantEmission();
1499
1500  Expr::EvalResult result;
1501  bool resultIsReference;
1502  QualType resultType;
1503
1504  // It's best to evaluate all the way as an r-value if that's permitted.
1505  if (CEK != CEK_AsReferenceOnly &&
1506      refExpr->EvaluateAsRValue(result, getContext())) {
1507    resultIsReference = false;
1508    resultType = refExpr->getType();
1509
1510  // Otherwise, try to evaluate as an l-value.
1511  } else if (CEK != CEK_AsValueOnly &&
1512             refExpr->EvaluateAsLValue(result, getContext())) {
1513    resultIsReference = true;
1514    resultType = value->getType();
1515
1516  // Failure.
1517  } else {
1518    return ConstantEmission();
1519  }
1520
1521  // In any case, if the initializer has side-effects, abandon ship.
1522  if (result.HasSideEffects)
1523    return ConstantEmission();
1524
1525  // In CUDA/HIP device compilation, a lambda may capture a reference variable
1526  // referencing a global host variable by copy. In this case the lambda should
1527  // make a copy of the value of the global host variable. The DRE of the
1528  // captured reference variable cannot be emitted as load from the host
1529  // global variable as compile time constant, since the host variable is not
1530  // accessible on device. The DRE of the captured reference variable has to be
1531  // loaded from captures.
1532  if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1533      refExpr->refersToEnclosingVariableOrCapture()) {
1534    auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1535    if (MD && MD->getParent()->isLambda() &&
1536        MD->getOverloadedOperator() == OO_Call) {
1537      const APValue::LValueBase &base = result.Val.getLValueBase();
1538      if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1539        if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1540          if (!VD->hasAttr<CUDADeviceAttr>()) {
1541            return ConstantEmission();
1542          }
1543        }
1544      }
1545    }
1546  }
1547
1548  // Emit as a constant.
1549  auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1550                                               result.Val, resultType);
1551
1552  // Make sure we emit a debug reference to the global variable.
1553  // This should probably fire even for
1554  if (isa<VarDecl>(value)) {
1555    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1556      EmitDeclRefExprDbgValue(refExpr, result.Val);
1557  } else {
1558    assert(isa<EnumConstantDecl>(value));
1559    EmitDeclRefExprDbgValue(refExpr, result.Val);
1560  }
1561
1562  // If we emitted a reference constant, we need to dereference that.
1563  if (resultIsReference)
1564    return ConstantEmission::forReference(C);
1565
1566  return ConstantEmission::forValue(C);
1567}
1568
1569static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1570                                                        const MemberExpr *ME) {
1571  if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1572    // Try to emit static variable member expressions as DREs.
1573    return DeclRefExpr::Create(
1574        CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1575        /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1576        ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1577  }
1578  return nullptr;
1579}
1580
1581CodeGenFunction::ConstantEmission
1582CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1583  if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1584    return tryEmitAsConstant(DRE);
1585  return ConstantEmission();
1586}
1587
1588llvm::Value *CodeGenFunction::emitScalarConstant(
1589    const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1590  assert(Constant && "not a constant");
1591  if (Constant.isReference())
1592    return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1593                            E->getExprLoc())
1594        .getScalarVal();
1595  return Constant.getValue();
1596}
1597
1598llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1599                                               SourceLocation Loc) {
1600  return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1601                          lvalue.getType(), Loc, lvalue.getBaseInfo(),
1602                          lvalue.getTBAAInfo(), lvalue.isNontemporal());
1603}
1604
1605static bool hasBooleanRepresentation(QualType Ty) {
1606  if (Ty->isBooleanType())
1607    return true;
1608
1609  if (const EnumType *ET = Ty->getAs<EnumType>())
1610    return ET->getDecl()->getIntegerType()->isBooleanType();
1611
1612  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1613    return hasBooleanRepresentation(AT->getValueType());
1614
1615  return false;
1616}
1617
1618static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1619                            llvm::APInt &Min, llvm::APInt &End,
1620                            bool StrictEnums, bool IsBool) {
1621  const EnumType *ET = Ty->getAs<EnumType>();
1622  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1623                                ET && !ET->getDecl()->isFixed();
1624  if (!IsBool && !IsRegularCPlusPlusEnum)
1625    return false;
1626
1627  if (IsBool) {
1628    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1629    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1630  } else {
1631    const EnumDecl *ED = ET->getDecl();
1632    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1633    unsigned Bitwidth = LTy->getScalarSizeInBits();
1634    unsigned NumNegativeBits = ED->getNumNegativeBits();
1635    unsigned NumPositiveBits = ED->getNumPositiveBits();
1636
1637    if (NumNegativeBits) {
1638      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1639      assert(NumBits <= Bitwidth);
1640      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1641      Min = -End;
1642    } else {
1643      assert(NumPositiveBits <= Bitwidth);
1644      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1645      Min = llvm::APInt(Bitwidth, 0);
1646    }
1647  }
1648  return true;
1649}
1650
1651llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1652  llvm::APInt Min, End;
1653  if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1654                       hasBooleanRepresentation(Ty)))
1655    return nullptr;
1656
1657  llvm::MDBuilder MDHelper(getLLVMContext());
1658  return MDHelper.createRange(Min, End);
1659}
1660
1661bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1662                                           SourceLocation Loc) {
1663  bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1664  bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1665  if (!HasBoolCheck && !HasEnumCheck)
1666    return false;
1667
1668  bool IsBool = hasBooleanRepresentation(Ty) ||
1669                NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1670  bool NeedsBoolCheck = HasBoolCheck && IsBool;
1671  bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1672  if (!NeedsBoolCheck && !NeedsEnumCheck)
1673    return false;
1674
1675  // Single-bit booleans don't need to be checked. Special-case this to avoid
1676  // a bit width mismatch when handling bitfield values. This is handled by
1677  // EmitFromMemory for the non-bitfield case.
1678  if (IsBool &&
1679      cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1680    return false;
1681
1682  llvm::APInt Min, End;
1683  if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1684    return true;
1685
1686  auto &Ctx = getLLVMContext();
1687  SanitizerScope SanScope(this);
1688  llvm::Value *Check;
1689  --End;
1690  if (!Min) {
1691    Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1692  } else {
1693    llvm::Value *Upper =
1694        Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1695    llvm::Value *Lower =
1696        Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1697    Check = Builder.CreateAnd(Upper, Lower);
1698  }
1699  llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1700                                  EmitCheckTypeDescriptor(Ty)};
1701  SanitizerMask Kind =
1702      NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1703  EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1704            StaticArgs, EmitCheckValue(Value));
1705  return true;
1706}
1707
1708llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1709                                               QualType Ty,
1710                                               SourceLocation Loc,
1711                                               LValueBaseInfo BaseInfo,
1712                                               TBAAAccessInfo TBAAInfo,
1713                                               bool isNontemporal) {
1714  if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1715    // For better performance, handle vector loads differently.
1716    if (Ty->isVectorType()) {
1717      const llvm::Type *EltTy = Addr.getElementType();
1718
1719      const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1720
1721      // Handle vectors of size 3 like size 4 for better performance.
1722      if (VTy->getNumElements() == 3) {
1723
1724        // Bitcast to vec4 type.
1725        auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1726        Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1727        // Now load value.
1728        llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1729
1730        // Shuffle vector to get vec3.
1731        V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2},
1732                                        "extractVec");
1733        return EmitFromMemory(V, Ty);
1734      }
1735    }
1736  }
1737
1738  // Atomic operations have to be done on integral types.
1739  LValue AtomicLValue =
1740      LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1741  if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1742    return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1743  }
1744
1745  llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1746  if (isNontemporal) {
1747    llvm::MDNode *Node = llvm::MDNode::get(
1748        Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1749    Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1750  }
1751
1752  CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1753
1754  if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1755    // In order to prevent the optimizer from throwing away the check, don't
1756    // attach range metadata to the load.
1757  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1758    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1759      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1760
1761  return EmitFromMemory(Load, Ty);
1762}
1763
1764llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1765  // Bool has a different representation in memory than in registers.
1766  if (hasBooleanRepresentation(Ty)) {
1767    // This should really always be an i1, but sometimes it's already
1768    // an i8, and it's awkward to track those cases down.
1769    if (Value->getType()->isIntegerTy(1))
1770      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1771    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1772           "wrong value rep of bool");
1773  }
1774
1775  return Value;
1776}
1777
1778llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1779  // Bool has a different representation in memory than in registers.
1780  if (hasBooleanRepresentation(Ty)) {
1781    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1782           "wrong value rep of bool");
1783    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1784  }
1785
1786  return Value;
1787}
1788
1789// Convert the pointer of \p Addr to a pointer to a vector (the value type of
1790// MatrixType), if it points to a array (the memory type of MatrixType).
1791static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1792                                         bool IsVector = true) {
1793  auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1794      cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1795  if (ArrayTy && IsVector) {
1796    auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1797                                                ArrayTy->getNumElements());
1798
1799    return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1800  }
1801  auto *VectorTy = dyn_cast<llvm::VectorType>(
1802      cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1803  if (VectorTy && !IsVector) {
1804    auto *ArrayTy = llvm::ArrayType::get(
1805        VectorTy->getElementType(),
1806        cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1807
1808    return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1809  }
1810
1811  return Addr;
1812}
1813
1814// Emit a store of a matrix LValue. This may require casting the original
1815// pointer to memory address (ArrayType) to a pointer to the value type
1816// (VectorType).
1817static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1818                                    bool isInit, CodeGenFunction &CGF) {
1819  Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1820                                           value->getType()->isVectorTy());
1821  CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1822                        lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1823                        lvalue.isNontemporal());
1824}
1825
1826void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1827                                        bool Volatile, QualType Ty,
1828                                        LValueBaseInfo BaseInfo,
1829                                        TBAAAccessInfo TBAAInfo,
1830                                        bool isInit, bool isNontemporal) {
1831  if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1832    // Handle vectors differently to get better performance.
1833    if (Ty->isVectorType()) {
1834      llvm::Type *SrcTy = Value->getType();
1835      auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1836      // Handle vec3 special.
1837      if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1838        // Our source is a vec3, do a shuffle vector to make it a vec4.
1839        Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1840                                            "extractVec");
1841        SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1842      }
1843      if (Addr.getElementType() != SrcTy) {
1844        Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1845      }
1846    }
1847  }
1848
1849  Value = EmitToMemory(Value, Ty);
1850
1851  LValue AtomicLValue =
1852      LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1853  if (Ty->isAtomicType() ||
1854      (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1855    EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1856    return;
1857  }
1858
1859  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1860  if (isNontemporal) {
1861    llvm::MDNode *Node =
1862        llvm::MDNode::get(Store->getContext(),
1863                          llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1864    Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1865  }
1866
1867  CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1868}
1869
1870void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1871                                        bool isInit) {
1872  if (lvalue.getType()->isConstantMatrixType()) {
1873    EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1874    return;
1875  }
1876
1877  EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1878                    lvalue.getType(), lvalue.getBaseInfo(),
1879                    lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1880}
1881
1882// Emit a load of a LValue of matrix type. This may require casting the pointer
1883// to memory address (ArrayType) to a pointer to the value type (VectorType).
1884static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1885                                     CodeGenFunction &CGF) {
1886  assert(LV.getType()->isConstantMatrixType());
1887  Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1888  LV.setAddress(Addr);
1889  return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1890}
1891
1892/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1893/// method emits the address of the lvalue, then loads the result as an rvalue,
1894/// returning the rvalue.
1895RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1896  if (LV.isObjCWeak()) {
1897    // load of a __weak object.
1898    Address AddrWeakObj = LV.getAddress(*this);
1899    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1900                                                             AddrWeakObj));
1901  }
1902  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1903    // In MRC mode, we do a load+autorelease.
1904    if (!getLangOpts().ObjCAutoRefCount) {
1905      return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1906    }
1907
1908    // In ARC mode, we load retained and then consume the value.
1909    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1910    Object = EmitObjCConsumeObject(LV.getType(), Object);
1911    return RValue::get(Object);
1912  }
1913
1914  if (LV.isSimple()) {
1915    assert(!LV.getType()->isFunctionType());
1916
1917    if (LV.getType()->isConstantMatrixType())
1918      return EmitLoadOfMatrixLValue(LV, Loc, *this);
1919
1920    // Everything needs a load.
1921    return RValue::get(EmitLoadOfScalar(LV, Loc));
1922  }
1923
1924  if (LV.isVectorElt()) {
1925    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1926                                              LV.isVolatileQualified());
1927    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1928                                                    "vecext"));
1929  }
1930
1931  // If this is a reference to a subset of the elements of a vector, either
1932  // shuffle the input or extract/insert them as appropriate.
1933  if (LV.isExtVectorElt()) {
1934    return EmitLoadOfExtVectorElementLValue(LV);
1935  }
1936
1937  // Global Register variables always invoke intrinsics
1938  if (LV.isGlobalReg())
1939    return EmitLoadOfGlobalRegLValue(LV);
1940
1941  if (LV.isMatrixElt()) {
1942    llvm::LoadInst *Load =
1943        Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1944    return RValue::get(
1945        Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext"));
1946  }
1947
1948  assert(LV.isBitField() && "Unknown LValue type!");
1949  return EmitLoadOfBitfieldLValue(LV, Loc);
1950}
1951
1952RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1953                                                 SourceLocation Loc) {
1954  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1955
1956  // Get the output type.
1957  llvm::Type *ResLTy = ConvertType(LV.getType());
1958
1959  Address Ptr = LV.getBitFieldAddress();
1960  llvm::Value *Val =
1961      Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1962
1963  bool UseVolatile = LV.isVolatileQualified() &&
1964                     Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1965  const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1966  const unsigned StorageSize =
1967      UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1968  if (Info.IsSigned) {
1969    assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1970    unsigned HighBits = StorageSize - Offset - Info.Size;
1971    if (HighBits)
1972      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1973    if (Offset + HighBits)
1974      Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
1975  } else {
1976    if (Offset)
1977      Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
1978    if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
1979      Val = Builder.CreateAnd(
1980          Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
1981  }
1982  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1983  EmitScalarRangeCheck(Val, LV.getType(), Loc);
1984  return RValue::get(Val);
1985}
1986
1987// If this is a reference to a subset of the elements of a vector, create an
1988// appropriate shufflevector.
1989RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1990  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1991                                        LV.isVolatileQualified());
1992
1993  const llvm::Constant *Elts = LV.getExtVectorElts();
1994
1995  // If the result of the expression is a non-vector type, we must be extracting
1996  // a single element.  Just codegen as an extractelement.
1997  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1998  if (!ExprVT) {
1999    unsigned InIdx = getAccessedFieldNo(0, Elts);
2000    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2001    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2002  }
2003
2004  // Always use shuffle vector to try to retain the original program structure
2005  unsigned NumResultElts = ExprVT->getNumElements();
2006
2007  SmallVector<int, 4> Mask;
2008  for (unsigned i = 0; i != NumResultElts; ++i)
2009    Mask.push_back(getAccessedFieldNo(i, Elts));
2010
2011  Vec = Builder.CreateShuffleVector(Vec, Mask);
2012  return RValue::get(Vec);
2013}
2014
2015/// Generates lvalue for partial ext_vector access.
2016Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2017  Address VectorAddress = LV.getExtVectorAddress();
2018  QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2019  llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2020
2021  Address CastToPointerElement =
2022    Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2023                                 "conv.ptr.element");
2024
2025  const llvm::Constant *Elts = LV.getExtVectorElts();
2026  unsigned ix = getAccessedFieldNo(0, Elts);
2027
2028  Address VectorBasePtrPlusIx =
2029    Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2030                                   "vector.elt");
2031
2032  return VectorBasePtrPlusIx;
2033}
2034
2035/// Load of global gamed gegisters are always calls to intrinsics.
2036RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2037  assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2038         "Bad type for register variable");
2039  llvm::MDNode *RegName = cast<llvm::MDNode>(
2040      cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2041
2042  // We accept integer and pointer types only
2043  llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2044  llvm::Type *Ty = OrigTy;
2045  if (OrigTy->isPointerTy())
2046    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2047  llvm::Type *Types[] = { Ty };
2048
2049  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2050  llvm::Value *Call = Builder.CreateCall(
2051      F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2052  if (OrigTy->isPointerTy())
2053    Call = Builder.CreateIntToPtr(Call, OrigTy);
2054  return RValue::get(Call);
2055}
2056
2057/// EmitStoreThroughLValue - Store the specified rvalue into the specified
2058/// lvalue, where both are guaranteed to the have the same type, and that type
2059/// is 'Ty'.
2060void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2061                                             bool isInit) {
2062  if (!Dst.isSimple()) {
2063    if (Dst.isVectorElt()) {
2064      // Read/modify/write the vector, inserting the new element.
2065      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2066                                            Dst.isVolatileQualified());
2067      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2068                                        Dst.getVectorIdx(), "vecins");
2069      Builder.CreateStore(Vec, Dst.getVectorAddress(),
2070                          Dst.isVolatileQualified());
2071      return;
2072    }
2073
2074    // If this is an update of extended vector elements, insert them as
2075    // appropriate.
2076    if (Dst.isExtVectorElt())
2077      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2078
2079    if (Dst.isGlobalReg())
2080      return EmitStoreThroughGlobalRegLValue(Src, Dst);
2081
2082    if (Dst.isMatrixElt()) {
2083      llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress());
2084      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2085                                        Dst.getMatrixIdx(), "matins");
2086      Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2087                          Dst.isVolatileQualified());
2088      return;
2089    }
2090
2091    assert(Dst.isBitField() && "Unknown LValue type");
2092    return EmitStoreThroughBitfieldLValue(Src, Dst);
2093  }
2094
2095  // There's special magic for assigning into an ARC-qualified l-value.
2096  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2097    switch (Lifetime) {
2098    case Qualifiers::OCL_None:
2099      llvm_unreachable("present but none");
2100
2101    case Qualifiers::OCL_ExplicitNone:
2102      // nothing special
2103      break;
2104
2105    case Qualifiers::OCL_Strong:
2106      if (isInit) {
2107        Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2108        break;
2109      }
2110      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2111      return;
2112
2113    case Qualifiers::OCL_Weak:
2114      if (isInit)
2115        // Initialize and then skip the primitive store.
2116        EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2117      else
2118        EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2119                         /*ignore*/ true);
2120      return;
2121
2122    case Qualifiers::OCL_Autoreleasing:
2123      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2124                                                     Src.getScalarVal()));
2125      // fall into the normal path
2126      break;
2127    }
2128  }
2129
2130  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2131    // load of a __weak object.
2132    Address LvalueDst = Dst.getAddress(*this);
2133    llvm::Value *src = Src.getScalarVal();
2134     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2135    return;
2136  }
2137
2138  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2139    // load of a __strong object.
2140    Address LvalueDst = Dst.getAddress(*this);
2141    llvm::Value *src = Src.getScalarVal();
2142    if (Dst.isObjCIvar()) {
2143      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2144      llvm::Type *ResultType = IntPtrTy;
2145      Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2146      llvm::Value *RHS = dst.getPointer();
2147      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2148      llvm::Value *LHS =
2149        Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2150                               "sub.ptr.lhs.cast");
2151      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2152      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2153                                              BytesBetween);
2154    } else if (Dst.isGlobalObjCRef()) {
2155      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2156                                                Dst.isThreadLocalRef());
2157    }
2158    else
2159      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2160    return;
2161  }
2162
2163  assert(Src.isScalar() && "Can't emit an agg store with this method");
2164  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2165}
2166
2167void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2168                                                     llvm::Value **Result) {
2169  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2170  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2171  Address Ptr = Dst.getBitFieldAddress();
2172
2173  // Get the source value, truncated to the width of the bit-field.
2174  llvm::Value *SrcVal = Src.getScalarVal();
2175
2176  // Cast the source to the storage type and shift it into place.
2177  SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2178                                 /*isSigned=*/false);
2179  llvm::Value *MaskedVal = SrcVal;
2180
2181  const bool UseVolatile =
2182      CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2183      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2184  const unsigned StorageSize =
2185      UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2186  const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2187  // See if there are other bits in the bitfield's storage we'll need to load
2188  // and mask together with source before storing.
2189  if (StorageSize != Info.Size) {
2190    assert(StorageSize > Info.Size && "Invalid bitfield size.");
2191    llvm::Value *Val =
2192        Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2193
2194    // Mask the source value as needed.
2195    if (!hasBooleanRepresentation(Dst.getType()))
2196      SrcVal = Builder.CreateAnd(
2197          SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2198          "bf.value");
2199    MaskedVal = SrcVal;
2200    if (Offset)
2201      SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2202
2203    // Mask out the original value.
2204    Val = Builder.CreateAnd(
2205        Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2206        "bf.clear");
2207
2208    // Or together the unchanged values and the source value.
2209    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2210  } else {
2211    assert(Offset == 0);
2212    // According to the AACPS:
2213    // When a volatile bit-field is written, and its container does not overlap
2214    // with any non-bit-field member, its container must be read exactly once
2215    // and written exactly once using the access width appropriate to the type
2216    // of the container. The two accesses are not atomic.
2217    if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2218        CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2219      Builder.CreateLoad(Ptr, true, "bf.load");
2220  }
2221
2222  // Write the new value back out.
2223  Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2224
2225  // Return the new value of the bit-field, if requested.
2226  if (Result) {
2227    llvm::Value *ResultVal = MaskedVal;
2228
2229    // Sign extend the value if needed.
2230    if (Info.IsSigned) {
2231      assert(Info.Size <= StorageSize);
2232      unsigned HighBits = StorageSize - Info.Size;
2233      if (HighBits) {
2234        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2235        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2236      }
2237    }
2238
2239    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2240                                      "bf.result.cast");
2241    *Result = EmitFromMemory(ResultVal, Dst.getType());
2242  }
2243}
2244
2245void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2246                                                               LValue Dst) {
2247  // This access turns into a read/modify/write of the vector.  Load the input
2248  // value now.
2249  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2250                                        Dst.isVolatileQualified());
2251  const llvm::Constant *Elts = Dst.getExtVectorElts();
2252
2253  llvm::Value *SrcVal = Src.getScalarVal();
2254
2255  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2256    unsigned NumSrcElts = VTy->getNumElements();
2257    unsigned NumDstElts =
2258        cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2259    if (NumDstElts == NumSrcElts) {
2260      // Use shuffle vector is the src and destination are the same number of
2261      // elements and restore the vector mask since it is on the side it will be
2262      // stored.
2263      SmallVector<int, 4> Mask(NumDstElts);
2264      for (unsigned i = 0; i != NumSrcElts; ++i)
2265        Mask[getAccessedFieldNo(i, Elts)] = i;
2266
2267      Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2268    } else if (NumDstElts > NumSrcElts) {
2269      // Extended the source vector to the same length and then shuffle it
2270      // into the destination.
2271      // FIXME: since we're shuffling with undef, can we just use the indices
2272      //        into that?  This could be simpler.
2273      SmallVector<int, 4> ExtMask;
2274      for (unsigned i = 0; i != NumSrcElts; ++i)
2275        ExtMask.push_back(i);
2276      ExtMask.resize(NumDstElts, -1);
2277      llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2278      // build identity
2279      SmallVector<int, 4> Mask;
2280      for (unsigned i = 0; i != NumDstElts; ++i)
2281        Mask.push_back(i);
2282
2283      // When the vector size is odd and .odd or .hi is used, the last element
2284      // of the Elts constant array will be one past the size of the vector.
2285      // Ignore the last element here, if it is greater than the mask size.
2286      if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2287        NumSrcElts--;
2288
2289      // modify when what gets shuffled in
2290      for (unsigned i = 0; i != NumSrcElts; ++i)
2291        Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2292      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2293    } else {
2294      // We should never shorten the vector
2295      llvm_unreachable("unexpected shorten vector length");
2296    }
2297  } else {
2298    // If the Src is a scalar (not a vector) it must be updating one element.
2299    unsigned InIdx = getAccessedFieldNo(0, Elts);
2300    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2301    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2302  }
2303
2304  Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2305                      Dst.isVolatileQualified());
2306}
2307
2308/// Store of global named registers are always calls to intrinsics.
2309void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2310  assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2311         "Bad type for register variable");
2312  llvm::MDNode *RegName = cast<llvm::MDNode>(
2313      cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2314  assert(RegName && "Register LValue is not metadata");
2315
2316  // We accept integer and pointer types only
2317  llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2318  llvm::Type *Ty = OrigTy;
2319  if (OrigTy->isPointerTy())
2320    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2321  llvm::Type *Types[] = { Ty };
2322
2323  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2324  llvm::Value *Value = Src.getScalarVal();
2325  if (OrigTy->isPointerTy())
2326    Value = Builder.CreatePtrToInt(Value, Ty);
2327  Builder.CreateCall(
2328      F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2329}
2330
2331// setObjCGCLValueClass - sets class of the lvalue for the purpose of
2332// generating write-barries API. It is currently a global, ivar,
2333// or neither.
2334static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2335                                 LValue &LV,
2336                                 bool IsMemberAccess=false) {
2337  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2338    return;
2339
2340  if (isa<ObjCIvarRefExpr>(E)) {
2341    QualType ExpTy = E->getType();
2342    if (IsMemberAccess && ExpTy->isPointerType()) {
2343      // If ivar is a structure pointer, assigning to field of
2344      // this struct follows gcc's behavior and makes it a non-ivar
2345      // writer-barrier conservatively.
2346      ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2347      if (ExpTy->isRecordType()) {
2348        LV.setObjCIvar(false);
2349        return;
2350      }
2351    }
2352    LV.setObjCIvar(true);
2353    auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2354    LV.setBaseIvarExp(Exp->getBase());
2355    LV.setObjCArray(E->getType()->isArrayType());
2356    return;
2357  }
2358
2359  if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2360    if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2361      if (VD->hasGlobalStorage()) {
2362        LV.setGlobalObjCRef(true);
2363        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2364      }
2365    }
2366    LV.setObjCArray(E->getType()->isArrayType());
2367    return;
2368  }
2369
2370  if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2371    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2372    return;
2373  }
2374
2375  if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2376    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2377    if (LV.isObjCIvar()) {
2378      // If cast is to a structure pointer, follow gcc's behavior and make it
2379      // a non-ivar write-barrier.
2380      QualType ExpTy = E->getType();
2381      if (ExpTy->isPointerType())
2382        ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2383      if (ExpTy->isRecordType())
2384        LV.setObjCIvar(false);
2385    }
2386    return;
2387  }
2388
2389  if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2390    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2391    return;
2392  }
2393
2394  if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2395    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2396    return;
2397  }
2398
2399  if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2400    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2401    return;
2402  }
2403
2404  if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2405    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2406    return;
2407  }
2408
2409  if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2410    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2411    if (LV.isObjCIvar() && !LV.isObjCArray())
2412      // Using array syntax to assigning to what an ivar points to is not
2413      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2414      LV.setObjCIvar(false);
2415    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2416      // Using array syntax to assigning to what global points to is not
2417      // same as assigning to the global itself. {id *G;} G[i] = 0;
2418      LV.setGlobalObjCRef(false);
2419    return;
2420  }
2421
2422  if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2423    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2424    // We don't know if member is an 'ivar', but this flag is looked at
2425    // only in the context of LV.isObjCIvar().
2426    LV.setObjCArray(E->getType()->isArrayType());
2427    return;
2428  }
2429}
2430
2431static llvm::Value *
2432EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2433                                llvm::Value *V, llvm::Type *IRType,
2434                                StringRef Name = StringRef()) {
2435  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2436  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2437}
2438
2439static LValue EmitThreadPrivateVarDeclLValue(
2440    CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2441    llvm::Type *RealVarTy, SourceLocation Loc) {
2442  if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2443    Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2444        CGF, VD, Addr, Loc);
2445  else
2446    Addr =
2447        CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2448
2449  Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2450  return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2451}
2452
2453static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2454                                           const VarDecl *VD, QualType T) {
2455  llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2456      OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2457  // Return an invalid address if variable is MT_To and unified
2458  // memory is not enabled. For all other cases: MT_Link and
2459  // MT_To with unified memory, return a valid address.
2460  if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2461               !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2462    return Address::invalid();
2463  assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2464          (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2465           CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2466         "Expected link clause OR to clause with unified memory enabled.");
2467  QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2468  Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2469  return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2470}
2471
2472Address
2473CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2474                                     LValueBaseInfo *PointeeBaseInfo,
2475                                     TBAAAccessInfo *PointeeTBAAInfo) {
2476  llvm::LoadInst *Load =
2477      Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2478  CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2479
2480  CharUnits Align = CGM.getNaturalTypeAlignment(
2481      RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2482      /* forPointeeType= */ true);
2483  return Address(Load, Align);
2484}
2485
2486LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2487  LValueBaseInfo PointeeBaseInfo;
2488  TBAAAccessInfo PointeeTBAAInfo;
2489  Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2490                                            &PointeeTBAAInfo);
2491  return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2492                        PointeeBaseInfo, PointeeTBAAInfo);
2493}
2494
2495Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2496                                           const PointerType *PtrTy,
2497                                           LValueBaseInfo *BaseInfo,
2498                                           TBAAAccessInfo *TBAAInfo) {
2499  llvm::Value *Addr = Builder.CreateLoad(Ptr);
2500  return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2501                                                   BaseInfo, TBAAInfo,
2502                                                   /*forPointeeType=*/true));
2503}
2504
2505LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2506                                                const PointerType *PtrTy) {
2507  LValueBaseInfo BaseInfo;
2508  TBAAAccessInfo TBAAInfo;
2509  Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2510  return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2511}
2512
2513static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2514                                      const Expr *E, const VarDecl *VD) {
2515  QualType T = E->getType();
2516
2517  // If it's thread_local, emit a call to its wrapper function instead.
2518  if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2519      CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2520    return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2521  // Check if the variable is marked as declare target with link clause in
2522  // device codegen.
2523  if (CGF.getLangOpts().OpenMPIsDevice) {
2524    Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2525    if (Addr.isValid())
2526      return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2527  }
2528
2529  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2530  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2531  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2532  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2533  Address Addr(V, Alignment);
2534  // Emit reference to the private copy of the variable if it is an OpenMP
2535  // threadprivate variable.
2536  if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2537      VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2538    return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2539                                          E->getExprLoc());
2540  }
2541  LValue LV = VD->getType()->isReferenceType() ?
2542      CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2543                                    AlignmentSource::Decl) :
2544      CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2545  setObjCGCLValueClass(CGF.getContext(), E, LV);
2546  return LV;
2547}
2548
2549static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2550                                               GlobalDecl GD) {
2551  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2552  if (FD->hasAttr<WeakRefAttr>()) {
2553    ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2554    return aliasee.getPointer();
2555  }
2556
2557  llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2558  if (!FD->hasPrototype()) {
2559    if (const FunctionProtoType *Proto =
2560            FD->getType()->getAs<FunctionProtoType>()) {
2561      // Ugly case: for a K&R-style definition, the type of the definition
2562      // isn't the same as the type of a use.  Correct for this with a
2563      // bitcast.
2564      QualType NoProtoType =
2565          CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2566      NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2567      V = llvm::ConstantExpr::getBitCast(V,
2568                                      CGM.getTypes().ConvertType(NoProtoType));
2569    }
2570  }
2571  return V;
2572}
2573
2574static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2575                                     GlobalDecl GD) {
2576  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2577  llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2578  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2579  return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2580                            AlignmentSource::Decl);
2581}
2582
2583static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2584                                      llvm::Value *ThisValue) {
2585  QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2586  LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2587  return CGF.EmitLValueForField(LV, FD);
2588}
2589
2590/// Named Registers are named metadata pointing to the register name
2591/// which will be read from/written to as an argument to the intrinsic
2592/// @llvm.read/write_register.
2593/// So far, only the name is being passed down, but other options such as
2594/// register type, allocation type or even optimization options could be
2595/// passed down via the metadata node.
2596static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2597  SmallString<64> Name("llvm.named.register.");
2598  AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2599  assert(Asm->getLabel().size() < 64-Name.size() &&
2600      "Register name too big");
2601  Name.append(Asm->getLabel());
2602  llvm::NamedMDNode *M =
2603    CGM.getModule().getOrInsertNamedMetadata(Name);
2604  if (M->getNumOperands() == 0) {
2605    llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2606                                              Asm->getLabel());
2607    llvm::Metadata *Ops[] = {Str};
2608    M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2609  }
2610
2611  CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2612
2613  llvm::Value *Ptr =
2614    llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2615  return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2616}
2617
2618/// Determine whether we can emit a reference to \p VD from the current
2619/// context, despite not necessarily having seen an odr-use of the variable in
2620/// this context.
2621static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2622                                               const DeclRefExpr *E,
2623                                               const VarDecl *VD,
2624                                               bool IsConstant) {
2625  // For a variable declared in an enclosing scope, do not emit a spurious
2626  // reference even if we have a capture, as that will emit an unwarranted
2627  // reference to our capture state, and will likely generate worse code than
2628  // emitting a local copy.
2629  if (E->refersToEnclosingVariableOrCapture())
2630    return false;
2631
2632  // For a local declaration declared in this function, we can always reference
2633  // it even if we don't have an odr-use.
2634  if (VD->hasLocalStorage()) {
2635    return VD->getDeclContext() ==
2636           dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2637  }
2638
2639  // For a global declaration, we can emit a reference to it if we know
2640  // for sure that we are able to emit a definition of it.
2641  VD = VD->getDefinition(CGF.getContext());
2642  if (!VD)
2643    return false;
2644
2645  // Don't emit a spurious reference if it might be to a variable that only
2646  // exists on a different device / target.
2647  // FIXME: This is unnecessarily broad. Check whether this would actually be a
2648  // cross-target reference.
2649  if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2650      CGF.getLangOpts().OpenCL) {
2651    return false;
2652  }
2653
2654  // We can emit a spurious reference only if the linkage implies that we'll
2655  // be emitting a non-interposable symbol that will be retained until link
2656  // time.
2657  switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2658  case llvm::GlobalValue::ExternalLinkage:
2659  case llvm::GlobalValue::LinkOnceODRLinkage:
2660  case llvm::GlobalValue::WeakODRLinkage:
2661  case llvm::GlobalValue::InternalLinkage:
2662  case llvm::GlobalValue::PrivateLinkage:
2663    return true;
2664  default:
2665    return false;
2666  }
2667}
2668
2669LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2670  const NamedDecl *ND = E->getDecl();
2671  QualType T = E->getType();
2672
2673  assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2674         "should not emit an unevaluated operand");
2675
2676  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2677    // Global Named registers access via intrinsics only
2678    if (VD->getStorageClass() == SC_Register &&
2679        VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2680      return EmitGlobalNamedRegister(VD, CGM);
2681
2682    // If this DeclRefExpr does not constitute an odr-use of the variable,
2683    // we're not permitted to emit a reference to it in general, and it might
2684    // not be captured if capture would be necessary for a use. Emit the
2685    // constant value directly instead.
2686    if (E->isNonOdrUse() == NOUR_Constant &&
2687        (VD->getType()->isReferenceType() ||
2688         !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2689      VD->getAnyInitializer(VD);
2690      llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2691          E->getLocation(), *VD->evaluateValue(), VD->getType());
2692      assert(Val && "failed to emit constant expression");
2693
2694      Address Addr = Address::invalid();
2695      if (!VD->getType()->isReferenceType()) {
2696        // Spill the constant value to a global.
2697        Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2698                                           getContext().getDeclAlign(VD));
2699        llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2700        auto *PTy = llvm::PointerType::get(
2701            VarTy, getContext().getTargetAddressSpace(VD->getType()));
2702        if (PTy != Addr.getType())
2703          Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2704      } else {
2705        // Should we be using the alignment of the constant pointer we emitted?
2706        CharUnits Alignment =
2707            CGM.getNaturalTypeAlignment(E->getType(),
2708                                        /* BaseInfo= */ nullptr,
2709                                        /* TBAAInfo= */ nullptr,
2710                                        /* forPointeeType= */ true);
2711        Addr = Address(Val, Alignment);
2712      }
2713      return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2714    }
2715
2716    // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2717
2718    // Check for captured variables.
2719    if (E->refersToEnclosingVariableOrCapture()) {
2720      VD = VD->getCanonicalDecl();
2721      if (auto *FD = LambdaCaptureFields.lookup(VD))
2722        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2723      if (CapturedStmtInfo) {
2724        auto I = LocalDeclMap.find(VD);
2725        if (I != LocalDeclMap.end()) {
2726          LValue CapLVal;
2727          if (VD->getType()->isReferenceType())
2728            CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2729                                                AlignmentSource::Decl);
2730          else
2731            CapLVal = MakeAddrLValue(I->second, T);
2732          // Mark lvalue as nontemporal if the variable is marked as nontemporal
2733          // in simd context.
2734          if (getLangOpts().OpenMP &&
2735              CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2736            CapLVal.setNontemporal(/*Value=*/true);
2737          return CapLVal;
2738        }
2739        LValue CapLVal =
2740            EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2741                                    CapturedStmtInfo->getContextValue());
2742        CapLVal = MakeAddrLValue(
2743            Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2744            CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2745            CapLVal.getTBAAInfo());
2746        // Mark lvalue as nontemporal if the variable is marked as nontemporal
2747        // in simd context.
2748        if (getLangOpts().OpenMP &&
2749            CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2750          CapLVal.setNontemporal(/*Value=*/true);
2751        return CapLVal;
2752      }
2753
2754      assert(isa<BlockDecl>(CurCodeDecl));
2755      Address addr = GetAddrOfBlockDecl(VD);
2756      return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2757    }
2758  }
2759
2760  // FIXME: We should be able to assert this for FunctionDecls as well!
2761  // FIXME: We should be able to assert this for all DeclRefExprs, not just
2762  // those with a valid source location.
2763  assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2764          !E->getLocation().isValid()) &&
2765         "Should not use decl without marking it used!");
2766
2767  if (ND->hasAttr<WeakRefAttr>()) {
2768    const auto *VD = cast<ValueDecl>(ND);
2769    ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2770    return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2771  }
2772
2773  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2774    // Check if this is a global variable.
2775    if (VD->hasLinkage() || VD->isStaticDataMember())
2776      return EmitGlobalVarDeclLValue(*this, E, VD);
2777
2778    Address addr = Address::invalid();
2779
2780    // The variable should generally be present in the local decl map.
2781    auto iter = LocalDeclMap.find(VD);
2782    if (iter != LocalDeclMap.end()) {
2783      addr = iter->second;
2784
2785    // Otherwise, it might be static local we haven't emitted yet for
2786    // some reason; most likely, because it's in an outer function.
2787    } else if (VD->isStaticLocal()) {
2788      addr = Address(CGM.getOrCreateStaticVarDecl(
2789          *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2790                     getContext().getDeclAlign(VD));
2791
2792    // No other cases for now.
2793    } else {
2794      llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2795    }
2796
2797
2798    // Check for OpenMP threadprivate variables.
2799    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2800        VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2801      return EmitThreadPrivateVarDeclLValue(
2802          *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2803          E->getExprLoc());
2804    }
2805
2806    // Drill into block byref variables.
2807    bool isBlockByref = VD->isEscapingByref();
2808    if (isBlockByref) {
2809      addr = emitBlockByrefAddress(addr, VD);
2810    }
2811
2812    // Drill into reference types.
2813    LValue LV = VD->getType()->isReferenceType() ?
2814        EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2815        MakeAddrLValue(addr, T, AlignmentSource::Decl);
2816
2817    bool isLocalStorage = VD->hasLocalStorage();
2818
2819    bool NonGCable = isLocalStorage &&
2820                     !VD->getType()->isReferenceType() &&
2821                     !isBlockByref;
2822    if (NonGCable) {
2823      LV.getQuals().removeObjCGCAttr();
2824      LV.setNonGC(true);
2825    }
2826
2827    bool isImpreciseLifetime =
2828      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2829    if (isImpreciseLifetime)
2830      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2831    setObjCGCLValueClass(getContext(), E, LV);
2832    return LV;
2833  }
2834
2835  if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2836    LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2837
2838    // Emit debuginfo for the function declaration if the target wants to.
2839    if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2840      if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2841        auto *Fn =
2842            cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2843        if (!Fn->getSubprogram())
2844          DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2845      }
2846    }
2847
2848    return LV;
2849  }
2850
2851  // FIXME: While we're emitting a binding from an enclosing scope, all other
2852  // DeclRefExprs we see should be implicitly treated as if they also refer to
2853  // an enclosing scope.
2854  if (const auto *BD = dyn_cast<BindingDecl>(ND))
2855    return EmitLValue(BD->getBinding());
2856
2857  // We can form DeclRefExprs naming GUID declarations when reconstituting
2858  // non-type template parameters into expressions.
2859  if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2860    return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2861                          AlignmentSource::Decl);
2862
2863  if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2864    return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2865                          AlignmentSource::Decl);
2866
2867  llvm_unreachable("Unhandled DeclRefExpr");
2868}
2869
2870LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2871  // __extension__ doesn't affect lvalue-ness.
2872  if (E->getOpcode() == UO_Extension)
2873    return EmitLValue(E->getSubExpr());
2874
2875  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2876  switch (E->getOpcode()) {
2877  default: llvm_unreachable("Unknown unary operator lvalue!");
2878  case UO_Deref: {
2879    QualType T = E->getSubExpr()->getType()->getPointeeType();
2880    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2881
2882    LValueBaseInfo BaseInfo;
2883    TBAAAccessInfo TBAAInfo;
2884    Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2885                                            &TBAAInfo);
2886    LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2887    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2888
2889    // We should not generate __weak write barrier on indirect reference
2890    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2891    // But, we continue to generate __strong write barrier on indirect write
2892    // into a pointer to object.
2893    if (getLangOpts().ObjC &&
2894        getLangOpts().getGC() != LangOptions::NonGC &&
2895        LV.isObjCWeak())
2896      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2897    return LV;
2898  }
2899  case UO_Real:
2900  case UO_Imag: {
2901    LValue LV = EmitLValue(E->getSubExpr());
2902    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2903
2904    // __real is valid on scalars.  This is a faster way of testing that.
2905    // __imag can only produce an rvalue on scalars.
2906    if (E->getOpcode() == UO_Real &&
2907        !LV.getAddress(*this).getElementType()->isStructTy()) {
2908      assert(E->getSubExpr()->getType()->isArithmeticType());
2909      return LV;
2910    }
2911
2912    QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2913
2914    Address Component =
2915        (E->getOpcode() == UO_Real
2916             ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2917             : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2918    LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2919                                   CGM.getTBAAInfoForSubobject(LV, T));
2920    ElemLV.getQuals().addQualifiers(LV.getQuals());
2921    return ElemLV;
2922  }
2923  case UO_PreInc:
2924  case UO_PreDec: {
2925    LValue LV = EmitLValue(E->getSubExpr());
2926    bool isInc = E->getOpcode() == UO_PreInc;
2927
2928    if (E->getType()->isAnyComplexType())
2929      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2930    else
2931      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2932    return LV;
2933  }
2934  }
2935}
2936
2937LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2938  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2939                        E->getType(), AlignmentSource::Decl);
2940}
2941
2942LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2943  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2944                        E->getType(), AlignmentSource::Decl);
2945}
2946
2947LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2948  auto SL = E->getFunctionName();
2949  assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2950  StringRef FnName = CurFn->getName();
2951  if (FnName.startswith("\01"))
2952    FnName = FnName.substr(1);
2953  StringRef NameItems[] = {
2954      PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2955  std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2956  if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2957    std::string Name = std::string(SL->getString());
2958    if (!Name.empty()) {
2959      unsigned Discriminator =
2960          CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2961      if (Discriminator)
2962        Name += "_" + Twine(Discriminator + 1).str();
2963      auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2964      return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2965    } else {
2966      auto C =
2967          CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2968      return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2969    }
2970  }
2971  auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2972  return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2973}
2974
2975/// Emit a type description suitable for use by a runtime sanitizer library. The
2976/// format of a type descriptor is
2977///
2978/// \code
2979///   { i16 TypeKind, i16 TypeInfo }
2980/// \endcode
2981///
2982/// followed by an array of i8 containing the type name. TypeKind is 0 for an
2983/// integer, 1 for a floating point value, and -1 for anything else.
2984llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2985  // Only emit each type's descriptor once.
2986  if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2987    return C;
2988
2989  uint16_t TypeKind = -1;
2990  uint16_t TypeInfo = 0;
2991
2992  if (T->isIntegerType()) {
2993    TypeKind = 0;
2994    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2995               (T->isSignedIntegerType() ? 1 : 0);
2996  } else if (T->isFloatingType()) {
2997    TypeKind = 1;
2998    TypeInfo = getContext().getTypeSize(T);
2999  }
3000
3001  // Format the type name as if for a diagnostic, including quotes and
3002  // optionally an 'aka'.
3003  SmallString<32> Buffer;
3004  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3005                                    (intptr_t)T.getAsOpaquePtr(),
3006                                    StringRef(), StringRef(), None, Buffer,
3007                                    None);
3008
3009  llvm::Constant *Components[] = {
3010    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3011    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3012  };
3013  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3014
3015  auto *GV = new llvm::GlobalVariable(
3016      CGM.getModule(), Descriptor->getType(),
3017      /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3018  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3019  CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3020
3021  // Remember the descriptor for this type.
3022  CGM.setTypeDescriptorInMap(T, GV);
3023
3024  return GV;
3025}
3026
3027llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3028  llvm::Type *TargetTy = IntPtrTy;
3029
3030  if (V->getType() == TargetTy)
3031    return V;
3032
3033  // Floating-point types which fit into intptr_t are bitcast to integers
3034  // and then passed directly (after zero-extension, if necessary).
3035  if (V->getType()->isFloatingPointTy()) {
3036    unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3037    if (Bits <= TargetTy->getIntegerBitWidth())
3038      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3039                                                         Bits));
3040  }
3041
3042  // Integers which fit in intptr_t are zero-extended and passed directly.
3043  if (V->getType()->isIntegerTy() &&
3044      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3045    return Builder.CreateZExt(V, TargetTy);
3046
3047  // Pointers are passed directly, everything else is passed by address.
3048  if (!V->getType()->isPointerTy()) {
3049    Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3050    Builder.CreateStore(V, Ptr);
3051    V = Ptr.getPointer();
3052  }
3053  return Builder.CreatePtrToInt(V, TargetTy);
3054}
3055
3056/// Emit a representation of a SourceLocation for passing to a handler
3057/// in a sanitizer runtime library. The format for this data is:
3058/// \code
3059///   struct SourceLocation {
3060///     const char *Filename;
3061///     int32_t Line, Column;
3062///   };
3063/// \endcode
3064/// For an invalid SourceLocation, the Filename pointer is null.
3065llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3066  llvm::Constant *Filename;
3067  int Line, Column;
3068
3069  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3070  if (PLoc.isValid()) {
3071    StringRef FilenameString = PLoc.getFilename();
3072
3073    int PathComponentsToStrip =
3074        CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3075    if (PathComponentsToStrip < 0) {
3076      assert(PathComponentsToStrip != INT_MIN);
3077      int PathComponentsToKeep = -PathComponentsToStrip;
3078      auto I = llvm::sys::path::rbegin(FilenameString);
3079      auto E = llvm::sys::path::rend(FilenameString);
3080      while (I != E && --PathComponentsToKeep)
3081        ++I;
3082
3083      FilenameString = FilenameString.substr(I - E);
3084    } else if (PathComponentsToStrip > 0) {
3085      auto I = llvm::sys::path::begin(FilenameString);
3086      auto E = llvm::sys::path::end(FilenameString);
3087      while (I != E && PathComponentsToStrip--)
3088        ++I;
3089
3090      if (I != E)
3091        FilenameString =
3092            FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3093      else
3094        FilenameString = llvm::sys::path::filename(FilenameString);
3095    }
3096
3097    auto FilenameGV =
3098        CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3099    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3100                          cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3101    Filename = FilenameGV.getPointer();
3102    Line = PLoc.getLine();
3103    Column = PLoc.getColumn();
3104  } else {
3105    Filename = llvm::Constant::getNullValue(Int8PtrTy);
3106    Line = Column = 0;
3107  }
3108
3109  llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3110                            Builder.getInt32(Column)};
3111
3112  return llvm::ConstantStruct::getAnon(Data);
3113}
3114
3115namespace {
3116/// Specify under what conditions this check can be recovered
3117enum class CheckRecoverableKind {
3118  /// Always terminate program execution if this check fails.
3119  Unrecoverable,
3120  /// Check supports recovering, runtime has both fatal (noreturn) and
3121  /// non-fatal handlers for this check.
3122  Recoverable,
3123  /// Runtime conditionally aborts, always need to support recovery.
3124  AlwaysRecoverable
3125};
3126}
3127
3128static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3129  assert(Kind.countPopulation() == 1);
3130  if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3131    return CheckRecoverableKind::AlwaysRecoverable;
3132  else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3133    return CheckRecoverableKind::Unrecoverable;
3134  else
3135    return CheckRecoverableKind::Recoverable;
3136}
3137
3138namespace {
3139struct SanitizerHandlerInfo {
3140  char const *const Name;
3141  unsigned Version;
3142};
3143}
3144
3145const SanitizerHandlerInfo SanitizerHandlers[] = {
3146#define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3147    LIST_SANITIZER_CHECKS
3148#undef SANITIZER_CHECK
3149};
3150
3151static void emitCheckHandlerCall(CodeGenFunction &CGF,
3152                                 llvm::FunctionType *FnType,
3153                                 ArrayRef<llvm::Value *> FnArgs,
3154                                 SanitizerHandler CheckHandler,
3155                                 CheckRecoverableKind RecoverKind, bool IsFatal,
3156                                 llvm::BasicBlock *ContBB) {
3157  assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3158  Optional<ApplyDebugLocation> DL;
3159  if (!CGF.Builder.getCurrentDebugLocation()) {
3160    // Ensure that the call has at least an artificial debug location.
3161    DL.emplace(CGF, SourceLocation());
3162  }
3163  bool NeedsAbortSuffix =
3164      IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3165  bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3166  const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3167  const StringRef CheckName = CheckInfo.Name;
3168  std::string FnName = "__ubsan_handle_" + CheckName.str();
3169  if (CheckInfo.Version && !MinimalRuntime)
3170    FnName += "_v" + llvm::utostr(CheckInfo.Version);
3171  if (MinimalRuntime)
3172    FnName += "_minimal";
3173  if (NeedsAbortSuffix)
3174    FnName += "_abort";
3175  bool MayReturn =
3176      !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3177
3178  llvm::AttrBuilder B;
3179  if (!MayReturn) {
3180    B.addAttribute(llvm::Attribute::NoReturn)
3181        .addAttribute(llvm::Attribute::NoUnwind);
3182  }
3183  B.addAttribute(llvm::Attribute::UWTable);
3184
3185  llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3186      FnType, FnName,
3187      llvm::AttributeList::get(CGF.getLLVMContext(),
3188                               llvm::AttributeList::FunctionIndex, B),
3189      /*Local=*/true);
3190  llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3191  if (!MayReturn) {
3192    HandlerCall->setDoesNotReturn();
3193    CGF.Builder.CreateUnreachable();
3194  } else {
3195    CGF.Builder.CreateBr(ContBB);
3196  }
3197}
3198
3199void CodeGenFunction::EmitCheck(
3200    ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3201    SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3202    ArrayRef<llvm::Value *> DynamicArgs) {
3203  assert(IsSanitizerScope);
3204  assert(Checked.size() > 0);
3205  assert(CheckHandler >= 0 &&
3206         size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3207  const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3208
3209  llvm::Value *FatalCond = nullptr;
3210  llvm::Value *RecoverableCond = nullptr;
3211  llvm::Value *TrapCond = nullptr;
3212  for (int i = 0, n = Checked.size(); i < n; ++i) {
3213    llvm::Value *Check = Checked[i].first;
3214    // -fsanitize-trap= overrides -fsanitize-recover=.
3215    llvm::Value *&Cond =
3216        CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3217            ? TrapCond
3218            : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3219                  ? RecoverableCond
3220                  : FatalCond;
3221    Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3222  }
3223
3224  if (TrapCond)
3225    EmitTrapCheck(TrapCond, CheckHandler);
3226  if (!FatalCond && !RecoverableCond)
3227    return;
3228
3229  llvm::Value *JointCond;
3230  if (FatalCond && RecoverableCond)
3231    JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3232  else
3233    JointCond = FatalCond ? FatalCond : RecoverableCond;
3234  assert(JointCond);
3235
3236  CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3237  assert(SanOpts.has(Checked[0].second));
3238#ifndef NDEBUG
3239  for (int i = 1, n = Checked.size(); i < n; ++i) {
3240    assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3241           "All recoverable kinds in a single check must be same!");
3242    assert(SanOpts.has(Checked[i].second));
3243  }
3244#endif
3245
3246  llvm::BasicBlock *Cont = createBasicBlock("cont");
3247  llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3248  llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3249  // Give hint that we very much don't expect to execute the handler
3250  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3251  llvm::MDBuilder MDHelper(getLLVMContext());
3252  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3253  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3254  EmitBlock(Handlers);
3255
3256  // Handler functions take an i8* pointing to the (handler-specific) static
3257  // information block, followed by a sequence of intptr_t arguments
3258  // representing operand values.
3259  SmallVector<llvm::Value *, 4> Args;
3260  SmallVector<llvm::Type *, 4> ArgTypes;
3261  if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3262    Args.reserve(DynamicArgs.size() + 1);
3263    ArgTypes.reserve(DynamicArgs.size() + 1);
3264
3265    // Emit handler arguments and create handler function type.
3266    if (!StaticArgs.empty()) {
3267      llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3268      auto *InfoPtr =
3269          new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3270                                   llvm::GlobalVariable::PrivateLinkage, Info);
3271      InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3272      CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3273      Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3274      ArgTypes.push_back(Int8PtrTy);
3275    }
3276
3277    for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3278      Args.push_back(EmitCheckValue(DynamicArgs[i]));
3279      ArgTypes.push_back(IntPtrTy);
3280    }
3281  }
3282
3283  llvm::FunctionType *FnType =
3284    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3285
3286  if (!FatalCond || !RecoverableCond) {
3287    // Simple case: we need to generate a single handler call, either
3288    // fatal, or non-fatal.
3289    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3290                         (FatalCond != nullptr), Cont);
3291  } else {
3292    // Emit two handler calls: first one for set of unrecoverable checks,
3293    // another one for recoverable.
3294    llvm::BasicBlock *NonFatalHandlerBB =
3295        createBasicBlock("non_fatal." + CheckName);
3296    llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3297    Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3298    EmitBlock(FatalHandlerBB);
3299    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3300                         NonFatalHandlerBB);
3301    EmitBlock(NonFatalHandlerBB);
3302    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3303                         Cont);
3304  }
3305
3306  EmitBlock(Cont);
3307}
3308
3309void CodeGenFunction::EmitCfiSlowPathCheck(
3310    SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3311    llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3312  llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3313
3314  llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3315  llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3316
3317  llvm::MDBuilder MDHelper(getLLVMContext());
3318  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3319  BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3320
3321  EmitBlock(CheckBB);
3322
3323  bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3324
3325  llvm::CallInst *CheckCall;
3326  llvm::FunctionCallee SlowPathFn;
3327  if (WithDiag) {
3328    llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3329    auto *InfoPtr =
3330        new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3331                                 llvm::GlobalVariable::PrivateLinkage, Info);
3332    InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3333    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3334
3335    SlowPathFn = CGM.getModule().getOrInsertFunction(
3336        "__cfi_slowpath_diag",
3337        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3338                                false));
3339    CheckCall = Builder.CreateCall(
3340        SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3341  } else {
3342    SlowPathFn = CGM.getModule().getOrInsertFunction(
3343        "__cfi_slowpath",
3344        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3345    CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3346  }
3347
3348  CGM.setDSOLocal(
3349      cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3350  CheckCall->setDoesNotThrow();
3351
3352  EmitBlock(Cont);
3353}
3354
3355// Emit a stub for __cfi_check function so that the linker knows about this
3356// symbol in LTO mode.
3357void CodeGenFunction::EmitCfiCheckStub() {
3358  llvm::Module *M = &CGM.getModule();
3359  auto &Ctx = M->getContext();
3360  llvm::Function *F = llvm::Function::Create(
3361      llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3362      llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3363  CGM.setDSOLocal(F);
3364  llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3365  // FIXME: consider emitting an intrinsic call like
3366  // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3367  // which can be lowered in CrossDSOCFI pass to the actual contents of
3368  // __cfi_check. This would allow inlining of __cfi_check calls.
3369  llvm::CallInst::Create(
3370      llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3371  llvm::ReturnInst::Create(Ctx, nullptr, BB);
3372}
3373
3374// This function is basically a switch over the CFI failure kind, which is
3375// extracted from CFICheckFailData (1st function argument). Each case is either
3376// llvm.trap or a call to one of the two runtime handlers, based on
3377// -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3378// failure kind) traps, but this should really never happen.  CFICheckFailData
3379// can be nullptr if the calling module has -fsanitize-trap behavior for this
3380// check kind; in this case __cfi_check_fail traps as well.
3381void CodeGenFunction::EmitCfiCheckFail() {
3382  SanitizerScope SanScope(this);
3383  FunctionArgList Args;
3384  ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3385                            ImplicitParamDecl::Other);
3386  ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3387                            ImplicitParamDecl::Other);
3388  Args.push_back(&ArgData);
3389  Args.push_back(&ArgAddr);
3390
3391  const CGFunctionInfo &FI =
3392    CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3393
3394  llvm::Function *F = llvm::Function::Create(
3395      llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3396      llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3397
3398  CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3399  CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3400  F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3401
3402  StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3403                SourceLocation());
3404
3405  // This function is not affected by NoSanitizeList. This function does
3406  // not have a source location, but "src:*" would still apply. Revert any
3407  // changes to SanOpts made in StartFunction.
3408  SanOpts = CGM.getLangOpts().Sanitize;
3409
3410  llvm::Value *Data =
3411      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3412                       CGM.getContext().VoidPtrTy, ArgData.getLocation());
3413  llvm::Value *Addr =
3414      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3415                       CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3416
3417  // Data == nullptr means the calling module has trap behaviour for this check.
3418  llvm::Value *DataIsNotNullPtr =
3419      Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3420  EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3421
3422  llvm::StructType *SourceLocationTy =
3423      llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3424  llvm::StructType *CfiCheckFailDataTy =
3425      llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3426
3427  llvm::Value *V = Builder.CreateConstGEP2_32(
3428      CfiCheckFailDataTy,
3429      Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3430      0);
3431  Address CheckKindAddr(V, getIntAlign());
3432  llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3433
3434  llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3435      CGM.getLLVMContext(),
3436      llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3437  llvm::Value *ValidVtable = Builder.CreateZExt(
3438      Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3439                         {Addr, AllVtables}),
3440      IntPtrTy);
3441
3442  const std::pair<int, SanitizerMask> CheckKinds[] = {
3443      {CFITCK_VCall, SanitizerKind::CFIVCall},
3444      {CFITCK_NVCall, SanitizerKind::CFINVCall},
3445      {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3446      {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3447      {CFITCK_ICall, SanitizerKind::CFIICall}};
3448
3449  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3450  for (auto CheckKindMaskPair : CheckKinds) {
3451    int Kind = CheckKindMaskPair.first;
3452    SanitizerMask Mask = CheckKindMaskPair.second;
3453    llvm::Value *Cond =
3454        Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3455    if (CGM.getLangOpts().Sanitize.has(Mask))
3456      EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3457                {Data, Addr, ValidVtable});
3458    else
3459      EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3460  }
3461
3462  FinishFunction();
3463  // The only reference to this function will be created during LTO link.
3464  // Make sure it survives until then.
3465  CGM.addUsedGlobal(F);
3466}
3467
3468void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3469  if (SanOpts.has(SanitizerKind::Unreachable)) {
3470    SanitizerScope SanScope(this);
3471    EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3472                             SanitizerKind::Unreachable),
3473              SanitizerHandler::BuiltinUnreachable,
3474              EmitCheckSourceLocation(Loc), None);
3475  }
3476  Builder.CreateUnreachable();
3477}
3478
3479void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3480                                    SanitizerHandler CheckHandlerID) {
3481  llvm::BasicBlock *Cont = createBasicBlock("cont");
3482
3483  // If we're optimizing, collapse all calls to trap down to just one per
3484  // check-type per function to save on code size.
3485  if (TrapBBs.size() <= CheckHandlerID)
3486    TrapBBs.resize(CheckHandlerID + 1);
3487  llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3488
3489  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3490    TrapBB = createBasicBlock("trap");
3491    Builder.CreateCondBr(Checked, Cont, TrapBB);
3492    EmitBlock(TrapBB);
3493
3494    llvm::CallInst *TrapCall =
3495        Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3496                           llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3497
3498    if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3499      auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3500                                    CGM.getCodeGenOpts().TrapFuncName);
3501      TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3502    }
3503    TrapCall->setDoesNotReturn();
3504    TrapCall->setDoesNotThrow();
3505    Builder.CreateUnreachable();
3506  } else {
3507    auto Call = TrapBB->begin();
3508    assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3509
3510    Call->applyMergedLocation(Call->getDebugLoc(),
3511                              Builder.getCurrentDebugLocation());
3512    Builder.CreateCondBr(Checked, Cont, TrapBB);
3513  }
3514
3515  EmitBlock(Cont);
3516}
3517
3518llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3519  llvm::CallInst *TrapCall =
3520      Builder.CreateCall(CGM.getIntrinsic(IntrID));
3521
3522  if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3523    auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3524                                  CGM.getCodeGenOpts().TrapFuncName);
3525    TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3526  }
3527
3528  return TrapCall;
3529}
3530
3531Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3532                                                 LValueBaseInfo *BaseInfo,
3533                                                 TBAAAccessInfo *TBAAInfo) {
3534  assert(E->getType()->isArrayType() &&
3535         "Array to pointer decay must have array source type!");
3536
3537  // Expressions of array type can't be bitfields or vector elements.
3538  LValue LV = EmitLValue(E);
3539  Address Addr = LV.getAddress(*this);
3540
3541  // If the array type was an incomplete type, we need to make sure
3542  // the decay ends up being the right type.
3543  llvm::Type *NewTy = ConvertType(E->getType());
3544  Addr = Builder.CreateElementBitCast(Addr, NewTy);
3545
3546  // Note that VLA pointers are always decayed, so we don't need to do
3547  // anything here.
3548  if (!E->getType()->isVariableArrayType()) {
3549    assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3550           "Expected pointer to array");
3551    Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3552  }
3553
3554  // The result of this decay conversion points to an array element within the
3555  // base lvalue. However, since TBAA currently does not support representing
3556  // accesses to elements of member arrays, we conservatively represent accesses
3557  // to the pointee object as if it had no any base lvalue specified.
3558  // TODO: Support TBAA for member arrays.
3559  QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3560  if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3561  if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3562
3563  return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3564}
3565
3566/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3567/// array to pointer, return the array subexpression.
3568static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3569  // If this isn't just an array->pointer decay, bail out.
3570  const auto *CE = dyn_cast<CastExpr>(E);
3571  if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3572    return nullptr;
3573
3574  // If this is a decay from variable width array, bail out.
3575  const Expr *SubExpr = CE->getSubExpr();
3576  if (SubExpr->getType()->isVariableArrayType())
3577    return nullptr;
3578
3579  return SubExpr;
3580}
3581
3582static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3583                                          llvm::Type *elemType,
3584                                          llvm::Value *ptr,
3585                                          ArrayRef<llvm::Value*> indices,
3586                                          bool inbounds,
3587                                          bool signedIndices,
3588                                          SourceLocation loc,
3589                                    const llvm::Twine &name = "arrayidx") {
3590  if (inbounds) {
3591    return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3592                                      CodeGenFunction::NotSubtraction, loc,
3593                                      name);
3594  } else {
3595    return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3596  }
3597}
3598
3599static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3600                                      llvm::Value *idx,
3601                                      CharUnits eltSize) {
3602  // If we have a constant index, we can use the exact offset of the
3603  // element we're accessing.
3604  if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3605    CharUnits offset = constantIdx->getZExtValue() * eltSize;
3606    return arrayAlign.alignmentAtOffset(offset);
3607
3608  // Otherwise, use the worst-case alignment for any element.
3609  } else {
3610    return arrayAlign.alignmentOfArrayElement(eltSize);
3611  }
3612}
3613
3614static QualType getFixedSizeElementType(const ASTContext &ctx,
3615                                        const VariableArrayType *vla) {
3616  QualType eltType;
3617  do {
3618    eltType = vla->getElementType();
3619  } while ((vla = ctx.getAsVariableArrayType(eltType)));
3620  return eltType;
3621}
3622
3623/// Given an array base, check whether its member access belongs to a record
3624/// with preserve_access_index attribute or not.
3625static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3626  if (!ArrayBase || !CGF.getDebugInfo())
3627    return false;
3628
3629  // Only support base as either a MemberExpr or DeclRefExpr.
3630  // DeclRefExpr to cover cases like:
3631  //    struct s { int a; int b[10]; };
3632  //    struct s *p;
3633  //    p[1].a
3634  // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3635  // p->b[5] is a MemberExpr example.
3636  const Expr *E = ArrayBase->IgnoreImpCasts();
3637  if (const auto *ME = dyn_cast<MemberExpr>(E))
3638    return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3639
3640  if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3641    const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3642    if (!VarDef)
3643      return false;
3644
3645    const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3646    if (!PtrT)
3647      return false;
3648
3649    const auto *PointeeT = PtrT->getPointeeType()
3650                             ->getUnqualifiedDesugaredType();
3651    if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3652      return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3653    return false;
3654  }
3655
3656  return false;
3657}
3658
3659static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3660                                     ArrayRef<llvm::Value *> indices,
3661                                     QualType eltType, bool inbounds,
3662                                     bool signedIndices, SourceLocation loc,
3663                                     QualType *arrayType = nullptr,
3664                                     const Expr *Base = nullptr,
3665                                     const llvm::Twine &name = "arrayidx") {
3666  // All the indices except that last must be zero.
3667#ifndef NDEBUG
3668  for (auto idx : indices.drop_back())
3669    assert(isa<llvm::ConstantInt>(idx) &&
3670           cast<llvm::ConstantInt>(idx)->isZero());
3671#endif
3672
3673  // Determine the element size of the statically-sized base.  This is
3674  // the thing that the indices are expressed in terms of.
3675  if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3676    eltType = getFixedSizeElementType(CGF.getContext(), vla);
3677  }
3678
3679  // We can use that to compute the best alignment of the element.
3680  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3681  CharUnits eltAlign =
3682    getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3683
3684  llvm::Value *eltPtr;
3685  auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3686  if (!LastIndex ||
3687      (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3688    eltPtr = emitArraySubscriptGEP(
3689        CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3690        signedIndices, loc, name);
3691  } else {
3692    // Remember the original array subscript for bpf target
3693    unsigned idx = LastIndex->getZExtValue();
3694    llvm::DIType *DbgInfo = nullptr;
3695    if (arrayType)
3696      DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3697    eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3698                                                        addr.getPointer(),
3699                                                        indices.size() - 1,
3700                                                        idx, DbgInfo);
3701  }
3702
3703  return Address(eltPtr, eltAlign);
3704}
3705
3706LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3707                                               bool Accessed) {
3708  // The index must always be an integer, which is not an aggregate.  Emit it
3709  // in lexical order (this complexity is, sadly, required by C++17).
3710  llvm::Value *IdxPre =
3711      (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3712  bool SignedIndices = false;
3713  auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3714    auto *Idx = IdxPre;
3715    if (E->getLHS() != E->getIdx()) {
3716      assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3717      Idx = EmitScalarExpr(E->getIdx());
3718    }
3719
3720    QualType IdxTy = E->getIdx()->getType();
3721    bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3722    SignedIndices |= IdxSigned;
3723
3724    if (SanOpts.has(SanitizerKind::ArrayBounds))
3725      EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3726
3727    // Extend or truncate the index type to 32 or 64-bits.
3728    if (Promote && Idx->getType() != IntPtrTy)
3729      Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3730
3731    return Idx;
3732  };
3733  IdxPre = nullptr;
3734
3735  // If the base is a vector type, then we are forming a vector element lvalue
3736  // with this subscript.
3737  if (E->getBase()->getType()->isVectorType() &&
3738      !isa<ExtVectorElementExpr>(E->getBase())) {
3739    // Emit the vector as an lvalue to get its address.
3740    LValue LHS = EmitLValue(E->getBase());
3741    auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3742    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3743    return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3744                                 E->getBase()->getType(), LHS.getBaseInfo(),
3745                                 TBAAAccessInfo());
3746  }
3747
3748  // All the other cases basically behave like simple offsetting.
3749
3750  // Handle the extvector case we ignored above.
3751  if (isa<ExtVectorElementExpr>(E->getBase())) {
3752    LValue LV = EmitLValue(E->getBase());
3753    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3754    Address Addr = EmitExtVectorElementLValue(LV);
3755
3756    QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3757    Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3758                                 SignedIndices, E->getExprLoc());
3759    return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3760                          CGM.getTBAAInfoForSubobject(LV, EltType));
3761  }
3762
3763  LValueBaseInfo EltBaseInfo;
3764  TBAAAccessInfo EltTBAAInfo;
3765  Address Addr = Address::invalid();
3766  if (const VariableArrayType *vla =
3767           getContext().getAsVariableArrayType(E->getType())) {
3768    // The base must be a pointer, which is not an aggregate.  Emit
3769    // it.  It needs to be emitted first in case it's what captures
3770    // the VLA bounds.
3771    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3772    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3773
3774    // The element count here is the total number of non-VLA elements.
3775    llvm::Value *numElements = getVLASize(vla).NumElts;
3776
3777    // Effectively, the multiply by the VLA size is part of the GEP.
3778    // GEP indexes are signed, and scaling an index isn't permitted to
3779    // signed-overflow, so we use the same semantics for our explicit
3780    // multiply.  We suppress this if overflow is not undefined behavior.
3781    if (getLangOpts().isSignedOverflowDefined()) {
3782      Idx = Builder.CreateMul(Idx, numElements);
3783    } else {
3784      Idx = Builder.CreateNSWMul(Idx, numElements);
3785    }
3786
3787    Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3788                                 !getLangOpts().isSignedOverflowDefined(),
3789                                 SignedIndices, E->getExprLoc());
3790
3791  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3792    // Indexing over an interface, as in "NSString *P; P[4];"
3793
3794    // Emit the base pointer.
3795    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3796    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3797
3798    CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3799    llvm::Value *InterfaceSizeVal =
3800        llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3801
3802    llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3803
3804    // We don't necessarily build correct LLVM struct types for ObjC
3805    // interfaces, so we can't rely on GEP to do this scaling
3806    // correctly, so we need to cast to i8*.  FIXME: is this actually
3807    // true?  A lot of other things in the fragile ABI would break...
3808    llvm::Type *OrigBaseTy = Addr.getType();
3809    Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3810
3811    // Do the GEP.
3812    CharUnits EltAlign =
3813      getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3814    llvm::Value *EltPtr =
3815        emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3816                              ScaledIdx, false, SignedIndices, E->getExprLoc());
3817    Addr = Address(EltPtr, EltAlign);
3818
3819    // Cast back.
3820    Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3821  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3822    // If this is A[i] where A is an array, the frontend will have decayed the
3823    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3824    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3825    // "gep x, i" here.  Emit one "gep A, 0, i".
3826    assert(Array->getType()->isArrayType() &&
3827           "Array to pointer decay must have array source type!");
3828    LValue ArrayLV;
3829    // For simple multidimensional array indexing, set the 'accessed' flag for
3830    // better bounds-checking of the base expression.
3831    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3832      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3833    else
3834      ArrayLV = EmitLValue(Array);
3835    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3836
3837    // Propagate the alignment from the array itself to the result.
3838    QualType arrayType = Array->getType();
3839    Addr = emitArraySubscriptGEP(
3840        *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3841        E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3842        E->getExprLoc(), &arrayType, E->getBase());
3843    EltBaseInfo = ArrayLV.getBaseInfo();
3844    EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3845  } else {
3846    // The base must be a pointer; emit it with an estimate of its alignment.
3847    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3848    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3849    QualType ptrType = E->getBase()->getType();
3850    Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3851                                 !getLangOpts().isSignedOverflowDefined(),
3852                                 SignedIndices, E->getExprLoc(), &ptrType,
3853                                 E->getBase());
3854  }
3855
3856  LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3857
3858  if (getLangOpts().ObjC &&
3859      getLangOpts().getGC() != LangOptions::NonGC) {
3860    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3861    setObjCGCLValueClass(getContext(), E, LV);
3862  }
3863  return LV;
3864}
3865
3866LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3867  assert(
3868      !E->isIncomplete() &&
3869      "incomplete matrix subscript expressions should be rejected during Sema");
3870  LValue Base = EmitLValue(E->getBase());
3871  llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3872  llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3873  llvm::Value *NumRows = Builder.getIntN(
3874      RowIdx->getType()->getScalarSizeInBits(),
3875      E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3876  llvm::Value *FinalIdx =
3877      Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3878  return LValue::MakeMatrixElt(
3879      MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3880      E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3881}
3882
3883static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3884                                       LValueBaseInfo &BaseInfo,
3885                                       TBAAAccessInfo &TBAAInfo,
3886                                       QualType BaseTy, QualType ElTy,
3887                                       bool IsLowerBound) {
3888  LValue BaseLVal;
3889  if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3890    BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3891    if (BaseTy->isArrayType()) {
3892      Address Addr = BaseLVal.getAddress(CGF);
3893      BaseInfo = BaseLVal.getBaseInfo();
3894
3895      // If the array type was an incomplete type, we need to make sure
3896      // the decay ends up being the right type.
3897      llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3898      Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3899
3900      // Note that VLA pointers are always decayed, so we don't need to do
3901      // anything here.
3902      if (!BaseTy->isVariableArrayType()) {
3903        assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3904               "Expected pointer to array");
3905        Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3906      }
3907
3908      return CGF.Builder.CreateElementBitCast(Addr,
3909                                              CGF.ConvertTypeForMem(ElTy));
3910    }
3911    LValueBaseInfo TypeBaseInfo;
3912    TBAAAccessInfo TypeTBAAInfo;
3913    CharUnits Align =
3914        CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3915    BaseInfo.mergeForCast(TypeBaseInfo);
3916    TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3917    return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3918  }
3919  return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3920}
3921
3922LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3923                                                bool IsLowerBound) {
3924  QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3925  QualType ResultExprTy;
3926  if (auto *AT = getContext().getAsArrayType(BaseTy))
3927    ResultExprTy = AT->getElementType();
3928  else
3929    ResultExprTy = BaseTy->getPointeeType();
3930  llvm::Value *Idx = nullptr;
3931  if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3932    // Requesting lower bound or upper bound, but without provided length and
3933    // without ':' symbol for the default length -> length = 1.
3934    // Idx = LowerBound ?: 0;
3935    if (auto *LowerBound = E->getLowerBound()) {
3936      Idx = Builder.CreateIntCast(
3937          EmitScalarExpr(LowerBound), IntPtrTy,
3938          LowerBound->getType()->hasSignedIntegerRepresentation());
3939    } else
3940      Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3941  } else {
3942    // Try to emit length or lower bound as constant. If this is possible, 1
3943    // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3944    // IR (LB + Len) - 1.
3945    auto &C = CGM.getContext();
3946    auto *Length = E->getLength();
3947    llvm::APSInt ConstLength;
3948    if (Length) {
3949      // Idx = LowerBound + Length - 1;
3950      if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3951        ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3952        Length = nullptr;
3953      }
3954      auto *LowerBound = E->getLowerBound();
3955      llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3956      if (LowerBound) {
3957        if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3958          ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3959          LowerBound = nullptr;
3960        }
3961      }
3962      if (!Length)
3963        --ConstLength;
3964      else if (!LowerBound)
3965        --ConstLowerBound;
3966
3967      if (Length || LowerBound) {
3968        auto *LowerBoundVal =
3969            LowerBound
3970                ? Builder.CreateIntCast(
3971                      EmitScalarExpr(LowerBound), IntPtrTy,
3972                      LowerBound->getType()->hasSignedIntegerRepresentation())
3973                : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3974        auto *LengthVal =
3975            Length
3976                ? Builder.CreateIntCast(
3977                      EmitScalarExpr(Length), IntPtrTy,
3978                      Length->getType()->hasSignedIntegerRepresentation())
3979                : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3980        Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3981                                /*HasNUW=*/false,
3982                                !getLangOpts().isSignedOverflowDefined());
3983        if (Length && LowerBound) {
3984          Idx = Builder.CreateSub(
3985              Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3986              /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3987        }
3988      } else
3989        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3990    } else {
3991      // Idx = ArraySize - 1;
3992      QualType ArrayTy = BaseTy->isPointerType()
3993                             ? E->getBase()->IgnoreParenImpCasts()->getType()
3994                             : BaseTy;
3995      if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3996        Length = VAT->getSizeExpr();
3997        if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
3998          ConstLength = *L;
3999          Length = nullptr;
4000        }
4001      } else {
4002        auto *CAT = C.getAsConstantArrayType(ArrayTy);
4003        ConstLength = CAT->getSize();
4004      }
4005      if (Length) {
4006        auto *LengthVal = Builder.CreateIntCast(
4007            EmitScalarExpr(Length), IntPtrTy,
4008            Length->getType()->hasSignedIntegerRepresentation());
4009        Idx = Builder.CreateSub(
4010            LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4011            /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4012      } else {
4013        ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4014        --ConstLength;
4015        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4016      }
4017    }
4018  }
4019  assert(Idx);
4020
4021  Address EltPtr = Address::invalid();
4022  LValueBaseInfo BaseInfo;
4023  TBAAAccessInfo TBAAInfo;
4024  if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4025    // The base must be a pointer, which is not an aggregate.  Emit
4026    // it.  It needs to be emitted first in case it's what captures
4027    // the VLA bounds.
4028    Address Base =
4029        emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4030                                BaseTy, VLA->getElementType(), IsLowerBound);
4031    // The element count here is the total number of non-VLA elements.
4032    llvm::Value *NumElements = getVLASize(VLA).NumElts;
4033
4034    // Effectively, the multiply by the VLA size is part of the GEP.
4035    // GEP indexes are signed, and scaling an index isn't permitted to
4036    // signed-overflow, so we use the same semantics for our explicit
4037    // multiply.  We suppress this if overflow is not undefined behavior.
4038    if (getLangOpts().isSignedOverflowDefined())
4039      Idx = Builder.CreateMul(Idx, NumElements);
4040    else
4041      Idx = Builder.CreateNSWMul(Idx, NumElements);
4042    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4043                                   !getLangOpts().isSignedOverflowDefined(),
4044                                   /*signedIndices=*/false, E->getExprLoc());
4045  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4046    // If this is A[i] where A is an array, the frontend will have decayed the
4047    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4048    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4049    // "gep x, i" here.  Emit one "gep A, 0, i".
4050    assert(Array->getType()->isArrayType() &&
4051           "Array to pointer decay must have array source type!");
4052    LValue ArrayLV;
4053    // For simple multidimensional array indexing, set the 'accessed' flag for
4054    // better bounds-checking of the base expression.
4055    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4056      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4057    else
4058      ArrayLV = EmitLValue(Array);
4059
4060    // Propagate the alignment from the array itself to the result.
4061    EltPtr = emitArraySubscriptGEP(
4062        *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4063        ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4064        /*signedIndices=*/false, E->getExprLoc());
4065    BaseInfo = ArrayLV.getBaseInfo();
4066    TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4067  } else {
4068    Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4069                                           TBAAInfo, BaseTy, ResultExprTy,
4070                                           IsLowerBound);
4071    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4072                                   !getLangOpts().isSignedOverflowDefined(),
4073                                   /*signedIndices=*/false, E->getExprLoc());
4074  }
4075
4076  return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4077}
4078
4079LValue CodeGenFunction::
4080EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4081  // Emit the base vector as an l-value.
4082  LValue Base;
4083
4084  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4085  if (E->isArrow()) {
4086    // If it is a pointer to a vector, emit the address and form an lvalue with
4087    // it.
4088    LValueBaseInfo BaseInfo;
4089    TBAAAccessInfo TBAAInfo;
4090    Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4091    const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4092    Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4093    Base.getQuals().removeObjCGCAttr();
4094  } else if (E->getBase()->isGLValue()) {
4095    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4096    // emit the base as an lvalue.
4097    assert(E->getBase()->getType()->isVectorType());
4098    Base = EmitLValue(E->getBase());
4099  } else {
4100    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4101    assert(E->getBase()->getType()->isVectorType() &&
4102           "Result must be a vector");
4103    llvm::Value *Vec = EmitScalarExpr(E->getBase());
4104
4105    // Store the vector to memory (because LValue wants an address).
4106    Address VecMem = CreateMemTemp(E->getBase()->getType());
4107    Builder.CreateStore(Vec, VecMem);
4108    Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4109                          AlignmentSource::Decl);
4110  }
4111
4112  QualType type =
4113    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4114
4115  // Encode the element access list into a vector of unsigned indices.
4116  SmallVector<uint32_t, 4> Indices;
4117  E->getEncodedElementAccess(Indices);
4118
4119  if (Base.isSimple()) {
4120    llvm::Constant *CV =
4121        llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4122    return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4123                                    Base.getBaseInfo(), TBAAAccessInfo());
4124  }
4125  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4126
4127  llvm::Constant *BaseElts = Base.getExtVectorElts();
4128  SmallVector<llvm::Constant *, 4> CElts;
4129
4130  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4131    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4132  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4133  return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4134                                  Base.getBaseInfo(), TBAAAccessInfo());
4135}
4136
4137LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4138  if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4139    EmitIgnoredExpr(E->getBase());
4140    return EmitDeclRefLValue(DRE);
4141  }
4142
4143  Expr *BaseExpr = E->getBase();
4144  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4145  LValue BaseLV;
4146  if (E->isArrow()) {
4147    LValueBaseInfo BaseInfo;
4148    TBAAAccessInfo TBAAInfo;
4149    Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4150    QualType PtrTy = BaseExpr->getType()->getPointeeType();
4151    SanitizerSet SkippedChecks;
4152    bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4153    if (IsBaseCXXThis)
4154      SkippedChecks.set(SanitizerKind::Alignment, true);
4155    if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4156      SkippedChecks.set(SanitizerKind::Null, true);
4157    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4158                  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4159    BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4160  } else
4161    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4162
4163  NamedDecl *ND = E->getMemberDecl();
4164  if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4165    LValue LV = EmitLValueForField(BaseLV, Field);
4166    setObjCGCLValueClass(getContext(), E, LV);
4167    if (getLangOpts().OpenMP) {
4168      // If the member was explicitly marked as nontemporal, mark it as
4169      // nontemporal. If the base lvalue is marked as nontemporal, mark access
4170      // to children as nontemporal too.
4171      if ((IsWrappedCXXThis(BaseExpr) &&
4172           CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4173          BaseLV.isNontemporal())
4174        LV.setNontemporal(/*Value=*/true);
4175    }
4176    return LV;
4177  }
4178
4179  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4180    return EmitFunctionDeclLValue(*this, E, FD);
4181
4182  llvm_unreachable("Unhandled member declaration!");
4183}
4184
4185/// Given that we are currently emitting a lambda, emit an l-value for
4186/// one of its members.
4187LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4188  if (CurCodeDecl) {
4189    assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4190    assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4191  }
4192  QualType LambdaTagType =
4193    getContext().getTagDeclType(Field->getParent());
4194  LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4195  return EmitLValueForField(LambdaLV, Field);
4196}
4197
4198/// Get the field index in the debug info. The debug info structure/union
4199/// will ignore the unnamed bitfields.
4200unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4201                                             unsigned FieldIndex) {
4202  unsigned I = 0, Skipped = 0;
4203
4204  for (auto F : Rec->getDefinition()->fields()) {
4205    if (I == FieldIndex)
4206      break;
4207    if (F->isUnnamedBitfield())
4208      Skipped++;
4209    I++;
4210  }
4211
4212  return FieldIndex - Skipped;
4213}
4214
4215/// Get the address of a zero-sized field within a record. The resulting
4216/// address doesn't necessarily have the right type.
4217static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4218                                       const FieldDecl *Field) {
4219  CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4220      CGF.getContext().getFieldOffset(Field));
4221  if (Offset.isZero())
4222    return Base;
4223  Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4224  return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4225}
4226
4227/// Drill down to the storage of a field without walking into
4228/// reference types.
4229///
4230/// The resulting address doesn't necessarily have the right type.
4231static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4232                                      const FieldDecl *field) {
4233  if (field->isZeroSize(CGF.getContext()))
4234    return emitAddrOfZeroSizeField(CGF, base, field);
4235
4236  const RecordDecl *rec = field->getParent();
4237
4238  unsigned idx =
4239    CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4240
4241  return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4242}
4243
4244static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4245                                        Address addr, const FieldDecl *field) {
4246  const RecordDecl *rec = field->getParent();
4247  llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4248      base.getType(), rec->getLocation());
4249
4250  unsigned idx =
4251      CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4252
4253  return CGF.Builder.CreatePreserveStructAccessIndex(
4254      addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4255}
4256
4257static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4258  const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4259  if (!RD)
4260    return false;
4261
4262  if (RD->isDynamicClass())
4263    return true;
4264
4265  for (const auto &Base : RD->bases())
4266    if (hasAnyVptr(Base.getType(), Context))
4267      return true;
4268
4269  for (const FieldDecl *Field : RD->fields())
4270    if (hasAnyVptr(Field->getType(), Context))
4271      return true;
4272
4273  return false;
4274}
4275
4276LValue CodeGenFunction::EmitLValueForField(LValue base,
4277                                           const FieldDecl *field) {
4278  LValueBaseInfo BaseInfo = base.getBaseInfo();
4279
4280  if (field->isBitField()) {
4281    const CGRecordLayout &RL =
4282        CGM.getTypes().getCGRecordLayout(field->getParent());
4283    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4284    const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4285                             CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4286                             Info.VolatileStorageSize != 0 &&
4287                             field->getType()
4288                                 .withCVRQualifiers(base.getVRQualifiers())
4289                                 .isVolatileQualified();
4290    Address Addr = base.getAddress(*this);
4291    unsigned Idx = RL.getLLVMFieldNo(field);
4292    const RecordDecl *rec = field->getParent();
4293    if (!UseVolatile) {
4294      if (!IsInPreservedAIRegion &&
4295          (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4296        if (Idx != 0)
4297          // For structs, we GEP to the field that the record layout suggests.
4298          Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4299      } else {
4300        llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4301            getContext().getRecordType(rec), rec->getLocation());
4302        Addr = Builder.CreatePreserveStructAccessIndex(
4303            Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4304            DbgInfo);
4305      }
4306    }
4307    const unsigned SS =
4308        UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4309    // Get the access type.
4310    llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4311    if (Addr.getElementType() != FieldIntTy)
4312      Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4313    if (UseVolatile) {
4314      const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4315      if (VolatileOffset)
4316        Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4317    }
4318
4319    QualType fieldType =
4320        field->getType().withCVRQualifiers(base.getVRQualifiers());
4321    // TODO: Support TBAA for bit fields.
4322    LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4323    return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4324                                TBAAAccessInfo());
4325  }
4326
4327  // Fields of may-alias structures are may-alias themselves.
4328  // FIXME: this should get propagated down through anonymous structs
4329  // and unions.
4330  QualType FieldType = field->getType();
4331  const RecordDecl *rec = field->getParent();
4332  AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4333  LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4334  TBAAAccessInfo FieldTBAAInfo;
4335  if (base.getTBAAInfo().isMayAlias() ||
4336          rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4337    FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4338  } else if (rec->isUnion()) {
4339    // TODO: Support TBAA for unions.
4340    FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4341  } else {
4342    // If no base type been assigned for the base access, then try to generate
4343    // one for this base lvalue.
4344    FieldTBAAInfo = base.getTBAAInfo();
4345    if (!FieldTBAAInfo.BaseType) {
4346        FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4347        assert(!FieldTBAAInfo.Offset &&
4348               "Nonzero offset for an access with no base type!");
4349    }
4350
4351    // Adjust offset to be relative to the base type.
4352    const ASTRecordLayout &Layout =
4353        getContext().getASTRecordLayout(field->getParent());
4354    unsigned CharWidth = getContext().getCharWidth();
4355    if (FieldTBAAInfo.BaseType)
4356      FieldTBAAInfo.Offset +=
4357          Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4358
4359    // Update the final access type and size.
4360    FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4361    FieldTBAAInfo.Size =
4362        getContext().getTypeSizeInChars(FieldType).getQuantity();
4363  }
4364
4365  Address addr = base.getAddress(*this);
4366  if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4367    if (CGM.getCodeGenOpts().StrictVTablePointers &&
4368        ClassDef->isDynamicClass()) {
4369      // Getting to any field of dynamic object requires stripping dynamic
4370      // information provided by invariant.group.  This is because accessing
4371      // fields may leak the real address of dynamic object, which could result
4372      // in miscompilation when leaked pointer would be compared.
4373      auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4374      addr = Address(stripped, addr.getAlignment());
4375    }
4376  }
4377
4378  unsigned RecordCVR = base.getVRQualifiers();
4379  if (rec->isUnion()) {
4380    // For unions, there is no pointer adjustment.
4381    if (CGM.getCodeGenOpts().StrictVTablePointers &&
4382        hasAnyVptr(FieldType, getContext()))
4383      // Because unions can easily skip invariant.barriers, we need to add
4384      // a barrier every time CXXRecord field with vptr is referenced.
4385      addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4386                     addr.getAlignment());
4387
4388    if (IsInPreservedAIRegion ||
4389        (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4390      // Remember the original union field index
4391      llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4392          rec->getLocation());
4393      addr = Address(
4394          Builder.CreatePreserveUnionAccessIndex(
4395              addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4396          addr.getAlignment());
4397    }
4398
4399    if (FieldType->isReferenceType())
4400      addr = Builder.CreateElementBitCast(
4401          addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4402  } else {
4403    if (!IsInPreservedAIRegion &&
4404        (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4405      // For structs, we GEP to the field that the record layout suggests.
4406      addr = emitAddrOfFieldStorage(*this, addr, field);
4407    else
4408      // Remember the original struct field index
4409      addr = emitPreserveStructAccess(*this, base, addr, field);
4410  }
4411
4412  // If this is a reference field, load the reference right now.
4413  if (FieldType->isReferenceType()) {
4414    LValue RefLVal =
4415        MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4416    if (RecordCVR & Qualifiers::Volatile)
4417      RefLVal.getQuals().addVolatile();
4418    addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4419
4420    // Qualifiers on the struct don't apply to the referencee.
4421    RecordCVR = 0;
4422    FieldType = FieldType->getPointeeType();
4423  }
4424
4425  // Make sure that the address is pointing to the right type.  This is critical
4426  // for both unions and structs.  A union needs a bitcast, a struct element
4427  // will need a bitcast if the LLVM type laid out doesn't match the desired
4428  // type.
4429  addr = Builder.CreateElementBitCast(
4430      addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4431
4432  if (field->hasAttr<AnnotateAttr>())
4433    addr = EmitFieldAnnotations(field, addr);
4434
4435  LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4436  LV.getQuals().addCVRQualifiers(RecordCVR);
4437
4438  // __weak attribute on a field is ignored.
4439  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4440    LV.getQuals().removeObjCGCAttr();
4441
4442  return LV;
4443}
4444
4445LValue
4446CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4447                                                  const FieldDecl *Field) {
4448  QualType FieldType = Field->getType();
4449
4450  if (!FieldType->isReferenceType())
4451    return EmitLValueForField(Base, Field);
4452
4453  Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4454
4455  // Make sure that the address is pointing to the right type.
4456  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4457  V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4458
4459  // TODO: Generate TBAA information that describes this access as a structure
4460  // member access and not just an access to an object of the field's type. This
4461  // should be similar to what we do in EmitLValueForField().
4462  LValueBaseInfo BaseInfo = Base.getBaseInfo();
4463  AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4464  LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4465  return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4466                        CGM.getTBAAInfoForSubobject(Base, FieldType));
4467}
4468
4469LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4470  if (E->isFileScope()) {
4471    ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4472    return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4473  }
4474  if (E->getType()->isVariablyModifiedType())
4475    // make sure to emit the VLA size.
4476    EmitVariablyModifiedType(E->getType());
4477
4478  Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4479  const Expr *InitExpr = E->getInitializer();
4480  LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4481
4482  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4483                   /*Init*/ true);
4484
4485  // Block-scope compound literals are destroyed at the end of the enclosing
4486  // scope in C.
4487  if (!getLangOpts().CPlusPlus)
4488    if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4489      pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4490                                  E->getType(), getDestroyer(DtorKind),
4491                                  DtorKind & EHCleanup);
4492
4493  return Result;
4494}
4495
4496LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4497  if (!E->isGLValue())
4498    // Initializing an aggregate temporary in C++11: T{...}.
4499    return EmitAggExprToLValue(E);
4500
4501  // An lvalue initializer list must be initializing a reference.
4502  assert(E->isTransparent() && "non-transparent glvalue init list");
4503  return EmitLValue(E->getInit(0));
4504}
4505
4506/// Emit the operand of a glvalue conditional operator. This is either a glvalue
4507/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4508/// LValue is returned and the current block has been terminated.
4509static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4510                                                    const Expr *Operand) {
4511  if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4512    CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4513    return None;
4514  }
4515
4516  return CGF.EmitLValue(Operand);
4517}
4518
4519LValue CodeGenFunction::
4520EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4521  if (!expr->isGLValue()) {
4522    // ?: here should be an aggregate.
4523    assert(hasAggregateEvaluationKind(expr->getType()) &&
4524           "Unexpected conditional operator!");
4525    return EmitAggExprToLValue(expr);
4526  }
4527
4528  OpaqueValueMapping binding(*this, expr);
4529
4530  const Expr *condExpr = expr->getCond();
4531  bool CondExprBool;
4532  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4533    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4534    if (!CondExprBool) std::swap(live, dead);
4535
4536    if (!ContainsLabel(dead)) {
4537      // If the true case is live, we need to track its region.
4538      if (CondExprBool)
4539        incrementProfileCounter(expr);
4540      // If a throw expression we emit it and return an undefined lvalue
4541      // because it can't be used.
4542      if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4543        EmitCXXThrowExpr(ThrowExpr);
4544        llvm::Type *Ty =
4545            llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4546        return MakeAddrLValue(
4547            Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4548            dead->getType());
4549      }
4550      return EmitLValue(live);
4551    }
4552  }
4553
4554  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4555  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4556  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4557
4558  ConditionalEvaluation eval(*this);
4559  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4560
4561  // Any temporaries created here are conditional.
4562  EmitBlock(lhsBlock);
4563  incrementProfileCounter(expr);
4564  eval.begin(*this);
4565  Optional<LValue> lhs =
4566      EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4567  eval.end(*this);
4568
4569  if (lhs && !lhs->isSimple())
4570    return EmitUnsupportedLValue(expr, "conditional operator");
4571
4572  lhsBlock = Builder.GetInsertBlock();
4573  if (lhs)
4574    Builder.CreateBr(contBlock);
4575
4576  // Any temporaries created here are conditional.
4577  EmitBlock(rhsBlock);
4578  eval.begin(*this);
4579  Optional<LValue> rhs =
4580      EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4581  eval.end(*this);
4582  if (rhs && !rhs->isSimple())
4583    return EmitUnsupportedLValue(expr, "conditional operator");
4584  rhsBlock = Builder.GetInsertBlock();
4585
4586  EmitBlock(contBlock);
4587
4588  if (lhs && rhs) {
4589    llvm::PHINode *phi =
4590        Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4591    phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4592    phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4593    Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4594    AlignmentSource alignSource =
4595      std::max(lhs->getBaseInfo().getAlignmentSource(),
4596               rhs->getBaseInfo().getAlignmentSource());
4597    TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4598        lhs->getTBAAInfo(), rhs->getTBAAInfo());
4599    return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4600                          TBAAInfo);
4601  } else {
4602    assert((lhs || rhs) &&
4603           "both operands of glvalue conditional are throw-expressions?");
4604    return lhs ? *lhs : *rhs;
4605  }
4606}
4607
4608/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4609/// type. If the cast is to a reference, we can have the usual lvalue result,
4610/// otherwise if a cast is needed by the code generator in an lvalue context,
4611/// then it must mean that we need the address of an aggregate in order to
4612/// access one of its members.  This can happen for all the reasons that casts
4613/// are permitted with aggregate result, including noop aggregate casts, and
4614/// cast from scalar to union.
4615LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4616  switch (E->getCastKind()) {
4617  case CK_ToVoid:
4618  case CK_BitCast:
4619  case CK_LValueToRValueBitCast:
4620  case CK_ArrayToPointerDecay:
4621  case CK_FunctionToPointerDecay:
4622  case CK_NullToMemberPointer:
4623  case CK_NullToPointer:
4624  case CK_IntegralToPointer:
4625  case CK_PointerToIntegral:
4626  case CK_PointerToBoolean:
4627  case CK_VectorSplat:
4628  case CK_IntegralCast:
4629  case CK_BooleanToSignedIntegral:
4630  case CK_IntegralToBoolean:
4631  case CK_IntegralToFloating:
4632  case CK_FloatingToIntegral:
4633  case CK_FloatingToBoolean:
4634  case CK_FloatingCast:
4635  case CK_FloatingRealToComplex:
4636  case CK_FloatingComplexToReal:
4637  case CK_FloatingComplexToBoolean:
4638  case CK_FloatingComplexCast:
4639  case CK_FloatingComplexToIntegralComplex:
4640  case CK_IntegralRealToComplex:
4641  case CK_IntegralComplexToReal:
4642  case CK_IntegralComplexToBoolean:
4643  case CK_IntegralComplexCast:
4644  case CK_IntegralComplexToFloatingComplex:
4645  case CK_DerivedToBaseMemberPointer:
4646  case CK_BaseToDerivedMemberPointer:
4647  case CK_MemberPointerToBoolean:
4648  case CK_ReinterpretMemberPointer:
4649  case CK_AnyPointerToBlockPointerCast:
4650  case CK_ARCProduceObject:
4651  case CK_ARCConsumeObject:
4652  case CK_ARCReclaimReturnedObject:
4653  case CK_ARCExtendBlockObject:
4654  case CK_CopyAndAutoreleaseBlockObject:
4655  case CK_IntToOCLSampler:
4656  case CK_FloatingToFixedPoint:
4657  case CK_FixedPointToFloating:
4658  case CK_FixedPointCast:
4659  case CK_FixedPointToBoolean:
4660  case CK_FixedPointToIntegral:
4661  case CK_IntegralToFixedPoint:
4662  case CK_MatrixCast:
4663    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4664
4665  case CK_Dependent:
4666    llvm_unreachable("dependent cast kind in IR gen!");
4667
4668  case CK_BuiltinFnToFnPtr:
4669    llvm_unreachable("builtin functions are handled elsewhere");
4670
4671  // These are never l-values; just use the aggregate emission code.
4672  case CK_NonAtomicToAtomic:
4673  case CK_AtomicToNonAtomic:
4674    return EmitAggExprToLValue(E);
4675
4676  case CK_Dynamic: {
4677    LValue LV = EmitLValue(E->getSubExpr());
4678    Address V = LV.getAddress(*this);
4679    const auto *DCE = cast<CXXDynamicCastExpr>(E);
4680    return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4681  }
4682
4683  case CK_ConstructorConversion:
4684  case CK_UserDefinedConversion:
4685  case CK_CPointerToObjCPointerCast:
4686  case CK_BlockPointerToObjCPointerCast:
4687  case CK_NoOp:
4688  case CK_LValueToRValue:
4689    return EmitLValue(E->getSubExpr());
4690
4691  case CK_UncheckedDerivedToBase:
4692  case CK_DerivedToBase: {
4693    const auto *DerivedClassTy =
4694        E->getSubExpr()->getType()->castAs<RecordType>();
4695    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4696
4697    LValue LV = EmitLValue(E->getSubExpr());
4698    Address This = LV.getAddress(*this);
4699
4700    // Perform the derived-to-base conversion
4701    Address Base = GetAddressOfBaseClass(
4702        This, DerivedClassDecl, E->path_begin(), E->path_end(),
4703        /*NullCheckValue=*/false, E->getExprLoc());
4704
4705    // TODO: Support accesses to members of base classes in TBAA. For now, we
4706    // conservatively pretend that the complete object is of the base class
4707    // type.
4708    return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4709                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
4710  }
4711  case CK_ToUnion:
4712    return EmitAggExprToLValue(E);
4713  case CK_BaseToDerived: {
4714    const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4715    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4716
4717    LValue LV = EmitLValue(E->getSubExpr());
4718
4719    // Perform the base-to-derived conversion
4720    Address Derived = GetAddressOfDerivedClass(
4721        LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4722        /*NullCheckValue=*/false);
4723
4724    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4725    // performed and the object is not of the derived type.
4726    if (sanitizePerformTypeCheck())
4727      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4728                    Derived.getPointer(), E->getType());
4729
4730    if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4731      EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4732                                /*MayBeNull=*/false, CFITCK_DerivedCast,
4733                                E->getBeginLoc());
4734
4735    return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4736                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
4737  }
4738  case CK_LValueBitCast: {
4739    // This must be a reinterpret_cast (or c-style equivalent).
4740    const auto *CE = cast<ExplicitCastExpr>(E);
4741
4742    CGM.EmitExplicitCastExprType(CE, this);
4743    LValue LV = EmitLValue(E->getSubExpr());
4744    Address V = Builder.CreateBitCast(LV.getAddress(*this),
4745                                      ConvertType(CE->getTypeAsWritten()));
4746
4747    if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4748      EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4749                                /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4750                                E->getBeginLoc());
4751
4752    return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4753                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
4754  }
4755  case CK_AddressSpaceConversion: {
4756    LValue LV = EmitLValue(E->getSubExpr());
4757    QualType DestTy = getContext().getPointerType(E->getType());
4758    llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4759        *this, LV.getPointer(*this),
4760        E->getSubExpr()->getType().getAddressSpace(),
4761        E->getType().getAddressSpace(), ConvertType(DestTy));
4762    return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4763                          E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4764  }
4765  case CK_ObjCObjectLValueCast: {
4766    LValue LV = EmitLValue(E->getSubExpr());
4767    Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4768                                             ConvertType(E->getType()));
4769    return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4770                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
4771  }
4772  case CK_ZeroToOCLOpaqueType:
4773    llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4774  }
4775
4776  llvm_unreachable("Unhandled lvalue cast kind?");
4777}
4778
4779LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4780  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4781  return getOrCreateOpaqueLValueMapping(e);
4782}
4783
4784LValue
4785CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4786  assert(OpaqueValueMapping::shouldBindAsLValue(e));
4787
4788  llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4789      it = OpaqueLValues.find(e);
4790
4791  if (it != OpaqueLValues.end())
4792    return it->second;
4793
4794  assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4795  return EmitLValue(e->getSourceExpr());
4796}
4797
4798RValue
4799CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4800  assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4801
4802  llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4803      it = OpaqueRValues.find(e);
4804
4805  if (it != OpaqueRValues.end())
4806    return it->second;
4807
4808  assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4809  return EmitAnyExpr(e->getSourceExpr());
4810}
4811
4812RValue CodeGenFunction::EmitRValueForField(LValue LV,
4813                                           const FieldDecl *FD,
4814                                           SourceLocation Loc) {
4815  QualType FT = FD->getType();
4816  LValue FieldLV = EmitLValueForField(LV, FD);
4817  switch (getEvaluationKind(FT)) {
4818  case TEK_Complex:
4819    return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4820  case TEK_Aggregate:
4821    return FieldLV.asAggregateRValue(*this);
4822  case TEK_Scalar:
4823    // This routine is used to load fields one-by-one to perform a copy, so
4824    // don't load reference fields.
4825    if (FD->getType()->isReferenceType())
4826      return RValue::get(FieldLV.getPointer(*this));
4827    // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4828    // primitive load.
4829    if (FieldLV.isBitField())
4830      return EmitLoadOfLValue(FieldLV, Loc);
4831    return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4832  }
4833  llvm_unreachable("bad evaluation kind");
4834}
4835
4836//===--------------------------------------------------------------------===//
4837//                             Expression Emission
4838//===--------------------------------------------------------------------===//
4839
4840RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4841                                     ReturnValueSlot ReturnValue) {
4842  // Builtins never have block type.
4843  if (E->getCallee()->getType()->isBlockPointerType())
4844    return EmitBlockCallExpr(E, ReturnValue);
4845
4846  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4847    return EmitCXXMemberCallExpr(CE, ReturnValue);
4848
4849  if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4850    return EmitCUDAKernelCallExpr(CE, ReturnValue);
4851
4852  if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4853    if (const CXXMethodDecl *MD =
4854          dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4855      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4856
4857  CGCallee callee = EmitCallee(E->getCallee());
4858
4859  if (callee.isBuiltin()) {
4860    return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4861                           E, ReturnValue);
4862  }
4863
4864  if (callee.isPseudoDestructor()) {
4865    return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4866  }
4867
4868  return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4869}
4870
4871/// Emit a CallExpr without considering whether it might be a subclass.
4872RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4873                                           ReturnValueSlot ReturnValue) {
4874  CGCallee Callee = EmitCallee(E->getCallee());
4875  return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4876}
4877
4878static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4879  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4880
4881  if (auto builtinID = FD->getBuiltinID()) {
4882    // Replaceable builtin provide their own implementation of a builtin. Unless
4883    // we are in the builtin implementation itself, don't call the actual
4884    // builtin. If we are in the builtin implementation, avoid trivial infinite
4885    // recursion.
4886    if (!FD->isInlineBuiltinDeclaration() ||
4887        CGF.CurFn->getName() == FD->getName())
4888      return CGCallee::forBuiltin(builtinID, FD);
4889  }
4890
4891  llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4892  if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
4893      FD->hasAttr<CUDAGlobalAttr>())
4894    CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
4895        cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
4896  return CGCallee::forDirect(CalleePtr, GD);
4897}
4898
4899CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4900  E = E->IgnoreParens();
4901
4902  // Look through function-to-pointer decay.
4903  if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4904    if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4905        ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4906      return EmitCallee(ICE->getSubExpr());
4907    }
4908
4909  // Resolve direct calls.
4910  } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4911    if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4912      return EmitDirectCallee(*this, FD);
4913    }
4914  } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4915    if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4916      EmitIgnoredExpr(ME->getBase());
4917      return EmitDirectCallee(*this, FD);
4918    }
4919
4920  // Look through template substitutions.
4921  } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4922    return EmitCallee(NTTP->getReplacement());
4923
4924  // Treat pseudo-destructor calls differently.
4925  } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4926    return CGCallee::forPseudoDestructor(PDE);
4927  }
4928
4929  // Otherwise, we have an indirect reference.
4930  llvm::Value *calleePtr;
4931  QualType functionType;
4932  if (auto ptrType = E->getType()->getAs<PointerType>()) {
4933    calleePtr = EmitScalarExpr(E);
4934    functionType = ptrType->getPointeeType();
4935  } else {
4936    functionType = E->getType();
4937    calleePtr = EmitLValue(E).getPointer(*this);
4938  }
4939  assert(functionType->isFunctionType());
4940
4941  GlobalDecl GD;
4942  if (const auto *VD =
4943          dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4944    GD = GlobalDecl(VD);
4945
4946  CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4947  CGCallee callee(calleeInfo, calleePtr);
4948  return callee;
4949}
4950
4951LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4952  // Comma expressions just emit their LHS then their RHS as an l-value.
4953  if (E->getOpcode() == BO_Comma) {
4954    EmitIgnoredExpr(E->getLHS());
4955    EnsureInsertPoint();
4956    return EmitLValue(E->getRHS());
4957  }
4958
4959  if (E->getOpcode() == BO_PtrMemD ||
4960      E->getOpcode() == BO_PtrMemI)
4961    return EmitPointerToDataMemberBinaryExpr(E);
4962
4963  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4964
4965  // Note that in all of these cases, __block variables need the RHS
4966  // evaluated first just in case the variable gets moved by the RHS.
4967
4968  switch (getEvaluationKind(E->getType())) {
4969  case TEK_Scalar: {
4970    switch (E->getLHS()->getType().getObjCLifetime()) {
4971    case Qualifiers::OCL_Strong:
4972      return EmitARCStoreStrong(E, /*ignored*/ false).first;
4973
4974    case Qualifiers::OCL_Autoreleasing:
4975      return EmitARCStoreAutoreleasing(E).first;
4976
4977    // No reason to do any of these differently.
4978    case Qualifiers::OCL_None:
4979    case Qualifiers::OCL_ExplicitNone:
4980    case Qualifiers::OCL_Weak:
4981      break;
4982    }
4983
4984    RValue RV = EmitAnyExpr(E->getRHS());
4985    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4986    if (RV.isScalar())
4987      EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4988    EmitStoreThroughLValue(RV, LV);
4989    if (getLangOpts().OpenMP)
4990      CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4991                                                                E->getLHS());
4992    return LV;
4993  }
4994
4995  case TEK_Complex:
4996    return EmitComplexAssignmentLValue(E);
4997
4998  case TEK_Aggregate:
4999    return EmitAggExprToLValue(E);
5000  }
5001  llvm_unreachable("bad evaluation kind");
5002}
5003
5004LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5005  RValue RV = EmitCallExpr(E);
5006
5007  if (!RV.isScalar())
5008    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5009                          AlignmentSource::Decl);
5010
5011  assert(E->getCallReturnType(getContext())->isReferenceType() &&
5012         "Can't have a scalar return unless the return type is a "
5013         "reference type!");
5014
5015  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5016}
5017
5018LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5019  // FIXME: This shouldn't require another copy.
5020  return EmitAggExprToLValue(E);
5021}
5022
5023LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5024  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5025         && "binding l-value to type which needs a temporary");
5026  AggValueSlot Slot = CreateAggTemp(E->getType());
5027  EmitCXXConstructExpr(E, Slot);
5028  return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5029}
5030
5031LValue
5032CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5033  return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5034}
5035
5036Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5037  return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5038                                      ConvertType(E->getType()));
5039}
5040
5041LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5042  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5043                        AlignmentSource::Decl);
5044}
5045
5046LValue
5047CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5048  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5049  Slot.setExternallyDestructed();
5050  EmitAggExpr(E->getSubExpr(), Slot);
5051  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5052  return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5053}
5054
5055LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5056  RValue RV = EmitObjCMessageExpr(E);
5057
5058  if (!RV.isScalar())
5059    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5060                          AlignmentSource::Decl);
5061
5062  assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5063         "Can't have a scalar return unless the return type is a "
5064         "reference type!");
5065
5066  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5067}
5068
5069LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5070  Address V =
5071    CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5072  return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5073}
5074
5075llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5076                                             const ObjCIvarDecl *Ivar) {
5077  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5078}
5079
5080LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5081                                          llvm::Value *BaseValue,
5082                                          const ObjCIvarDecl *Ivar,
5083                                          unsigned CVRQualifiers) {
5084  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5085                                                   Ivar, CVRQualifiers);
5086}
5087
5088LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5089  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5090  llvm::Value *BaseValue = nullptr;
5091  const Expr *BaseExpr = E->getBase();
5092  Qualifiers BaseQuals;
5093  QualType ObjectTy;
5094  if (E->isArrow()) {
5095    BaseValue = EmitScalarExpr(BaseExpr);
5096    ObjectTy = BaseExpr->getType()->getPointeeType();
5097    BaseQuals = ObjectTy.getQualifiers();
5098  } else {
5099    LValue BaseLV = EmitLValue(BaseExpr);
5100    BaseValue = BaseLV.getPointer(*this);
5101    ObjectTy = BaseExpr->getType();
5102    BaseQuals = ObjectTy.getQualifiers();
5103  }
5104
5105  LValue LV =
5106    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5107                      BaseQuals.getCVRQualifiers());
5108  setObjCGCLValueClass(getContext(), E, LV);
5109  return LV;
5110}
5111
5112LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5113  // Can only get l-value for message expression returning aggregate type
5114  RValue RV = EmitAnyExprToTemp(E);
5115  return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5116                        AlignmentSource::Decl);
5117}
5118
5119RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5120                                 const CallExpr *E, ReturnValueSlot ReturnValue,
5121                                 llvm::Value *Chain) {
5122  // Get the actual function type. The callee type will always be a pointer to
5123  // function type or a block pointer type.
5124  assert(CalleeType->isFunctionPointerType() &&
5125         "Call must have function pointer type!");
5126
5127  const Decl *TargetDecl =
5128      OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5129
5130  CalleeType = getContext().getCanonicalType(CalleeType);
5131
5132  auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5133
5134  CGCallee Callee = OrigCallee;
5135
5136  if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5137      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5138    if (llvm::Constant *PrefixSig =
5139            CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5140      SanitizerScope SanScope(this);
5141      // Remove any (C++17) exception specifications, to allow calling e.g. a
5142      // noexcept function through a non-noexcept pointer.
5143      auto ProtoTy =
5144        getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5145      llvm::Constant *FTRTTIConst =
5146          CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5147      llvm::Type *PrefixSigType = PrefixSig->getType();
5148      llvm::StructType *PrefixStructTy = llvm::StructType::get(
5149          CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5150
5151      llvm::Value *CalleePtr = Callee.getFunctionPointer();
5152
5153      llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5154          CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5155      llvm::Value *CalleeSigPtr =
5156          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5157      llvm::Value *CalleeSig =
5158          Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5159      llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5160
5161      llvm::BasicBlock *Cont = createBasicBlock("cont");
5162      llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5163      Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5164
5165      EmitBlock(TypeCheck);
5166      llvm::Value *CalleeRTTIPtr =
5167          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5168      llvm::Value *CalleeRTTIEncoded =
5169          Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5170      llvm::Value *CalleeRTTI =
5171          DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5172      llvm::Value *CalleeRTTIMatch =
5173          Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5174      llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5175                                      EmitCheckTypeDescriptor(CalleeType)};
5176      EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5177                SanitizerHandler::FunctionTypeMismatch, StaticData,
5178                {CalleePtr, CalleeRTTI, FTRTTIConst});
5179
5180      Builder.CreateBr(Cont);
5181      EmitBlock(Cont);
5182    }
5183  }
5184
5185  const auto *FnType = cast<FunctionType>(PointeeType);
5186
5187  // If we are checking indirect calls and this call is indirect, check that the
5188  // function pointer is a member of the bit set for the function type.
5189  if (SanOpts.has(SanitizerKind::CFIICall) &&
5190      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5191    SanitizerScope SanScope(this);
5192    EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5193
5194    llvm::Metadata *MD;
5195    if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5196      MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5197    else
5198      MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5199
5200    llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5201
5202    llvm::Value *CalleePtr = Callee.getFunctionPointer();
5203    llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5204    llvm::Value *TypeTest = Builder.CreateCall(
5205        CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5206
5207    auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5208    llvm::Constant *StaticData[] = {
5209        llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5210        EmitCheckSourceLocation(E->getBeginLoc()),
5211        EmitCheckTypeDescriptor(QualType(FnType, 0)),
5212    };
5213    if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5214      EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5215                           CastedCallee, StaticData);
5216    } else {
5217      EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5218                SanitizerHandler::CFICheckFail, StaticData,
5219                {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5220    }
5221  }
5222
5223  CallArgList Args;
5224  if (Chain)
5225    Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5226             CGM.getContext().VoidPtrTy);
5227
5228  // C++17 requires that we evaluate arguments to a call using assignment syntax
5229  // right-to-left, and that we evaluate arguments to certain other operators
5230  // left-to-right. Note that we allow this to override the order dictated by
5231  // the calling convention on the MS ABI, which means that parameter
5232  // destruction order is not necessarily reverse construction order.
5233  // FIXME: Revisit this based on C++ committee response to unimplementability.
5234  EvaluationOrder Order = EvaluationOrder::Default;
5235  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5236    if (OCE->isAssignmentOp())
5237      Order = EvaluationOrder::ForceRightToLeft;
5238    else {
5239      switch (OCE->getOperator()) {
5240      case OO_LessLess:
5241      case OO_GreaterGreater:
5242      case OO_AmpAmp:
5243      case OO_PipePipe:
5244      case OO_Comma:
5245      case OO_ArrowStar:
5246        Order = EvaluationOrder::ForceLeftToRight;
5247        break;
5248      default:
5249        break;
5250      }
5251    }
5252  }
5253
5254  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5255               E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5256
5257  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5258      Args, FnType, /*ChainCall=*/Chain);
5259
5260  // C99 6.5.2.2p6:
5261  //   If the expression that denotes the called function has a type
5262  //   that does not include a prototype, [the default argument
5263  //   promotions are performed]. If the number of arguments does not
5264  //   equal the number of parameters, the behavior is undefined. If
5265  //   the function is defined with a type that includes a prototype,
5266  //   and either the prototype ends with an ellipsis (, ...) or the
5267  //   types of the arguments after promotion are not compatible with
5268  //   the types of the parameters, the behavior is undefined. If the
5269  //   function is defined with a type that does not include a
5270  //   prototype, and the types of the arguments after promotion are
5271  //   not compatible with those of the parameters after promotion,
5272  //   the behavior is undefined [except in some trivial cases].
5273  // That is, in the general case, we should assume that a call
5274  // through an unprototyped function type works like a *non-variadic*
5275  // call.  The way we make this work is to cast to the exact type
5276  // of the promoted arguments.
5277  //
5278  // Chain calls use this same code path to add the invisible chain parameter
5279  // to the function type.
5280  if (isa<FunctionNoProtoType>(FnType) || Chain) {
5281    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5282    int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5283    CalleeTy = CalleeTy->getPointerTo(AS);
5284
5285    llvm::Value *CalleePtr = Callee.getFunctionPointer();
5286    CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5287    Callee.setFunctionPointer(CalleePtr);
5288  }
5289
5290  // HIP function pointer contains kernel handle when it is used in triple
5291  // chevron. The kernel stub needs to be loaded from kernel handle and used
5292  // as callee.
5293  if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5294      isa<CUDAKernelCallExpr>(E) &&
5295      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5296    llvm::Value *Handle = Callee.getFunctionPointer();
5297    auto *Cast =
5298        Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5299    auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign()));
5300    Callee.setFunctionPointer(Stub);
5301  }
5302  llvm::CallBase *CallOrInvoke = nullptr;
5303  RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5304                         E == MustTailCall, E->getExprLoc());
5305
5306  // Generate function declaration DISuprogram in order to be used
5307  // in debug info about call sites.
5308  if (CGDebugInfo *DI = getDebugInfo()) {
5309    if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5310      DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5311                                  CalleeDecl);
5312  }
5313
5314  return Call;
5315}
5316
5317LValue CodeGenFunction::
5318EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5319  Address BaseAddr = Address::invalid();
5320  if (E->getOpcode() == BO_PtrMemI) {
5321    BaseAddr = EmitPointerWithAlignment(E->getLHS());
5322  } else {
5323    BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5324  }
5325
5326  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5327  const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5328
5329  LValueBaseInfo BaseInfo;
5330  TBAAAccessInfo TBAAInfo;
5331  Address MemberAddr =
5332    EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5333                                    &TBAAInfo);
5334
5335  return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5336}
5337
5338/// Given the address of a temporary variable, produce an r-value of
5339/// its type.
5340RValue CodeGenFunction::convertTempToRValue(Address addr,
5341                                            QualType type,
5342                                            SourceLocation loc) {
5343  LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5344  switch (getEvaluationKind(type)) {
5345  case TEK_Complex:
5346    return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5347  case TEK_Aggregate:
5348    return lvalue.asAggregateRValue(*this);
5349  case TEK_Scalar:
5350    return RValue::get(EmitLoadOfScalar(lvalue, loc));
5351  }
5352  llvm_unreachable("bad evaluation kind");
5353}
5354
5355void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5356  assert(Val->getType()->isFPOrFPVectorTy());
5357  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5358    return;
5359
5360  llvm::MDBuilder MDHelper(getLLVMContext());
5361  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5362
5363  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5364}
5365
5366namespace {
5367  struct LValueOrRValue {
5368    LValue LV;
5369    RValue RV;
5370  };
5371}
5372
5373static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5374                                           const PseudoObjectExpr *E,
5375                                           bool forLValue,
5376                                           AggValueSlot slot) {
5377  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5378
5379  // Find the result expression, if any.
5380  const Expr *resultExpr = E->getResultExpr();
5381  LValueOrRValue result;
5382
5383  for (PseudoObjectExpr::const_semantics_iterator
5384         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5385    const Expr *semantic = *i;
5386
5387    // If this semantic expression is an opaque value, bind it
5388    // to the result of its source expression.
5389    if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5390      // Skip unique OVEs.
5391      if (ov->isUnique()) {
5392        assert(ov != resultExpr &&
5393               "A unique OVE cannot be used as the result expression");
5394        continue;
5395      }
5396
5397      // If this is the result expression, we may need to evaluate
5398      // directly into the slot.
5399      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5400      OVMA opaqueData;
5401      if (ov == resultExpr && ov->isRValue() && !forLValue &&
5402          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5403        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5404        LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5405                                       AlignmentSource::Decl);
5406        opaqueData = OVMA::bind(CGF, ov, LV);
5407        result.RV = slot.asRValue();
5408
5409      // Otherwise, emit as normal.
5410      } else {
5411        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5412
5413        // If this is the result, also evaluate the result now.
5414        if (ov == resultExpr) {
5415          if (forLValue)
5416            result.LV = CGF.EmitLValue(ov);
5417          else
5418            result.RV = CGF.EmitAnyExpr(ov, slot);
5419        }
5420      }
5421
5422      opaques.push_back(opaqueData);
5423
5424    // Otherwise, if the expression is the result, evaluate it
5425    // and remember the result.
5426    } else if (semantic == resultExpr) {
5427      if (forLValue)
5428        result.LV = CGF.EmitLValue(semantic);
5429      else
5430        result.RV = CGF.EmitAnyExpr(semantic, slot);
5431
5432    // Otherwise, evaluate the expression in an ignored context.
5433    } else {
5434      CGF.EmitIgnoredExpr(semantic);
5435    }
5436  }
5437
5438  // Unbind all the opaques now.
5439  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5440    opaques[i].unbind(CGF);
5441
5442  return result;
5443}
5444
5445RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5446                                               AggValueSlot slot) {
5447  return emitPseudoObjectExpr(*this, E, false, slot).RV;
5448}
5449
5450LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5451  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5452}
5453