1//===- ThreadSafety.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// A intra-procedural analysis for thread safety (e.g. deadlocks and race
10// conditions), based off of an annotation system.
11//
12// See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13// for more information.
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/Analysis/Analyses/ThreadSafety.h"
18#include "clang/AST/Attr.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclGroup.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/OperationKinds.h"
25#include "clang/AST/Stmt.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/Type.h"
28#include "clang/Analysis/Analyses/PostOrderCFGView.h"
29#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32#include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33#include "clang/Analysis/AnalysisDeclContext.h"
34#include "clang/Analysis/CFG.h"
35#include "clang/Basic/Builtins.h"
36#include "clang/Basic/LLVM.h"
37#include "clang/Basic/OperatorKinds.h"
38#include "clang/Basic/SourceLocation.h"
39#include "clang/Basic/Specifiers.h"
40#include "llvm/ADT/ArrayRef.h"
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/ImmutableMap.h"
43#include "llvm/ADT/Optional.h"
44#include "llvm/ADT/PointerIntPair.h"
45#include "llvm/ADT/STLExtras.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/ADT/StringRef.h"
48#include "llvm/Support/Allocator.h"
49#include "llvm/Support/Casting.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/raw_ostream.h"
52#include <algorithm>
53#include <cassert>
54#include <functional>
55#include <iterator>
56#include <memory>
57#include <string>
58#include <type_traits>
59#include <utility>
60#include <vector>
61
62using namespace clang;
63using namespace threadSafety;
64
65// Key method definition
66ThreadSafetyHandler::~ThreadSafetyHandler() = default;
67
68/// Issue a warning about an invalid lock expression
69static void warnInvalidLock(ThreadSafetyHandler &Handler,
70                            const Expr *MutexExp, const NamedDecl *D,
71                            const Expr *DeclExp, StringRef Kind) {
72  SourceLocation Loc;
73  if (DeclExp)
74    Loc = DeclExp->getExprLoc();
75
76  // FIXME: add a note about the attribute location in MutexExp or D
77  if (Loc.isValid())
78    Handler.handleInvalidLockExp(Kind, Loc);
79}
80
81namespace {
82
83/// A set of CapabilityExpr objects, which are compiled from thread safety
84/// attributes on a function.
85class CapExprSet : public SmallVector<CapabilityExpr, 4> {
86public:
87  /// Push M onto list, but discard duplicates.
88  void push_back_nodup(const CapabilityExpr &CapE) {
89    iterator It = std::find_if(begin(), end(),
90                               [=](const CapabilityExpr &CapE2) {
91      return CapE.equals(CapE2);
92    });
93    if (It == end())
94      push_back(CapE);
95  }
96};
97
98class FactManager;
99class FactSet;
100
101/// This is a helper class that stores a fact that is known at a
102/// particular point in program execution.  Currently, a fact is a capability,
103/// along with additional information, such as where it was acquired, whether
104/// it is exclusive or shared, etc.
105///
106/// FIXME: this analysis does not currently support re-entrant locking.
107class FactEntry : public CapabilityExpr {
108public:
109  /// Where a fact comes from.
110  enum SourceKind {
111    Acquired, ///< The fact has been directly acquired.
112    Asserted, ///< The fact has been asserted to be held.
113    Declared, ///< The fact is assumed to be held by callers.
114    Managed,  ///< The fact has been acquired through a scoped capability.
115  };
116
117private:
118  /// Exclusive or shared.
119  LockKind LKind : 8;
120
121  // How it was acquired.
122  SourceKind Source : 8;
123
124  /// Where it was acquired.
125  SourceLocation AcquireLoc;
126
127public:
128  FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
129            SourceKind Src)
130      : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {}
131  virtual ~FactEntry() = default;
132
133  LockKind kind() const { return LKind;      }
134  SourceLocation loc() const { return AcquireLoc; }
135
136  bool asserted() const { return Source == Asserted; }
137  bool declared() const { return Source == Declared; }
138  bool managed() const { return Source == Managed; }
139
140  virtual void
141  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
142                                SourceLocation JoinLoc, LockErrorKind LEK,
143                                ThreadSafetyHandler &Handler) const = 0;
144  virtual void handleLock(FactSet &FSet, FactManager &FactMan,
145                          const FactEntry &entry, ThreadSafetyHandler &Handler,
146                          StringRef DiagKind) const = 0;
147  virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
148                            const CapabilityExpr &Cp, SourceLocation UnlockLoc,
149                            bool FullyRemove, ThreadSafetyHandler &Handler,
150                            StringRef DiagKind) const = 0;
151
152  // Return true if LKind >= LK, where exclusive > shared
153  bool isAtLeast(LockKind LK) const {
154    return  (LKind == LK_Exclusive) || (LK == LK_Shared);
155  }
156};
157
158using FactID = unsigned short;
159
160/// FactManager manages the memory for all facts that are created during
161/// the analysis of a single routine.
162class FactManager {
163private:
164  std::vector<std::unique_ptr<const FactEntry>> Facts;
165
166public:
167  FactID newFact(std::unique_ptr<FactEntry> Entry) {
168    Facts.push_back(std::move(Entry));
169    return static_cast<unsigned short>(Facts.size() - 1);
170  }
171
172  const FactEntry &operator[](FactID F) const { return *Facts[F]; }
173};
174
175/// A FactSet is the set of facts that are known to be true at a
176/// particular program point.  FactSets must be small, because they are
177/// frequently copied, and are thus implemented as a set of indices into a
178/// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
179/// locks, so we can get away with doing a linear search for lookup.  Note
180/// that a hashtable or map is inappropriate in this case, because lookups
181/// may involve partial pattern matches, rather than exact matches.
182class FactSet {
183private:
184  using FactVec = SmallVector<FactID, 4>;
185
186  FactVec FactIDs;
187
188public:
189  using iterator = FactVec::iterator;
190  using const_iterator = FactVec::const_iterator;
191
192  iterator begin() { return FactIDs.begin(); }
193  const_iterator begin() const { return FactIDs.begin(); }
194
195  iterator end() { return FactIDs.end(); }
196  const_iterator end() const { return FactIDs.end(); }
197
198  bool isEmpty() const { return FactIDs.size() == 0; }
199
200  // Return true if the set contains only negative facts
201  bool isEmpty(FactManager &FactMan) const {
202    for (const auto FID : *this) {
203      if (!FactMan[FID].negative())
204        return false;
205    }
206    return true;
207  }
208
209  void addLockByID(FactID ID) { FactIDs.push_back(ID); }
210
211  FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
212    FactID F = FM.newFact(std::move(Entry));
213    FactIDs.push_back(F);
214    return F;
215  }
216
217  bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
218    unsigned n = FactIDs.size();
219    if (n == 0)
220      return false;
221
222    for (unsigned i = 0; i < n-1; ++i) {
223      if (FM[FactIDs[i]].matches(CapE)) {
224        FactIDs[i] = FactIDs[n-1];
225        FactIDs.pop_back();
226        return true;
227      }
228    }
229    if (FM[FactIDs[n-1]].matches(CapE)) {
230      FactIDs.pop_back();
231      return true;
232    }
233    return false;
234  }
235
236  iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
237    return std::find_if(begin(), end(), [&](FactID ID) {
238      return FM[ID].matches(CapE);
239    });
240  }
241
242  const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
243    auto I = std::find_if(begin(), end(), [&](FactID ID) {
244      return FM[ID].matches(CapE);
245    });
246    return I != end() ? &FM[*I] : nullptr;
247  }
248
249  const FactEntry *findLockUniv(FactManager &FM,
250                                const CapabilityExpr &CapE) const {
251    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
252      return FM[ID].matchesUniv(CapE);
253    });
254    return I != end() ? &FM[*I] : nullptr;
255  }
256
257  const FactEntry *findPartialMatch(FactManager &FM,
258                                    const CapabilityExpr &CapE) const {
259    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
260      return FM[ID].partiallyMatches(CapE);
261    });
262    return I != end() ? &FM[*I] : nullptr;
263  }
264
265  bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
266    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
267      return FM[ID].valueDecl() == Vd;
268    });
269    return I != end();
270  }
271};
272
273class ThreadSafetyAnalyzer;
274
275} // namespace
276
277namespace clang {
278namespace threadSafety {
279
280class BeforeSet {
281private:
282  using BeforeVect = SmallVector<const ValueDecl *, 4>;
283
284  struct BeforeInfo {
285    BeforeVect Vect;
286    int Visited = 0;
287
288    BeforeInfo() = default;
289    BeforeInfo(BeforeInfo &&) = default;
290  };
291
292  using BeforeMap =
293      llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
294  using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
295
296public:
297  BeforeSet() = default;
298
299  BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
300                              ThreadSafetyAnalyzer& Analyzer);
301
302  BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
303                                   ThreadSafetyAnalyzer &Analyzer);
304
305  void checkBeforeAfter(const ValueDecl* Vd,
306                        const FactSet& FSet,
307                        ThreadSafetyAnalyzer& Analyzer,
308                        SourceLocation Loc, StringRef CapKind);
309
310private:
311  BeforeMap BMap;
312  CycleMap CycMap;
313};
314
315} // namespace threadSafety
316} // namespace clang
317
318namespace {
319
320class LocalVariableMap;
321
322using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
323
324/// A side (entry or exit) of a CFG node.
325enum CFGBlockSide { CBS_Entry, CBS_Exit };
326
327/// CFGBlockInfo is a struct which contains all the information that is
328/// maintained for each block in the CFG.  See LocalVariableMap for more
329/// information about the contexts.
330struct CFGBlockInfo {
331  // Lockset held at entry to block
332  FactSet EntrySet;
333
334  // Lockset held at exit from block
335  FactSet ExitSet;
336
337  // Context held at entry to block
338  LocalVarContext EntryContext;
339
340  // Context held at exit from block
341  LocalVarContext ExitContext;
342
343  // Location of first statement in block
344  SourceLocation EntryLoc;
345
346  // Location of last statement in block.
347  SourceLocation ExitLoc;
348
349  // Used to replay contexts later
350  unsigned EntryIndex;
351
352  // Is this block reachable?
353  bool Reachable = false;
354
355  const FactSet &getSet(CFGBlockSide Side) const {
356    return Side == CBS_Entry ? EntrySet : ExitSet;
357  }
358
359  SourceLocation getLocation(CFGBlockSide Side) const {
360    return Side == CBS_Entry ? EntryLoc : ExitLoc;
361  }
362
363private:
364  CFGBlockInfo(LocalVarContext EmptyCtx)
365      : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
366
367public:
368  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
369};
370
371// A LocalVariableMap maintains a map from local variables to their currently
372// valid definitions.  It provides SSA-like functionality when traversing the
373// CFG.  Like SSA, each definition or assignment to a variable is assigned a
374// unique name (an integer), which acts as the SSA name for that definition.
375// The total set of names is shared among all CFG basic blocks.
376// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
377// with their SSA-names.  Instead, we compute a Context for each point in the
378// code, which maps local variables to the appropriate SSA-name.  This map
379// changes with each assignment.
380//
381// The map is computed in a single pass over the CFG.  Subsequent analyses can
382// then query the map to find the appropriate Context for a statement, and use
383// that Context to look up the definitions of variables.
384class LocalVariableMap {
385public:
386  using Context = LocalVarContext;
387
388  /// A VarDefinition consists of an expression, representing the value of the
389  /// variable, along with the context in which that expression should be
390  /// interpreted.  A reference VarDefinition does not itself contain this
391  /// information, but instead contains a pointer to a previous VarDefinition.
392  struct VarDefinition {
393  public:
394    friend class LocalVariableMap;
395
396    // The original declaration for this variable.
397    const NamedDecl *Dec;
398
399    // The expression for this variable, OR
400    const Expr *Exp = nullptr;
401
402    // Reference to another VarDefinition
403    unsigned Ref = 0;
404
405    // The map with which Exp should be interpreted.
406    Context Ctx;
407
408    bool isReference() { return !Exp; }
409
410  private:
411    // Create ordinary variable definition
412    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
413        : Dec(D), Exp(E), Ctx(C) {}
414
415    // Create reference to previous definition
416    VarDefinition(const NamedDecl *D, unsigned R, Context C)
417        : Dec(D), Ref(R), Ctx(C) {}
418  };
419
420private:
421  Context::Factory ContextFactory;
422  std::vector<VarDefinition> VarDefinitions;
423  std::vector<unsigned> CtxIndices;
424  std::vector<std::pair<const Stmt *, Context>> SavedContexts;
425
426public:
427  LocalVariableMap() {
428    // index 0 is a placeholder for undefined variables (aka phi-nodes).
429    VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
430  }
431
432  /// Look up a definition, within the given context.
433  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
434    const unsigned *i = Ctx.lookup(D);
435    if (!i)
436      return nullptr;
437    assert(*i < VarDefinitions.size());
438    return &VarDefinitions[*i];
439  }
440
441  /// Look up the definition for D within the given context.  Returns
442  /// NULL if the expression is not statically known.  If successful, also
443  /// modifies Ctx to hold the context of the return Expr.
444  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
445    const unsigned *P = Ctx.lookup(D);
446    if (!P)
447      return nullptr;
448
449    unsigned i = *P;
450    while (i > 0) {
451      if (VarDefinitions[i].Exp) {
452        Ctx = VarDefinitions[i].Ctx;
453        return VarDefinitions[i].Exp;
454      }
455      i = VarDefinitions[i].Ref;
456    }
457    return nullptr;
458  }
459
460  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
461
462  /// Return the next context after processing S.  This function is used by
463  /// clients of the class to get the appropriate context when traversing the
464  /// CFG.  It must be called for every assignment or DeclStmt.
465  Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
466    if (SavedContexts[CtxIndex+1].first == S) {
467      CtxIndex++;
468      Context Result = SavedContexts[CtxIndex].second;
469      return Result;
470    }
471    return C;
472  }
473
474  void dumpVarDefinitionName(unsigned i) {
475    if (i == 0) {
476      llvm::errs() << "Undefined";
477      return;
478    }
479    const NamedDecl *Dec = VarDefinitions[i].Dec;
480    if (!Dec) {
481      llvm::errs() << "<<NULL>>";
482      return;
483    }
484    Dec->printName(llvm::errs());
485    llvm::errs() << "." << i << " " << ((const void*) Dec);
486  }
487
488  /// Dumps an ASCII representation of the variable map to llvm::errs()
489  void dump() {
490    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
491      const Expr *Exp = VarDefinitions[i].Exp;
492      unsigned Ref = VarDefinitions[i].Ref;
493
494      dumpVarDefinitionName(i);
495      llvm::errs() << " = ";
496      if (Exp) Exp->dump();
497      else {
498        dumpVarDefinitionName(Ref);
499        llvm::errs() << "\n";
500      }
501    }
502  }
503
504  /// Dumps an ASCII representation of a Context to llvm::errs()
505  void dumpContext(Context C) {
506    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
507      const NamedDecl *D = I.getKey();
508      D->printName(llvm::errs());
509      const unsigned *i = C.lookup(D);
510      llvm::errs() << " -> ";
511      dumpVarDefinitionName(*i);
512      llvm::errs() << "\n";
513    }
514  }
515
516  /// Builds the variable map.
517  void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
518                   std::vector<CFGBlockInfo> &BlockInfo);
519
520protected:
521  friend class VarMapBuilder;
522
523  // Get the current context index
524  unsigned getContextIndex() { return SavedContexts.size()-1; }
525
526  // Save the current context for later replay
527  void saveContext(const Stmt *S, Context C) {
528    SavedContexts.push_back(std::make_pair(S, C));
529  }
530
531  // Adds a new definition to the given context, and returns a new context.
532  // This method should be called when declaring a new variable.
533  Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
534    assert(!Ctx.contains(D));
535    unsigned newID = VarDefinitions.size();
536    Context NewCtx = ContextFactory.add(Ctx, D, newID);
537    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
538    return NewCtx;
539  }
540
541  // Add a new reference to an existing definition.
542  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
543    unsigned newID = VarDefinitions.size();
544    Context NewCtx = ContextFactory.add(Ctx, D, newID);
545    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
546    return NewCtx;
547  }
548
549  // Updates a definition only if that definition is already in the map.
550  // This method should be called when assigning to an existing variable.
551  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
552    if (Ctx.contains(D)) {
553      unsigned newID = VarDefinitions.size();
554      Context NewCtx = ContextFactory.remove(Ctx, D);
555      NewCtx = ContextFactory.add(NewCtx, D, newID);
556      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
557      return NewCtx;
558    }
559    return Ctx;
560  }
561
562  // Removes a definition from the context, but keeps the variable name
563  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
564  Context clearDefinition(const NamedDecl *D, Context Ctx) {
565    Context NewCtx = Ctx;
566    if (NewCtx.contains(D)) {
567      NewCtx = ContextFactory.remove(NewCtx, D);
568      NewCtx = ContextFactory.add(NewCtx, D, 0);
569    }
570    return NewCtx;
571  }
572
573  // Remove a definition entirely frmo the context.
574  Context removeDefinition(const NamedDecl *D, Context Ctx) {
575    Context NewCtx = Ctx;
576    if (NewCtx.contains(D)) {
577      NewCtx = ContextFactory.remove(NewCtx, D);
578    }
579    return NewCtx;
580  }
581
582  Context intersectContexts(Context C1, Context C2);
583  Context createReferenceContext(Context C);
584  void intersectBackEdge(Context C1, Context C2);
585};
586
587} // namespace
588
589// This has to be defined after LocalVariableMap.
590CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
591  return CFGBlockInfo(M.getEmptyContext());
592}
593
594namespace {
595
596/// Visitor which builds a LocalVariableMap
597class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
598public:
599  LocalVariableMap* VMap;
600  LocalVariableMap::Context Ctx;
601
602  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
603      : VMap(VM), Ctx(C) {}
604
605  void VisitDeclStmt(const DeclStmt *S);
606  void VisitBinaryOperator(const BinaryOperator *BO);
607};
608
609} // namespace
610
611// Add new local variables to the variable map
612void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
613  bool modifiedCtx = false;
614  const DeclGroupRef DGrp = S->getDeclGroup();
615  for (const auto *D : DGrp) {
616    if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
617      const Expr *E = VD->getInit();
618
619      // Add local variables with trivial type to the variable map
620      QualType T = VD->getType();
621      if (T.isTrivialType(VD->getASTContext())) {
622        Ctx = VMap->addDefinition(VD, E, Ctx);
623        modifiedCtx = true;
624      }
625    }
626  }
627  if (modifiedCtx)
628    VMap->saveContext(S, Ctx);
629}
630
631// Update local variable definitions in variable map
632void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
633  if (!BO->isAssignmentOp())
634    return;
635
636  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
637
638  // Update the variable map and current context.
639  if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
640    const ValueDecl *VDec = DRE->getDecl();
641    if (Ctx.lookup(VDec)) {
642      if (BO->getOpcode() == BO_Assign)
643        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
644      else
645        // FIXME -- handle compound assignment operators
646        Ctx = VMap->clearDefinition(VDec, Ctx);
647      VMap->saveContext(BO, Ctx);
648    }
649  }
650}
651
652// Computes the intersection of two contexts.  The intersection is the
653// set of variables which have the same definition in both contexts;
654// variables with different definitions are discarded.
655LocalVariableMap::Context
656LocalVariableMap::intersectContexts(Context C1, Context C2) {
657  Context Result = C1;
658  for (const auto &P : C1) {
659    const NamedDecl *Dec = P.first;
660    const unsigned *i2 = C2.lookup(Dec);
661    if (!i2)             // variable doesn't exist on second path
662      Result = removeDefinition(Dec, Result);
663    else if (*i2 != P.second)  // variable exists, but has different definition
664      Result = clearDefinition(Dec, Result);
665  }
666  return Result;
667}
668
669// For every variable in C, create a new variable that refers to the
670// definition in C.  Return a new context that contains these new variables.
671// (We use this for a naive implementation of SSA on loop back-edges.)
672LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
673  Context Result = getEmptyContext();
674  for (const auto &P : C)
675    Result = addReference(P.first, P.second, Result);
676  return Result;
677}
678
679// This routine also takes the intersection of C1 and C2, but it does so by
680// altering the VarDefinitions.  C1 must be the result of an earlier call to
681// createReferenceContext.
682void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
683  for (const auto &P : C1) {
684    unsigned i1 = P.second;
685    VarDefinition *VDef = &VarDefinitions[i1];
686    assert(VDef->isReference());
687
688    const unsigned *i2 = C2.lookup(P.first);
689    if (!i2 || (*i2 != i1))
690      VDef->Ref = 0;    // Mark this variable as undefined
691  }
692}
693
694// Traverse the CFG in topological order, so all predecessors of a block
695// (excluding back-edges) are visited before the block itself.  At
696// each point in the code, we calculate a Context, which holds the set of
697// variable definitions which are visible at that point in execution.
698// Visible variables are mapped to their definitions using an array that
699// contains all definitions.
700//
701// At join points in the CFG, the set is computed as the intersection of
702// the incoming sets along each edge, E.g.
703//
704//                       { Context                 | VarDefinitions }
705//   int x = 0;          { x -> x1                 | x1 = 0 }
706//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
707//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
708//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
709//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
710//
711// This is essentially a simpler and more naive version of the standard SSA
712// algorithm.  Those definitions that remain in the intersection are from blocks
713// that strictly dominate the current block.  We do not bother to insert proper
714// phi nodes, because they are not used in our analysis; instead, wherever
715// a phi node would be required, we simply remove that definition from the
716// context (E.g. x above).
717//
718// The initial traversal does not capture back-edges, so those need to be
719// handled on a separate pass.  Whenever the first pass encounters an
720// incoming back edge, it duplicates the context, creating new definitions
721// that refer back to the originals.  (These correspond to places where SSA
722// might have to insert a phi node.)  On the second pass, these definitions are
723// set to NULL if the variable has changed on the back-edge (i.e. a phi
724// node was actually required.)  E.g.
725//
726//                       { Context           | VarDefinitions }
727//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
728//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
729//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
730//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
731void LocalVariableMap::traverseCFG(CFG *CFGraph,
732                                   const PostOrderCFGView *SortedGraph,
733                                   std::vector<CFGBlockInfo> &BlockInfo) {
734  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
735
736  CtxIndices.resize(CFGraph->getNumBlockIDs());
737
738  for (const auto *CurrBlock : *SortedGraph) {
739    unsigned CurrBlockID = CurrBlock->getBlockID();
740    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
741
742    VisitedBlocks.insert(CurrBlock);
743
744    // Calculate the entry context for the current block
745    bool HasBackEdges = false;
746    bool CtxInit = true;
747    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
748         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
749      // if *PI -> CurrBlock is a back edge, so skip it
750      if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
751        HasBackEdges = true;
752        continue;
753      }
754
755      unsigned PrevBlockID = (*PI)->getBlockID();
756      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
757
758      if (CtxInit) {
759        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
760        CtxInit = false;
761      }
762      else {
763        CurrBlockInfo->EntryContext =
764          intersectContexts(CurrBlockInfo->EntryContext,
765                            PrevBlockInfo->ExitContext);
766      }
767    }
768
769    // Duplicate the context if we have back-edges, so we can call
770    // intersectBackEdges later.
771    if (HasBackEdges)
772      CurrBlockInfo->EntryContext =
773        createReferenceContext(CurrBlockInfo->EntryContext);
774
775    // Create a starting context index for the current block
776    saveContext(nullptr, CurrBlockInfo->EntryContext);
777    CurrBlockInfo->EntryIndex = getContextIndex();
778
779    // Visit all the statements in the basic block.
780    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
781    for (const auto &BI : *CurrBlock) {
782      switch (BI.getKind()) {
783        case CFGElement::Statement: {
784          CFGStmt CS = BI.castAs<CFGStmt>();
785          VMapBuilder.Visit(CS.getStmt());
786          break;
787        }
788        default:
789          break;
790      }
791    }
792    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
793
794    // Mark variables on back edges as "unknown" if they've been changed.
795    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
796         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
797      // if CurrBlock -> *SI is *not* a back edge
798      if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
799        continue;
800
801      CFGBlock *FirstLoopBlock = *SI;
802      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
803      Context LoopEnd   = CurrBlockInfo->ExitContext;
804      intersectBackEdge(LoopBegin, LoopEnd);
805    }
806  }
807
808  // Put an extra entry at the end of the indexed context array
809  unsigned exitID = CFGraph->getExit().getBlockID();
810  saveContext(nullptr, BlockInfo[exitID].ExitContext);
811}
812
813/// Find the appropriate source locations to use when producing diagnostics for
814/// each block in the CFG.
815static void findBlockLocations(CFG *CFGraph,
816                               const PostOrderCFGView *SortedGraph,
817                               std::vector<CFGBlockInfo> &BlockInfo) {
818  for (const auto *CurrBlock : *SortedGraph) {
819    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
820
821    // Find the source location of the last statement in the block, if the
822    // block is not empty.
823    if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
824      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
825    } else {
826      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
827           BE = CurrBlock->rend(); BI != BE; ++BI) {
828        // FIXME: Handle other CFGElement kinds.
829        if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
830          CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
831          break;
832        }
833      }
834    }
835
836    if (CurrBlockInfo->ExitLoc.isValid()) {
837      // This block contains at least one statement. Find the source location
838      // of the first statement in the block.
839      for (const auto &BI : *CurrBlock) {
840        // FIXME: Handle other CFGElement kinds.
841        if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
842          CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
843          break;
844        }
845      }
846    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
847               CurrBlock != &CFGraph->getExit()) {
848      // The block is empty, and has a single predecessor. Use its exit
849      // location.
850      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
851          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
852    }
853  }
854}
855
856namespace {
857
858class LockableFactEntry : public FactEntry {
859public:
860  LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
861                    SourceKind Src = Acquired)
862      : FactEntry(CE, LK, Loc, Src) {}
863
864  void
865  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
866                                SourceLocation JoinLoc, LockErrorKind LEK,
867                                ThreadSafetyHandler &Handler) const override {
868    if (!managed() && !asserted() && !negative() && !isUniversal()) {
869      Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
870                                        LEK);
871    }
872  }
873
874  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
875                  ThreadSafetyHandler &Handler,
876                  StringRef DiagKind) const override {
877    Handler.handleDoubleLock(DiagKind, entry.toString(), loc(), entry.loc());
878  }
879
880  void handleUnlock(FactSet &FSet, FactManager &FactMan,
881                    const CapabilityExpr &Cp, SourceLocation UnlockLoc,
882                    bool FullyRemove, ThreadSafetyHandler &Handler,
883                    StringRef DiagKind) const override {
884    FSet.removeLock(FactMan, Cp);
885    if (!Cp.negative()) {
886      FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
887                                !Cp, LK_Exclusive, UnlockLoc));
888    }
889  }
890};
891
892class ScopedLockableFactEntry : public FactEntry {
893private:
894  enum UnderlyingCapabilityKind {
895    UCK_Acquired,          ///< Any kind of acquired capability.
896    UCK_ReleasedShared,    ///< Shared capability that was released.
897    UCK_ReleasedExclusive, ///< Exclusive capability that was released.
898  };
899
900  using UnderlyingCapability =
901      llvm::PointerIntPair<const til::SExpr *, 2, UnderlyingCapabilityKind>;
902
903  SmallVector<UnderlyingCapability, 4> UnderlyingMutexes;
904
905public:
906  ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
907      : FactEntry(CE, LK_Exclusive, Loc, Acquired) {}
908
909  void addLock(const CapabilityExpr &M) {
910    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired);
911  }
912
913  void addExclusiveUnlock(const CapabilityExpr &M) {
914    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedExclusive);
915  }
916
917  void addSharedUnlock(const CapabilityExpr &M) {
918    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedShared);
919  }
920
921  void
922  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
923                                SourceLocation JoinLoc, LockErrorKind LEK,
924                                ThreadSafetyHandler &Handler) const override {
925    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
926      const auto *Entry = FSet.findLock(
927          FactMan, CapabilityExpr(UnderlyingMutex.getPointer(), false));
928      if ((UnderlyingMutex.getInt() == UCK_Acquired && Entry) ||
929          (UnderlyingMutex.getInt() != UCK_Acquired && !Entry)) {
930        // If this scoped lock manages another mutex, and if the underlying
931        // mutex is still/not held, then warn about the underlying mutex.
932        Handler.handleMutexHeldEndOfScope(
933            "mutex", sx::toString(UnderlyingMutex.getPointer()), loc(), JoinLoc,
934            LEK);
935      }
936    }
937  }
938
939  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
940                  ThreadSafetyHandler &Handler,
941                  StringRef DiagKind) const override {
942    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
943      CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
944
945      if (UnderlyingMutex.getInt() == UCK_Acquired)
946        lock(FSet, FactMan, UnderCp, entry.kind(), entry.loc(), &Handler,
947             DiagKind);
948      else
949        unlock(FSet, FactMan, UnderCp, entry.loc(), &Handler, DiagKind);
950    }
951  }
952
953  void handleUnlock(FactSet &FSet, FactManager &FactMan,
954                    const CapabilityExpr &Cp, SourceLocation UnlockLoc,
955                    bool FullyRemove, ThreadSafetyHandler &Handler,
956                    StringRef DiagKind) const override {
957    assert(!Cp.negative() && "Managing object cannot be negative.");
958    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
959      CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
960
961      // Remove/lock the underlying mutex if it exists/is still unlocked; warn
962      // on double unlocking/locking if we're not destroying the scoped object.
963      ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
964      if (UnderlyingMutex.getInt() == UCK_Acquired) {
965        unlock(FSet, FactMan, UnderCp, UnlockLoc, TSHandler, DiagKind);
966      } else {
967        LockKind kind = UnderlyingMutex.getInt() == UCK_ReleasedShared
968                            ? LK_Shared
969                            : LK_Exclusive;
970        lock(FSet, FactMan, UnderCp, kind, UnlockLoc, TSHandler, DiagKind);
971      }
972    }
973    if (FullyRemove)
974      FSet.removeLock(FactMan, Cp);
975  }
976
977private:
978  void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
979            LockKind kind, SourceLocation loc, ThreadSafetyHandler *Handler,
980            StringRef DiagKind) const {
981    if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
982      if (Handler)
983        Handler->handleDoubleLock(DiagKind, Cp.toString(), Fact->loc(), loc);
984    } else {
985      FSet.removeLock(FactMan, !Cp);
986      FSet.addLock(FactMan,
987                   std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed));
988    }
989  }
990
991  void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
992              SourceLocation loc, ThreadSafetyHandler *Handler,
993              StringRef DiagKind) const {
994    if (FSet.findLock(FactMan, Cp)) {
995      FSet.removeLock(FactMan, Cp);
996      FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
997                                !Cp, LK_Exclusive, loc));
998    } else if (Handler) {
999      SourceLocation PrevLoc;
1000      if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1001        PrevLoc = Neg->loc();
1002      Handler->handleUnmatchedUnlock(DiagKind, Cp.toString(), loc, PrevLoc);
1003    }
1004  }
1005};
1006
1007/// Class which implements the core thread safety analysis routines.
1008class ThreadSafetyAnalyzer {
1009  friend class BuildLockset;
1010  friend class threadSafety::BeforeSet;
1011
1012  llvm::BumpPtrAllocator Bpa;
1013  threadSafety::til::MemRegionRef Arena;
1014  threadSafety::SExprBuilder SxBuilder;
1015
1016  ThreadSafetyHandler &Handler;
1017  const CXXMethodDecl *CurrentMethod;
1018  LocalVariableMap LocalVarMap;
1019  FactManager FactMan;
1020  std::vector<CFGBlockInfo> BlockInfo;
1021
1022  BeforeSet *GlobalBeforeSet;
1023
1024public:
1025  ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1026      : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1027
1028  bool inCurrentScope(const CapabilityExpr &CapE);
1029
1030  void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1031               StringRef DiagKind, bool ReqAttr = false);
1032  void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1033                  SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
1034                  StringRef DiagKind);
1035
1036  template <typename AttrType>
1037  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1038                   const NamedDecl *D, VarDecl *SelfDecl = nullptr);
1039
1040  template <class AttrType>
1041  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1042                   const NamedDecl *D,
1043                   const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1044                   Expr *BrE, bool Neg);
1045
1046  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1047                                     bool &Negate);
1048
1049  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1050                      const CFGBlock* PredBlock,
1051                      const CFGBlock *CurrBlock);
1052
1053  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1054                        SourceLocation JoinLoc, LockErrorKind LEK1,
1055                        LockErrorKind LEK2);
1056
1057  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1058                        SourceLocation JoinLoc, LockErrorKind LEK1) {
1059    intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1);
1060  }
1061
1062  void runAnalysis(AnalysisDeclContext &AC);
1063};
1064
1065} // namespace
1066
1067/// Process acquired_before and acquired_after attributes on Vd.
1068BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1069    ThreadSafetyAnalyzer& Analyzer) {
1070  // Create a new entry for Vd.
1071  BeforeInfo *Info = nullptr;
1072  {
1073    // Keep InfoPtr in its own scope in case BMap is modified later and the
1074    // reference becomes invalid.
1075    std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1076    if (!InfoPtr)
1077      InfoPtr.reset(new BeforeInfo());
1078    Info = InfoPtr.get();
1079  }
1080
1081  for (const auto *At : Vd->attrs()) {
1082    switch (At->getKind()) {
1083      case attr::AcquiredBefore: {
1084        const auto *A = cast<AcquiredBeforeAttr>(At);
1085
1086        // Read exprs from the attribute, and add them to BeforeVect.
1087        for (const auto *Arg : A->args()) {
1088          CapabilityExpr Cp =
1089            Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1090          if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1091            Info->Vect.push_back(Cpvd);
1092            const auto It = BMap.find(Cpvd);
1093            if (It == BMap.end())
1094              insertAttrExprs(Cpvd, Analyzer);
1095          }
1096        }
1097        break;
1098      }
1099      case attr::AcquiredAfter: {
1100        const auto *A = cast<AcquiredAfterAttr>(At);
1101
1102        // Read exprs from the attribute, and add them to BeforeVect.
1103        for (const auto *Arg : A->args()) {
1104          CapabilityExpr Cp =
1105            Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1106          if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1107            // Get entry for mutex listed in attribute
1108            BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1109            ArgInfo->Vect.push_back(Vd);
1110          }
1111        }
1112        break;
1113      }
1114      default:
1115        break;
1116    }
1117  }
1118
1119  return Info;
1120}
1121
1122BeforeSet::BeforeInfo *
1123BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1124                                ThreadSafetyAnalyzer &Analyzer) {
1125  auto It = BMap.find(Vd);
1126  BeforeInfo *Info = nullptr;
1127  if (It == BMap.end())
1128    Info = insertAttrExprs(Vd, Analyzer);
1129  else
1130    Info = It->second.get();
1131  assert(Info && "BMap contained nullptr?");
1132  return Info;
1133}
1134
1135/// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1136void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1137                                 const FactSet& FSet,
1138                                 ThreadSafetyAnalyzer& Analyzer,
1139                                 SourceLocation Loc, StringRef CapKind) {
1140  SmallVector<BeforeInfo*, 8> InfoVect;
1141
1142  // Do a depth-first traversal of Vd.
1143  // Return true if there are cycles.
1144  std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1145    if (!Vd)
1146      return false;
1147
1148    BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1149
1150    if (Info->Visited == 1)
1151      return true;
1152
1153    if (Info->Visited == 2)
1154      return false;
1155
1156    if (Info->Vect.empty())
1157      return false;
1158
1159    InfoVect.push_back(Info);
1160    Info->Visited = 1;
1161    for (const auto *Vdb : Info->Vect) {
1162      // Exclude mutexes in our immediate before set.
1163      if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1164        StringRef L1 = StartVd->getName();
1165        StringRef L2 = Vdb->getName();
1166        Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1167      }
1168      // Transitively search other before sets, and warn on cycles.
1169      if (traverse(Vdb)) {
1170        if (CycMap.find(Vd) == CycMap.end()) {
1171          CycMap.insert(std::make_pair(Vd, true));
1172          StringRef L1 = Vd->getName();
1173          Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1174        }
1175      }
1176    }
1177    Info->Visited = 2;
1178    return false;
1179  };
1180
1181  traverse(StartVd);
1182
1183  for (auto *Info : InfoVect)
1184    Info->Visited = 0;
1185}
1186
1187/// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1188static const ValueDecl *getValueDecl(const Expr *Exp) {
1189  if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1190    return getValueDecl(CE->getSubExpr());
1191
1192  if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1193    return DR->getDecl();
1194
1195  if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1196    return ME->getMemberDecl();
1197
1198  return nullptr;
1199}
1200
1201namespace {
1202
1203template <typename Ty>
1204class has_arg_iterator_range {
1205  using yes = char[1];
1206  using no = char[2];
1207
1208  template <typename Inner>
1209  static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1210
1211  template <typename>
1212  static no& test(...);
1213
1214public:
1215  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1216};
1217
1218} // namespace
1219
1220static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
1221  return A->getName();
1222}
1223
1224static StringRef ClassifyDiagnostic(QualType VDT) {
1225  // We need to look at the declaration of the type of the value to determine
1226  // which it is. The type should either be a record or a typedef, or a pointer
1227  // or reference thereof.
1228  if (const auto *RT = VDT->getAs<RecordType>()) {
1229    if (const auto *RD = RT->getDecl())
1230      if (const auto *CA = RD->getAttr<CapabilityAttr>())
1231        return ClassifyDiagnostic(CA);
1232  } else if (const auto *TT = VDT->getAs<TypedefType>()) {
1233    if (const auto *TD = TT->getDecl())
1234      if (const auto *CA = TD->getAttr<CapabilityAttr>())
1235        return ClassifyDiagnostic(CA);
1236  } else if (VDT->isPointerType() || VDT->isReferenceType())
1237    return ClassifyDiagnostic(VDT->getPointeeType());
1238
1239  return "mutex";
1240}
1241
1242static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
1243  assert(VD && "No ValueDecl passed");
1244
1245  // The ValueDecl is the declaration of a mutex or role (hopefully).
1246  return ClassifyDiagnostic(VD->getType());
1247}
1248
1249template <typename AttrTy>
1250static std::enable_if_t<!has_arg_iterator_range<AttrTy>::value, StringRef>
1251ClassifyDiagnostic(const AttrTy *A) {
1252  if (const ValueDecl *VD = getValueDecl(A->getArg()))
1253    return ClassifyDiagnostic(VD);
1254  return "mutex";
1255}
1256
1257template <typename AttrTy>
1258static std::enable_if_t<has_arg_iterator_range<AttrTy>::value, StringRef>
1259ClassifyDiagnostic(const AttrTy *A) {
1260  for (const auto *Arg : A->args()) {
1261    if (const ValueDecl *VD = getValueDecl(Arg))
1262      return ClassifyDiagnostic(VD);
1263  }
1264  return "mutex";
1265}
1266
1267bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1268  const threadSafety::til::SExpr *SExp = CapE.sexpr();
1269  assert(SExp && "Null expressions should be ignored");
1270
1271  if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1272    const ValueDecl *VD = LP->clangDecl();
1273    // Variables defined in a function are always inaccessible.
1274    if (!VD->isDefinedOutsideFunctionOrMethod())
1275      return false;
1276    // For now we consider static class members to be inaccessible.
1277    if (isa<CXXRecordDecl>(VD->getDeclContext()))
1278      return false;
1279    // Global variables are always in scope.
1280    return true;
1281  }
1282
1283  // Members are in scope from methods of the same class.
1284  if (const auto *P = dyn_cast<til::Project>(SExp)) {
1285    if (!CurrentMethod)
1286      return false;
1287    const ValueDecl *VD = P->clangDecl();
1288    return VD->getDeclContext() == CurrentMethod->getDeclContext();
1289  }
1290
1291  return false;
1292}
1293
1294/// Add a new lock to the lockset, warning if the lock is already there.
1295/// \param ReqAttr -- true if this is part of an initial Requires attribute.
1296void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1297                                   std::unique_ptr<FactEntry> Entry,
1298                                   StringRef DiagKind, bool ReqAttr) {
1299  if (Entry->shouldIgnore())
1300    return;
1301
1302  if (!ReqAttr && !Entry->negative()) {
1303    // look for the negative capability, and remove it from the fact set.
1304    CapabilityExpr NegC = !*Entry;
1305    const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1306    if (Nen) {
1307      FSet.removeLock(FactMan, NegC);
1308    }
1309    else {
1310      if (inCurrentScope(*Entry) && !Entry->asserted())
1311        Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
1312                                      NegC.toString(), Entry->loc());
1313    }
1314  }
1315
1316  // Check before/after constraints
1317  if (Handler.issueBetaWarnings() &&
1318      !Entry->asserted() && !Entry->declared()) {
1319    GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1320                                      Entry->loc(), DiagKind);
1321  }
1322
1323  // FIXME: Don't always warn when we have support for reentrant locks.
1324  if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1325    if (!Entry->asserted())
1326      Cp->handleLock(FSet, FactMan, *Entry, Handler, DiagKind);
1327  } else {
1328    FSet.addLock(FactMan, std::move(Entry));
1329  }
1330}
1331
1332/// Remove a lock from the lockset, warning if the lock is not there.
1333/// \param UnlockLoc The source location of the unlock (only used in error msg)
1334void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1335                                      SourceLocation UnlockLoc,
1336                                      bool FullyRemove, LockKind ReceivedKind,
1337                                      StringRef DiagKind) {
1338  if (Cp.shouldIgnore())
1339    return;
1340
1341  const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1342  if (!LDat) {
1343    SourceLocation PrevLoc;
1344    if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1345      PrevLoc = Neg->loc();
1346    Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc, PrevLoc);
1347    return;
1348  }
1349
1350  // Generic lock removal doesn't care about lock kind mismatches, but
1351  // otherwise diagnose when the lock kinds are mismatched.
1352  if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1353    Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), LDat->kind(),
1354                                      ReceivedKind, LDat->loc(), UnlockLoc);
1355  }
1356
1357  LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
1358                     DiagKind);
1359}
1360
1361/// Extract the list of mutexIDs from the attribute on an expression,
1362/// and push them onto Mtxs, discarding any duplicates.
1363template <typename AttrType>
1364void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1365                                       const Expr *Exp, const NamedDecl *D,
1366                                       VarDecl *SelfDecl) {
1367  if (Attr->args_size() == 0) {
1368    // The mutex held is the "this" object.
1369    CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
1370    if (Cp.isInvalid()) {
1371       warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1372       return;
1373    }
1374    //else
1375    if (!Cp.shouldIgnore())
1376      Mtxs.push_back_nodup(Cp);
1377    return;
1378  }
1379
1380  for (const auto *Arg : Attr->args()) {
1381    CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
1382    if (Cp.isInvalid()) {
1383       warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1384       continue;
1385    }
1386    //else
1387    if (!Cp.shouldIgnore())
1388      Mtxs.push_back_nodup(Cp);
1389  }
1390}
1391
1392/// Extract the list of mutexIDs from a trylock attribute.  If the
1393/// trylock applies to the given edge, then push them onto Mtxs, discarding
1394/// any duplicates.
1395template <class AttrType>
1396void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1397                                       const Expr *Exp, const NamedDecl *D,
1398                                       const CFGBlock *PredBlock,
1399                                       const CFGBlock *CurrBlock,
1400                                       Expr *BrE, bool Neg) {
1401  // Find out which branch has the lock
1402  bool branch = false;
1403  if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1404    branch = BLE->getValue();
1405  else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1406    branch = ILE->getValue().getBoolValue();
1407
1408  int branchnum = branch ? 0 : 1;
1409  if (Neg)
1410    branchnum = !branchnum;
1411
1412  // If we've taken the trylock branch, then add the lock
1413  int i = 0;
1414  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1415       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1416    if (*SI == CurrBlock && i == branchnum)
1417      getMutexIDs(Mtxs, Attr, Exp, D);
1418  }
1419}
1420
1421static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1422  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1423    TCond = false;
1424    return true;
1425  } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1426    TCond = BLE->getValue();
1427    return true;
1428  } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1429    TCond = ILE->getValue().getBoolValue();
1430    return true;
1431  } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1432    return getStaticBooleanValue(CE->getSubExpr(), TCond);
1433  return false;
1434}
1435
1436// If Cond can be traced back to a function call, return the call expression.
1437// The negate variable should be called with false, and will be set to true
1438// if the function call is negated, e.g. if (!mu.tryLock(...))
1439const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1440                                                         LocalVarContext C,
1441                                                         bool &Negate) {
1442  if (!Cond)
1443    return nullptr;
1444
1445  if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1446    if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1447      return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1448    return CallExp;
1449  }
1450  else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1451    return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1452  else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1453    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1454  else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1455    return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1456  else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1457    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1458    return getTrylockCallExpr(E, C, Negate);
1459  }
1460  else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1461    if (UOP->getOpcode() == UO_LNot) {
1462      Negate = !Negate;
1463      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1464    }
1465    return nullptr;
1466  }
1467  else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1468    if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1469      if (BOP->getOpcode() == BO_NE)
1470        Negate = !Negate;
1471
1472      bool TCond = false;
1473      if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1474        if (!TCond) Negate = !Negate;
1475        return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1476      }
1477      TCond = false;
1478      if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1479        if (!TCond) Negate = !Negate;
1480        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1481      }
1482      return nullptr;
1483    }
1484    if (BOP->getOpcode() == BO_LAnd) {
1485      // LHS must have been evaluated in a different block.
1486      return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1487    }
1488    if (BOP->getOpcode() == BO_LOr)
1489      return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1490    return nullptr;
1491  } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1492    bool TCond, FCond;
1493    if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1494        getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1495      if (TCond && !FCond)
1496        return getTrylockCallExpr(COP->getCond(), C, Negate);
1497      if (!TCond && FCond) {
1498        Negate = !Negate;
1499        return getTrylockCallExpr(COP->getCond(), C, Negate);
1500      }
1501    }
1502  }
1503  return nullptr;
1504}
1505
1506/// Find the lockset that holds on the edge between PredBlock
1507/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1508/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1509void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1510                                          const FactSet &ExitSet,
1511                                          const CFGBlock *PredBlock,
1512                                          const CFGBlock *CurrBlock) {
1513  Result = ExitSet;
1514
1515  const Stmt *Cond = PredBlock->getTerminatorCondition();
1516  // We don't acquire try-locks on ?: branches, only when its result is used.
1517  if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1518    return;
1519
1520  bool Negate = false;
1521  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1522  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1523  StringRef CapDiagKind = "mutex";
1524
1525  const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1526  if (!Exp)
1527    return;
1528
1529  auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1530  if(!FunDecl || !FunDecl->hasAttrs())
1531    return;
1532
1533  CapExprSet ExclusiveLocksToAdd;
1534  CapExprSet SharedLocksToAdd;
1535
1536  // If the condition is a call to a Trylock function, then grab the attributes
1537  for (const auto *Attr : FunDecl->attrs()) {
1538    switch (Attr->getKind()) {
1539      case attr::TryAcquireCapability: {
1540        auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1541        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1542                    Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1543                    Negate);
1544        CapDiagKind = ClassifyDiagnostic(A);
1545        break;
1546      };
1547      case attr::ExclusiveTrylockFunction: {
1548        const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1549        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1550                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1551        CapDiagKind = ClassifyDiagnostic(A);
1552        break;
1553      }
1554      case attr::SharedTrylockFunction: {
1555        const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1556        getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
1557                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1558        CapDiagKind = ClassifyDiagnostic(A);
1559        break;
1560      }
1561      default:
1562        break;
1563    }
1564  }
1565
1566  // Add and remove locks.
1567  SourceLocation Loc = Exp->getExprLoc();
1568  for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1569    addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1570                                                         LK_Exclusive, Loc),
1571            CapDiagKind);
1572  for (const auto &SharedLockToAdd : SharedLocksToAdd)
1573    addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1574                                                         LK_Shared, Loc),
1575            CapDiagKind);
1576}
1577
1578namespace {
1579
1580/// We use this class to visit different types of expressions in
1581/// CFGBlocks, and build up the lockset.
1582/// An expression may cause us to add or remove locks from the lockset, or else
1583/// output error messages related to missing locks.
1584/// FIXME: In future, we may be able to not inherit from a visitor.
1585class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1586  friend class ThreadSafetyAnalyzer;
1587
1588  ThreadSafetyAnalyzer *Analyzer;
1589  FactSet FSet;
1590  LocalVariableMap::Context LVarCtx;
1591  unsigned CtxIndex;
1592
1593  // helper functions
1594  void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1595                          Expr *MutexExp, ProtectedOperationKind POK,
1596                          StringRef DiagKind, SourceLocation Loc);
1597  void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
1598                       StringRef DiagKind);
1599
1600  void checkAccess(const Expr *Exp, AccessKind AK,
1601                   ProtectedOperationKind POK = POK_VarAccess);
1602  void checkPtAccess(const Expr *Exp, AccessKind AK,
1603                     ProtectedOperationKind POK = POK_VarAccess);
1604
1605  void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
1606  void examineArguments(const FunctionDecl *FD,
1607                        CallExpr::const_arg_iterator ArgBegin,
1608                        CallExpr::const_arg_iterator ArgEnd,
1609                        bool SkipFirstParam = false);
1610
1611public:
1612  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1613      : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1614        LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {}
1615
1616  void VisitUnaryOperator(const UnaryOperator *UO);
1617  void VisitBinaryOperator(const BinaryOperator *BO);
1618  void VisitCastExpr(const CastExpr *CE);
1619  void VisitCallExpr(const CallExpr *Exp);
1620  void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1621  void VisitDeclStmt(const DeclStmt *S);
1622};
1623
1624} // namespace
1625
1626/// Warn if the LSet does not contain a lock sufficient to protect access
1627/// of at least the passed in AccessKind.
1628void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1629                                      AccessKind AK, Expr *MutexExp,
1630                                      ProtectedOperationKind POK,
1631                                      StringRef DiagKind, SourceLocation Loc) {
1632  LockKind LK = getLockKindFromAccessKind(AK);
1633
1634  CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1635  if (Cp.isInvalid()) {
1636    warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1637    return;
1638  } else if (Cp.shouldIgnore()) {
1639    return;
1640  }
1641
1642  if (Cp.negative()) {
1643    // Negative capabilities act like locks excluded
1644    const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
1645    if (LDat) {
1646      Analyzer->Handler.handleFunExcludesLock(
1647          DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
1648      return;
1649    }
1650
1651    // If this does not refer to a negative capability in the same class,
1652    // then stop here.
1653    if (!Analyzer->inCurrentScope(Cp))
1654      return;
1655
1656    // Otherwise the negative requirement must be propagated to the caller.
1657    LDat = FSet.findLock(Analyzer->FactMan, Cp);
1658    if (!LDat) {
1659      Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1660    }
1661    return;
1662  }
1663
1664  const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
1665  bool NoError = true;
1666  if (!LDat) {
1667    // No exact match found.  Look for a partial match.
1668    LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
1669    if (LDat) {
1670      // Warn that there's no precise match.
1671      std::string PartMatchStr = LDat->toString();
1672      StringRef   PartMatchName(PartMatchStr);
1673      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1674                                           LK, Loc, &PartMatchName);
1675    } else {
1676      // Warn that there's no match at all.
1677      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1678                                           LK, Loc);
1679    }
1680    NoError = false;
1681  }
1682  // Make sure the mutex we found is the right kind.
1683  if (NoError && LDat && !LDat->isAtLeast(LK)) {
1684    Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1685                                         LK, Loc);
1686  }
1687}
1688
1689/// Warn if the LSet contains the given lock.
1690void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
1691                                   Expr *MutexExp, StringRef DiagKind) {
1692  CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1693  if (Cp.isInvalid()) {
1694    warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1695    return;
1696  } else if (Cp.shouldIgnore()) {
1697    return;
1698  }
1699
1700  const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp);
1701  if (LDat) {
1702    Analyzer->Handler.handleFunExcludesLock(
1703        DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
1704  }
1705}
1706
1707/// Checks guarded_by and pt_guarded_by attributes.
1708/// Whenever we identify an access (read or write) to a DeclRefExpr that is
1709/// marked with guarded_by, we must ensure the appropriate mutexes are held.
1710/// Similarly, we check if the access is to an expression that dereferences
1711/// a pointer marked with pt_guarded_by.
1712void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
1713                               ProtectedOperationKind POK) {
1714  Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1715
1716  SourceLocation Loc = Exp->getExprLoc();
1717
1718  // Local variables of reference type cannot be re-assigned;
1719  // map them to their initializer.
1720  while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1721    const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1722    if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1723      if (const auto *E = VD->getInit()) {
1724        // Guard against self-initialization. e.g., int &i = i;
1725        if (E == Exp)
1726          break;
1727        Exp = E;
1728        continue;
1729      }
1730    }
1731    break;
1732  }
1733
1734  if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1735    // For dereferences
1736    if (UO->getOpcode() == UO_Deref)
1737      checkPtAccess(UO->getSubExpr(), AK, POK);
1738    return;
1739  }
1740
1741  if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1742    checkPtAccess(AE->getLHS(), AK, POK);
1743    return;
1744  }
1745
1746  if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1747    if (ME->isArrow())
1748      checkPtAccess(ME->getBase(), AK, POK);
1749    else
1750      checkAccess(ME->getBase(), AK, POK);
1751  }
1752
1753  const ValueDecl *D = getValueDecl(Exp);
1754  if (!D || !D->hasAttrs())
1755    return;
1756
1757  if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
1758    Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
1759  }
1760
1761  for (const auto *I : D->specific_attrs<GuardedByAttr>())
1762    warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
1763                       ClassifyDiagnostic(I), Loc);
1764}
1765
1766/// Checks pt_guarded_by and pt_guarded_var attributes.
1767/// POK is the same  operationKind that was passed to checkAccess.
1768void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
1769                                 ProtectedOperationKind POK) {
1770  while (true) {
1771    if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1772      Exp = PE->getSubExpr();
1773      continue;
1774    }
1775    if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1776      if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1777        // If it's an actual array, and not a pointer, then it's elements
1778        // are protected by GUARDED_BY, not PT_GUARDED_BY;
1779        checkAccess(CE->getSubExpr(), AK, POK);
1780        return;
1781      }
1782      Exp = CE->getSubExpr();
1783      continue;
1784    }
1785    break;
1786  }
1787
1788  // Pass by reference warnings are under a different flag.
1789  ProtectedOperationKind PtPOK = POK_VarDereference;
1790  if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1791
1792  const ValueDecl *D = getValueDecl(Exp);
1793  if (!D || !D->hasAttrs())
1794    return;
1795
1796  if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
1797    Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
1798                                        Exp->getExprLoc());
1799
1800  for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1801    warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
1802                       ClassifyDiagnostic(I), Exp->getExprLoc());
1803}
1804
1805/// Process a function call, method call, constructor call,
1806/// or destructor call.  This involves looking at the attributes on the
1807/// corresponding function/method/constructor/destructor, issuing warnings,
1808/// and updating the locksets accordingly.
1809///
1810/// FIXME: For classes annotated with one of the guarded annotations, we need
1811/// to treat const method calls as reads and non-const method calls as writes,
1812/// and check that the appropriate locks are held. Non-const method calls with
1813/// the same signature as const method calls can be also treated as reads.
1814///
1815void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1816                              VarDecl *VD) {
1817  SourceLocation Loc = Exp->getExprLoc();
1818  CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1819  CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1820  CapExprSet ScopedReqsAndExcludes;
1821  StringRef CapDiagKind = "mutex";
1822
1823  // Figure out if we're constructing an object of scoped lockable class
1824  bool isScopedVar = false;
1825  if (VD) {
1826    if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1827      const CXXRecordDecl* PD = CD->getParent();
1828      if (PD && PD->hasAttr<ScopedLockableAttr>())
1829        isScopedVar = true;
1830    }
1831  }
1832
1833  for(const Attr *At : D->attrs()) {
1834    switch (At->getKind()) {
1835      // When we encounter a lock function, we need to add the lock to our
1836      // lockset.
1837      case attr::AcquireCapability: {
1838        const auto *A = cast<AcquireCapabilityAttr>(At);
1839        Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1840                                            : ExclusiveLocksToAdd,
1841                              A, Exp, D, VD);
1842
1843        CapDiagKind = ClassifyDiagnostic(A);
1844        break;
1845      }
1846
1847      // An assert will add a lock to the lockset, but will not generate
1848      // a warning if it is already there, and will not generate a warning
1849      // if it is not removed.
1850      case attr::AssertExclusiveLock: {
1851        const auto *A = cast<AssertExclusiveLockAttr>(At);
1852
1853        CapExprSet AssertLocks;
1854        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1855        for (const auto &AssertLock : AssertLocks)
1856          Analyzer->addLock(
1857              FSet,
1858              std::make_unique<LockableFactEntry>(AssertLock, LK_Exclusive, Loc,
1859                                                  FactEntry::Asserted),
1860              ClassifyDiagnostic(A));
1861        break;
1862      }
1863      case attr::AssertSharedLock: {
1864        const auto *A = cast<AssertSharedLockAttr>(At);
1865
1866        CapExprSet AssertLocks;
1867        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1868        for (const auto &AssertLock : AssertLocks)
1869          Analyzer->addLock(
1870              FSet,
1871              std::make_unique<LockableFactEntry>(AssertLock, LK_Shared, Loc,
1872                                                  FactEntry::Asserted),
1873              ClassifyDiagnostic(A));
1874        break;
1875      }
1876
1877      case attr::AssertCapability: {
1878        const auto *A = cast<AssertCapabilityAttr>(At);
1879        CapExprSet AssertLocks;
1880        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1881        for (const auto &AssertLock : AssertLocks)
1882          Analyzer->addLock(FSet,
1883                            std::make_unique<LockableFactEntry>(
1884                                AssertLock,
1885                                A->isShared() ? LK_Shared : LK_Exclusive, Loc,
1886                                FactEntry::Asserted),
1887                            ClassifyDiagnostic(A));
1888        break;
1889      }
1890
1891      // When we encounter an unlock function, we need to remove unlocked
1892      // mutexes from the lockset, and flag a warning if they are not there.
1893      case attr::ReleaseCapability: {
1894        const auto *A = cast<ReleaseCapabilityAttr>(At);
1895        if (A->isGeneric())
1896          Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
1897        else if (A->isShared())
1898          Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
1899        else
1900          Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
1901
1902        CapDiagKind = ClassifyDiagnostic(A);
1903        break;
1904      }
1905
1906      case attr::RequiresCapability: {
1907        const auto *A = cast<RequiresCapabilityAttr>(At);
1908        for (auto *Arg : A->args()) {
1909          warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
1910                             POK_FunctionCall, ClassifyDiagnostic(A),
1911                             Exp->getExprLoc());
1912          // use for adopting a lock
1913          if (isScopedVar)
1914            Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD);
1915        }
1916        break;
1917      }
1918
1919      case attr::LocksExcluded: {
1920        const auto *A = cast<LocksExcludedAttr>(At);
1921        for (auto *Arg : A->args()) {
1922          warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
1923          // use for deferring a lock
1924          if (isScopedVar)
1925            Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD);
1926        }
1927        break;
1928      }
1929
1930      // Ignore attributes unrelated to thread-safety
1931      default:
1932        break;
1933    }
1934  }
1935
1936  // Remove locks first to allow lock upgrading/downgrading.
1937  // FIXME -- should only fully remove if the attribute refers to 'this'.
1938  bool Dtor = isa<CXXDestructorDecl>(D);
1939  for (const auto &M : ExclusiveLocksToRemove)
1940    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
1941  for (const auto &M : SharedLocksToRemove)
1942    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
1943  for (const auto &M : GenericLocksToRemove)
1944    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
1945
1946  // Add locks.
1947  FactEntry::SourceKind Source =
1948      isScopedVar ? FactEntry::Managed : FactEntry::Acquired;
1949  for (const auto &M : ExclusiveLocksToAdd)
1950    Analyzer->addLock(
1951        FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive, Loc, Source),
1952        CapDiagKind);
1953  for (const auto &M : SharedLocksToAdd)
1954    Analyzer->addLock(
1955        FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source),
1956        CapDiagKind);
1957
1958  if (isScopedVar) {
1959    // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1960    SourceLocation MLoc = VD->getLocation();
1961    DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue,
1962                    VD->getLocation());
1963    // FIXME: does this store a pointer to DRE?
1964    CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
1965
1966    auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, MLoc);
1967    for (const auto &M : ExclusiveLocksToAdd)
1968      ScopedEntry->addLock(M);
1969    for (const auto &M : SharedLocksToAdd)
1970      ScopedEntry->addLock(M);
1971    for (const auto &M : ScopedReqsAndExcludes)
1972      ScopedEntry->addLock(M);
1973    for (const auto &M : ExclusiveLocksToRemove)
1974      ScopedEntry->addExclusiveUnlock(M);
1975    for (const auto &M : SharedLocksToRemove)
1976      ScopedEntry->addSharedUnlock(M);
1977    Analyzer->addLock(FSet, std::move(ScopedEntry), CapDiagKind);
1978  }
1979}
1980
1981/// For unary operations which read and write a variable, we need to
1982/// check whether we hold any required mutexes. Reads are checked in
1983/// VisitCastExpr.
1984void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1985  switch (UO->getOpcode()) {
1986    case UO_PostDec:
1987    case UO_PostInc:
1988    case UO_PreDec:
1989    case UO_PreInc:
1990      checkAccess(UO->getSubExpr(), AK_Written);
1991      break;
1992    default:
1993      break;
1994  }
1995}
1996
1997/// For binary operations which assign to a variable (writes), we need to check
1998/// whether we hold any required mutexes.
1999/// FIXME: Deal with non-primitive types.
2000void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
2001  if (!BO->isAssignmentOp())
2002    return;
2003
2004  // adjust the context
2005  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
2006
2007  checkAccess(BO->getLHS(), AK_Written);
2008}
2009
2010/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2011/// need to ensure we hold any required mutexes.
2012/// FIXME: Deal with non-primitive types.
2013void BuildLockset::VisitCastExpr(const CastExpr *CE) {
2014  if (CE->getCastKind() != CK_LValueToRValue)
2015    return;
2016  checkAccess(CE->getSubExpr(), AK_Read);
2017}
2018
2019void BuildLockset::examineArguments(const FunctionDecl *FD,
2020                                    CallExpr::const_arg_iterator ArgBegin,
2021                                    CallExpr::const_arg_iterator ArgEnd,
2022                                    bool SkipFirstParam) {
2023  // Currently we can't do anything if we don't know the function declaration.
2024  if (!FD)
2025    return;
2026
2027  // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it
2028  // only turns off checking within the body of a function, but we also
2029  // use it to turn off checking in arguments to the function.  This
2030  // could result in some false negatives, but the alternative is to
2031  // create yet another attribute.
2032  if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
2033    return;
2034
2035  const ArrayRef<ParmVarDecl *> Params = FD->parameters();
2036  auto Param = Params.begin();
2037  if (SkipFirstParam)
2038    ++Param;
2039
2040  // There can be default arguments, so we stop when one iterator is at end().
2041  for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
2042       ++Param, ++Arg) {
2043    QualType Qt = (*Param)->getType();
2044    if (Qt->isReferenceType())
2045      checkAccess(*Arg, AK_Read, POK_PassByRef);
2046  }
2047}
2048
2049void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2050  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2051    const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2052    // ME can be null when calling a method pointer
2053    const CXXMethodDecl *MD = CE->getMethodDecl();
2054
2055    if (ME && MD) {
2056      if (ME->isArrow()) {
2057        // Should perhaps be AK_Written if !MD->isConst().
2058        checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2059      } else {
2060        // Should perhaps be AK_Written if !MD->isConst().
2061        checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2062      }
2063    }
2064
2065    examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2066  } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2067    auto OEop = OE->getOperator();
2068    switch (OEop) {
2069      case OO_Equal: {
2070        const Expr *Target = OE->getArg(0);
2071        const Expr *Source = OE->getArg(1);
2072        checkAccess(Target, AK_Written);
2073        checkAccess(Source, AK_Read);
2074        break;
2075      }
2076      case OO_Star:
2077      case OO_Arrow:
2078      case OO_Subscript:
2079        if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2080          // Grrr.  operator* can be multiplication...
2081          checkPtAccess(OE->getArg(0), AK_Read);
2082        }
2083        LLVM_FALLTHROUGH;
2084      default: {
2085        // TODO: get rid of this, and rely on pass-by-ref instead.
2086        const Expr *Obj = OE->getArg(0);
2087        checkAccess(Obj, AK_Read);
2088        // Check the remaining arguments. For method operators, the first
2089        // argument is the implicit self argument, and doesn't appear in the
2090        // FunctionDecl, but for non-methods it does.
2091        const FunctionDecl *FD = OE->getDirectCallee();
2092        examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2093                         /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2094        break;
2095      }
2096    }
2097  } else {
2098    examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2099  }
2100
2101  auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2102  if(!D || !D->hasAttrs())
2103    return;
2104  handleCall(Exp, D);
2105}
2106
2107void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2108  const CXXConstructorDecl *D = Exp->getConstructor();
2109  if (D && D->isCopyConstructor()) {
2110    const Expr* Source = Exp->getArg(0);
2111    checkAccess(Source, AK_Read);
2112  } else {
2113    examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2114  }
2115}
2116
2117static CXXConstructorDecl *
2118findConstructorForByValueReturn(const CXXRecordDecl *RD) {
2119  // Prefer a move constructor over a copy constructor. If there's more than
2120  // one copy constructor or more than one move constructor, we arbitrarily
2121  // pick the first declared such constructor rather than trying to guess which
2122  // one is more appropriate.
2123  CXXConstructorDecl *CopyCtor = nullptr;
2124  for (auto *Ctor : RD->ctors()) {
2125    if (Ctor->isDeleted())
2126      continue;
2127    if (Ctor->isMoveConstructor())
2128      return Ctor;
2129    if (!CopyCtor && Ctor->isCopyConstructor())
2130      CopyCtor = Ctor;
2131  }
2132  return CopyCtor;
2133}
2134
2135static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args,
2136                               SourceLocation Loc) {
2137  ASTContext &Ctx = CD->getASTContext();
2138  return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc,
2139                                  CD, true, Args, false, false, false, false,
2140                                  CXXConstructExpr::CK_Complete,
2141                                  SourceRange(Loc, Loc));
2142}
2143
2144void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2145  // adjust the context
2146  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2147
2148  for (auto *D : S->getDeclGroup()) {
2149    if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2150      Expr *E = VD->getInit();
2151      if (!E)
2152        continue;
2153      E = E->IgnoreParens();
2154
2155      // handle constructors that involve temporaries
2156      if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2157        E = EWC->getSubExpr()->IgnoreParens();
2158      if (auto *CE = dyn_cast<CastExpr>(E))
2159        if (CE->getCastKind() == CK_NoOp ||
2160            CE->getCastKind() == CK_ConstructorConversion ||
2161            CE->getCastKind() == CK_UserDefinedConversion)
2162          E = CE->getSubExpr()->IgnoreParens();
2163      if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2164        E = BTE->getSubExpr()->IgnoreParens();
2165
2166      if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
2167        const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2168        if (!CtorD || !CtorD->hasAttrs())
2169          continue;
2170        handleCall(E, CtorD, VD);
2171      } else if (isa<CallExpr>(E) && E->isRValue()) {
2172        // If the object is initialized by a function call that returns a
2173        // scoped lockable by value, use the attributes on the copy or move
2174        // constructor to figure out what effect that should have on the
2175        // lockset.
2176        // FIXME: Is this really the best way to handle this situation?
2177        auto *RD = E->getType()->getAsCXXRecordDecl();
2178        if (!RD || !RD->hasAttr<ScopedLockableAttr>())
2179          continue;
2180        CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD);
2181        if (!CtorD || !CtorD->hasAttrs())
2182          continue;
2183        handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD);
2184      }
2185    }
2186  }
2187}
2188
2189/// Compute the intersection of two locksets and issue warnings for any
2190/// locks in the symmetric difference.
2191///
2192/// This function is used at a merge point in the CFG when comparing the lockset
2193/// of each branch being merged. For example, given the following sequence:
2194/// A; if () then B; else C; D; we need to check that the lockset after B and C
2195/// are the same. In the event of a difference, we use the intersection of these
2196/// two locksets at the start of D.
2197///
2198/// \param FSet1 The first lockset.
2199/// \param FSet2 The second lockset.
2200/// \param JoinLoc The location of the join point for error reporting
2201/// \param LEK1 The error message to report if a mutex is missing from LSet1
2202/// \param LEK2 The error message to report if a mutex is missing from Lset2
2203void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2204                                            const FactSet &FSet2,
2205                                            SourceLocation JoinLoc,
2206                                            LockErrorKind LEK1,
2207                                            LockErrorKind LEK2) {
2208  FactSet FSet1Orig = FSet1;
2209
2210  // Find locks in FSet2 that conflict or are not in FSet1, and warn.
2211  for (const auto &Fact : FSet2) {
2212    const FactEntry &LDat2 = FactMan[Fact];
2213
2214    FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, LDat2);
2215    if (Iter1 != FSet1.end()) {
2216      const FactEntry &LDat1 = FactMan[*Iter1];
2217      if (LDat1.kind() != LDat2.kind()) {
2218        Handler.handleExclusiveAndShared("mutex", LDat2.toString(), LDat2.loc(),
2219                                         LDat1.loc());
2220        if (LEK1 == LEK_LockedSomePredecessors &&
2221            LDat1.kind() != LK_Exclusive) {
2222          // Take the exclusive lock, which is the one in FSet2.
2223          *Iter1 = Fact;
2224        }
2225      } else if (LEK1 == LEK_LockedSomePredecessors && LDat1.asserted() &&
2226                 !LDat2.asserted()) {
2227        // The non-asserted lock in FSet2 is the one we want to track.
2228        *Iter1 = Fact;
2229      }
2230    } else {
2231      LDat2.handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
2232                                          Handler);
2233    }
2234  }
2235
2236  // Find locks in FSet1 that are not in FSet2, and remove them.
2237  for (const auto &Fact : FSet1Orig) {
2238    const FactEntry *LDat1 = &FactMan[Fact];
2239    const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
2240
2241    if (!LDat2) {
2242      LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
2243                                           Handler);
2244      if (LEK2 == LEK_LockedSomePredecessors)
2245        FSet1.removeLock(FactMan, *LDat1);
2246    }
2247  }
2248}
2249
2250// Return true if block B never continues to its successors.
2251static bool neverReturns(const CFGBlock *B) {
2252  if (B->hasNoReturnElement())
2253    return true;
2254  if (B->empty())
2255    return false;
2256
2257  CFGElement Last = B->back();
2258  if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2259    if (isa<CXXThrowExpr>(S->getStmt()))
2260      return true;
2261  }
2262  return false;
2263}
2264
2265/// Check a function's CFG for thread-safety violations.
2266///
2267/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2268/// at the end of each block, and issue warnings for thread safety violations.
2269/// Each block in the CFG is traversed exactly once.
2270void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2271  // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2272  // For now, we just use the walker to set things up.
2273  threadSafety::CFGWalker walker;
2274  if (!walker.init(AC))
2275    return;
2276
2277  // AC.dumpCFG(true);
2278  // threadSafety::printSCFG(walker);
2279
2280  CFG *CFGraph = walker.getGraph();
2281  const NamedDecl *D = walker.getDecl();
2282  const auto *CurrentFunction = dyn_cast<FunctionDecl>(D);
2283  CurrentMethod = dyn_cast<CXXMethodDecl>(D);
2284
2285  if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2286    return;
2287
2288  // FIXME: Do something a bit more intelligent inside constructor and
2289  // destructor code.  Constructors and destructors must assume unique access
2290  // to 'this', so checks on member variable access is disabled, but we should
2291  // still enable checks on other objects.
2292  if (isa<CXXConstructorDecl>(D))
2293    return;  // Don't check inside constructors.
2294  if (isa<CXXDestructorDecl>(D))
2295    return;  // Don't check inside destructors.
2296
2297  Handler.enterFunction(CurrentFunction);
2298
2299  BlockInfo.resize(CFGraph->getNumBlockIDs(),
2300    CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2301
2302  // We need to explore the CFG via a "topological" ordering.
2303  // That way, we will be guaranteed to have information about required
2304  // predecessor locksets when exploring a new block.
2305  const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2306  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2307
2308  // Mark entry block as reachable
2309  BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2310
2311  // Compute SSA names for local variables
2312  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2313
2314  // Fill in source locations for all CFGBlocks.
2315  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2316
2317  CapExprSet ExclusiveLocksAcquired;
2318  CapExprSet SharedLocksAcquired;
2319  CapExprSet LocksReleased;
2320
2321  // Add locks from exclusive_locks_required and shared_locks_required
2322  // to initial lockset. Also turn off checking for lock and unlock functions.
2323  // FIXME: is there a more intelligent way to check lock/unlock functions?
2324  if (!SortedGraph->empty() && D->hasAttrs()) {
2325    const CFGBlock *FirstBlock = *SortedGraph->begin();
2326    FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2327
2328    CapExprSet ExclusiveLocksToAdd;
2329    CapExprSet SharedLocksToAdd;
2330    StringRef CapDiagKind = "mutex";
2331
2332    SourceLocation Loc = D->getLocation();
2333    for (const auto *Attr : D->attrs()) {
2334      Loc = Attr->getLocation();
2335      if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2336        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2337                    nullptr, D);
2338        CapDiagKind = ClassifyDiagnostic(A);
2339      } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2340        // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2341        // We must ignore such methods.
2342        if (A->args_size() == 0)
2343          return;
2344        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2345                    nullptr, D);
2346        getMutexIDs(LocksReleased, A, nullptr, D);
2347        CapDiagKind = ClassifyDiagnostic(A);
2348      } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2349        if (A->args_size() == 0)
2350          return;
2351        getMutexIDs(A->isShared() ? SharedLocksAcquired
2352                                  : ExclusiveLocksAcquired,
2353                    A, nullptr, D);
2354        CapDiagKind = ClassifyDiagnostic(A);
2355      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2356        // Don't try to check trylock functions for now.
2357        return;
2358      } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2359        // Don't try to check trylock functions for now.
2360        return;
2361      } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2362        // Don't try to check trylock functions for now.
2363        return;
2364      }
2365    }
2366
2367    // FIXME -- Loc can be wrong here.
2368    for (const auto &Mu : ExclusiveLocksToAdd) {
2369      auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc,
2370                                                       FactEntry::Declared);
2371      addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2372    }
2373    for (const auto &Mu : SharedLocksToAdd) {
2374      auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc,
2375                                                       FactEntry::Declared);
2376      addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2377    }
2378  }
2379
2380  for (const auto *CurrBlock : *SortedGraph) {
2381    unsigned CurrBlockID = CurrBlock->getBlockID();
2382    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2383
2384    // Use the default initial lockset in case there are no predecessors.
2385    VisitedBlocks.insert(CurrBlock);
2386
2387    // Iterate through the predecessor blocks and warn if the lockset for all
2388    // predecessors is not the same. We take the entry lockset of the current
2389    // block to be the intersection of all previous locksets.
2390    // FIXME: By keeping the intersection, we may output more errors in future
2391    // for a lock which is not in the intersection, but was in the union. We
2392    // may want to also keep the union in future. As an example, let's say
2393    // the intersection contains Mutex L, and the union contains L and M.
2394    // Later we unlock M. At this point, we would output an error because we
2395    // never locked M; although the real error is probably that we forgot to
2396    // lock M on all code paths. Conversely, let's say that later we lock M.
2397    // In this case, we should compare against the intersection instead of the
2398    // union because the real error is probably that we forgot to unlock M on
2399    // all code paths.
2400    bool LocksetInitialized = false;
2401    SmallVector<CFGBlock *, 8> SpecialBlocks;
2402    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2403         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2404      // if *PI -> CurrBlock is a back edge
2405      if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2406        continue;
2407
2408      unsigned PrevBlockID = (*PI)->getBlockID();
2409      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2410
2411      // Ignore edges from blocks that can't return.
2412      if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2413        continue;
2414
2415      // Okay, we can reach this block from the entry.
2416      CurrBlockInfo->Reachable = true;
2417
2418      // If the previous block ended in a 'continue' or 'break' statement, then
2419      // a difference in locksets is probably due to a bug in that block, rather
2420      // than in some other predecessor. In that case, keep the other
2421      // predecessor's lockset.
2422      if (const Stmt *Terminator = (*PI)->getTerminatorStmt()) {
2423        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2424          SpecialBlocks.push_back(*PI);
2425          continue;
2426        }
2427      }
2428
2429      FactSet PrevLockset;
2430      getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2431
2432      if (!LocksetInitialized) {
2433        CurrBlockInfo->EntrySet = PrevLockset;
2434        LocksetInitialized = true;
2435      } else {
2436        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2437                         CurrBlockInfo->EntryLoc,
2438                         LEK_LockedSomePredecessors);
2439      }
2440    }
2441
2442    // Skip rest of block if it's not reachable.
2443    if (!CurrBlockInfo->Reachable)
2444      continue;
2445
2446    // Process continue and break blocks. Assume that the lockset for the
2447    // resulting block is unaffected by any discrepancies in them.
2448    for (const auto *PrevBlock : SpecialBlocks) {
2449      unsigned PrevBlockID = PrevBlock->getBlockID();
2450      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2451
2452      if (!LocksetInitialized) {
2453        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2454        LocksetInitialized = true;
2455      } else {
2456        // Determine whether this edge is a loop terminator for diagnostic
2457        // purposes. FIXME: A 'break' statement might be a loop terminator, but
2458        // it might also be part of a switch. Also, a subsequent destructor
2459        // might add to the lockset, in which case the real issue might be a
2460        // double lock on the other path.
2461        const Stmt *Terminator = PrevBlock->getTerminatorStmt();
2462        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2463
2464        FactSet PrevLockset;
2465        getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2466                       PrevBlock, CurrBlock);
2467
2468        // Do not update EntrySet.
2469        intersectAndWarn(
2470            CurrBlockInfo->EntrySet, PrevLockset, PrevBlockInfo->ExitLoc,
2471            IsLoop ? LEK_LockedSomeLoopIterations : LEK_LockedSomePredecessors);
2472      }
2473    }
2474
2475    BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2476
2477    // Visit all the statements in the basic block.
2478    for (const auto &BI : *CurrBlock) {
2479      switch (BI.getKind()) {
2480        case CFGElement::Statement: {
2481          CFGStmt CS = BI.castAs<CFGStmt>();
2482          LocksetBuilder.Visit(CS.getStmt());
2483          break;
2484        }
2485        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2486        case CFGElement::AutomaticObjectDtor: {
2487          CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2488          const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2489          if (!DD->hasAttrs())
2490            break;
2491
2492          // Create a dummy expression,
2493          auto *VD = const_cast<VarDecl *>(AD.getVarDecl());
2494          DeclRefExpr DRE(VD->getASTContext(), VD, false,
2495                          VD->getType().getNonReferenceType(), VK_LValue,
2496                          AD.getTriggerStmt()->getEndLoc());
2497          LocksetBuilder.handleCall(&DRE, DD);
2498          break;
2499        }
2500        default:
2501          break;
2502      }
2503    }
2504    CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2505
2506    // For every back edge from CurrBlock (the end of the loop) to another block
2507    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2508    // the one held at the beginning of FirstLoopBlock. We can look up the
2509    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2510    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2511         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2512      // if CurrBlock -> *SI is *not* a back edge
2513      if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2514        continue;
2515
2516      CFGBlock *FirstLoopBlock = *SI;
2517      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2518      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2519      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, PreLoop->EntryLoc,
2520                       LEK_LockedSomeLoopIterations);
2521    }
2522  }
2523
2524  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2525  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2526
2527  // Skip the final check if the exit block is unreachable.
2528  if (!Final->Reachable)
2529    return;
2530
2531  // By default, we expect all locks held on entry to be held on exit.
2532  FactSet ExpectedExitSet = Initial->EntrySet;
2533
2534  // Adjust the expected exit set by adding or removing locks, as declared
2535  // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
2536  // issue the appropriate warning.
2537  // FIXME: the location here is not quite right.
2538  for (const auto &Lock : ExclusiveLocksAcquired)
2539    ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2540                                         Lock, LK_Exclusive, D->getLocation()));
2541  for (const auto &Lock : SharedLocksAcquired)
2542    ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2543                                         Lock, LK_Shared, D->getLocation()));
2544  for (const auto &Lock : LocksReleased)
2545    ExpectedExitSet.removeLock(FactMan, Lock);
2546
2547  // FIXME: Should we call this function for all blocks which exit the function?
2548  intersectAndWarn(ExpectedExitSet, Final->ExitSet, Final->ExitLoc,
2549                   LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction);
2550
2551  Handler.leaveFunction(CurrentFunction);
2552}
2553
2554/// Check a function's CFG for thread-safety violations.
2555///
2556/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2557/// at the end of each block, and issue warnings for thread safety violations.
2558/// Each block in the CFG is traversed exactly once.
2559void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2560                                           ThreadSafetyHandler &Handler,
2561                                           BeforeSet **BSet) {
2562  if (!*BSet)
2563    *BSet = new BeforeSet;
2564  ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2565  Analyzer.runAnalysis(AC);
2566}
2567
2568void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2569
2570/// Helper function that returns a LockKind required for the given level
2571/// of access.
2572LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2573  switch (AK) {
2574    case AK_Read :
2575      return LK_Shared;
2576    case AK_Written :
2577      return LK_Exclusive;
2578  }
2579  llvm_unreachable("Unknown AccessKind");
2580}
2581