1//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// This file implements classes for searching and analyzing source code clones.
10///
11//===----------------------------------------------------------------------===//
12
13#include "clang/Analysis/CloneDetection.h"
14#include "clang/AST/Attr.h"
15#include "clang/AST/DataCollection.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/Basic/SourceManager.h"
18#include "llvm/Support/MD5.h"
19#include "llvm/Support/Path.h"
20
21using namespace clang;
22
23StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
24                           unsigned StartIndex, unsigned EndIndex)
25    : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
26  assert(Stmt && "Stmt must not be a nullptr");
27  assert(StartIndex < EndIndex && "Given array should not be empty");
28  assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
29}
30
31StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
32    : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
33
34StmtSequence::StmtSequence()
35    : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
36
37bool StmtSequence::contains(const StmtSequence &Other) const {
38  // If both sequences reside in different declarations, they can never contain
39  // each other.
40  if (D != Other.D)
41    return false;
42
43  const SourceManager &SM = getASTContext().getSourceManager();
44
45  // Otherwise check if the start and end locations of the current sequence
46  // surround the other sequence.
47  bool StartIsInBounds =
48      SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
49      getBeginLoc() == Other.getBeginLoc();
50  if (!StartIsInBounds)
51    return false;
52
53  bool EndIsInBounds =
54      SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
55      Other.getEndLoc() == getEndLoc();
56  return EndIsInBounds;
57}
58
59StmtSequence::iterator StmtSequence::begin() const {
60  if (!holdsSequence()) {
61    return &S;
62  }
63  auto CS = cast<CompoundStmt>(S);
64  return CS->body_begin() + StartIndex;
65}
66
67StmtSequence::iterator StmtSequence::end() const {
68  if (!holdsSequence()) {
69    return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
70  }
71  auto CS = cast<CompoundStmt>(S);
72  return CS->body_begin() + EndIndex;
73}
74
75ASTContext &StmtSequence::getASTContext() const {
76  assert(D);
77  return D->getASTContext();
78}
79
80SourceLocation StmtSequence::getBeginLoc() const {
81  return front()->getBeginLoc();
82}
83
84SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
85
86SourceRange StmtSequence::getSourceRange() const {
87  return SourceRange(getBeginLoc(), getEndLoc());
88}
89
90void CloneDetector::analyzeCodeBody(const Decl *D) {
91  assert(D);
92  assert(D->hasBody());
93
94  Sequences.push_back(StmtSequence(D->getBody(), D));
95}
96
97/// Returns true if and only if \p Stmt contains at least one other
98/// sequence in the \p Group.
99static bool containsAnyInGroup(StmtSequence &Seq,
100                               CloneDetector::CloneGroup &Group) {
101  for (StmtSequence &GroupSeq : Group) {
102    if (Seq.contains(GroupSeq))
103      return true;
104  }
105  return false;
106}
107
108/// Returns true if and only if all sequences in \p OtherGroup are
109/// contained by a sequence in \p Group.
110static bool containsGroup(CloneDetector::CloneGroup &Group,
111                          CloneDetector::CloneGroup &OtherGroup) {
112  // We have less sequences in the current group than we have in the other,
113  // so we will never fulfill the requirement for returning true. This is only
114  // possible because we know that a sequence in Group can contain at most
115  // one sequence in OtherGroup.
116  if (Group.size() < OtherGroup.size())
117    return false;
118
119  for (StmtSequence &Stmt : Group) {
120    if (!containsAnyInGroup(Stmt, OtherGroup))
121      return false;
122  }
123  return true;
124}
125
126void OnlyLargestCloneConstraint::constrain(
127    std::vector<CloneDetector::CloneGroup> &Result) {
128  std::vector<unsigned> IndexesToRemove;
129
130  // Compare every group in the result with the rest. If one groups contains
131  // another group, we only need to return the bigger group.
132  // Note: This doesn't scale well, so if possible avoid calling any heavy
133  // function from this loop to minimize the performance impact.
134  for (unsigned i = 0; i < Result.size(); ++i) {
135    for (unsigned j = 0; j < Result.size(); ++j) {
136      // Don't compare a group with itself.
137      if (i == j)
138        continue;
139
140      if (containsGroup(Result[j], Result[i])) {
141        IndexesToRemove.push_back(i);
142        break;
143      }
144    }
145  }
146
147  // Erasing a list of indexes from the vector should be done with decreasing
148  // indexes. As IndexesToRemove is constructed with increasing values, we just
149  // reverse iterate over it to get the desired order.
150  for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
151    Result.erase(Result.begin() + *I);
152  }
153}
154
155bool FilenamePatternConstraint::isAutoGenerated(
156    const CloneDetector::CloneGroup &Group) {
157  if (IgnoredFilesPattern.empty() || Group.empty() ||
158      !IgnoredFilesRegex->isValid())
159    return false;
160
161  for (const StmtSequence &S : Group) {
162    const SourceManager &SM = S.getASTContext().getSourceManager();
163    StringRef Filename = llvm::sys::path::filename(
164        SM.getFilename(S.getContainingDecl()->getLocation()));
165    if (IgnoredFilesRegex->match(Filename))
166      return true;
167  }
168
169  return false;
170}
171
172/// This class defines what a type II code clone is: If it collects for two
173/// statements the same data, then those two statements are considered to be
174/// clones of each other.
175///
176/// All collected data is forwarded to the given data consumer of the type T.
177/// The data consumer class needs to provide a member method with the signature:
178///   update(StringRef Str)
179namespace {
180template <class T>
181class CloneTypeIIStmtDataCollector
182    : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
183  ASTContext &Context;
184  /// The data sink to which all data is forwarded.
185  T &DataConsumer;
186
187  template <class Ty> void addData(const Ty &Data) {
188    data_collection::addDataToConsumer(DataConsumer, Data);
189  }
190
191public:
192  CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
193                               T &DataConsumer)
194      : Context(Context), DataConsumer(DataConsumer) {
195    this->Visit(S);
196  }
197
198// Define a visit method for each class to collect data and subsequently visit
199// all parent classes. This uses a template so that custom visit methods by us
200// take precedence.
201#define DEF_ADD_DATA(CLASS, CODE)                                              \
202  template <class = void> void Visit##CLASS(const CLASS *S) {                  \
203    CODE;                                                                      \
204    ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
205  }
206
207#include "clang/AST/StmtDataCollectors.inc"
208
209// Type II clones ignore variable names and literals, so let's skip them.
210#define SKIP(CLASS)                                                            \
211  void Visit##CLASS(const CLASS *S) {                                          \
212    ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
213  }
214  SKIP(DeclRefExpr)
215  SKIP(MemberExpr)
216  SKIP(IntegerLiteral)
217  SKIP(FloatingLiteral)
218  SKIP(StringLiteral)
219  SKIP(CXXBoolLiteralExpr)
220  SKIP(CharacterLiteral)
221#undef SKIP
222};
223} // end anonymous namespace
224
225static size_t createHash(llvm::MD5 &Hash) {
226  size_t HashCode;
227
228  // Create the final hash code for the current Stmt.
229  llvm::MD5::MD5Result HashResult;
230  Hash.final(HashResult);
231
232  // Copy as much as possible of the generated hash code to the Stmt's hash
233  // code.
234  std::memcpy(&HashCode, &HashResult,
235              std::min(sizeof(HashCode), sizeof(HashResult)));
236
237  return HashCode;
238}
239
240/// Generates and saves a hash code for the given Stmt.
241/// \param S The given Stmt.
242/// \param D The Decl containing S.
243/// \param StmtsByHash Output parameter that will contain the hash codes for
244///                    each StmtSequence in the given Stmt.
245/// \return The hash code of the given Stmt.
246///
247/// If the given Stmt is a CompoundStmt, this method will also generate
248/// hashes for all possible StmtSequences in the children of this Stmt.
249static size_t
250saveHash(const Stmt *S, const Decl *D,
251         std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
252  llvm::MD5 Hash;
253  ASTContext &Context = D->getASTContext();
254
255  CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
256
257  auto CS = dyn_cast<CompoundStmt>(S);
258  SmallVector<size_t, 8> ChildHashes;
259
260  for (const Stmt *Child : S->children()) {
261    if (Child == nullptr) {
262      ChildHashes.push_back(0);
263      continue;
264    }
265    size_t ChildHash = saveHash(Child, D, StmtsByHash);
266    Hash.update(
267        StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
268    ChildHashes.push_back(ChildHash);
269  }
270
271  if (CS) {
272    // If we're in a CompoundStmt, we hash all possible combinations of child
273    // statements to find clones in those subsequences.
274    // We first go through every possible starting position of a subsequence.
275    for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
276      // Then we try all possible lengths this subsequence could have and
277      // reuse the same hash object to make sure we only hash every child
278      // hash exactly once.
279      llvm::MD5 Hash;
280      for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
281        // Grab the current child hash and put it into our hash. We do
282        // -1 on the index because we start counting the length at 1.
283        size_t ChildHash = ChildHashes[Pos + Length - 1];
284        Hash.update(
285            StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
286        // If we have at least two elements in our subsequence, we can start
287        // saving it.
288        if (Length > 1) {
289          llvm::MD5 SubHash = Hash;
290          StmtsByHash.push_back(std::make_pair(
291              createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
292        }
293      }
294    }
295  }
296
297  size_t HashCode = createHash(Hash);
298  StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
299  return HashCode;
300}
301
302namespace {
303/// Wrapper around FoldingSetNodeID that it can be used as the template
304/// argument of the StmtDataCollector.
305class FoldingSetNodeIDWrapper {
306
307  llvm::FoldingSetNodeID &FS;
308
309public:
310  FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
311
312  void update(StringRef Str) { FS.AddString(Str); }
313};
314} // end anonymous namespace
315
316/// Writes the relevant data from all statements and child statements
317/// in the given StmtSequence into the given FoldingSetNodeID.
318static void CollectStmtSequenceData(const StmtSequence &Sequence,
319                                    FoldingSetNodeIDWrapper &OutputData) {
320  for (const Stmt *S : Sequence) {
321    CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
322        S, Sequence.getASTContext(), OutputData);
323
324    for (const Stmt *Child : S->children()) {
325      if (!Child)
326        continue;
327
328      CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
329                              OutputData);
330    }
331  }
332}
333
334/// Returns true if both sequences are clones of each other.
335static bool areSequencesClones(const StmtSequence &LHS,
336                               const StmtSequence &RHS) {
337  // We collect the data from all statements in the sequence as we did before
338  // when generating a hash value for each sequence. But this time we don't
339  // hash the collected data and compare the whole data set instead. This
340  // prevents any false-positives due to hash code collisions.
341  llvm::FoldingSetNodeID DataLHS, DataRHS;
342  FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
343  FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
344
345  CollectStmtSequenceData(LHS, LHSWrapper);
346  CollectStmtSequenceData(RHS, RHSWrapper);
347
348  return DataLHS == DataRHS;
349}
350
351void RecursiveCloneTypeIIHashConstraint::constrain(
352    std::vector<CloneDetector::CloneGroup> &Sequences) {
353  // FIXME: Maybe we can do this in-place and don't need this additional vector.
354  std::vector<CloneDetector::CloneGroup> Result;
355
356  for (CloneDetector::CloneGroup &Group : Sequences) {
357    // We assume in the following code that the Group is non-empty, so we
358    // skip all empty groups.
359    if (Group.empty())
360      continue;
361
362    std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
363
364    // Generate hash codes for all children of S and save them in StmtsByHash.
365    for (const StmtSequence &S : Group) {
366      saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
367    }
368
369    // Sort hash_codes in StmtsByHash.
370    llvm::stable_sort(StmtsByHash, llvm::less_first());
371
372    // Check for each StmtSequence if its successor has the same hash value.
373    // We don't check the last StmtSequence as it has no successor.
374    // Note: The 'size - 1 ' in the condition is safe because we check for an
375    // empty Group vector at the beginning of this function.
376    for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
377      const auto Current = StmtsByHash[i];
378
379      // It's likely that we just found a sequence of StmtSequences that
380      // represent a CloneGroup, so we create a new group and start checking and
381      // adding the StmtSequences in this sequence.
382      CloneDetector::CloneGroup NewGroup;
383
384      size_t PrototypeHash = Current.first;
385
386      for (; i < StmtsByHash.size(); ++i) {
387        // A different hash value means we have reached the end of the sequence.
388        if (PrototypeHash != StmtsByHash[i].first) {
389          // The current sequence could be the start of a new CloneGroup. So we
390          // decrement i so that we visit it again in the outer loop.
391          // Note: i can never be 0 at this point because we are just comparing
392          // the hash of the Current StmtSequence with itself in the 'if' above.
393          assert(i != 0);
394          --i;
395          break;
396        }
397        // Same hash value means we should add the StmtSequence to the current
398        // group.
399        NewGroup.push_back(StmtsByHash[i].second);
400      }
401
402      // We created a new clone group with matching hash codes and move it to
403      // the result vector.
404      Result.push_back(NewGroup);
405    }
406  }
407  // Sequences is the output parameter, so we copy our result into it.
408  Sequences = Result;
409}
410
411void RecursiveCloneTypeIIVerifyConstraint::constrain(
412    std::vector<CloneDetector::CloneGroup> &Sequences) {
413  CloneConstraint::splitCloneGroups(
414      Sequences, [](const StmtSequence &A, const StmtSequence &B) {
415        return areSequencesClones(A, B);
416      });
417}
418
419size_t MinComplexityConstraint::calculateStmtComplexity(
420    const StmtSequence &Seq, std::size_t Limit,
421    const std::string &ParentMacroStack) {
422  if (Seq.empty())
423    return 0;
424
425  size_t Complexity = 1;
426
427  ASTContext &Context = Seq.getASTContext();
428
429  // Look up what macros expanded into the current statement.
430  std::string MacroStack =
431      data_collection::getMacroStack(Seq.getBeginLoc(), Context);
432
433  // First, check if ParentMacroStack is not empty which means we are currently
434  // dealing with a parent statement which was expanded from a macro.
435  // If this parent statement was expanded from the same macros as this
436  // statement, we reduce the initial complexity of this statement to zero.
437  // This causes that a group of statements that were generated by a single
438  // macro expansion will only increase the total complexity by one.
439  // Note: This is not the final complexity of this statement as we still
440  // add the complexity of the child statements to the complexity value.
441  if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
442    Complexity = 0;
443  }
444
445  // Iterate over the Stmts in the StmtSequence and add their complexity values
446  // to the current complexity value.
447  if (Seq.holdsSequence()) {
448    for (const Stmt *S : Seq) {
449      Complexity += calculateStmtComplexity(
450          StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
451      if (Complexity >= Limit)
452        return Limit;
453    }
454  } else {
455    for (const Stmt *S : Seq.front()->children()) {
456      Complexity += calculateStmtComplexity(
457          StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
458      if (Complexity >= Limit)
459        return Limit;
460    }
461  }
462  return Complexity;
463}
464
465void MatchingVariablePatternConstraint::constrain(
466    std::vector<CloneDetector::CloneGroup> &CloneGroups) {
467  CloneConstraint::splitCloneGroups(
468      CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
469        VariablePattern PatternA(A);
470        VariablePattern PatternB(B);
471        return PatternA.countPatternDifferences(PatternB) == 0;
472      });
473}
474
475void CloneConstraint::splitCloneGroups(
476    std::vector<CloneDetector::CloneGroup> &CloneGroups,
477    llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
478        Compare) {
479  std::vector<CloneDetector::CloneGroup> Result;
480  for (auto &HashGroup : CloneGroups) {
481    // Contains all indexes in HashGroup that were already added to a
482    // CloneGroup.
483    std::vector<char> Indexes;
484    Indexes.resize(HashGroup.size());
485
486    for (unsigned i = 0; i < HashGroup.size(); ++i) {
487      // Skip indexes that are already part of a CloneGroup.
488      if (Indexes[i])
489        continue;
490
491      // Pick the first unhandled StmtSequence and consider it as the
492      // beginning
493      // of a new CloneGroup for now.
494      // We don't add i to Indexes because we never iterate back.
495      StmtSequence Prototype = HashGroup[i];
496      CloneDetector::CloneGroup PotentialGroup = {Prototype};
497      ++Indexes[i];
498
499      // Check all following StmtSequences for clones.
500      for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
501        // Skip indexes that are already part of a CloneGroup.
502        if (Indexes[j])
503          continue;
504
505        // If a following StmtSequence belongs to our CloneGroup, we add it.
506        const StmtSequence &Candidate = HashGroup[j];
507
508        if (!Compare(Prototype, Candidate))
509          continue;
510
511        PotentialGroup.push_back(Candidate);
512        // Make sure we never visit this StmtSequence again.
513        ++Indexes[j];
514      }
515
516      // Otherwise, add it to the result and continue searching for more
517      // groups.
518      Result.push_back(PotentialGroup);
519    }
520
521    assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
522  }
523  CloneGroups = Result;
524}
525
526void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
527                                           const Stmt *Mention) {
528  // First check if we already reference this variable
529  for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
530    if (Variables[KindIndex] == VarDecl) {
531      // If yes, add a new occurrence that points to the existing entry in
532      // the Variables vector.
533      Occurences.emplace_back(KindIndex, Mention);
534      return;
535    }
536  }
537  // If this variable wasn't already referenced, add it to the list of
538  // referenced variables and add a occurrence that points to this new entry.
539  Occurences.emplace_back(Variables.size(), Mention);
540  Variables.push_back(VarDecl);
541}
542
543void VariablePattern::addVariables(const Stmt *S) {
544  // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
545  // children). We skip such statements as they don't reference any
546  // variables.
547  if (!S)
548    return;
549
550  // Check if S is a reference to a variable. If yes, add it to the pattern.
551  if (auto D = dyn_cast<DeclRefExpr>(S)) {
552    if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
553      addVariableOccurence(VD, D);
554  }
555
556  // Recursively check all children of the given statement.
557  for (const Stmt *Child : S->children()) {
558    addVariables(Child);
559  }
560}
561
562unsigned VariablePattern::countPatternDifferences(
563    const VariablePattern &Other,
564    VariablePattern::SuspiciousClonePair *FirstMismatch) {
565  unsigned NumberOfDifferences = 0;
566
567  assert(Other.Occurences.size() == Occurences.size());
568  for (unsigned i = 0; i < Occurences.size(); ++i) {
569    auto ThisOccurence = Occurences[i];
570    auto OtherOccurence = Other.Occurences[i];
571    if (ThisOccurence.KindID == OtherOccurence.KindID)
572      continue;
573
574    ++NumberOfDifferences;
575
576    // If FirstMismatch is not a nullptr, we need to store information about
577    // the first difference between the two patterns.
578    if (FirstMismatch == nullptr)
579      continue;
580
581    // Only proceed if we just found the first difference as we only store
582    // information about the first difference.
583    if (NumberOfDifferences != 1)
584      continue;
585
586    const VarDecl *FirstSuggestion = nullptr;
587    // If there is a variable available in the list of referenced variables
588    // which wouldn't break the pattern if it is used in place of the
589    // current variable, we provide this variable as the suggested fix.
590    if (OtherOccurence.KindID < Variables.size())
591      FirstSuggestion = Variables[OtherOccurence.KindID];
592
593    // Store information about the first clone.
594    FirstMismatch->FirstCloneInfo =
595        VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
596            Variables[ThisOccurence.KindID], ThisOccurence.Mention,
597            FirstSuggestion);
598
599    // Same as above but with the other clone. We do this for both clones as
600    // we don't know which clone is the one containing the unintended
601    // pattern error.
602    const VarDecl *SecondSuggestion = nullptr;
603    if (ThisOccurence.KindID < Other.Variables.size())
604      SecondSuggestion = Other.Variables[ThisOccurence.KindID];
605
606    // Store information about the second clone.
607    FirstMismatch->SecondCloneInfo =
608        VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
609            Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
610            SecondSuggestion);
611
612    // SuspiciousClonePair guarantees that the first clone always has a
613    // suggested variable associated with it. As we know that one of the two
614    // clones in the pair always has suggestion, we swap the two clones
615    // in case the first clone has no suggested variable which means that
616    // the second clone has a suggested variable and should be first.
617    if (!FirstMismatch->FirstCloneInfo.Suggestion)
618      std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
619
620    // This ensures that we always have at least one suggestion in a pair.
621    assert(FirstMismatch->FirstCloneInfo.Suggestion);
622  }
623
624  return NumberOfDifferences;
625}
626