1//===- CFG.cpp - Classes for representing and building CFGs ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file defines the CFG and CFGBuilder classes for representing and
10//  building Control-Flow Graphs (CFGs) from ASTs.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Analysis/CFG.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclGroup.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/OperationKinds.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/Stmt.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/Type.h"
30#include "clang/Analysis/ConstructionContext.h"
31#include "clang/Analysis/Support/BumpVector.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/ExceptionSpecificationType.h"
34#include "clang/Basic/JsonSupport.h"
35#include "clang/Basic/LLVM.h"
36#include "clang/Basic/LangOptions.h"
37#include "clang/Basic/SourceLocation.h"
38#include "clang/Basic/Specifiers.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/APSInt.h"
41#include "llvm/ADT/ArrayRef.h"
42#include "llvm/ADT/DenseMap.h"
43#include "llvm/ADT/Optional.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallVector.h"
48#include "llvm/Support/Allocator.h"
49#include "llvm/Support/Casting.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/DOTGraphTraits.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/Format.h"
54#include "llvm/Support/GraphWriter.h"
55#include "llvm/Support/SaveAndRestore.h"
56#include "llvm/Support/raw_ostream.h"
57#include <cassert>
58#include <memory>
59#include <string>
60#include <tuple>
61#include <utility>
62#include <vector>
63
64using namespace clang;
65
66static SourceLocation GetEndLoc(Decl *D) {
67  if (VarDecl *VD = dyn_cast<VarDecl>(D))
68    if (Expr *Ex = VD->getInit())
69      return Ex->getSourceRange().getEnd();
70  return D->getLocation();
71}
72
73/// Returns true on constant values based around a single IntegerLiteral.
74/// Allow for use of parentheses, integer casts, and negative signs.
75static bool IsIntegerLiteralConstantExpr(const Expr *E) {
76  // Allow parentheses
77  E = E->IgnoreParens();
78
79  // Allow conversions to different integer kind.
80  if (const auto *CE = dyn_cast<CastExpr>(E)) {
81    if (CE->getCastKind() != CK_IntegralCast)
82      return false;
83    E = CE->getSubExpr();
84  }
85
86  // Allow negative numbers.
87  if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
88    if (UO->getOpcode() != UO_Minus)
89      return false;
90    E = UO->getSubExpr();
91  }
92
93  return isa<IntegerLiteral>(E);
94}
95
96/// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
97/// constant expression or EnumConstantDecl from the given Expr. If it fails,
98/// returns nullptr.
99static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
100  E = E->IgnoreParens();
101  if (IsIntegerLiteralConstantExpr(E))
102    return E;
103  if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
104    return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
105  return nullptr;
106}
107
108/// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
109/// NumExpr is an integer literal or an enum constant.
110///
111/// If this fails, at least one of the returned DeclRefExpr or Expr will be
112/// null.
113static std::tuple<const Expr *, BinaryOperatorKind, const Expr *>
114tryNormalizeBinaryOperator(const BinaryOperator *B) {
115  BinaryOperatorKind Op = B->getOpcode();
116
117  const Expr *MaybeDecl = B->getLHS();
118  const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
119  // Expr looked like `0 == Foo` instead of `Foo == 0`
120  if (Constant == nullptr) {
121    // Flip the operator
122    if (Op == BO_GT)
123      Op = BO_LT;
124    else if (Op == BO_GE)
125      Op = BO_LE;
126    else if (Op == BO_LT)
127      Op = BO_GT;
128    else if (Op == BO_LE)
129      Op = BO_GE;
130
131    MaybeDecl = B->getRHS();
132    Constant = tryTransformToIntOrEnumConstant(B->getLHS());
133  }
134
135  return std::make_tuple(MaybeDecl, Op, Constant);
136}
137
138/// For an expression `x == Foo && x == Bar`, this determines whether the
139/// `Foo` and `Bar` are either of the same enumeration type, or both integer
140/// literals.
141///
142/// It's an error to pass this arguments that are not either IntegerLiterals
143/// or DeclRefExprs (that have decls of type EnumConstantDecl)
144static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
145  // User intent isn't clear if they're mixing int literals with enum
146  // constants.
147  if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2))
148    return false;
149
150  // Integer literal comparisons, regardless of literal type, are acceptable.
151  if (!isa<DeclRefExpr>(E1))
152    return true;
153
154  // IntegerLiterals are handled above and only EnumConstantDecls are expected
155  // beyond this point
156  assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
157  auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
158  auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
159
160  assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
161  const DeclContext *DC1 = Decl1->getDeclContext();
162  const DeclContext *DC2 = Decl2->getDeclContext();
163
164  assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
165  return DC1 == DC2;
166}
167
168namespace {
169
170class CFGBuilder;
171
172/// The CFG builder uses a recursive algorithm to build the CFG.  When
173///  we process an expression, sometimes we know that we must add the
174///  subexpressions as block-level expressions.  For example:
175///
176///    exp1 || exp2
177///
178///  When processing the '||' expression, we know that exp1 and exp2
179///  need to be added as block-level expressions, even though they
180///  might not normally need to be.  AddStmtChoice records this
181///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
182///  the builder has an option not to add a subexpression as a
183///  block-level expression.
184class AddStmtChoice {
185public:
186  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
187
188  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
189
190  bool alwaysAdd(CFGBuilder &builder,
191                 const Stmt *stmt) const;
192
193  /// Return a copy of this object, except with the 'always-add' bit
194  ///  set as specified.
195  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
196    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
197  }
198
199private:
200  Kind kind;
201};
202
203/// LocalScope - Node in tree of local scopes created for C++ implicit
204/// destructor calls generation. It contains list of automatic variables
205/// declared in the scope and link to position in previous scope this scope
206/// began in.
207///
208/// The process of creating local scopes is as follows:
209/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
210/// - Before processing statements in scope (e.g. CompoundStmt) create
211///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
212///   and set CFGBuilder::ScopePos to the end of new scope,
213/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
214///   at this VarDecl,
215/// - For every normal (without jump) end of scope add to CFGBlock destructors
216///   for objects in the current scope,
217/// - For every jump add to CFGBlock destructors for objects
218///   between CFGBuilder::ScopePos and local scope position saved for jump
219///   target. Thanks to C++ restrictions on goto jumps we can be sure that
220///   jump target position will be on the path to root from CFGBuilder::ScopePos
221///   (adding any variable that doesn't need constructor to be called to
222///   LocalScope can break this assumption),
223///
224class LocalScope {
225public:
226  using AutomaticVarsTy = BumpVector<VarDecl *>;
227
228  /// const_iterator - Iterates local scope backwards and jumps to previous
229  /// scope on reaching the beginning of currently iterated scope.
230  class const_iterator {
231    const LocalScope* Scope = nullptr;
232
233    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
234    /// Invalid iterator (with null Scope) has VarIter equal to 0.
235    unsigned VarIter = 0;
236
237  public:
238    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
239    /// Incrementing invalid iterator is allowed and will result in invalid
240    /// iterator.
241    const_iterator() = default;
242
243    /// Create valid iterator. In case when S.Prev is an invalid iterator and
244    /// I is equal to 0, this will create invalid iterator.
245    const_iterator(const LocalScope& S, unsigned I)
246        : Scope(&S), VarIter(I) {
247      // Iterator to "end" of scope is not allowed. Handle it by going up
248      // in scopes tree possibly up to invalid iterator in the root.
249      if (VarIter == 0 && Scope)
250        *this = Scope->Prev;
251    }
252
253    VarDecl *const* operator->() const {
254      assert(Scope && "Dereferencing invalid iterator is not allowed");
255      assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
256      return &Scope->Vars[VarIter - 1];
257    }
258
259    const VarDecl *getFirstVarInScope() const {
260      assert(Scope && "Dereferencing invalid iterator is not allowed");
261      assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
262      return Scope->Vars[0];
263    }
264
265    VarDecl *operator*() const {
266      return *this->operator->();
267    }
268
269    const_iterator &operator++() {
270      if (!Scope)
271        return *this;
272
273      assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
274      --VarIter;
275      if (VarIter == 0)
276        *this = Scope->Prev;
277      return *this;
278    }
279    const_iterator operator++(int) {
280      const_iterator P = *this;
281      ++*this;
282      return P;
283    }
284
285    bool operator==(const const_iterator &rhs) const {
286      return Scope == rhs.Scope && VarIter == rhs.VarIter;
287    }
288    bool operator!=(const const_iterator &rhs) const {
289      return !(*this == rhs);
290    }
291
292    explicit operator bool() const {
293      return *this != const_iterator();
294    }
295
296    int distance(const_iterator L);
297    const_iterator shared_parent(const_iterator L);
298    bool pointsToFirstDeclaredVar() { return VarIter == 1; }
299  };
300
301private:
302  BumpVectorContext ctx;
303
304  /// Automatic variables in order of declaration.
305  AutomaticVarsTy Vars;
306
307  /// Iterator to variable in previous scope that was declared just before
308  /// begin of this scope.
309  const_iterator Prev;
310
311public:
312  /// Constructs empty scope linked to previous scope in specified place.
313  LocalScope(BumpVectorContext ctx, const_iterator P)
314      : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
315
316  /// Begin of scope in direction of CFG building (backwards).
317  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
318
319  void addVar(VarDecl *VD) {
320    Vars.push_back(VD, ctx);
321  }
322};
323
324} // namespace
325
326/// distance - Calculates distance from this to L. L must be reachable from this
327/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
328/// number of scopes between this and L.
329int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
330  int D = 0;
331  const_iterator F = *this;
332  while (F.Scope != L.Scope) {
333    assert(F != const_iterator() &&
334           "L iterator is not reachable from F iterator.");
335    D += F.VarIter;
336    F = F.Scope->Prev;
337  }
338  D += F.VarIter - L.VarIter;
339  return D;
340}
341
342/// Calculates the closest parent of this iterator
343/// that is in a scope reachable through the parents of L.
344/// I.e. when using 'goto' from this to L, the lifetime of all variables
345/// between this and shared_parent(L) end.
346LocalScope::const_iterator
347LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) {
348  llvm::SmallPtrSet<const LocalScope *, 4> ScopesOfL;
349  while (true) {
350    ScopesOfL.insert(L.Scope);
351    if (L == const_iterator())
352      break;
353    L = L.Scope->Prev;
354  }
355
356  const_iterator F = *this;
357  while (true) {
358    if (ScopesOfL.count(F.Scope))
359      return F;
360    assert(F != const_iterator() &&
361           "L iterator is not reachable from F iterator.");
362    F = F.Scope->Prev;
363  }
364}
365
366namespace {
367
368/// Structure for specifying position in CFG during its build process. It
369/// consists of CFGBlock that specifies position in CFG and
370/// LocalScope::const_iterator that specifies position in LocalScope graph.
371struct BlockScopePosPair {
372  CFGBlock *block = nullptr;
373  LocalScope::const_iterator scopePosition;
374
375  BlockScopePosPair() = default;
376  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
377      : block(b), scopePosition(scopePos) {}
378};
379
380/// TryResult - a class representing a variant over the values
381///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
382///  and is used by the CFGBuilder to decide if a branch condition
383///  can be decided up front during CFG construction.
384class TryResult {
385  int X = -1;
386
387public:
388  TryResult() = default;
389  TryResult(bool b) : X(b ? 1 : 0) {}
390
391  bool isTrue() const { return X == 1; }
392  bool isFalse() const { return X == 0; }
393  bool isKnown() const { return X >= 0; }
394
395  void negate() {
396    assert(isKnown());
397    X ^= 0x1;
398  }
399};
400
401} // namespace
402
403static TryResult bothKnownTrue(TryResult R1, TryResult R2) {
404  if (!R1.isKnown() || !R2.isKnown())
405    return TryResult();
406  return TryResult(R1.isTrue() && R2.isTrue());
407}
408
409namespace {
410
411class reverse_children {
412  llvm::SmallVector<Stmt *, 12> childrenBuf;
413  ArrayRef<Stmt *> children;
414
415public:
416  reverse_children(Stmt *S);
417
418  using iterator = ArrayRef<Stmt *>::reverse_iterator;
419
420  iterator begin() const { return children.rbegin(); }
421  iterator end() const { return children.rend(); }
422};
423
424} // namespace
425
426reverse_children::reverse_children(Stmt *S) {
427  if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
428    children = CE->getRawSubExprs();
429    return;
430  }
431  switch (S->getStmtClass()) {
432    // Note: Fill in this switch with more cases we want to optimize.
433    case Stmt::InitListExprClass: {
434      InitListExpr *IE = cast<InitListExpr>(S);
435      children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
436                                    IE->getNumInits());
437      return;
438    }
439    default:
440      break;
441  }
442
443  // Default case for all other statements.
444  for (Stmt *SubStmt : S->children())
445    childrenBuf.push_back(SubStmt);
446
447  // This needs to be done *after* childrenBuf has been populated.
448  children = childrenBuf;
449}
450
451namespace {
452
453/// CFGBuilder - This class implements CFG construction from an AST.
454///   The builder is stateful: an instance of the builder should be used to only
455///   construct a single CFG.
456///
457///   Example usage:
458///
459///     CFGBuilder builder;
460///     std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
461///
462///  CFG construction is done via a recursive walk of an AST.  We actually parse
463///  the AST in reverse order so that the successor of a basic block is
464///  constructed prior to its predecessor.  This allows us to nicely capture
465///  implicit fall-throughs without extra basic blocks.
466class CFGBuilder {
467  using JumpTarget = BlockScopePosPair;
468  using JumpSource = BlockScopePosPair;
469
470  ASTContext *Context;
471  std::unique_ptr<CFG> cfg;
472
473  // Current block.
474  CFGBlock *Block = nullptr;
475
476  // Block after the current block.
477  CFGBlock *Succ = nullptr;
478
479  JumpTarget ContinueJumpTarget;
480  JumpTarget BreakJumpTarget;
481  JumpTarget SEHLeaveJumpTarget;
482  CFGBlock *SwitchTerminatedBlock = nullptr;
483  CFGBlock *DefaultCaseBlock = nullptr;
484
485  // This can point either to a try or a __try block. The frontend forbids
486  // mixing both kinds in one function, so having one for both is enough.
487  CFGBlock *TryTerminatedBlock = nullptr;
488
489  // Current position in local scope.
490  LocalScope::const_iterator ScopePos;
491
492  // LabelMap records the mapping from Label expressions to their jump targets.
493  using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>;
494  LabelMapTy LabelMap;
495
496  // A list of blocks that end with a "goto" that must be backpatched to their
497  // resolved targets upon completion of CFG construction.
498  using BackpatchBlocksTy = std::vector<JumpSource>;
499  BackpatchBlocksTy BackpatchBlocks;
500
501  // A list of labels whose address has been taken (for indirect gotos).
502  using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>;
503  LabelSetTy AddressTakenLabels;
504
505  // Information about the currently visited C++ object construction site.
506  // This is set in the construction trigger and read when the constructor
507  // or a function that returns an object by value is being visited.
508  llvm::DenseMap<Expr *, const ConstructionContextLayer *>
509      ConstructionContextMap;
510
511  using DeclsWithEndedScopeSetTy = llvm::SmallSetVector<VarDecl *, 16>;
512  DeclsWithEndedScopeSetTy DeclsWithEndedScope;
513
514  bool badCFG = false;
515  const CFG::BuildOptions &BuildOpts;
516
517  // State to track for building switch statements.
518  bool switchExclusivelyCovered = false;
519  Expr::EvalResult *switchCond = nullptr;
520
521  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr;
522  const Stmt *lastLookup = nullptr;
523
524  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
525  // during construction of branches for chained logical operators.
526  using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>;
527  CachedBoolEvalsTy CachedBoolEvals;
528
529public:
530  explicit CFGBuilder(ASTContext *astContext,
531                      const CFG::BuildOptions &buildOpts)
532      : Context(astContext), cfg(new CFG()), // crew a new CFG
533        ConstructionContextMap(), BuildOpts(buildOpts) {}
534
535
536  // buildCFG - Used by external clients to construct the CFG.
537  std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
538
539  bool alwaysAdd(const Stmt *stmt);
540
541private:
542  // Visitors to walk an AST and construct the CFG.
543  CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc);
544  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
545  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
546  CFGBlock *VisitBreakStmt(BreakStmt *B);
547  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
548  CFGBlock *VisitCaseStmt(CaseStmt *C);
549  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
550  CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed);
551  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
552                                     AddStmtChoice asc);
553  CFGBlock *VisitContinueStmt(ContinueStmt *C);
554  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
555                                      AddStmtChoice asc);
556  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
557  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
558  CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
559  CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
560  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
561  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
562                                       AddStmtChoice asc);
563  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
564                                        AddStmtChoice asc);
565  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
566  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
567  CFGBlock *VisitDeclStmt(DeclStmt *DS);
568  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
569  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
570  CFGBlock *VisitDoStmt(DoStmt *D);
571  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
572                                  AddStmtChoice asc, bool ExternallyDestructed);
573  CFGBlock *VisitForStmt(ForStmt *F);
574  CFGBlock *VisitGotoStmt(GotoStmt *G);
575  CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc);
576  CFGBlock *VisitIfStmt(IfStmt *I);
577  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
578  CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc);
579  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
580  CFGBlock *VisitLabelStmt(LabelStmt *L);
581  CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
582  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
583  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
584  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
585                                                         Stmt *Term,
586                                                         CFGBlock *TrueBlock,
587                                                         CFGBlock *FalseBlock);
588  CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
589                                          AddStmtChoice asc);
590  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
591  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
592  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
593  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
594  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
595  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
596  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
597  CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc);
598  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
599  CFGBlock *VisitReturnStmt(Stmt *S);
600  CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S);
601  CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S);
602  CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S);
603  CFGBlock *VisitSEHTryStmt(SEHTryStmt *S);
604  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
605  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
606  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
607                                          AddStmtChoice asc);
608  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
609  CFGBlock *VisitWhileStmt(WhileStmt *W);
610
611  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd,
612                  bool ExternallyDestructed = false);
613  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
614  CFGBlock *VisitChildren(Stmt *S);
615  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
616  CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D,
617                                        AddStmtChoice asc);
618
619  void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD,
620                                    const Stmt *S) {
621    if (ScopePos && (VD == ScopePos.getFirstVarInScope()))
622      appendScopeBegin(B, VD, S);
623  }
624
625  /// When creating the CFG for temporary destructors, we want to mirror the
626  /// branch structure of the corresponding constructor calls.
627  /// Thus, while visiting a statement for temporary destructors, we keep a
628  /// context to keep track of the following information:
629  /// - whether a subexpression is executed unconditionally
630  /// - if a subexpression is executed conditionally, the first
631  ///   CXXBindTemporaryExpr we encounter in that subexpression (which
632  ///   corresponds to the last temporary destructor we have to call for this
633  ///   subexpression) and the CFG block at that point (which will become the
634  ///   successor block when inserting the decision point).
635  ///
636  /// That way, we can build the branch structure for temporary destructors as
637  /// follows:
638  /// 1. If a subexpression is executed unconditionally, we add the temporary
639  ///    destructor calls to the current block.
640  /// 2. If a subexpression is executed conditionally, when we encounter a
641  ///    CXXBindTemporaryExpr:
642  ///    a) If it is the first temporary destructor call in the subexpression,
643  ///       we remember the CXXBindTemporaryExpr and the current block in the
644  ///       TempDtorContext; we start a new block, and insert the temporary
645  ///       destructor call.
646  ///    b) Otherwise, add the temporary destructor call to the current block.
647  ///  3. When we finished visiting a conditionally executed subexpression,
648  ///     and we found at least one temporary constructor during the visitation
649  ///     (2.a has executed), we insert a decision block that uses the
650  ///     CXXBindTemporaryExpr as terminator, and branches to the current block
651  ///     if the CXXBindTemporaryExpr was marked executed, and otherwise
652  ///     branches to the stored successor.
653  struct TempDtorContext {
654    TempDtorContext() = default;
655    TempDtorContext(TryResult KnownExecuted)
656        : IsConditional(true), KnownExecuted(KnownExecuted) {}
657
658    /// Returns whether we need to start a new branch for a temporary destructor
659    /// call. This is the case when the temporary destructor is
660    /// conditionally executed, and it is the first one we encounter while
661    /// visiting a subexpression - other temporary destructors at the same level
662    /// will be added to the same block and are executed under the same
663    /// condition.
664    bool needsTempDtorBranch() const {
665      return IsConditional && !TerminatorExpr;
666    }
667
668    /// Remember the successor S of a temporary destructor decision branch for
669    /// the corresponding CXXBindTemporaryExpr E.
670    void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
671      Succ = S;
672      TerminatorExpr = E;
673    }
674
675    const bool IsConditional = false;
676    const TryResult KnownExecuted = true;
677    CFGBlock *Succ = nullptr;
678    CXXBindTemporaryExpr *TerminatorExpr = nullptr;
679  };
680
681  // Visitors to walk an AST and generate destructors of temporaries in
682  // full expression.
683  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
684                                   TempDtorContext &Context);
685  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E,  bool ExternallyDestructed,
686                                           TempDtorContext &Context);
687  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
688                                                 bool ExternallyDestructed,
689                                                 TempDtorContext &Context);
690  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
691      CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context);
692  CFGBlock *VisitConditionalOperatorForTemporaryDtors(
693      AbstractConditionalOperator *E, bool ExternallyDestructed,
694      TempDtorContext &Context);
695  void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
696                                   CFGBlock *FalseSucc = nullptr);
697
698  // NYS == Not Yet Supported
699  CFGBlock *NYS() {
700    badCFG = true;
701    return Block;
702  }
703
704  // Remember to apply the construction context based on the current \p Layer
705  // when constructing the CFG element for \p CE.
706  void consumeConstructionContext(const ConstructionContextLayer *Layer,
707                                  Expr *E);
708
709  // Scan \p Child statement to find constructors in it, while keeping in mind
710  // that its parent statement is providing a partial construction context
711  // described by \p Layer. If a constructor is found, it would be assigned
712  // the context based on the layer. If an additional construction context layer
713  // is found, the function recurses into that.
714  void findConstructionContexts(const ConstructionContextLayer *Layer,
715                                Stmt *Child);
716
717  // Scan all arguments of a call expression for a construction context.
718  // These sorts of call expressions don't have a common superclass,
719  // hence strict duck-typing.
720  template <typename CallLikeExpr,
721            typename = std::enable_if_t<
722                std::is_base_of<CallExpr, CallLikeExpr>::value ||
723                std::is_base_of<CXXConstructExpr, CallLikeExpr>::value ||
724                std::is_base_of<ObjCMessageExpr, CallLikeExpr>::value>>
725  void findConstructionContextsForArguments(CallLikeExpr *E) {
726    for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
727      Expr *Arg = E->getArg(i);
728      if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue())
729        findConstructionContexts(
730            ConstructionContextLayer::create(cfg->getBumpVectorContext(),
731                                             ConstructionContextItem(E, i)),
732            Arg);
733    }
734  }
735
736  // Unset the construction context after consuming it. This is done immediately
737  // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
738  // there's no need to do this manually in every Visit... function.
739  void cleanupConstructionContext(Expr *E);
740
741  void autoCreateBlock() { if (!Block) Block = createBlock(); }
742  CFGBlock *createBlock(bool add_successor = true);
743  CFGBlock *createNoReturnBlock();
744
745  CFGBlock *addStmt(Stmt *S) {
746    return Visit(S, AddStmtChoice::AlwaysAdd);
747  }
748
749  CFGBlock *addInitializer(CXXCtorInitializer *I);
750  void addLoopExit(const Stmt *LoopStmt);
751  void addAutomaticObjDtors(LocalScope::const_iterator B,
752                            LocalScope::const_iterator E, Stmt *S);
753  void addLifetimeEnds(LocalScope::const_iterator B,
754                       LocalScope::const_iterator E, Stmt *S);
755  void addAutomaticObjHandling(LocalScope::const_iterator B,
756                               LocalScope::const_iterator E, Stmt *S);
757  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
758  void addScopesEnd(LocalScope::const_iterator B, LocalScope::const_iterator E,
759                    Stmt *S);
760
761  void getDeclsWithEndedScope(LocalScope::const_iterator B,
762                              LocalScope::const_iterator E, Stmt *S);
763
764  // Local scopes creation.
765  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
766
767  void addLocalScopeForStmt(Stmt *S);
768  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
769                                       LocalScope* Scope = nullptr);
770  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
771
772  void addLocalScopeAndDtors(Stmt *S);
773
774  const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) {
775    if (!BuildOpts.AddRichCXXConstructors)
776      return nullptr;
777
778    const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E);
779    if (!Layer)
780      return nullptr;
781
782    cleanupConstructionContext(E);
783    return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(),
784                                                 Layer);
785  }
786
787  // Interface to CFGBlock - adding CFGElements.
788
789  void appendStmt(CFGBlock *B, const Stmt *S) {
790    if (alwaysAdd(S) && cachedEntry)
791      cachedEntry->second = B;
792
793    // All block-level expressions should have already been IgnoreParens()ed.
794    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
795    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
796  }
797
798  void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) {
799    if (const ConstructionContext *CC =
800            retrieveAndCleanupConstructionContext(CE)) {
801      B->appendConstructor(CE, CC, cfg->getBumpVectorContext());
802      return;
803    }
804
805    // No valid construction context found. Fall back to statement.
806    B->appendStmt(CE, cfg->getBumpVectorContext());
807  }
808
809  void appendCall(CFGBlock *B, CallExpr *CE) {
810    if (alwaysAdd(CE) && cachedEntry)
811      cachedEntry->second = B;
812
813    if (const ConstructionContext *CC =
814            retrieveAndCleanupConstructionContext(CE)) {
815      B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext());
816      return;
817    }
818
819    // No valid construction context found. Fall back to statement.
820    B->appendStmt(CE, cfg->getBumpVectorContext());
821  }
822
823  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
824    B->appendInitializer(I, cfg->getBumpVectorContext());
825  }
826
827  void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
828    B->appendNewAllocator(NE, cfg->getBumpVectorContext());
829  }
830
831  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
832    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
833  }
834
835  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
836    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
837  }
838
839  void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) {
840    if (alwaysAdd(ME) && cachedEntry)
841      cachedEntry->second = B;
842
843    if (const ConstructionContext *CC =
844            retrieveAndCleanupConstructionContext(ME)) {
845      B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext());
846      return;
847    }
848
849    B->appendStmt(const_cast<ObjCMessageExpr *>(ME),
850                  cfg->getBumpVectorContext());
851  }
852
853  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
854    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
855  }
856
857  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
858    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
859  }
860
861  void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) {
862    B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext());
863  }
864
865  void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) {
866    B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext());
867  }
868
869  void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
870    B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
871  }
872
873  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
874      LocalScope::const_iterator B, LocalScope::const_iterator E);
875
876  void prependAutomaticObjLifetimeWithTerminator(CFGBlock *Blk,
877                                                 LocalScope::const_iterator B,
878                                                 LocalScope::const_iterator E);
879
880  const VarDecl *
881  prependAutomaticObjScopeEndWithTerminator(CFGBlock *Blk,
882                                            LocalScope::const_iterator B,
883                                            LocalScope::const_iterator E);
884
885  void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
886    B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
887                    cfg->getBumpVectorContext());
888  }
889
890  /// Add a reachable successor to a block, with the alternate variant that is
891  /// unreachable.
892  void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
893    B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
894                    cfg->getBumpVectorContext());
895  }
896
897  void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
898    if (BuildOpts.AddScopes)
899      B->appendScopeBegin(VD, S, cfg->getBumpVectorContext());
900  }
901
902  void prependScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
903    if (BuildOpts.AddScopes)
904      B->prependScopeBegin(VD, S, cfg->getBumpVectorContext());
905  }
906
907  void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
908    if (BuildOpts.AddScopes)
909      B->appendScopeEnd(VD, S, cfg->getBumpVectorContext());
910  }
911
912  void prependScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
913    if (BuildOpts.AddScopes)
914      B->prependScopeEnd(VD, S, cfg->getBumpVectorContext());
915  }
916
917  /// Find a relational comparison with an expression evaluating to a
918  /// boolean and a constant other than 0 and 1.
919  /// e.g. if ((x < y) == 10)
920  TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
921    const Expr *LHSExpr = B->getLHS()->IgnoreParens();
922    const Expr *RHSExpr = B->getRHS()->IgnoreParens();
923
924    const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
925    const Expr *BoolExpr = RHSExpr;
926    bool IntFirst = true;
927    if (!IntLiteral) {
928      IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
929      BoolExpr = LHSExpr;
930      IntFirst = false;
931    }
932
933    if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
934      return TryResult();
935
936    llvm::APInt IntValue = IntLiteral->getValue();
937    if ((IntValue == 1) || (IntValue == 0))
938      return TryResult();
939
940    bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
941                     !IntValue.isNegative();
942
943    BinaryOperatorKind Bok = B->getOpcode();
944    if (Bok == BO_GT || Bok == BO_GE) {
945      // Always true for 10 > bool and bool > -1
946      // Always false for -1 > bool and bool > 10
947      return TryResult(IntFirst == IntLarger);
948    } else {
949      // Always true for -1 < bool and bool < 10
950      // Always false for 10 < bool and bool < -1
951      return TryResult(IntFirst != IntLarger);
952    }
953  }
954
955  /// Find an incorrect equality comparison. Either with an expression
956  /// evaluating to a boolean and a constant other than 0 and 1.
957  /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
958  /// true/false e.q. (x & 8) == 4.
959  TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
960    const Expr *LHSExpr = B->getLHS()->IgnoreParens();
961    const Expr *RHSExpr = B->getRHS()->IgnoreParens();
962
963    const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
964    const Expr *BoolExpr = RHSExpr;
965
966    if (!IntLiteral) {
967      IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
968      BoolExpr = LHSExpr;
969    }
970
971    if (!IntLiteral)
972      return TryResult();
973
974    const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
975    if (BitOp && (BitOp->getOpcode() == BO_And ||
976                  BitOp->getOpcode() == BO_Or)) {
977      const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
978      const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
979
980      const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
981
982      if (!IntLiteral2)
983        IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
984
985      if (!IntLiteral2)
986        return TryResult();
987
988      llvm::APInt L1 = IntLiteral->getValue();
989      llvm::APInt L2 = IntLiteral2->getValue();
990      if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
991          (BitOp->getOpcode() == BO_Or  && (L2 | L1) != L1)) {
992        if (BuildOpts.Observer)
993          BuildOpts.Observer->compareBitwiseEquality(B,
994                                                     B->getOpcode() != BO_EQ);
995        TryResult(B->getOpcode() != BO_EQ);
996      }
997    } else if (BoolExpr->isKnownToHaveBooleanValue()) {
998      llvm::APInt IntValue = IntLiteral->getValue();
999      if ((IntValue == 1) || (IntValue == 0)) {
1000        return TryResult();
1001      }
1002      return TryResult(B->getOpcode() != BO_EQ);
1003    }
1004
1005    return TryResult();
1006  }
1007
1008  TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
1009                                          const llvm::APSInt &Value1,
1010                                          const llvm::APSInt &Value2) {
1011    assert(Value1.isSigned() == Value2.isSigned());
1012    switch (Relation) {
1013      default:
1014        return TryResult();
1015      case BO_EQ:
1016        return TryResult(Value1 == Value2);
1017      case BO_NE:
1018        return TryResult(Value1 != Value2);
1019      case BO_LT:
1020        return TryResult(Value1 <  Value2);
1021      case BO_LE:
1022        return TryResult(Value1 <= Value2);
1023      case BO_GT:
1024        return TryResult(Value1 >  Value2);
1025      case BO_GE:
1026        return TryResult(Value1 >= Value2);
1027    }
1028  }
1029
1030  /// Find a pair of comparison expressions with or without parentheses
1031  /// with a shared variable and constants and a logical operator between them
1032  /// that always evaluates to either true or false.
1033  /// e.g. if (x != 3 || x != 4)
1034  TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
1035    assert(B->isLogicalOp());
1036    const BinaryOperator *LHS =
1037        dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
1038    const BinaryOperator *RHS =
1039        dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
1040    if (!LHS || !RHS)
1041      return {};
1042
1043    if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
1044      return {};
1045
1046    const Expr *DeclExpr1;
1047    const Expr *NumExpr1;
1048    BinaryOperatorKind BO1;
1049    std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS);
1050
1051    if (!DeclExpr1 || !NumExpr1)
1052      return {};
1053
1054    const Expr *DeclExpr2;
1055    const Expr *NumExpr2;
1056    BinaryOperatorKind BO2;
1057    std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS);
1058
1059    if (!DeclExpr2 || !NumExpr2)
1060      return {};
1061
1062    // Check that it is the same variable on both sides.
1063    if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2))
1064      return {};
1065
1066    // Make sure the user's intent is clear (e.g. they're comparing against two
1067    // int literals, or two things from the same enum)
1068    if (!areExprTypesCompatible(NumExpr1, NumExpr2))
1069      return {};
1070
1071    Expr::EvalResult L1Result, L2Result;
1072    if (!NumExpr1->EvaluateAsInt(L1Result, *Context) ||
1073        !NumExpr2->EvaluateAsInt(L2Result, *Context))
1074      return {};
1075
1076    llvm::APSInt L1 = L1Result.Val.getInt();
1077    llvm::APSInt L2 = L2Result.Val.getInt();
1078
1079    // Can't compare signed with unsigned or with different bit width.
1080    if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
1081      return {};
1082
1083    // Values that will be used to determine if result of logical
1084    // operator is always true/false
1085    const llvm::APSInt Values[] = {
1086      // Value less than both Value1 and Value2
1087      llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
1088      // L1
1089      L1,
1090      // Value between Value1 and Value2
1091      ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
1092                              L1.isUnsigned()),
1093      // L2
1094      L2,
1095      // Value greater than both Value1 and Value2
1096      llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
1097    };
1098
1099    // Check whether expression is always true/false by evaluating the following
1100    // * variable x is less than the smallest literal.
1101    // * variable x is equal to the smallest literal.
1102    // * Variable x is between smallest and largest literal.
1103    // * Variable x is equal to the largest literal.
1104    // * Variable x is greater than largest literal.
1105    bool AlwaysTrue = true, AlwaysFalse = true;
1106    // Track value of both subexpressions.  If either side is always
1107    // true/false, another warning should have already been emitted.
1108    bool LHSAlwaysTrue = true, LHSAlwaysFalse = true;
1109    bool RHSAlwaysTrue = true, RHSAlwaysFalse = true;
1110    for (const llvm::APSInt &Value : Values) {
1111      TryResult Res1, Res2;
1112      Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
1113      Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
1114
1115      if (!Res1.isKnown() || !Res2.isKnown())
1116        return {};
1117
1118      if (B->getOpcode() == BO_LAnd) {
1119        AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
1120        AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
1121      } else {
1122        AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
1123        AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
1124      }
1125
1126      LHSAlwaysTrue &= Res1.isTrue();
1127      LHSAlwaysFalse &= Res1.isFalse();
1128      RHSAlwaysTrue &= Res2.isTrue();
1129      RHSAlwaysFalse &= Res2.isFalse();
1130    }
1131
1132    if (AlwaysTrue || AlwaysFalse) {
1133      if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue &&
1134          !RHSAlwaysFalse && BuildOpts.Observer)
1135        BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
1136      return TryResult(AlwaysTrue);
1137    }
1138    return {};
1139  }
1140
1141  /// A bitwise-or with a non-zero constant always evaluates to true.
1142  TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) {
1143    const Expr *LHSConstant =
1144        tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts());
1145    const Expr *RHSConstant =
1146        tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts());
1147
1148    if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant))
1149      return {};
1150
1151    const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant;
1152
1153    Expr::EvalResult Result;
1154    if (!Constant->EvaluateAsInt(Result, *Context))
1155      return {};
1156
1157    if (Result.Val.getInt() == 0)
1158      return {};
1159
1160    if (BuildOpts.Observer)
1161      BuildOpts.Observer->compareBitwiseOr(B);
1162
1163    return TryResult(true);
1164  }
1165
1166  /// Try and evaluate an expression to an integer constant.
1167  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
1168    if (!BuildOpts.PruneTriviallyFalseEdges)
1169      return false;
1170    return !S->isTypeDependent() &&
1171           !S->isValueDependent() &&
1172           S->EvaluateAsRValue(outResult, *Context);
1173  }
1174
1175  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
1176  /// if we can evaluate to a known value, otherwise return -1.
1177  TryResult tryEvaluateBool(Expr *S) {
1178    if (!BuildOpts.PruneTriviallyFalseEdges ||
1179        S->isTypeDependent() || S->isValueDependent())
1180      return {};
1181
1182    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
1183      if (Bop->isLogicalOp() || Bop->isEqualityOp()) {
1184        // Check the cache first.
1185        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
1186        if (I != CachedBoolEvals.end())
1187          return I->second; // already in map;
1188
1189        // Retrieve result at first, or the map might be updated.
1190        TryResult Result = evaluateAsBooleanConditionNoCache(S);
1191        CachedBoolEvals[S] = Result; // update or insert
1192        return Result;
1193      }
1194      else {
1195        switch (Bop->getOpcode()) {
1196          default: break;
1197          // For 'x & 0' and 'x * 0', we can determine that
1198          // the value is always false.
1199          case BO_Mul:
1200          case BO_And: {
1201            // If either operand is zero, we know the value
1202            // must be false.
1203            Expr::EvalResult LHSResult;
1204            if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) {
1205              llvm::APSInt IntVal = LHSResult.Val.getInt();
1206              if (!IntVal.getBoolValue()) {
1207                return TryResult(false);
1208              }
1209            }
1210            Expr::EvalResult RHSResult;
1211            if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) {
1212              llvm::APSInt IntVal = RHSResult.Val.getInt();
1213              if (!IntVal.getBoolValue()) {
1214                return TryResult(false);
1215              }
1216            }
1217          }
1218          break;
1219        }
1220      }
1221    }
1222
1223    return evaluateAsBooleanConditionNoCache(S);
1224  }
1225
1226  /// Evaluate as boolean \param E without using the cache.
1227  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
1228    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
1229      if (Bop->isLogicalOp()) {
1230        TryResult LHS = tryEvaluateBool(Bop->getLHS());
1231        if (LHS.isKnown()) {
1232          // We were able to evaluate the LHS, see if we can get away with not
1233          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
1234          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1235            return LHS.isTrue();
1236
1237          TryResult RHS = tryEvaluateBool(Bop->getRHS());
1238          if (RHS.isKnown()) {
1239            if (Bop->getOpcode() == BO_LOr)
1240              return LHS.isTrue() || RHS.isTrue();
1241            else
1242              return LHS.isTrue() && RHS.isTrue();
1243          }
1244        } else {
1245          TryResult RHS = tryEvaluateBool(Bop->getRHS());
1246          if (RHS.isKnown()) {
1247            // We can't evaluate the LHS; however, sometimes the result
1248            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
1249            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1250              return RHS.isTrue();
1251          } else {
1252            TryResult BopRes = checkIncorrectLogicOperator(Bop);
1253            if (BopRes.isKnown())
1254              return BopRes.isTrue();
1255          }
1256        }
1257
1258        return {};
1259      } else if (Bop->isEqualityOp()) {
1260          TryResult BopRes = checkIncorrectEqualityOperator(Bop);
1261          if (BopRes.isKnown())
1262            return BopRes.isTrue();
1263      } else if (Bop->isRelationalOp()) {
1264        TryResult BopRes = checkIncorrectRelationalOperator(Bop);
1265        if (BopRes.isKnown())
1266          return BopRes.isTrue();
1267      } else if (Bop->getOpcode() == BO_Or) {
1268        TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop);
1269        if (BopRes.isKnown())
1270          return BopRes.isTrue();
1271      }
1272    }
1273
1274    bool Result;
1275    if (E->EvaluateAsBooleanCondition(Result, *Context))
1276      return Result;
1277
1278    return {};
1279  }
1280
1281  bool hasTrivialDestructor(VarDecl *VD);
1282};
1283
1284} // namespace
1285
1286inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
1287                                     const Stmt *stmt) const {
1288  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
1289}
1290
1291bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
1292  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
1293
1294  if (!BuildOpts.forcedBlkExprs)
1295    return shouldAdd;
1296
1297  if (lastLookup == stmt) {
1298    if (cachedEntry) {
1299      assert(cachedEntry->first == stmt);
1300      return true;
1301    }
1302    return shouldAdd;
1303  }
1304
1305  lastLookup = stmt;
1306
1307  // Perform the lookup!
1308  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
1309
1310  if (!fb) {
1311    // No need to update 'cachedEntry', since it will always be null.
1312    assert(!cachedEntry);
1313    return shouldAdd;
1314  }
1315
1316  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
1317  if (itr == fb->end()) {
1318    cachedEntry = nullptr;
1319    return shouldAdd;
1320  }
1321
1322  cachedEntry = &*itr;
1323  return true;
1324}
1325
1326// FIXME: Add support for dependent-sized array types in C++?
1327// Does it even make sense to build a CFG for an uninstantiated template?
1328static const VariableArrayType *FindVA(const Type *t) {
1329  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
1330    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
1331      if (vat->getSizeExpr())
1332        return vat;
1333
1334    t = vt->getElementType().getTypePtr();
1335  }
1336
1337  return nullptr;
1338}
1339
1340void CFGBuilder::consumeConstructionContext(
1341    const ConstructionContextLayer *Layer, Expr *E) {
1342  assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) ||
1343          isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!");
1344  if (const ConstructionContextLayer *PreviouslyStoredLayer =
1345          ConstructionContextMap.lookup(E)) {
1346    (void)PreviouslyStoredLayer;
1347    // We might have visited this child when we were finding construction
1348    // contexts within its parents.
1349    assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) &&
1350           "Already within a different construction context!");
1351  } else {
1352    ConstructionContextMap[E] = Layer;
1353  }
1354}
1355
1356void CFGBuilder::findConstructionContexts(
1357    const ConstructionContextLayer *Layer, Stmt *Child) {
1358  if (!BuildOpts.AddRichCXXConstructors)
1359    return;
1360
1361  if (!Child)
1362    return;
1363
1364  auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) {
1365    return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item,
1366                                            Layer);
1367  };
1368
1369  switch(Child->getStmtClass()) {
1370  case Stmt::CXXConstructExprClass:
1371  case Stmt::CXXTemporaryObjectExprClass: {
1372    // Support pre-C++17 copy elision AST.
1373    auto *CE = cast<CXXConstructExpr>(Child);
1374    if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) {
1375      findConstructionContexts(withExtraLayer(CE), CE->getArg(0));
1376    }
1377
1378    consumeConstructionContext(Layer, CE);
1379    break;
1380  }
1381  // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
1382  // FIXME: An isa<> would look much better but this whole switch is a
1383  // workaround for an internal compiler error in MSVC 2015 (see r326021).
1384  case Stmt::CallExprClass:
1385  case Stmt::CXXMemberCallExprClass:
1386  case Stmt::CXXOperatorCallExprClass:
1387  case Stmt::UserDefinedLiteralClass:
1388  case Stmt::ObjCMessageExprClass: {
1389    auto *E = cast<Expr>(Child);
1390    if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E))
1391      consumeConstructionContext(Layer, E);
1392    break;
1393  }
1394  case Stmt::ExprWithCleanupsClass: {
1395    auto *Cleanups = cast<ExprWithCleanups>(Child);
1396    findConstructionContexts(Layer, Cleanups->getSubExpr());
1397    break;
1398  }
1399  case Stmt::CXXFunctionalCastExprClass: {
1400    auto *Cast = cast<CXXFunctionalCastExpr>(Child);
1401    findConstructionContexts(Layer, Cast->getSubExpr());
1402    break;
1403  }
1404  case Stmt::ImplicitCastExprClass: {
1405    auto *Cast = cast<ImplicitCastExpr>(Child);
1406    // Should we support other implicit cast kinds?
1407    switch (Cast->getCastKind()) {
1408    case CK_NoOp:
1409    case CK_ConstructorConversion:
1410      findConstructionContexts(Layer, Cast->getSubExpr());
1411      break;
1412    default:
1413      break;
1414    }
1415    break;
1416  }
1417  case Stmt::CXXBindTemporaryExprClass: {
1418    auto *BTE = cast<CXXBindTemporaryExpr>(Child);
1419    findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr());
1420    break;
1421  }
1422  case Stmt::MaterializeTemporaryExprClass: {
1423    // Normally we don't want to search in MaterializeTemporaryExpr because
1424    // it indicates the beginning of a temporary object construction context,
1425    // so it shouldn't be found in the middle. However, if it is the beginning
1426    // of an elidable copy or move construction context, we need to include it.
1427    if (Layer->getItem().getKind() ==
1428        ConstructionContextItem::ElidableConstructorKind) {
1429      auto *MTE = cast<MaterializeTemporaryExpr>(Child);
1430      findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr());
1431    }
1432    break;
1433  }
1434  case Stmt::ConditionalOperatorClass: {
1435    auto *CO = cast<ConditionalOperator>(Child);
1436    if (Layer->getItem().getKind() !=
1437        ConstructionContextItem::MaterializationKind) {
1438      // If the object returned by the conditional operator is not going to be a
1439      // temporary object that needs to be immediately materialized, then
1440      // it must be C++17 with its mandatory copy elision. Do not yet promise
1441      // to support this case.
1442      assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() ||
1443             Context->getLangOpts().CPlusPlus17);
1444      break;
1445    }
1446    findConstructionContexts(Layer, CO->getLHS());
1447    findConstructionContexts(Layer, CO->getRHS());
1448    break;
1449  }
1450  case Stmt::InitListExprClass: {
1451    auto *ILE = cast<InitListExpr>(Child);
1452    if (ILE->isTransparent()) {
1453      findConstructionContexts(Layer, ILE->getInit(0));
1454      break;
1455    }
1456    // TODO: Handle other cases. For now, fail to find construction contexts.
1457    break;
1458  }
1459  default:
1460    break;
1461  }
1462}
1463
1464void CFGBuilder::cleanupConstructionContext(Expr *E) {
1465  assert(BuildOpts.AddRichCXXConstructors &&
1466         "We should not be managing construction contexts!");
1467  assert(ConstructionContextMap.count(E) &&
1468         "Cannot exit construction context without the context!");
1469  ConstructionContextMap.erase(E);
1470}
1471
1472
1473/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
1474///  arbitrary statement.  Examples include a single expression or a function
1475///  body (compound statement).  The ownership of the returned CFG is
1476///  transferred to the caller.  If CFG construction fails, this method returns
1477///  NULL.
1478std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
1479  assert(cfg.get());
1480  if (!Statement)
1481    return nullptr;
1482
1483  // Create an empty block that will serve as the exit block for the CFG.  Since
1484  // this is the first block added to the CFG, it will be implicitly registered
1485  // as the exit block.
1486  Succ = createBlock();
1487  assert(Succ == &cfg->getExit());
1488  Block = nullptr;  // the EXIT block is empty.  Create all other blocks lazily.
1489
1490  assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
1491         "AddImplicitDtors and AddLifetime cannot be used at the same time");
1492
1493  if (BuildOpts.AddImplicitDtors)
1494    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
1495      addImplicitDtorsForDestructor(DD);
1496
1497  // Visit the statements and create the CFG.
1498  CFGBlock *B = addStmt(Statement);
1499
1500  if (badCFG)
1501    return nullptr;
1502
1503  // For C++ constructor add initializers to CFG. Constructors of virtual bases
1504  // are ignored unless the object is of the most derived class.
1505  //   class VBase { VBase() = default; VBase(int) {} };
1506  //   class A : virtual public VBase { A() : VBase(0) {} };
1507  //   class B : public A {};
1508  //   B b; // Constructor calls in order: VBase(), A(), B().
1509  //        // VBase(0) is ignored because A isn't the most derived class.
1510  // This may result in the virtual base(s) being already initialized at this
1511  // point, in which case we should jump right onto non-virtual bases and
1512  // fields. To handle this, make a CFG branch. We only need to add one such
1513  // branch per constructor, since the Standard states that all virtual bases
1514  // shall be initialized before non-virtual bases and direct data members.
1515  if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
1516    CFGBlock *VBaseSucc = nullptr;
1517    for (auto *I : llvm::reverse(CD->inits())) {
1518      if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc &&
1519          I->isBaseInitializer() && I->isBaseVirtual()) {
1520        // We've reached the first virtual base init while iterating in reverse
1521        // order. Make a new block for virtual base initializers so that we
1522        // could skip them.
1523        VBaseSucc = Succ = B ? B : &cfg->getExit();
1524        Block = createBlock();
1525      }
1526      B = addInitializer(I);
1527      if (badCFG)
1528        return nullptr;
1529    }
1530    if (VBaseSucc) {
1531      // Make a branch block for potentially skipping virtual base initializers.
1532      Succ = VBaseSucc;
1533      B = createBlock();
1534      B->setTerminator(
1535          CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch));
1536      addSuccessor(B, Block, true);
1537    }
1538  }
1539
1540  if (B)
1541    Succ = B;
1542
1543  // Backpatch the gotos whose label -> block mappings we didn't know when we
1544  // encountered them.
1545  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
1546                                   E = BackpatchBlocks.end(); I != E; ++I ) {
1547
1548    CFGBlock *B = I->block;
1549    if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) {
1550      LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
1551      // If there is no target for the goto, then we are looking at an
1552      // incomplete AST.  Handle this by not registering a successor.
1553      if (LI == LabelMap.end())
1554        continue;
1555      JumpTarget JT = LI->second;
1556      prependAutomaticObjLifetimeWithTerminator(B, I->scopePosition,
1557                                                JT.scopePosition);
1558      prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
1559                                             JT.scopePosition);
1560      const VarDecl *VD = prependAutomaticObjScopeEndWithTerminator(
1561          B, I->scopePosition, JT.scopePosition);
1562      appendScopeBegin(JT.block, VD, G);
1563      addSuccessor(B, JT.block);
1564    };
1565    if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) {
1566      CFGBlock *Successor  = (I+1)->block;
1567      for (auto *L : G->labels()) {
1568        LabelMapTy::iterator LI = LabelMap.find(L->getLabel());
1569        // If there is no target for the goto, then we are looking at an
1570        // incomplete AST.  Handle this by not registering a successor.
1571        if (LI == LabelMap.end())
1572          continue;
1573        JumpTarget JT = LI->second;
1574        // Successor has been added, so skip it.
1575        if (JT.block == Successor)
1576          continue;
1577        addSuccessor(B, JT.block);
1578      }
1579      I++;
1580    }
1581  }
1582
1583  // Add successors to the Indirect Goto Dispatch block (if we have one).
1584  if (CFGBlock *B = cfg->getIndirectGotoBlock())
1585    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
1586                              E = AddressTakenLabels.end(); I != E; ++I ) {
1587      // Lookup the target block.
1588      LabelMapTy::iterator LI = LabelMap.find(*I);
1589
1590      // If there is no target block that contains label, then we are looking
1591      // at an incomplete AST.  Handle this by not registering a successor.
1592      if (LI == LabelMap.end()) continue;
1593
1594      addSuccessor(B, LI->second.block);
1595    }
1596
1597  // Create an empty entry block that has no predecessors.
1598  cfg->setEntry(createBlock());
1599
1600  if (BuildOpts.AddRichCXXConstructors)
1601    assert(ConstructionContextMap.empty() &&
1602           "Not all construction contexts were cleaned up!");
1603
1604  return std::move(cfg);
1605}
1606
1607/// createBlock - Used to lazily create blocks that are connected
1608///  to the current (global) succcessor.
1609CFGBlock *CFGBuilder::createBlock(bool add_successor) {
1610  CFGBlock *B = cfg->createBlock();
1611  if (add_successor && Succ)
1612    addSuccessor(B, Succ);
1613  return B;
1614}
1615
1616/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
1617/// CFG. It is *not* connected to the current (global) successor, and instead
1618/// directly tied to the exit block in order to be reachable.
1619CFGBlock *CFGBuilder::createNoReturnBlock() {
1620  CFGBlock *B = createBlock(false);
1621  B->setHasNoReturnElement();
1622  addSuccessor(B, &cfg->getExit(), Succ);
1623  return B;
1624}
1625
1626/// addInitializer - Add C++ base or member initializer element to CFG.
1627CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
1628  if (!BuildOpts.AddInitializers)
1629    return Block;
1630
1631  bool HasTemporaries = false;
1632
1633  // Destructors of temporaries in initialization expression should be called
1634  // after initialization finishes.
1635  Expr *Init = I->getInit();
1636  if (Init) {
1637    HasTemporaries = isa<ExprWithCleanups>(Init);
1638
1639    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1640      // Generate destructors for temporaries in initialization expression.
1641      TempDtorContext Context;
1642      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1643                             /*ExternallyDestructed=*/false, Context);
1644    }
1645  }
1646
1647  autoCreateBlock();
1648  appendInitializer(Block, I);
1649
1650  if (Init) {
1651    findConstructionContexts(
1652        ConstructionContextLayer::create(cfg->getBumpVectorContext(), I),
1653        Init);
1654
1655    if (HasTemporaries) {
1656      // For expression with temporaries go directly to subexpression to omit
1657      // generating destructors for the second time.
1658      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1659    }
1660    if (BuildOpts.AddCXXDefaultInitExprInCtors) {
1661      if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
1662        // In general, appending the expression wrapped by a CXXDefaultInitExpr
1663        // may cause the same Expr to appear more than once in the CFG. Doing it
1664        // here is safe because there's only one initializer per field.
1665        autoCreateBlock();
1666        appendStmt(Block, Default);
1667        if (Stmt *Child = Default->getExpr())
1668          if (CFGBlock *R = Visit(Child))
1669            Block = R;
1670        return Block;
1671      }
1672    }
1673    return Visit(Init);
1674  }
1675
1676  return Block;
1677}
1678
1679/// Retrieve the type of the temporary object whose lifetime was
1680/// extended by a local reference with the given initializer.
1681static QualType getReferenceInitTemporaryType(const Expr *Init,
1682                                              bool *FoundMTE = nullptr) {
1683  while (true) {
1684    // Skip parentheses.
1685    Init = Init->IgnoreParens();
1686
1687    // Skip through cleanups.
1688    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
1689      Init = EWC->getSubExpr();
1690      continue;
1691    }
1692
1693    // Skip through the temporary-materialization expression.
1694    if (const MaterializeTemporaryExpr *MTE
1695          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
1696      Init = MTE->getSubExpr();
1697      if (FoundMTE)
1698        *FoundMTE = true;
1699      continue;
1700    }
1701
1702    // Skip sub-object accesses into rvalues.
1703    SmallVector<const Expr *, 2> CommaLHSs;
1704    SmallVector<SubobjectAdjustment, 2> Adjustments;
1705    const Expr *SkippedInit =
1706        Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1707    if (SkippedInit != Init) {
1708      Init = SkippedInit;
1709      continue;
1710    }
1711
1712    break;
1713  }
1714
1715  return Init->getType();
1716}
1717
1718// TODO: Support adding LoopExit element to the CFG in case where the loop is
1719// ended by ReturnStmt, GotoStmt or ThrowExpr.
1720void CFGBuilder::addLoopExit(const Stmt *LoopStmt){
1721  if(!BuildOpts.AddLoopExit)
1722    return;
1723  autoCreateBlock();
1724  appendLoopExit(Block, LoopStmt);
1725}
1726
1727void CFGBuilder::getDeclsWithEndedScope(LocalScope::const_iterator B,
1728                                        LocalScope::const_iterator E, Stmt *S) {
1729  if (!BuildOpts.AddScopes)
1730    return;
1731
1732  if (B == E)
1733    return;
1734
1735  // To go from B to E, one first goes up the scopes from B to P
1736  // then sideways in one scope from P to P' and then down
1737  // the scopes from P' to E.
1738  // The lifetime of all objects between B and P end.
1739  LocalScope::const_iterator P = B.shared_parent(E);
1740  int Dist = B.distance(P);
1741  if (Dist <= 0)
1742    return;
1743
1744  for (LocalScope::const_iterator I = B; I != P; ++I)
1745    if (I.pointsToFirstDeclaredVar())
1746      DeclsWithEndedScope.insert(*I);
1747}
1748
1749void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B,
1750                                         LocalScope::const_iterator E,
1751                                         Stmt *S) {
1752  getDeclsWithEndedScope(B, E, S);
1753  if (BuildOpts.AddScopes)
1754    addScopesEnd(B, E, S);
1755  if (BuildOpts.AddImplicitDtors)
1756    addAutomaticObjDtors(B, E, S);
1757  if (BuildOpts.AddLifetime)
1758    addLifetimeEnds(B, E, S);
1759}
1760
1761/// Add to current block automatic objects that leave the scope.
1762void CFGBuilder::addLifetimeEnds(LocalScope::const_iterator B,
1763                                 LocalScope::const_iterator E, Stmt *S) {
1764  if (!BuildOpts.AddLifetime)
1765    return;
1766
1767  if (B == E)
1768    return;
1769
1770  // To go from B to E, one first goes up the scopes from B to P
1771  // then sideways in one scope from P to P' and then down
1772  // the scopes from P' to E.
1773  // The lifetime of all objects between B and P end.
1774  LocalScope::const_iterator P = B.shared_parent(E);
1775  int dist = B.distance(P);
1776  if (dist <= 0)
1777    return;
1778
1779  // We need to perform the scope leaving in reverse order
1780  SmallVector<VarDecl *, 10> DeclsTrivial;
1781  SmallVector<VarDecl *, 10> DeclsNonTrivial;
1782  DeclsTrivial.reserve(dist);
1783  DeclsNonTrivial.reserve(dist);
1784
1785  for (LocalScope::const_iterator I = B; I != P; ++I)
1786    if (hasTrivialDestructor(*I))
1787      DeclsTrivial.push_back(*I);
1788    else
1789      DeclsNonTrivial.push_back(*I);
1790
1791  autoCreateBlock();
1792  // object with trivial destructor end their lifetime last (when storage
1793  // duration ends)
1794  for (SmallVectorImpl<VarDecl *>::reverse_iterator I = DeclsTrivial.rbegin(),
1795                                                    E = DeclsTrivial.rend();
1796       I != E; ++I)
1797    appendLifetimeEnds(Block, *I, S);
1798
1799  for (SmallVectorImpl<VarDecl *>::reverse_iterator
1800           I = DeclsNonTrivial.rbegin(),
1801           E = DeclsNonTrivial.rend();
1802       I != E; ++I)
1803    appendLifetimeEnds(Block, *I, S);
1804}
1805
1806/// Add to current block markers for ending scopes.
1807void CFGBuilder::addScopesEnd(LocalScope::const_iterator B,
1808                              LocalScope::const_iterator E, Stmt *S) {
1809  // If implicit destructors are enabled, we'll add scope ends in
1810  // addAutomaticObjDtors.
1811  if (BuildOpts.AddImplicitDtors)
1812    return;
1813
1814  autoCreateBlock();
1815
1816  for (auto I = DeclsWithEndedScope.rbegin(), E = DeclsWithEndedScope.rend();
1817       I != E; ++I)
1818    appendScopeEnd(Block, *I, S);
1819
1820  return;
1821}
1822
1823/// addAutomaticObjDtors - Add to current block automatic objects destructors
1824/// for objects in range of local scope positions. Use S as trigger statement
1825/// for destructors.
1826void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
1827                                      LocalScope::const_iterator E, Stmt *S) {
1828  if (!BuildOpts.AddImplicitDtors)
1829    return;
1830
1831  if (B == E)
1832    return;
1833
1834  // We need to append the destructors in reverse order, but any one of them
1835  // may be a no-return destructor which changes the CFG. As a result, buffer
1836  // this sequence up and replay them in reverse order when appending onto the
1837  // CFGBlock(s).
1838  SmallVector<VarDecl*, 10> Decls;
1839  Decls.reserve(B.distance(E));
1840  for (LocalScope::const_iterator I = B; I != E; ++I)
1841    Decls.push_back(*I);
1842
1843  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
1844                                                   E = Decls.rend();
1845       I != E; ++I) {
1846    if (hasTrivialDestructor(*I)) {
1847      // If AddScopes is enabled and *I is a first variable in a scope, add a
1848      // ScopeEnd marker in a Block.
1849      if (BuildOpts.AddScopes && DeclsWithEndedScope.count(*I)) {
1850        autoCreateBlock();
1851        appendScopeEnd(Block, *I, S);
1852      }
1853      continue;
1854    }
1855    // If this destructor is marked as a no-return destructor, we need to
1856    // create a new block for the destructor which does not have as a successor
1857    // anything built thus far: control won't flow out of this block.
1858    QualType Ty = (*I)->getType();
1859    if (Ty->isReferenceType()) {
1860      Ty = getReferenceInitTemporaryType((*I)->getInit());
1861    }
1862    Ty = Context->getBaseElementType(Ty);
1863
1864    if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
1865      Block = createNoReturnBlock();
1866    else
1867      autoCreateBlock();
1868
1869    // Add ScopeEnd just after automatic obj destructor.
1870    if (BuildOpts.AddScopes && DeclsWithEndedScope.count(*I))
1871      appendScopeEnd(Block, *I, S);
1872    appendAutomaticObjDtor(Block, *I, S);
1873  }
1874}
1875
1876/// addImplicitDtorsForDestructor - Add implicit destructors generated for
1877/// base and member objects in destructor.
1878void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
1879  assert(BuildOpts.AddImplicitDtors &&
1880         "Can be called only when dtors should be added");
1881  const CXXRecordDecl *RD = DD->getParent();
1882
1883  // At the end destroy virtual base objects.
1884  for (const auto &VI : RD->vbases()) {
1885    // TODO: Add a VirtualBaseBranch to see if the most derived class
1886    // (which is different from the current class) is responsible for
1887    // destroying them.
1888    const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
1889    if (!CD->hasTrivialDestructor()) {
1890      autoCreateBlock();
1891      appendBaseDtor(Block, &VI);
1892    }
1893  }
1894
1895  // Before virtual bases destroy direct base objects.
1896  for (const auto &BI : RD->bases()) {
1897    if (!BI.isVirtual()) {
1898      const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
1899      if (!CD->hasTrivialDestructor()) {
1900        autoCreateBlock();
1901        appendBaseDtor(Block, &BI);
1902      }
1903    }
1904  }
1905
1906  // First destroy member objects.
1907  for (auto *FI : RD->fields()) {
1908    // Check for constant size array. Set type to array element type.
1909    QualType QT = FI->getType();
1910    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1911      if (AT->getSize() == 0)
1912        continue;
1913      QT = AT->getElementType();
1914    }
1915
1916    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1917      if (!CD->hasTrivialDestructor()) {
1918        autoCreateBlock();
1919        appendMemberDtor(Block, FI);
1920      }
1921  }
1922}
1923
1924/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
1925/// way return valid LocalScope object.
1926LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
1927  if (Scope)
1928    return Scope;
1929  llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
1930  return new (alloc.Allocate<LocalScope>())
1931      LocalScope(BumpVectorContext(alloc), ScopePos);
1932}
1933
1934/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
1935/// that should create implicit scope (e.g. if/else substatements).
1936void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
1937  if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1938      !BuildOpts.AddScopes)
1939    return;
1940
1941  LocalScope *Scope = nullptr;
1942
1943  // For compound statement we will be creating explicit scope.
1944  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1945    for (auto *BI : CS->body()) {
1946      Stmt *SI = BI->stripLabelLikeStatements();
1947      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
1948        Scope = addLocalScopeForDeclStmt(DS, Scope);
1949    }
1950    return;
1951  }
1952
1953  // For any other statement scope will be implicit and as such will be
1954  // interesting only for DeclStmt.
1955  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
1956    addLocalScopeForDeclStmt(DS);
1957}
1958
1959/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
1960/// reuse Scope if not NULL.
1961LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
1962                                                 LocalScope* Scope) {
1963  if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1964      !BuildOpts.AddScopes)
1965    return Scope;
1966
1967  for (auto *DI : DS->decls())
1968    if (VarDecl *VD = dyn_cast<VarDecl>(DI))
1969      Scope = addLocalScopeForVarDecl(VD, Scope);
1970  return Scope;
1971}
1972
1973bool CFGBuilder::hasTrivialDestructor(VarDecl *VD) {
1974  // Check for const references bound to temporary. Set type to pointee.
1975  QualType QT = VD->getType();
1976  if (QT->isReferenceType()) {
1977    // Attempt to determine whether this declaration lifetime-extends a
1978    // temporary.
1979    //
1980    // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
1981    // temporaries, and a single declaration can extend multiple temporaries.
1982    // We should look at the storage duration on each nested
1983    // MaterializeTemporaryExpr instead.
1984
1985    const Expr *Init = VD->getInit();
1986    if (!Init) {
1987      // Probably an exception catch-by-reference variable.
1988      // FIXME: It doesn't really mean that the object has a trivial destructor.
1989      // Also are there other cases?
1990      return true;
1991    }
1992
1993    // Lifetime-extending a temporary?
1994    bool FoundMTE = false;
1995    QT = getReferenceInitTemporaryType(Init, &FoundMTE);
1996    if (!FoundMTE)
1997      return true;
1998  }
1999
2000  // Check for constant size array. Set type to array element type.
2001  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
2002    if (AT->getSize() == 0)
2003      return true;
2004    QT = AT->getElementType();
2005  }
2006
2007  // Check if type is a C++ class with non-trivial destructor.
2008  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
2009    return !CD->hasDefinition() || CD->hasTrivialDestructor();
2010  return true;
2011}
2012
2013/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
2014/// create add scope for automatic objects and temporary objects bound to
2015/// const reference. Will reuse Scope if not NULL.
2016LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
2017                                                LocalScope* Scope) {
2018  assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
2019         "AddImplicitDtors and AddLifetime cannot be used at the same time");
2020  if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2021      !BuildOpts.AddScopes)
2022    return Scope;
2023
2024  // Check if variable is local.
2025  switch (VD->getStorageClass()) {
2026  case SC_None:
2027  case SC_Auto:
2028  case SC_Register:
2029    break;
2030  default: return Scope;
2031  }
2032
2033  if (BuildOpts.AddImplicitDtors) {
2034    if (!hasTrivialDestructor(VD) || BuildOpts.AddScopes) {
2035      // Add the variable to scope
2036      Scope = createOrReuseLocalScope(Scope);
2037      Scope->addVar(VD);
2038      ScopePos = Scope->begin();
2039    }
2040    return Scope;
2041  }
2042
2043  assert(BuildOpts.AddLifetime);
2044  // Add the variable to scope
2045  Scope = createOrReuseLocalScope(Scope);
2046  Scope->addVar(VD);
2047  ScopePos = Scope->begin();
2048  return Scope;
2049}
2050
2051/// addLocalScopeAndDtors - For given statement add local scope for it and
2052/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
2053void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
2054  LocalScope::const_iterator scopeBeginPos = ScopePos;
2055  addLocalScopeForStmt(S);
2056  addAutomaticObjHandling(ScopePos, scopeBeginPos, S);
2057}
2058
2059/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
2060/// variables with automatic storage duration to CFGBlock's elements vector.
2061/// Elements will be prepended to physical beginning of the vector which
2062/// happens to be logical end. Use blocks terminator as statement that specifies
2063/// destructors call site.
2064/// FIXME: This mechanism for adding automatic destructors doesn't handle
2065/// no-return destructors properly.
2066void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
2067    LocalScope::const_iterator B, LocalScope::const_iterator E) {
2068  if (!BuildOpts.AddImplicitDtors)
2069    return;
2070  BumpVectorContext &C = cfg->getBumpVectorContext();
2071  CFGBlock::iterator InsertPos
2072    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
2073  for (LocalScope::const_iterator I = B; I != E; ++I)
2074    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
2075                                            Blk->getTerminatorStmt());
2076}
2077
2078/// prependAutomaticObjLifetimeWithTerminator - Prepend lifetime CFGElements for
2079/// variables with automatic storage duration to CFGBlock's elements vector.
2080/// Elements will be prepended to physical beginning of the vector which
2081/// happens to be logical end. Use blocks terminator as statement that specifies
2082/// where lifetime ends.
2083void CFGBuilder::prependAutomaticObjLifetimeWithTerminator(
2084    CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
2085  if (!BuildOpts.AddLifetime)
2086    return;
2087  BumpVectorContext &C = cfg->getBumpVectorContext();
2088  CFGBlock::iterator InsertPos =
2089      Blk->beginLifetimeEndsInsert(Blk->end(), B.distance(E), C);
2090  for (LocalScope::const_iterator I = B; I != E; ++I) {
2091    InsertPos =
2092        Blk->insertLifetimeEnds(InsertPos, *I, Blk->getTerminatorStmt());
2093  }
2094}
2095
2096/// prependAutomaticObjScopeEndWithTerminator - Prepend scope end CFGElements for
2097/// variables with automatic storage duration to CFGBlock's elements vector.
2098/// Elements will be prepended to physical beginning of the vector which
2099/// happens to be logical end. Use blocks terminator as statement that specifies
2100/// where scope ends.
2101const VarDecl *
2102CFGBuilder::prependAutomaticObjScopeEndWithTerminator(
2103    CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
2104  if (!BuildOpts.AddScopes)
2105    return nullptr;
2106  BumpVectorContext &C = cfg->getBumpVectorContext();
2107  CFGBlock::iterator InsertPos =
2108      Blk->beginScopeEndInsert(Blk->end(), 1, C);
2109  LocalScope::const_iterator PlaceToInsert = B;
2110  for (LocalScope::const_iterator I = B; I != E; ++I)
2111    PlaceToInsert = I;
2112  Blk->insertScopeEnd(InsertPos, *PlaceToInsert, Blk->getTerminatorStmt());
2113  return *PlaceToInsert;
2114}
2115
2116/// Visit - Walk the subtree of a statement and add extra
2117///   blocks for ternary operators, &&, and ||.  We also process "," and
2118///   DeclStmts (which may contain nested control-flow).
2119CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc,
2120                            bool ExternallyDestructed) {
2121  if (!S) {
2122    badCFG = true;
2123    return nullptr;
2124  }
2125
2126  if (Expr *E = dyn_cast<Expr>(S))
2127    S = E->IgnoreParens();
2128
2129  if (Context->getLangOpts().OpenMP)
2130    if (auto *D = dyn_cast<OMPExecutableDirective>(S))
2131      return VisitOMPExecutableDirective(D, asc);
2132
2133  switch (S->getStmtClass()) {
2134    default:
2135      return VisitStmt(S, asc);
2136
2137    case Stmt::ImplicitValueInitExprClass:
2138      if (BuildOpts.OmitImplicitValueInitializers)
2139        return Block;
2140      return VisitStmt(S, asc);
2141
2142    case Stmt::InitListExprClass:
2143      return VisitInitListExpr(cast<InitListExpr>(S), asc);
2144
2145    case Stmt::AddrLabelExprClass:
2146      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
2147
2148    case Stmt::BinaryConditionalOperatorClass:
2149      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
2150
2151    case Stmt::BinaryOperatorClass:
2152      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
2153
2154    case Stmt::BlockExprClass:
2155      return VisitBlockExpr(cast<BlockExpr>(S), asc);
2156
2157    case Stmt::BreakStmtClass:
2158      return VisitBreakStmt(cast<BreakStmt>(S));
2159
2160    case Stmt::CallExprClass:
2161    case Stmt::CXXOperatorCallExprClass:
2162    case Stmt::CXXMemberCallExprClass:
2163    case Stmt::UserDefinedLiteralClass:
2164      return VisitCallExpr(cast<CallExpr>(S), asc);
2165
2166    case Stmt::CaseStmtClass:
2167      return VisitCaseStmt(cast<CaseStmt>(S));
2168
2169    case Stmt::ChooseExprClass:
2170      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
2171
2172    case Stmt::CompoundStmtClass:
2173      return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed);
2174
2175    case Stmt::ConditionalOperatorClass:
2176      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
2177
2178    case Stmt::ContinueStmtClass:
2179      return VisitContinueStmt(cast<ContinueStmt>(S));
2180
2181    case Stmt::CXXCatchStmtClass:
2182      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
2183
2184    case Stmt::ExprWithCleanupsClass:
2185      return VisitExprWithCleanups(cast<ExprWithCleanups>(S),
2186                                   asc, ExternallyDestructed);
2187
2188    case Stmt::CXXDefaultArgExprClass:
2189    case Stmt::CXXDefaultInitExprClass:
2190      // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
2191      // called function's declaration, not by the caller. If we simply add
2192      // this expression to the CFG, we could end up with the same Expr
2193      // appearing multiple times.
2194      // PR13385 / <rdar://problem/12156507>
2195      //
2196      // It's likewise possible for multiple CXXDefaultInitExprs for the same
2197      // expression to be used in the same function (through aggregate
2198      // initialization).
2199      return VisitStmt(S, asc);
2200
2201    case Stmt::CXXBindTemporaryExprClass:
2202      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
2203
2204    case Stmt::CXXConstructExprClass:
2205      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
2206
2207    case Stmt::CXXNewExprClass:
2208      return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
2209
2210    case Stmt::CXXDeleteExprClass:
2211      return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
2212
2213    case Stmt::CXXFunctionalCastExprClass:
2214      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
2215
2216    case Stmt::CXXTemporaryObjectExprClass:
2217      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
2218
2219    case Stmt::CXXThrowExprClass:
2220      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
2221
2222    case Stmt::CXXTryStmtClass:
2223      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
2224
2225    case Stmt::CXXForRangeStmtClass:
2226      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
2227
2228    case Stmt::DeclStmtClass:
2229      return VisitDeclStmt(cast<DeclStmt>(S));
2230
2231    case Stmt::DefaultStmtClass:
2232      return VisitDefaultStmt(cast<DefaultStmt>(S));
2233
2234    case Stmt::DoStmtClass:
2235      return VisitDoStmt(cast<DoStmt>(S));
2236
2237    case Stmt::ForStmtClass:
2238      return VisitForStmt(cast<ForStmt>(S));
2239
2240    case Stmt::GotoStmtClass:
2241      return VisitGotoStmt(cast<GotoStmt>(S));
2242
2243    case Stmt::GCCAsmStmtClass:
2244      return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc);
2245
2246    case Stmt::IfStmtClass:
2247      return VisitIfStmt(cast<IfStmt>(S));
2248
2249    case Stmt::ImplicitCastExprClass:
2250      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
2251
2252    case Stmt::ConstantExprClass:
2253      return VisitConstantExpr(cast<ConstantExpr>(S), asc);
2254
2255    case Stmt::IndirectGotoStmtClass:
2256      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
2257
2258    case Stmt::LabelStmtClass:
2259      return VisitLabelStmt(cast<LabelStmt>(S));
2260
2261    case Stmt::LambdaExprClass:
2262      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
2263
2264    case Stmt::MaterializeTemporaryExprClass:
2265      return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S),
2266                                           asc);
2267
2268    case Stmt::MemberExprClass:
2269      return VisitMemberExpr(cast<MemberExpr>(S), asc);
2270
2271    case Stmt::NullStmtClass:
2272      return Block;
2273
2274    case Stmt::ObjCAtCatchStmtClass:
2275      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
2276
2277    case Stmt::ObjCAutoreleasePoolStmtClass:
2278    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
2279
2280    case Stmt::ObjCAtSynchronizedStmtClass:
2281      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
2282
2283    case Stmt::ObjCAtThrowStmtClass:
2284      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
2285
2286    case Stmt::ObjCAtTryStmtClass:
2287      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
2288
2289    case Stmt::ObjCForCollectionStmtClass:
2290      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
2291
2292    case Stmt::ObjCMessageExprClass:
2293      return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc);
2294
2295    case Stmt::OpaqueValueExprClass:
2296      return Block;
2297
2298    case Stmt::PseudoObjectExprClass:
2299      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
2300
2301    case Stmt::ReturnStmtClass:
2302    case Stmt::CoreturnStmtClass:
2303      return VisitReturnStmt(S);
2304
2305    case Stmt::SEHExceptStmtClass:
2306      return VisitSEHExceptStmt(cast<SEHExceptStmt>(S));
2307
2308    case Stmt::SEHFinallyStmtClass:
2309      return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S));
2310
2311    case Stmt::SEHLeaveStmtClass:
2312      return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S));
2313
2314    case Stmt::SEHTryStmtClass:
2315      return VisitSEHTryStmt(cast<SEHTryStmt>(S));
2316
2317    case Stmt::UnaryExprOrTypeTraitExprClass:
2318      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
2319                                           asc);
2320
2321    case Stmt::StmtExprClass:
2322      return VisitStmtExpr(cast<StmtExpr>(S), asc);
2323
2324    case Stmt::SwitchStmtClass:
2325      return VisitSwitchStmt(cast<SwitchStmt>(S));
2326
2327    case Stmt::UnaryOperatorClass:
2328      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
2329
2330    case Stmt::WhileStmtClass:
2331      return VisitWhileStmt(cast<WhileStmt>(S));
2332  }
2333}
2334
2335CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
2336  if (asc.alwaysAdd(*this, S)) {
2337    autoCreateBlock();
2338    appendStmt(Block, S);
2339  }
2340
2341  return VisitChildren(S);
2342}
2343
2344/// VisitChildren - Visit the children of a Stmt.
2345CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
2346  CFGBlock *B = Block;
2347
2348  // Visit the children in their reverse order so that they appear in
2349  // left-to-right (natural) order in the CFG.
2350  reverse_children RChildren(S);
2351  for (Stmt *Child : RChildren) {
2352    if (Child)
2353      if (CFGBlock *R = Visit(Child))
2354        B = R;
2355  }
2356  return B;
2357}
2358
2359CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) {
2360  if (asc.alwaysAdd(*this, ILE)) {
2361    autoCreateBlock();
2362    appendStmt(Block, ILE);
2363  }
2364  CFGBlock *B = Block;
2365
2366  reverse_children RChildren(ILE);
2367  for (Stmt *Child : RChildren) {
2368    if (!Child)
2369      continue;
2370    if (CFGBlock *R = Visit(Child))
2371      B = R;
2372    if (BuildOpts.AddCXXDefaultInitExprInAggregates) {
2373      if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child))
2374        if (Stmt *Child = DIE->getExpr())
2375          if (CFGBlock *R = Visit(Child))
2376            B = R;
2377    }
2378  }
2379  return B;
2380}
2381
2382CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
2383                                         AddStmtChoice asc) {
2384  AddressTakenLabels.insert(A->getLabel());
2385
2386  if (asc.alwaysAdd(*this, A)) {
2387    autoCreateBlock();
2388    appendStmt(Block, A);
2389  }
2390
2391  return Block;
2392}
2393
2394CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
2395           AddStmtChoice asc) {
2396  if (asc.alwaysAdd(*this, U)) {
2397    autoCreateBlock();
2398    appendStmt(Block, U);
2399  }
2400
2401  if (U->getOpcode() == UO_LNot)
2402    tryEvaluateBool(U->getSubExpr()->IgnoreParens());
2403
2404  return Visit(U->getSubExpr(), AddStmtChoice());
2405}
2406
2407CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
2408  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2409  appendStmt(ConfluenceBlock, B);
2410
2411  if (badCFG)
2412    return nullptr;
2413
2414  return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
2415                              ConfluenceBlock).first;
2416}
2417
2418std::pair<CFGBlock*, CFGBlock*>
2419CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
2420                                 Stmt *Term,
2421                                 CFGBlock *TrueBlock,
2422                                 CFGBlock *FalseBlock) {
2423  // Introspect the RHS.  If it is a nested logical operation, we recursively
2424  // build the CFG using this function.  Otherwise, resort to default
2425  // CFG construction behavior.
2426  Expr *RHS = B->getRHS()->IgnoreParens();
2427  CFGBlock *RHSBlock, *ExitBlock;
2428
2429  do {
2430    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
2431      if (B_RHS->isLogicalOp()) {
2432        std::tie(RHSBlock, ExitBlock) =
2433          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
2434        break;
2435      }
2436
2437    // The RHS is not a nested logical operation.  Don't push the terminator
2438    // down further, but instead visit RHS and construct the respective
2439    // pieces of the CFG, and link up the RHSBlock with the terminator
2440    // we have been provided.
2441    ExitBlock = RHSBlock = createBlock(false);
2442
2443    // Even though KnownVal is only used in the else branch of the next
2444    // conditional, tryEvaluateBool performs additional checking on the
2445    // Expr, so it should be called unconditionally.
2446    TryResult KnownVal = tryEvaluateBool(RHS);
2447    if (!KnownVal.isKnown())
2448      KnownVal = tryEvaluateBool(B);
2449
2450    if (!Term) {
2451      assert(TrueBlock == FalseBlock);
2452      addSuccessor(RHSBlock, TrueBlock);
2453    }
2454    else {
2455      RHSBlock->setTerminator(Term);
2456      addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
2457      addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
2458    }
2459
2460    Block = RHSBlock;
2461    RHSBlock = addStmt(RHS);
2462  }
2463  while (false);
2464
2465  if (badCFG)
2466    return std::make_pair(nullptr, nullptr);
2467
2468  // Generate the blocks for evaluating the LHS.
2469  Expr *LHS = B->getLHS()->IgnoreParens();
2470
2471  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
2472    if (B_LHS->isLogicalOp()) {
2473      if (B->getOpcode() == BO_LOr)
2474        FalseBlock = RHSBlock;
2475      else
2476        TrueBlock = RHSBlock;
2477
2478      // For the LHS, treat 'B' as the terminator that we want to sink
2479      // into the nested branch.  The RHS always gets the top-most
2480      // terminator.
2481      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
2482    }
2483
2484  // Create the block evaluating the LHS.
2485  // This contains the '&&' or '||' as the terminator.
2486  CFGBlock *LHSBlock = createBlock(false);
2487  LHSBlock->setTerminator(B);
2488
2489  Block = LHSBlock;
2490  CFGBlock *EntryLHSBlock = addStmt(LHS);
2491
2492  if (badCFG)
2493    return std::make_pair(nullptr, nullptr);
2494
2495  // See if this is a known constant.
2496  TryResult KnownVal = tryEvaluateBool(LHS);
2497
2498  // Now link the LHSBlock with RHSBlock.
2499  if (B->getOpcode() == BO_LOr) {
2500    addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
2501    addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
2502  } else {
2503    assert(B->getOpcode() == BO_LAnd);
2504    addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
2505    addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
2506  }
2507
2508  return std::make_pair(EntryLHSBlock, ExitBlock);
2509}
2510
2511CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
2512                                          AddStmtChoice asc) {
2513   // && or ||
2514  if (B->isLogicalOp())
2515    return VisitLogicalOperator(B);
2516
2517  if (B->getOpcode() == BO_Comma) { // ,
2518    autoCreateBlock();
2519    appendStmt(Block, B);
2520    addStmt(B->getRHS());
2521    return addStmt(B->getLHS());
2522  }
2523
2524  if (B->isAssignmentOp()) {
2525    if (asc.alwaysAdd(*this, B)) {
2526      autoCreateBlock();
2527      appendStmt(Block, B);
2528    }
2529    Visit(B->getLHS());
2530    return Visit(B->getRHS());
2531  }
2532
2533  if (asc.alwaysAdd(*this, B)) {
2534    autoCreateBlock();
2535    appendStmt(Block, B);
2536  }
2537
2538  if (B->isEqualityOp() || B->isRelationalOp())
2539    tryEvaluateBool(B);
2540
2541  CFGBlock *RBlock = Visit(B->getRHS());
2542  CFGBlock *LBlock = Visit(B->getLHS());
2543  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
2544  // containing a DoStmt, and the LHS doesn't create a new block, then we should
2545  // return RBlock.  Otherwise we'll incorrectly return NULL.
2546  return (LBlock ? LBlock : RBlock);
2547}
2548
2549CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
2550  if (asc.alwaysAdd(*this, E)) {
2551    autoCreateBlock();
2552    appendStmt(Block, E);
2553  }
2554  return Block;
2555}
2556
2557CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
2558  // "break" is a control-flow statement.  Thus we stop processing the current
2559  // block.
2560  if (badCFG)
2561    return nullptr;
2562
2563  // Now create a new block that ends with the break statement.
2564  Block = createBlock(false);
2565  Block->setTerminator(B);
2566
2567  // If there is no target for the break, then we are looking at an incomplete
2568  // AST.  This means that the CFG cannot be constructed.
2569  if (BreakJumpTarget.block) {
2570    addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B);
2571    addSuccessor(Block, BreakJumpTarget.block);
2572  } else
2573    badCFG = true;
2574
2575  return Block;
2576}
2577
2578static bool CanThrow(Expr *E, ASTContext &Ctx) {
2579  QualType Ty = E->getType();
2580  if (Ty->isFunctionPointerType() || Ty->isBlockPointerType())
2581    Ty = Ty->getPointeeType();
2582
2583  const FunctionType *FT = Ty->getAs<FunctionType>();
2584  if (FT) {
2585    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
2586      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
2587          Proto->isNothrow())
2588        return false;
2589  }
2590  return true;
2591}
2592
2593CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
2594  // Compute the callee type.
2595  QualType calleeType = C->getCallee()->getType();
2596  if (calleeType == Context->BoundMemberTy) {
2597    QualType boundType = Expr::findBoundMemberType(C->getCallee());
2598
2599    // We should only get a null bound type if processing a dependent
2600    // CFG.  Recover by assuming nothing.
2601    if (!boundType.isNull()) calleeType = boundType;
2602  }
2603
2604  // If this is a call to a no-return function, this stops the block here.
2605  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
2606
2607  bool AddEHEdge = false;
2608
2609  // Languages without exceptions are assumed to not throw.
2610  if (Context->getLangOpts().Exceptions) {
2611    if (BuildOpts.AddEHEdges)
2612      AddEHEdge = true;
2613  }
2614
2615  // If this is a call to a builtin function, it might not actually evaluate
2616  // its arguments. Don't add them to the CFG if this is the case.
2617  bool OmitArguments = false;
2618
2619  if (FunctionDecl *FD = C->getDirectCallee()) {
2620    // TODO: Support construction contexts for variadic function arguments.
2621    // These are a bit problematic and not very useful because passing
2622    // C++ objects as C-style variadic arguments doesn't work in general
2623    // (see [expr.call]).
2624    if (!FD->isVariadic())
2625      findConstructionContextsForArguments(C);
2626
2627    if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context))
2628      NoReturn = true;
2629    if (FD->hasAttr<NoThrowAttr>())
2630      AddEHEdge = false;
2631    if (FD->getBuiltinID() == Builtin::BI__builtin_object_size ||
2632        FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size)
2633      OmitArguments = true;
2634  }
2635
2636  if (!CanThrow(C->getCallee(), *Context))
2637    AddEHEdge = false;
2638
2639  if (OmitArguments) {
2640    assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
2641    assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
2642    autoCreateBlock();
2643    appendStmt(Block, C);
2644    return Visit(C->getCallee());
2645  }
2646
2647  if (!NoReturn && !AddEHEdge) {
2648    autoCreateBlock();
2649    appendCall(Block, C);
2650
2651    return VisitChildren(C);
2652  }
2653
2654  if (Block) {
2655    Succ = Block;
2656    if (badCFG)
2657      return nullptr;
2658  }
2659
2660  if (NoReturn)
2661    Block = createNoReturnBlock();
2662  else
2663    Block = createBlock();
2664
2665  appendCall(Block, C);
2666
2667  if (AddEHEdge) {
2668    // Add exceptional edges.
2669    if (TryTerminatedBlock)
2670      addSuccessor(Block, TryTerminatedBlock);
2671    else
2672      addSuccessor(Block, &cfg->getExit());
2673  }
2674
2675  return VisitChildren(C);
2676}
2677
2678CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
2679                                      AddStmtChoice asc) {
2680  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2681  appendStmt(ConfluenceBlock, C);
2682  if (badCFG)
2683    return nullptr;
2684
2685  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2686  Succ = ConfluenceBlock;
2687  Block = nullptr;
2688  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
2689  if (badCFG)
2690    return nullptr;
2691
2692  Succ = ConfluenceBlock;
2693  Block = nullptr;
2694  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
2695  if (badCFG)
2696    return nullptr;
2697
2698  Block = createBlock(false);
2699  // See if this is a known constant.
2700  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2701  addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
2702  addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
2703  Block->setTerminator(C);
2704  return addStmt(C->getCond());
2705}
2706
2707CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed) {
2708  LocalScope::const_iterator scopeBeginPos = ScopePos;
2709  addLocalScopeForStmt(C);
2710
2711  if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
2712    // If the body ends with a ReturnStmt, the dtors will be added in
2713    // VisitReturnStmt.
2714    addAutomaticObjHandling(ScopePos, scopeBeginPos, C);
2715  }
2716
2717  CFGBlock *LastBlock = Block;
2718
2719  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
2720       I != E; ++I ) {
2721    // If we hit a segment of code just containing ';' (NullStmts), we can
2722    // get a null block back.  In such cases, just use the LastBlock
2723    CFGBlock *newBlock = Visit(*I, AddStmtChoice::AlwaysAdd,
2724                               ExternallyDestructed);
2725
2726    if (newBlock)
2727      LastBlock = newBlock;
2728
2729    if (badCFG)
2730      return nullptr;
2731
2732    ExternallyDestructed = false;
2733  }
2734
2735  return LastBlock;
2736}
2737
2738CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
2739                                               AddStmtChoice asc) {
2740  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
2741  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
2742
2743  // Create the confluence block that will "merge" the results of the ternary
2744  // expression.
2745  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2746  appendStmt(ConfluenceBlock, C);
2747  if (badCFG)
2748    return nullptr;
2749
2750  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2751
2752  // Create a block for the LHS expression if there is an LHS expression.  A
2753  // GCC extension allows LHS to be NULL, causing the condition to be the
2754  // value that is returned instead.
2755  //  e.g: x ?: y is shorthand for: x ? x : y;
2756  Succ = ConfluenceBlock;
2757  Block = nullptr;
2758  CFGBlock *LHSBlock = nullptr;
2759  const Expr *trueExpr = C->getTrueExpr();
2760  if (trueExpr != opaqueValue) {
2761    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
2762    if (badCFG)
2763      return nullptr;
2764    Block = nullptr;
2765  }
2766  else
2767    LHSBlock = ConfluenceBlock;
2768
2769  // Create the block for the RHS expression.
2770  Succ = ConfluenceBlock;
2771  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
2772  if (badCFG)
2773    return nullptr;
2774
2775  // If the condition is a logical '&&' or '||', build a more accurate CFG.
2776  if (BinaryOperator *Cond =
2777        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
2778    if (Cond->isLogicalOp())
2779      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
2780
2781  // Create the block that will contain the condition.
2782  Block = createBlock(false);
2783
2784  // See if this is a known constant.
2785  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2786  addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
2787  addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
2788  Block->setTerminator(C);
2789  Expr *condExpr = C->getCond();
2790
2791  if (opaqueValue) {
2792    // Run the condition expression if it's not trivially expressed in
2793    // terms of the opaque value (or if there is no opaque value).
2794    if (condExpr != opaqueValue)
2795      addStmt(condExpr);
2796
2797    // Before that, run the common subexpression if there was one.
2798    // At least one of this or the above will be run.
2799    return addStmt(BCO->getCommon());
2800  }
2801
2802  return addStmt(condExpr);
2803}
2804
2805CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
2806  // Check if the Decl is for an __label__.  If so, elide it from the
2807  // CFG entirely.
2808  if (isa<LabelDecl>(*DS->decl_begin()))
2809    return Block;
2810
2811  // This case also handles static_asserts.
2812  if (DS->isSingleDecl())
2813    return VisitDeclSubExpr(DS);
2814
2815  CFGBlock *B = nullptr;
2816
2817  // Build an individual DeclStmt for each decl.
2818  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
2819                                       E = DS->decl_rend();
2820       I != E; ++I) {
2821
2822    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
2823    // automatically freed with the CFG.
2824    DeclGroupRef DG(*I);
2825    Decl *D = *I;
2826    DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
2827    cfg->addSyntheticDeclStmt(DSNew, DS);
2828
2829    // Append the fake DeclStmt to block.
2830    B = VisitDeclSubExpr(DSNew);
2831  }
2832
2833  return B;
2834}
2835
2836/// VisitDeclSubExpr - Utility method to add block-level expressions for
2837/// DeclStmts and initializers in them.
2838CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
2839  assert(DS->isSingleDecl() && "Can handle single declarations only.");
2840
2841  if (const auto *TND = dyn_cast<TypedefNameDecl>(DS->getSingleDecl())) {
2842    // If we encounter a VLA, process its size expressions.
2843    const Type *T = TND->getUnderlyingType().getTypePtr();
2844    if (!T->isVariablyModifiedType())
2845      return Block;
2846
2847    autoCreateBlock();
2848    appendStmt(Block, DS);
2849
2850    CFGBlock *LastBlock = Block;
2851    for (const VariableArrayType *VA = FindVA(T); VA != nullptr;
2852         VA = FindVA(VA->getElementType().getTypePtr())) {
2853      if (CFGBlock *NewBlock = addStmt(VA->getSizeExpr()))
2854        LastBlock = NewBlock;
2855    }
2856    return LastBlock;
2857  }
2858
2859  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
2860
2861  if (!VD) {
2862    // Of everything that can be declared in a DeclStmt, only VarDecls and the
2863    // exceptions above impact runtime semantics.
2864    return Block;
2865  }
2866
2867  bool HasTemporaries = false;
2868
2869  // Guard static initializers under a branch.
2870  CFGBlock *blockAfterStaticInit = nullptr;
2871
2872  if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
2873    // For static variables, we need to create a branch to track
2874    // whether or not they are initialized.
2875    if (Block) {
2876      Succ = Block;
2877      Block = nullptr;
2878      if (badCFG)
2879        return nullptr;
2880    }
2881    blockAfterStaticInit = Succ;
2882  }
2883
2884  // Destructors of temporaries in initialization expression should be called
2885  // after initialization finishes.
2886  Expr *Init = VD->getInit();
2887  if (Init) {
2888    HasTemporaries = isa<ExprWithCleanups>(Init);
2889
2890    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
2891      // Generate destructors for temporaries in initialization expression.
2892      TempDtorContext Context;
2893      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
2894                             /*ExternallyDestructed=*/true, Context);
2895    }
2896  }
2897
2898  autoCreateBlock();
2899  appendStmt(Block, DS);
2900
2901  findConstructionContexts(
2902      ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
2903      Init);
2904
2905  // Keep track of the last non-null block, as 'Block' can be nulled out
2906  // if the initializer expression is something like a 'while' in a
2907  // statement-expression.
2908  CFGBlock *LastBlock = Block;
2909
2910  if (Init) {
2911    if (HasTemporaries) {
2912      // For expression with temporaries go directly to subexpression to omit
2913      // generating destructors for the second time.
2914      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
2915      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
2916        LastBlock = newBlock;
2917    }
2918    else {
2919      if (CFGBlock *newBlock = Visit(Init))
2920        LastBlock = newBlock;
2921    }
2922  }
2923
2924  // If the type of VD is a VLA, then we must process its size expressions.
2925  // FIXME: This does not find the VLA if it is embedded in other types,
2926  // like here: `int (*p_vla)[x];`
2927  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
2928       VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
2929    if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
2930      LastBlock = newBlock;
2931  }
2932
2933  maybeAddScopeBeginForVarDecl(Block, VD, DS);
2934
2935  // Remove variable from local scope.
2936  if (ScopePos && VD == *ScopePos)
2937    ++ScopePos;
2938
2939  CFGBlock *B = LastBlock;
2940  if (blockAfterStaticInit) {
2941    Succ = B;
2942    Block = createBlock(false);
2943    Block->setTerminator(DS);
2944    addSuccessor(Block, blockAfterStaticInit);
2945    addSuccessor(Block, B);
2946    B = Block;
2947  }
2948
2949  return B;
2950}
2951
2952CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
2953  // We may see an if statement in the middle of a basic block, or it may be the
2954  // first statement we are processing.  In either case, we create a new basic
2955  // block.  First, we create the blocks for the then...else statements, and
2956  // then we create the block containing the if statement.  If we were in the
2957  // middle of a block, we stop processing that block.  That block is then the
2958  // implicit successor for the "then" and "else" clauses.
2959
2960  // Save local scope position because in case of condition variable ScopePos
2961  // won't be restored when traversing AST.
2962  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2963
2964  // Create local scope for C++17 if init-stmt if one exists.
2965  if (Stmt *Init = I->getInit())
2966    addLocalScopeForStmt(Init);
2967
2968  // Create local scope for possible condition variable.
2969  // Store scope position. Add implicit destructor.
2970  if (VarDecl *VD = I->getConditionVariable())
2971    addLocalScopeForVarDecl(VD);
2972
2973  addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I);
2974
2975  // The block we were processing is now finished.  Make it the successor
2976  // block.
2977  if (Block) {
2978    Succ = Block;
2979    if (badCFG)
2980      return nullptr;
2981  }
2982
2983  // Process the false branch.
2984  CFGBlock *ElseBlock = Succ;
2985
2986  if (Stmt *Else = I->getElse()) {
2987    SaveAndRestore<CFGBlock*> sv(Succ);
2988
2989    // NULL out Block so that the recursive call to Visit will
2990    // create a new basic block.
2991    Block = nullptr;
2992
2993    // If branch is not a compound statement create implicit scope
2994    // and add destructors.
2995    if (!isa<CompoundStmt>(Else))
2996      addLocalScopeAndDtors(Else);
2997
2998    ElseBlock = addStmt(Else);
2999
3000    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
3001      ElseBlock = sv.get();
3002    else if (Block) {
3003      if (badCFG)
3004        return nullptr;
3005    }
3006  }
3007
3008  // Process the true branch.
3009  CFGBlock *ThenBlock;
3010  {
3011    Stmt *Then = I->getThen();
3012    assert(Then);
3013    SaveAndRestore<CFGBlock*> sv(Succ);
3014    Block = nullptr;
3015
3016    // If branch is not a compound statement create implicit scope
3017    // and add destructors.
3018    if (!isa<CompoundStmt>(Then))
3019      addLocalScopeAndDtors(Then);
3020
3021    ThenBlock = addStmt(Then);
3022
3023    if (!ThenBlock) {
3024      // We can reach here if the "then" body has all NullStmts.
3025      // Create an empty block so we can distinguish between true and false
3026      // branches in path-sensitive analyses.
3027      ThenBlock = createBlock(false);
3028      addSuccessor(ThenBlock, sv.get());
3029    } else if (Block) {
3030      if (badCFG)
3031        return nullptr;
3032    }
3033  }
3034
3035  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
3036  // having these handle the actual control-flow jump.  Note that
3037  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
3038  // we resort to the old control-flow behavior.  This special handling
3039  // removes infeasible paths from the control-flow graph by having the
3040  // control-flow transfer of '&&' or '||' go directly into the then/else
3041  // blocks directly.
3042  BinaryOperator *Cond =
3043      I->getConditionVariable()
3044          ? nullptr
3045          : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens());
3046  CFGBlock *LastBlock;
3047  if (Cond && Cond->isLogicalOp())
3048    LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
3049  else {
3050    // Now create a new block containing the if statement.
3051    Block = createBlock(false);
3052
3053    // Set the terminator of the new block to the If statement.
3054    Block->setTerminator(I);
3055
3056    // See if this is a known constant.
3057    const TryResult &KnownVal = tryEvaluateBool(I->getCond());
3058
3059    // Add the successors.  If we know that specific branches are
3060    // unreachable, inform addSuccessor() of that knowledge.
3061    addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse());
3062    addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue());
3063
3064    // Add the condition as the last statement in the new block.  This may
3065    // create new blocks as the condition may contain control-flow.  Any newly
3066    // created blocks will be pointed to be "Block".
3067    LastBlock = addStmt(I->getCond());
3068
3069    // If the IfStmt contains a condition variable, add it and its
3070    // initializer to the CFG.
3071    if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
3072      autoCreateBlock();
3073      LastBlock = addStmt(const_cast<DeclStmt *>(DS));
3074    }
3075  }
3076
3077  // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
3078  if (Stmt *Init = I->getInit()) {
3079    autoCreateBlock();
3080    LastBlock = addStmt(Init);
3081  }
3082
3083  return LastBlock;
3084}
3085
3086CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) {
3087  // If we were in the middle of a block we stop processing that block.
3088  //
3089  // NOTE: If a "return" or "co_return" appears in the middle of a block, this
3090  //       means that the code afterwards is DEAD (unreachable).  We still keep
3091  //       a basic block for that code; a simple "mark-and-sweep" from the entry
3092  //       block will be able to report such dead blocks.
3093  assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S));
3094
3095  // Create the new block.
3096  Block = createBlock(false);
3097
3098  addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S);
3099
3100  if (auto *R = dyn_cast<ReturnStmt>(S))
3101    findConstructionContexts(
3102        ConstructionContextLayer::create(cfg->getBumpVectorContext(), R),
3103        R->getRetValue());
3104
3105  // If the one of the destructors does not return, we already have the Exit
3106  // block as a successor.
3107  if (!Block->hasNoReturnElement())
3108    addSuccessor(Block, &cfg->getExit());
3109
3110  // Add the return statement to the block.
3111  appendStmt(Block, S);
3112
3113  // Visit children
3114  if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) {
3115    if (Expr *O = RS->getRetValue())
3116      return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true);
3117    return Block;
3118  } else { // co_return
3119    return VisitChildren(S);
3120  }
3121}
3122
3123CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) {
3124  // SEHExceptStmt are treated like labels, so they are the first statement in a
3125  // block.
3126
3127  // Save local scope position because in case of exception variable ScopePos
3128  // won't be restored when traversing AST.
3129  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3130
3131  addStmt(ES->getBlock());
3132  CFGBlock *SEHExceptBlock = Block;
3133  if (!SEHExceptBlock)
3134    SEHExceptBlock = createBlock();
3135
3136  appendStmt(SEHExceptBlock, ES);
3137
3138  // Also add the SEHExceptBlock as a label, like with regular labels.
3139  SEHExceptBlock->setLabel(ES);
3140
3141  // Bail out if the CFG is bad.
3142  if (badCFG)
3143    return nullptr;
3144
3145  // We set Block to NULL to allow lazy creation of a new block (if necessary).
3146  Block = nullptr;
3147
3148  return SEHExceptBlock;
3149}
3150
3151CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) {
3152  return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false);
3153}
3154
3155CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) {
3156  // "__leave" is a control-flow statement.  Thus we stop processing the current
3157  // block.
3158  if (badCFG)
3159    return nullptr;
3160
3161  // Now create a new block that ends with the __leave statement.
3162  Block = createBlock(false);
3163  Block->setTerminator(LS);
3164
3165  // If there is no target for the __leave, then we are looking at an incomplete
3166  // AST.  This means that the CFG cannot be constructed.
3167  if (SEHLeaveJumpTarget.block) {
3168    addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS);
3169    addSuccessor(Block, SEHLeaveJumpTarget.block);
3170  } else
3171    badCFG = true;
3172
3173  return Block;
3174}
3175
3176CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) {
3177  // "__try"/"__except"/"__finally" is a control-flow statement.  Thus we stop
3178  // processing the current block.
3179  CFGBlock *SEHTrySuccessor = nullptr;
3180
3181  if (Block) {
3182    if (badCFG)
3183      return nullptr;
3184    SEHTrySuccessor = Block;
3185  } else SEHTrySuccessor = Succ;
3186
3187  // FIXME: Implement __finally support.
3188  if (Terminator->getFinallyHandler())
3189    return NYS();
3190
3191  CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock;
3192
3193  // Create a new block that will contain the __try statement.
3194  CFGBlock *NewTryTerminatedBlock = createBlock(false);
3195
3196  // Add the terminator in the __try block.
3197  NewTryTerminatedBlock->setTerminator(Terminator);
3198
3199  if (SEHExceptStmt *Except = Terminator->getExceptHandler()) {
3200    // The code after the try is the implicit successor if there's an __except.
3201    Succ = SEHTrySuccessor;
3202    Block = nullptr;
3203    CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except);
3204    if (!ExceptBlock)
3205      return nullptr;
3206    // Add this block to the list of successors for the block with the try
3207    // statement.
3208    addSuccessor(NewTryTerminatedBlock, ExceptBlock);
3209  }
3210  if (PrevSEHTryTerminatedBlock)
3211    addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock);
3212  else
3213    addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
3214
3215  // The code after the try is the implicit successor.
3216  Succ = SEHTrySuccessor;
3217
3218  // Save the current "__try" context.
3219  SaveAndRestore<CFGBlock *> save_try(TryTerminatedBlock,
3220                                      NewTryTerminatedBlock);
3221  cfg->addTryDispatchBlock(TryTerminatedBlock);
3222
3223  // Save the current value for the __leave target.
3224  // All __leaves should go to the code following the __try
3225  // (FIXME: or if the __try has a __finally, to the __finally.)
3226  SaveAndRestore<JumpTarget> save_break(SEHLeaveJumpTarget);
3227  SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos);
3228
3229  assert(Terminator->getTryBlock() && "__try must contain a non-NULL body");
3230  Block = nullptr;
3231  return addStmt(Terminator->getTryBlock());
3232}
3233
3234CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
3235  // Get the block of the labeled statement.  Add it to our map.
3236  addStmt(L->getSubStmt());
3237  CFGBlock *LabelBlock = Block;
3238
3239  if (!LabelBlock)              // This can happen when the body is empty, i.e.
3240    LabelBlock = createBlock(); // scopes that only contains NullStmts.
3241
3242  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
3243         "label already in map");
3244  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
3245
3246  // Labels partition blocks, so this is the end of the basic block we were
3247  // processing (L is the block's label).  Because this is label (and we have
3248  // already processed the substatement) there is no extra control-flow to worry
3249  // about.
3250  LabelBlock->setLabel(L);
3251  if (badCFG)
3252    return nullptr;
3253
3254  // We set Block to NULL to allow lazy creation of a new block (if necessary);
3255  Block = nullptr;
3256
3257  // This block is now the implicit successor of other blocks.
3258  Succ = LabelBlock;
3259
3260  return LabelBlock;
3261}
3262
3263CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
3264  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3265  for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
3266    if (Expr *CopyExpr = CI.getCopyExpr()) {
3267      CFGBlock *Tmp = Visit(CopyExpr);
3268      if (Tmp)
3269        LastBlock = Tmp;
3270    }
3271  }
3272  return LastBlock;
3273}
3274
3275CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
3276  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3277  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
3278       et = E->capture_init_end(); it != et; ++it) {
3279    if (Expr *Init = *it) {
3280      CFGBlock *Tmp = Visit(Init);
3281      if (Tmp)
3282        LastBlock = Tmp;
3283    }
3284  }
3285  return LastBlock;
3286}
3287
3288CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
3289  // Goto is a control-flow statement.  Thus we stop processing the current
3290  // block and create a new one.
3291
3292  Block = createBlock(false);
3293  Block->setTerminator(G);
3294
3295  // If we already know the mapping to the label block add the successor now.
3296  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
3297
3298  if (I == LabelMap.end())
3299    // We will need to backpatch this block later.
3300    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3301  else {
3302    JumpTarget JT = I->second;
3303    addAutomaticObjHandling(ScopePos, JT.scopePosition, G);
3304    addSuccessor(Block, JT.block);
3305  }
3306
3307  return Block;
3308}
3309
3310CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) {
3311  // Goto is a control-flow statement.  Thus we stop processing the current
3312  // block and create a new one.
3313
3314  if (!G->isAsmGoto())
3315    return VisitStmt(G, asc);
3316
3317  if (Block) {
3318    Succ = Block;
3319    if (badCFG)
3320      return nullptr;
3321  }
3322  Block = createBlock();
3323  Block->setTerminator(G);
3324  // We will backpatch this block later for all the labels.
3325  BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3326  // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is
3327  // used to avoid adding "Succ" again.
3328  BackpatchBlocks.push_back(JumpSource(Succ, ScopePos));
3329  return Block;
3330}
3331
3332CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
3333  CFGBlock *LoopSuccessor = nullptr;
3334
3335  // Save local scope position because in case of condition variable ScopePos
3336  // won't be restored when traversing AST.
3337  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3338
3339  // Create local scope for init statement and possible condition variable.
3340  // Add destructor for init statement and condition variable.
3341  // Store scope position for continue statement.
3342  if (Stmt *Init = F->getInit())
3343    addLocalScopeForStmt(Init);
3344  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3345
3346  if (VarDecl *VD = F->getConditionVariable())
3347    addLocalScopeForVarDecl(VD);
3348  LocalScope::const_iterator ContinueScopePos = ScopePos;
3349
3350  addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F);
3351
3352  addLoopExit(F);
3353
3354  // "for" is a control-flow statement.  Thus we stop processing the current
3355  // block.
3356  if (Block) {
3357    if (badCFG)
3358      return nullptr;
3359    LoopSuccessor = Block;
3360  } else
3361    LoopSuccessor = Succ;
3362
3363  // Save the current value for the break targets.
3364  // All breaks should go to the code following the loop.
3365  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3366  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3367
3368  CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3369
3370  // Now create the loop body.
3371  {
3372    assert(F->getBody());
3373
3374    // Save the current values for Block, Succ, continue and break targets.
3375    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3376    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3377
3378    // Create an empty block to represent the transition block for looping back
3379    // to the head of the loop.  If we have increment code, it will
3380    // go in this block as well.
3381    Block = Succ = TransitionBlock = createBlock(false);
3382    TransitionBlock->setLoopTarget(F);
3383
3384    if (Stmt *I = F->getInc()) {
3385      // Generate increment code in its own basic block.  This is the target of
3386      // continue statements.
3387      Succ = addStmt(I);
3388    }
3389
3390    // Finish up the increment (or empty) block if it hasn't been already.
3391    if (Block) {
3392      assert(Block == Succ);
3393      if (badCFG)
3394        return nullptr;
3395      Block = nullptr;
3396    }
3397
3398   // The starting block for the loop increment is the block that should
3399   // represent the 'loop target' for looping back to the start of the loop.
3400   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3401   ContinueJumpTarget.block->setLoopTarget(F);
3402
3403    // Loop body should end with destructor of Condition variable (if any).
3404   addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F);
3405
3406    // If body is not a compound statement create implicit scope
3407    // and add destructors.
3408    if (!isa<CompoundStmt>(F->getBody()))
3409      addLocalScopeAndDtors(F->getBody());
3410
3411    // Now populate the body block, and in the process create new blocks as we
3412    // walk the body of the loop.
3413    BodyBlock = addStmt(F->getBody());
3414
3415    if (!BodyBlock) {
3416      // In the case of "for (...;...;...);" we can have a null BodyBlock.
3417      // Use the continue jump target as the proxy for the body.
3418      BodyBlock = ContinueJumpTarget.block;
3419    }
3420    else if (badCFG)
3421      return nullptr;
3422  }
3423
3424  // Because of short-circuit evaluation, the condition of the loop can span
3425  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3426  // evaluate the condition.
3427  CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3428
3429  do {
3430    Expr *C = F->getCond();
3431    SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3432
3433    // Specially handle logical operators, which have a slightly
3434    // more optimal CFG representation.
3435    if (BinaryOperator *Cond =
3436            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
3437      if (Cond->isLogicalOp()) {
3438        std::tie(EntryConditionBlock, ExitConditionBlock) =
3439          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
3440        break;
3441      }
3442
3443    // The default case when not handling logical operators.
3444    EntryConditionBlock = ExitConditionBlock = createBlock(false);
3445    ExitConditionBlock->setTerminator(F);
3446
3447    // See if this is a known constant.
3448    TryResult KnownVal(true);
3449
3450    if (C) {
3451      // Now add the actual condition to the condition block.
3452      // Because the condition itself may contain control-flow, new blocks may
3453      // be created.  Thus we update "Succ" after adding the condition.
3454      Block = ExitConditionBlock;
3455      EntryConditionBlock = addStmt(C);
3456
3457      // If this block contains a condition variable, add both the condition
3458      // variable and initializer to the CFG.
3459      if (VarDecl *VD = F->getConditionVariable()) {
3460        if (Expr *Init = VD->getInit()) {
3461          autoCreateBlock();
3462          const DeclStmt *DS = F->getConditionVariableDeclStmt();
3463          assert(DS->isSingleDecl());
3464          findConstructionContexts(
3465              ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
3466              Init);
3467          appendStmt(Block, DS);
3468          EntryConditionBlock = addStmt(Init);
3469          assert(Block == EntryConditionBlock);
3470          maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3471        }
3472      }
3473
3474      if (Block && badCFG)
3475        return nullptr;
3476
3477      KnownVal = tryEvaluateBool(C);
3478    }
3479
3480    // Add the loop body entry as a successor to the condition.
3481    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3482    // Link up the condition block with the code that follows the loop.  (the
3483    // false branch).
3484    addSuccessor(ExitConditionBlock,
3485                 KnownVal.isTrue() ? nullptr : LoopSuccessor);
3486  } while (false);
3487
3488  // Link up the loop-back block to the entry condition block.
3489  addSuccessor(TransitionBlock, EntryConditionBlock);
3490
3491  // The condition block is the implicit successor for any code above the loop.
3492  Succ = EntryConditionBlock;
3493
3494  // If the loop contains initialization, create a new block for those
3495  // statements.  This block can also contain statements that precede the loop.
3496  if (Stmt *I = F->getInit()) {
3497    SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3498    ScopePos = LoopBeginScopePos;
3499    Block = createBlock();
3500    return addStmt(I);
3501  }
3502
3503  // There is no loop initialization.  We are thus basically a while loop.
3504  // NULL out Block to force lazy block construction.
3505  Block = nullptr;
3506  Succ = EntryConditionBlock;
3507  return EntryConditionBlock;
3508}
3509
3510CFGBlock *
3511CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
3512                                          AddStmtChoice asc) {
3513  findConstructionContexts(
3514      ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE),
3515      MTE->getSubExpr());
3516
3517  return VisitStmt(MTE, asc);
3518}
3519
3520CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
3521  if (asc.alwaysAdd(*this, M)) {
3522    autoCreateBlock();
3523    appendStmt(Block, M);
3524  }
3525  return Visit(M->getBase());
3526}
3527
3528CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
3529  // Objective-C fast enumeration 'for' statements:
3530  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
3531  //
3532  //  for ( Type newVariable in collection_expression ) { statements }
3533  //
3534  //  becomes:
3535  //
3536  //   prologue:
3537  //     1. collection_expression
3538  //     T. jump to loop_entry
3539  //   loop_entry:
3540  //     1. side-effects of element expression
3541  //     1. ObjCForCollectionStmt [performs binding to newVariable]
3542  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
3543  //   TB:
3544  //     statements
3545  //     T. jump to loop_entry
3546  //   FB:
3547  //     what comes after
3548  //
3549  //  and
3550  //
3551  //  Type existingItem;
3552  //  for ( existingItem in expression ) { statements }
3553  //
3554  //  becomes:
3555  //
3556  //   the same with newVariable replaced with existingItem; the binding works
3557  //   the same except that for one ObjCForCollectionStmt::getElement() returns
3558  //   a DeclStmt and the other returns a DeclRefExpr.
3559
3560  CFGBlock *LoopSuccessor = nullptr;
3561
3562  if (Block) {
3563    if (badCFG)
3564      return nullptr;
3565    LoopSuccessor = Block;
3566    Block = nullptr;
3567  } else
3568    LoopSuccessor = Succ;
3569
3570  // Build the condition blocks.
3571  CFGBlock *ExitConditionBlock = createBlock(false);
3572
3573  // Set the terminator for the "exit" condition block.
3574  ExitConditionBlock->setTerminator(S);
3575
3576  // The last statement in the block should be the ObjCForCollectionStmt, which
3577  // performs the actual binding to 'element' and determines if there are any
3578  // more items in the collection.
3579  appendStmt(ExitConditionBlock, S);
3580  Block = ExitConditionBlock;
3581
3582  // Walk the 'element' expression to see if there are any side-effects.  We
3583  // generate new blocks as necessary.  We DON'T add the statement by default to
3584  // the CFG unless it contains control-flow.
3585  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
3586                                        AddStmtChoice::NotAlwaysAdd);
3587  if (Block) {
3588    if (badCFG)
3589      return nullptr;
3590    Block = nullptr;
3591  }
3592
3593  // The condition block is the implicit successor for the loop body as well as
3594  // any code above the loop.
3595  Succ = EntryConditionBlock;
3596
3597  // Now create the true branch.
3598  {
3599    // Save the current values for Succ, continue and break targets.
3600    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3601    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
3602                               save_break(BreakJumpTarget);
3603
3604    // Add an intermediate block between the BodyBlock and the
3605    // EntryConditionBlock to represent the "loop back" transition, for looping
3606    // back to the head of the loop.
3607    CFGBlock *LoopBackBlock = nullptr;
3608    Succ = LoopBackBlock = createBlock();
3609    LoopBackBlock->setLoopTarget(S);
3610
3611    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3612    ContinueJumpTarget = JumpTarget(Succ, ScopePos);
3613
3614    CFGBlock *BodyBlock = addStmt(S->getBody());
3615
3616    if (!BodyBlock)
3617      BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
3618    else if (Block) {
3619      if (badCFG)
3620        return nullptr;
3621    }
3622
3623    // This new body block is a successor to our "exit" condition block.
3624    addSuccessor(ExitConditionBlock, BodyBlock);
3625  }
3626
3627  // Link up the condition block with the code that follows the loop.
3628  // (the false branch).
3629  addSuccessor(ExitConditionBlock, LoopSuccessor);
3630
3631  // Now create a prologue block to contain the collection expression.
3632  Block = createBlock();
3633  return addStmt(S->getCollection());
3634}
3635
3636CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
3637  // Inline the body.
3638  return addStmt(S->getSubStmt());
3639  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
3640}
3641
3642CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
3643  // FIXME: Add locking 'primitives' to CFG for @synchronized.
3644
3645  // Inline the body.
3646  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
3647
3648  // The sync body starts its own basic block.  This makes it a little easier
3649  // for diagnostic clients.
3650  if (SyncBlock) {
3651    if (badCFG)
3652      return nullptr;
3653
3654    Block = nullptr;
3655    Succ = SyncBlock;
3656  }
3657
3658  // Add the @synchronized to the CFG.
3659  autoCreateBlock();
3660  appendStmt(Block, S);
3661
3662  // Inline the sync expression.
3663  return addStmt(S->getSynchExpr());
3664}
3665
3666CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
3667  // FIXME
3668  return NYS();
3669}
3670
3671CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
3672  autoCreateBlock();
3673
3674  // Add the PseudoObject as the last thing.
3675  appendStmt(Block, E);
3676
3677  CFGBlock *lastBlock = Block;
3678
3679  // Before that, evaluate all of the semantics in order.  In
3680  // CFG-land, that means appending them in reverse order.
3681  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
3682    Expr *Semantic = E->getSemanticExpr(--i);
3683
3684    // If the semantic is an opaque value, we're being asked to bind
3685    // it to its source expression.
3686    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
3687      Semantic = OVE->getSourceExpr();
3688
3689    if (CFGBlock *B = Visit(Semantic))
3690      lastBlock = B;
3691  }
3692
3693  return lastBlock;
3694}
3695
3696CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
3697  CFGBlock *LoopSuccessor = nullptr;
3698
3699  // Save local scope position because in case of condition variable ScopePos
3700  // won't be restored when traversing AST.
3701  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3702
3703  // Create local scope for possible condition variable.
3704  // Store scope position for continue statement.
3705  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3706  if (VarDecl *VD = W->getConditionVariable()) {
3707    addLocalScopeForVarDecl(VD);
3708    addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3709  }
3710  addLoopExit(W);
3711
3712  // "while" is a control-flow statement.  Thus we stop processing the current
3713  // block.
3714  if (Block) {
3715    if (badCFG)
3716      return nullptr;
3717    LoopSuccessor = Block;
3718    Block = nullptr;
3719  } else {
3720    LoopSuccessor = Succ;
3721  }
3722
3723  CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3724
3725  // Process the loop body.
3726  {
3727    assert(W->getBody());
3728
3729    // Save the current values for Block, Succ, continue and break targets.
3730    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3731    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
3732                               save_break(BreakJumpTarget);
3733
3734    // Create an empty block to represent the transition block for looping back
3735    // to the head of the loop.
3736    Succ = TransitionBlock = createBlock(false);
3737    TransitionBlock->setLoopTarget(W);
3738    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
3739
3740    // All breaks should go to the code following the loop.
3741    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3742
3743    // Loop body should end with destructor of Condition variable (if any).
3744    addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3745
3746    // If body is not a compound statement create implicit scope
3747    // and add destructors.
3748    if (!isa<CompoundStmt>(W->getBody()))
3749      addLocalScopeAndDtors(W->getBody());
3750
3751    // Create the body.  The returned block is the entry to the loop body.
3752    BodyBlock = addStmt(W->getBody());
3753
3754    if (!BodyBlock)
3755      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
3756    else if (Block && badCFG)
3757      return nullptr;
3758  }
3759
3760  // Because of short-circuit evaluation, the condition of the loop can span
3761  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3762  // evaluate the condition.
3763  CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3764
3765  do {
3766    Expr *C = W->getCond();
3767
3768    // Specially handle logical operators, which have a slightly
3769    // more optimal CFG representation.
3770    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
3771      if (Cond->isLogicalOp()) {
3772        std::tie(EntryConditionBlock, ExitConditionBlock) =
3773            VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
3774        break;
3775      }
3776
3777    // The default case when not handling logical operators.
3778    ExitConditionBlock = createBlock(false);
3779    ExitConditionBlock->setTerminator(W);
3780
3781    // Now add the actual condition to the condition block.
3782    // Because the condition itself may contain control-flow, new blocks may
3783    // be created.  Thus we update "Succ" after adding the condition.
3784    Block = ExitConditionBlock;
3785    Block = EntryConditionBlock = addStmt(C);
3786
3787    // If this block contains a condition variable, add both the condition
3788    // variable and initializer to the CFG.
3789    if (VarDecl *VD = W->getConditionVariable()) {
3790      if (Expr *Init = VD->getInit()) {
3791        autoCreateBlock();
3792        const DeclStmt *DS = W->getConditionVariableDeclStmt();
3793        assert(DS->isSingleDecl());
3794        findConstructionContexts(
3795            ConstructionContextLayer::create(cfg->getBumpVectorContext(),
3796                                             const_cast<DeclStmt *>(DS)),
3797            Init);
3798        appendStmt(Block, DS);
3799        EntryConditionBlock = addStmt(Init);
3800        assert(Block == EntryConditionBlock);
3801        maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3802      }
3803    }
3804
3805    if (Block && badCFG)
3806      return nullptr;
3807
3808    // See if this is a known constant.
3809    const TryResult& KnownVal = tryEvaluateBool(C);
3810
3811    // Add the loop body entry as a successor to the condition.
3812    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3813    // Link up the condition block with the code that follows the loop.  (the
3814    // false branch).
3815    addSuccessor(ExitConditionBlock,
3816                 KnownVal.isTrue() ? nullptr : LoopSuccessor);
3817  } while(false);
3818
3819  // Link up the loop-back block to the entry condition block.
3820  addSuccessor(TransitionBlock, EntryConditionBlock);
3821
3822  // There can be no more statements in the condition block since we loop back
3823  // to this block.  NULL out Block to force lazy creation of another block.
3824  Block = nullptr;
3825
3826  // Return the condition block, which is the dominating block for the loop.
3827  Succ = EntryConditionBlock;
3828  return EntryConditionBlock;
3829}
3830
3831CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
3832  // FIXME: For now we pretend that @catch and the code it contains does not
3833  //  exit.
3834  return Block;
3835}
3836
3837CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
3838  // FIXME: This isn't complete.  We basically treat @throw like a return
3839  //  statement.
3840
3841  // If we were in the middle of a block we stop processing that block.
3842  if (badCFG)
3843    return nullptr;
3844
3845  // Create the new block.
3846  Block = createBlock(false);
3847
3848  // The Exit block is the only successor.
3849  addSuccessor(Block, &cfg->getExit());
3850
3851  // Add the statement to the block.  This may create new blocks if S contains
3852  // control-flow (short-circuit operations).
3853  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
3854}
3855
3856CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME,
3857                                           AddStmtChoice asc) {
3858  findConstructionContextsForArguments(ME);
3859
3860  autoCreateBlock();
3861  appendObjCMessage(Block, ME);
3862
3863  return VisitChildren(ME);
3864}
3865
3866CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
3867  // If we were in the middle of a block we stop processing that block.
3868  if (badCFG)
3869    return nullptr;
3870
3871  // Create the new block.
3872  Block = createBlock(false);
3873
3874  if (TryTerminatedBlock)
3875    // The current try statement is the only successor.
3876    addSuccessor(Block, TryTerminatedBlock);
3877  else
3878    // otherwise the Exit block is the only successor.
3879    addSuccessor(Block, &cfg->getExit());
3880
3881  // Add the statement to the block.  This may create new blocks if S contains
3882  // control-flow (short-circuit operations).
3883  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
3884}
3885
3886CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
3887  CFGBlock *LoopSuccessor = nullptr;
3888
3889  addLoopExit(D);
3890
3891  // "do...while" is a control-flow statement.  Thus we stop processing the
3892  // current block.
3893  if (Block) {
3894    if (badCFG)
3895      return nullptr;
3896    LoopSuccessor = Block;
3897  } else
3898    LoopSuccessor = Succ;
3899
3900  // Because of short-circuit evaluation, the condition of the loop can span
3901  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3902  // evaluate the condition.
3903  CFGBlock *ExitConditionBlock = createBlock(false);
3904  CFGBlock *EntryConditionBlock = ExitConditionBlock;
3905
3906  // Set the terminator for the "exit" condition block.
3907  ExitConditionBlock->setTerminator(D);
3908
3909  // Now add the actual condition to the condition block.  Because the condition
3910  // itself may contain control-flow, new blocks may be created.
3911  if (Stmt *C = D->getCond()) {
3912    Block = ExitConditionBlock;
3913    EntryConditionBlock = addStmt(C);
3914    if (Block) {
3915      if (badCFG)
3916        return nullptr;
3917    }
3918  }
3919
3920  // The condition block is the implicit successor for the loop body.
3921  Succ = EntryConditionBlock;
3922
3923  // See if this is a known constant.
3924  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
3925
3926  // Process the loop body.
3927  CFGBlock *BodyBlock = nullptr;
3928  {
3929    assert(D->getBody());
3930
3931    // Save the current values for Block, Succ, and continue and break targets
3932    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3933    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
3934        save_break(BreakJumpTarget);
3935
3936    // All continues within this loop should go to the condition block
3937    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
3938
3939    // All breaks should go to the code following the loop.
3940    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3941
3942    // NULL out Block to force lazy instantiation of blocks for the body.
3943    Block = nullptr;
3944
3945    // If body is not a compound statement create implicit scope
3946    // and add destructors.
3947    if (!isa<CompoundStmt>(D->getBody()))
3948      addLocalScopeAndDtors(D->getBody());
3949
3950    // Create the body.  The returned block is the entry to the loop body.
3951    BodyBlock = addStmt(D->getBody());
3952
3953    if (!BodyBlock)
3954      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
3955    else if (Block) {
3956      if (badCFG)
3957        return nullptr;
3958    }
3959
3960    // Add an intermediate block between the BodyBlock and the
3961    // ExitConditionBlock to represent the "loop back" transition.  Create an
3962    // empty block to represent the transition block for looping back to the
3963    // head of the loop.
3964    // FIXME: Can we do this more efficiently without adding another block?
3965    Block = nullptr;
3966    Succ = BodyBlock;
3967    CFGBlock *LoopBackBlock = createBlock();
3968    LoopBackBlock->setLoopTarget(D);
3969
3970    if (!KnownVal.isFalse())
3971      // Add the loop body entry as a successor to the condition.
3972      addSuccessor(ExitConditionBlock, LoopBackBlock);
3973    else
3974      addSuccessor(ExitConditionBlock, nullptr);
3975  }
3976
3977  // Link up the condition block with the code that follows the loop.
3978  // (the false branch).
3979  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
3980
3981  // There can be no more statements in the body block(s) since we loop back to
3982  // the body.  NULL out Block to force lazy creation of another block.
3983  Block = nullptr;
3984
3985  // Return the loop body, which is the dominating block for the loop.
3986  Succ = BodyBlock;
3987  return BodyBlock;
3988}
3989
3990CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
3991  // "continue" is a control-flow statement.  Thus we stop processing the
3992  // current block.
3993  if (badCFG)
3994    return nullptr;
3995
3996  // Now create a new block that ends with the continue statement.
3997  Block = createBlock(false);
3998  Block->setTerminator(C);
3999
4000  // If there is no target for the continue, then we are looking at an
4001  // incomplete AST.  This means the CFG cannot be constructed.
4002  if (ContinueJumpTarget.block) {
4003    addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C);
4004    addSuccessor(Block, ContinueJumpTarget.block);
4005  } else
4006    badCFG = true;
4007
4008  return Block;
4009}
4010
4011CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
4012                                                    AddStmtChoice asc) {
4013  if (asc.alwaysAdd(*this, E)) {
4014    autoCreateBlock();
4015    appendStmt(Block, E);
4016  }
4017
4018  // VLA types have expressions that must be evaluated.
4019  // Evaluation is done only for `sizeof`.
4020
4021  if (E->getKind() != UETT_SizeOf)
4022    return Block;
4023
4024  CFGBlock *lastBlock = Block;
4025
4026  if (E->isArgumentType()) {
4027    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
4028         VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
4029      lastBlock = addStmt(VA->getSizeExpr());
4030  }
4031  return lastBlock;
4032}
4033
4034/// VisitStmtExpr - Utility method to handle (nested) statement
4035///  expressions (a GCC extension).
4036CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
4037  if (asc.alwaysAdd(*this, SE)) {
4038    autoCreateBlock();
4039    appendStmt(Block, SE);
4040  }
4041  return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true);
4042}
4043
4044CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
4045  // "switch" is a control-flow statement.  Thus we stop processing the current
4046  // block.
4047  CFGBlock *SwitchSuccessor = nullptr;
4048
4049  // Save local scope position because in case of condition variable ScopePos
4050  // won't be restored when traversing AST.
4051  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4052
4053  // Create local scope for C++17 switch init-stmt if one exists.
4054  if (Stmt *Init = Terminator->getInit())
4055    addLocalScopeForStmt(Init);
4056
4057  // Create local scope for possible condition variable.
4058  // Store scope position. Add implicit destructor.
4059  if (VarDecl *VD = Terminator->getConditionVariable())
4060    addLocalScopeForVarDecl(VD);
4061
4062  addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator);
4063
4064  if (Block) {
4065    if (badCFG)
4066      return nullptr;
4067    SwitchSuccessor = Block;
4068  } else SwitchSuccessor = Succ;
4069
4070  // Save the current "switch" context.
4071  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
4072                            save_default(DefaultCaseBlock);
4073  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
4074
4075  // Set the "default" case to be the block after the switch statement.  If the
4076  // switch statement contains a "default:", this value will be overwritten with
4077  // the block for that code.
4078  DefaultCaseBlock = SwitchSuccessor;
4079
4080  // Create a new block that will contain the switch statement.
4081  SwitchTerminatedBlock = createBlock(false);
4082
4083  // Now process the switch body.  The code after the switch is the implicit
4084  // successor.
4085  Succ = SwitchSuccessor;
4086  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
4087
4088  // When visiting the body, the case statements should automatically get linked
4089  // up to the switch.  We also don't keep a pointer to the body, since all
4090  // control-flow from the switch goes to case/default statements.
4091  assert(Terminator->getBody() && "switch must contain a non-NULL body");
4092  Block = nullptr;
4093
4094  // For pruning unreachable case statements, save the current state
4095  // for tracking the condition value.
4096  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
4097                                                     false);
4098
4099  // Determine if the switch condition can be explicitly evaluated.
4100  assert(Terminator->getCond() && "switch condition must be non-NULL");
4101  Expr::EvalResult result;
4102  bool b = tryEvaluate(Terminator->getCond(), result);
4103  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
4104                                                    b ? &result : nullptr);
4105
4106  // If body is not a compound statement create implicit scope
4107  // and add destructors.
4108  if (!isa<CompoundStmt>(Terminator->getBody()))
4109    addLocalScopeAndDtors(Terminator->getBody());
4110
4111  addStmt(Terminator->getBody());
4112  if (Block) {
4113    if (badCFG)
4114      return nullptr;
4115  }
4116
4117  // If we have no "default:" case, the default transition is to the code
4118  // following the switch body.  Moreover, take into account if all the
4119  // cases of a switch are covered (e.g., switching on an enum value).
4120  //
4121  // Note: We add a successor to a switch that is considered covered yet has no
4122  //       case statements if the enumeration has no enumerators.
4123  bool SwitchAlwaysHasSuccessor = false;
4124  SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
4125  SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
4126                              Terminator->getSwitchCaseList();
4127  addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
4128               !SwitchAlwaysHasSuccessor);
4129
4130  // Add the terminator and condition in the switch block.
4131  SwitchTerminatedBlock->setTerminator(Terminator);
4132  Block = SwitchTerminatedBlock;
4133  CFGBlock *LastBlock = addStmt(Terminator->getCond());
4134
4135  // If the SwitchStmt contains a condition variable, add both the
4136  // SwitchStmt and the condition variable initialization to the CFG.
4137  if (VarDecl *VD = Terminator->getConditionVariable()) {
4138    if (Expr *Init = VD->getInit()) {
4139      autoCreateBlock();
4140      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
4141      LastBlock = addStmt(Init);
4142      maybeAddScopeBeginForVarDecl(LastBlock, VD, Init);
4143    }
4144  }
4145
4146  // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
4147  if (Stmt *Init = Terminator->getInit()) {
4148    autoCreateBlock();
4149    LastBlock = addStmt(Init);
4150  }
4151
4152  return LastBlock;
4153}
4154
4155static bool shouldAddCase(bool &switchExclusivelyCovered,
4156                          const Expr::EvalResult *switchCond,
4157                          const CaseStmt *CS,
4158                          ASTContext &Ctx) {
4159  if (!switchCond)
4160    return true;
4161
4162  bool addCase = false;
4163
4164  if (!switchExclusivelyCovered) {
4165    if (switchCond->Val.isInt()) {
4166      // Evaluate the LHS of the case value.
4167      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
4168      const llvm::APSInt &condInt = switchCond->Val.getInt();
4169
4170      if (condInt == lhsInt) {
4171        addCase = true;
4172        switchExclusivelyCovered = true;
4173      }
4174      else if (condInt > lhsInt) {
4175        if (const Expr *RHS = CS->getRHS()) {
4176          // Evaluate the RHS of the case value.
4177          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
4178          if (V2 >= condInt) {
4179            addCase = true;
4180            switchExclusivelyCovered = true;
4181          }
4182        }
4183      }
4184    }
4185    else
4186      addCase = true;
4187  }
4188  return addCase;
4189}
4190
4191CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
4192  // CaseStmts are essentially labels, so they are the first statement in a
4193  // block.
4194  CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
4195
4196  if (Stmt *Sub = CS->getSubStmt()) {
4197    // For deeply nested chains of CaseStmts, instead of doing a recursion
4198    // (which can blow out the stack), manually unroll and create blocks
4199    // along the way.
4200    while (isa<CaseStmt>(Sub)) {
4201      CFGBlock *currentBlock = createBlock(false);
4202      currentBlock->setLabel(CS);
4203
4204      if (TopBlock)
4205        addSuccessor(LastBlock, currentBlock);
4206      else
4207        TopBlock = currentBlock;
4208
4209      addSuccessor(SwitchTerminatedBlock,
4210                   shouldAddCase(switchExclusivelyCovered, switchCond,
4211                                 CS, *Context)
4212                   ? currentBlock : nullptr);
4213
4214      LastBlock = currentBlock;
4215      CS = cast<CaseStmt>(Sub);
4216      Sub = CS->getSubStmt();
4217    }
4218
4219    addStmt(Sub);
4220  }
4221
4222  CFGBlock *CaseBlock = Block;
4223  if (!CaseBlock)
4224    CaseBlock = createBlock();
4225
4226  // Cases statements partition blocks, so this is the top of the basic block we
4227  // were processing (the "case XXX:" is the label).
4228  CaseBlock->setLabel(CS);
4229
4230  if (badCFG)
4231    return nullptr;
4232
4233  // Add this block to the list of successors for the block with the switch
4234  // statement.
4235  assert(SwitchTerminatedBlock);
4236  addSuccessor(SwitchTerminatedBlock, CaseBlock,
4237               shouldAddCase(switchExclusivelyCovered, switchCond,
4238                             CS, *Context));
4239
4240  // We set Block to NULL to allow lazy creation of a new block (if necessary)
4241  Block = nullptr;
4242
4243  if (TopBlock) {
4244    addSuccessor(LastBlock, CaseBlock);
4245    Succ = TopBlock;
4246  } else {
4247    // This block is now the implicit successor of other blocks.
4248    Succ = CaseBlock;
4249  }
4250
4251  return Succ;
4252}
4253
4254CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
4255  if (Terminator->getSubStmt())
4256    addStmt(Terminator->getSubStmt());
4257
4258  DefaultCaseBlock = Block;
4259
4260  if (!DefaultCaseBlock)
4261    DefaultCaseBlock = createBlock();
4262
4263  // Default statements partition blocks, so this is the top of the basic block
4264  // we were processing (the "default:" is the label).
4265  DefaultCaseBlock->setLabel(Terminator);
4266
4267  if (badCFG)
4268    return nullptr;
4269
4270  // Unlike case statements, we don't add the default block to the successors
4271  // for the switch statement immediately.  This is done when we finish
4272  // processing the switch statement.  This allows for the default case
4273  // (including a fall-through to the code after the switch statement) to always
4274  // be the last successor of a switch-terminated block.
4275
4276  // We set Block to NULL to allow lazy creation of a new block (if necessary)
4277  Block = nullptr;
4278
4279  // This block is now the implicit successor of other blocks.
4280  Succ = DefaultCaseBlock;
4281
4282  return DefaultCaseBlock;
4283}
4284
4285CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
4286  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
4287  // current block.
4288  CFGBlock *TrySuccessor = nullptr;
4289
4290  if (Block) {
4291    if (badCFG)
4292      return nullptr;
4293    TrySuccessor = Block;
4294  } else TrySuccessor = Succ;
4295
4296  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
4297
4298  // Create a new block that will contain the try statement.
4299  CFGBlock *NewTryTerminatedBlock = createBlock(false);
4300  // Add the terminator in the try block.
4301  NewTryTerminatedBlock->setTerminator(Terminator);
4302
4303  bool HasCatchAll = false;
4304  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
4305    // The code after the try is the implicit successor.
4306    Succ = TrySuccessor;
4307    CXXCatchStmt *CS = Terminator->getHandler(h);
4308    if (CS->getExceptionDecl() == nullptr) {
4309      HasCatchAll = true;
4310    }
4311    Block = nullptr;
4312    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
4313    if (!CatchBlock)
4314      return nullptr;
4315    // Add this block to the list of successors for the block with the try
4316    // statement.
4317    addSuccessor(NewTryTerminatedBlock, CatchBlock);
4318  }
4319  if (!HasCatchAll) {
4320    if (PrevTryTerminatedBlock)
4321      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
4322    else
4323      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
4324  }
4325
4326  // The code after the try is the implicit successor.
4327  Succ = TrySuccessor;
4328
4329  // Save the current "try" context.
4330  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
4331  cfg->addTryDispatchBlock(TryTerminatedBlock);
4332
4333  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
4334  Block = nullptr;
4335  return addStmt(Terminator->getTryBlock());
4336}
4337
4338CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
4339  // CXXCatchStmt are treated like labels, so they are the first statement in a
4340  // block.
4341
4342  // Save local scope position because in case of exception variable ScopePos
4343  // won't be restored when traversing AST.
4344  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4345
4346  // Create local scope for possible exception variable.
4347  // Store scope position. Add implicit destructor.
4348  if (VarDecl *VD = CS->getExceptionDecl()) {
4349    LocalScope::const_iterator BeginScopePos = ScopePos;
4350    addLocalScopeForVarDecl(VD);
4351    addAutomaticObjHandling(ScopePos, BeginScopePos, CS);
4352  }
4353
4354  if (CS->getHandlerBlock())
4355    addStmt(CS->getHandlerBlock());
4356
4357  CFGBlock *CatchBlock = Block;
4358  if (!CatchBlock)
4359    CatchBlock = createBlock();
4360
4361  // CXXCatchStmt is more than just a label.  They have semantic meaning
4362  // as well, as they implicitly "initialize" the catch variable.  Add
4363  // it to the CFG as a CFGElement so that the control-flow of these
4364  // semantics gets captured.
4365  appendStmt(CatchBlock, CS);
4366
4367  // Also add the CXXCatchStmt as a label, to mirror handling of regular
4368  // labels.
4369  CatchBlock->setLabel(CS);
4370
4371  // Bail out if the CFG is bad.
4372  if (badCFG)
4373    return nullptr;
4374
4375  // We set Block to NULL to allow lazy creation of a new block (if necessary)
4376  Block = nullptr;
4377
4378  return CatchBlock;
4379}
4380
4381CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
4382  // C++0x for-range statements are specified as [stmt.ranged]:
4383  //
4384  // {
4385  //   auto && __range = range-init;
4386  //   for ( auto __begin = begin-expr,
4387  //         __end = end-expr;
4388  //         __begin != __end;
4389  //         ++__begin ) {
4390  //     for-range-declaration = *__begin;
4391  //     statement
4392  //   }
4393  // }
4394
4395  // Save local scope position before the addition of the implicit variables.
4396  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4397
4398  // Create local scopes and destructors for range, begin and end variables.
4399  if (Stmt *Range = S->getRangeStmt())
4400    addLocalScopeForStmt(Range);
4401  if (Stmt *Begin = S->getBeginStmt())
4402    addLocalScopeForStmt(Begin);
4403  if (Stmt *End = S->getEndStmt())
4404    addLocalScopeForStmt(End);
4405  addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S);
4406
4407  LocalScope::const_iterator ContinueScopePos = ScopePos;
4408
4409  // "for" is a control-flow statement.  Thus we stop processing the current
4410  // block.
4411  CFGBlock *LoopSuccessor = nullptr;
4412  if (Block) {
4413    if (badCFG)
4414      return nullptr;
4415    LoopSuccessor = Block;
4416  } else
4417    LoopSuccessor = Succ;
4418
4419  // Save the current value for the break targets.
4420  // All breaks should go to the code following the loop.
4421  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
4422  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4423
4424  // The block for the __begin != __end expression.
4425  CFGBlock *ConditionBlock = createBlock(false);
4426  ConditionBlock->setTerminator(S);
4427
4428  // Now add the actual condition to the condition block.
4429  if (Expr *C = S->getCond()) {
4430    Block = ConditionBlock;
4431    CFGBlock *BeginConditionBlock = addStmt(C);
4432    if (badCFG)
4433      return nullptr;
4434    assert(BeginConditionBlock == ConditionBlock &&
4435           "condition block in for-range was unexpectedly complex");
4436    (void)BeginConditionBlock;
4437  }
4438
4439  // The condition block is the implicit successor for the loop body as well as
4440  // any code above the loop.
4441  Succ = ConditionBlock;
4442
4443  // See if this is a known constant.
4444  TryResult KnownVal(true);
4445
4446  if (S->getCond())
4447    KnownVal = tryEvaluateBool(S->getCond());
4448
4449  // Now create the loop body.
4450  {
4451    assert(S->getBody());
4452
4453    // Save the current values for Block, Succ, and continue targets.
4454    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
4455    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
4456
4457    // Generate increment code in its own basic block.  This is the target of
4458    // continue statements.
4459    Block = nullptr;
4460    Succ = addStmt(S->getInc());
4461    if (badCFG)
4462      return nullptr;
4463    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
4464
4465    // The starting block for the loop increment is the block that should
4466    // represent the 'loop target' for looping back to the start of the loop.
4467    ContinueJumpTarget.block->setLoopTarget(S);
4468
4469    // Finish up the increment block and prepare to start the loop body.
4470    assert(Block);
4471    if (badCFG)
4472      return nullptr;
4473    Block = nullptr;
4474
4475    // Add implicit scope and dtors for loop variable.
4476    addLocalScopeAndDtors(S->getLoopVarStmt());
4477
4478    // If body is not a compound statement create implicit scope
4479    // and add destructors.
4480    if (!isa<CompoundStmt>(S->getBody()))
4481      addLocalScopeAndDtors(S->getBody());
4482
4483    // Populate a new block to contain the loop body and loop variable.
4484    addStmt(S->getBody());
4485
4486    if (badCFG)
4487      return nullptr;
4488    CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
4489    if (badCFG)
4490      return nullptr;
4491
4492    // This new body block is a successor to our condition block.
4493    addSuccessor(ConditionBlock,
4494                 KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
4495  }
4496
4497  // Link up the condition block with the code that follows the loop (the
4498  // false branch).
4499  addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4500
4501  // Add the initialization statements.
4502  Block = createBlock();
4503  addStmt(S->getBeginStmt());
4504  addStmt(S->getEndStmt());
4505  CFGBlock *Head = addStmt(S->getRangeStmt());
4506  if (S->getInit())
4507    Head = addStmt(S->getInit());
4508  return Head;
4509}
4510
4511CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
4512    AddStmtChoice asc, bool ExternallyDestructed) {
4513  if (BuildOpts.AddTemporaryDtors) {
4514    // If adding implicit destructors visit the full expression for adding
4515    // destructors of temporaries.
4516    TempDtorContext Context;
4517    VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context);
4518
4519    // Full expression has to be added as CFGStmt so it will be sequenced
4520    // before destructors of it's temporaries.
4521    asc = asc.withAlwaysAdd(true);
4522  }
4523  return Visit(E->getSubExpr(), asc);
4524}
4525
4526CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
4527                                                AddStmtChoice asc) {
4528  if (asc.alwaysAdd(*this, E)) {
4529    autoCreateBlock();
4530    appendStmt(Block, E);
4531
4532    findConstructionContexts(
4533        ConstructionContextLayer::create(cfg->getBumpVectorContext(), E),
4534        E->getSubExpr());
4535
4536    // We do not want to propagate the AlwaysAdd property.
4537    asc = asc.withAlwaysAdd(false);
4538  }
4539  return Visit(E->getSubExpr(), asc);
4540}
4541
4542CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
4543                                            AddStmtChoice asc) {
4544  // If the constructor takes objects as arguments by value, we need to properly
4545  // construct these objects. Construction contexts we find here aren't for the
4546  // constructor C, they're for its arguments only.
4547  findConstructionContextsForArguments(C);
4548
4549  autoCreateBlock();
4550  appendConstructor(Block, C);
4551
4552  return VisitChildren(C);
4553}
4554
4555CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
4556                                      AddStmtChoice asc) {
4557  autoCreateBlock();
4558  appendStmt(Block, NE);
4559
4560  findConstructionContexts(
4561      ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE),
4562      const_cast<CXXConstructExpr *>(NE->getConstructExpr()));
4563
4564  if (NE->getInitializer())
4565    Block = Visit(NE->getInitializer());
4566
4567  if (BuildOpts.AddCXXNewAllocator)
4568    appendNewAllocator(Block, NE);
4569
4570  if (NE->isArray() && *NE->getArraySize())
4571    Block = Visit(*NE->getArraySize());
4572
4573  for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
4574       E = NE->placement_arg_end(); I != E; ++I)
4575    Block = Visit(*I);
4576
4577  return Block;
4578}
4579
4580CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
4581                                         AddStmtChoice asc) {
4582  autoCreateBlock();
4583  appendStmt(Block, DE);
4584  QualType DTy = DE->getDestroyedType();
4585  if (!DTy.isNull()) {
4586    DTy = DTy.getNonReferenceType();
4587    CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
4588    if (RD) {
4589      if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
4590        appendDeleteDtor(Block, RD, DE);
4591    }
4592  }
4593
4594  return VisitChildren(DE);
4595}
4596
4597CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
4598                                                 AddStmtChoice asc) {
4599  if (asc.alwaysAdd(*this, E)) {
4600    autoCreateBlock();
4601    appendStmt(Block, E);
4602    // We do not want to propagate the AlwaysAdd property.
4603    asc = asc.withAlwaysAdd(false);
4604  }
4605  return Visit(E->getSubExpr(), asc);
4606}
4607
4608CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
4609                                                  AddStmtChoice asc) {
4610  // If the constructor takes objects as arguments by value, we need to properly
4611  // construct these objects. Construction contexts we find here aren't for the
4612  // constructor C, they're for its arguments only.
4613  findConstructionContextsForArguments(C);
4614
4615  autoCreateBlock();
4616  appendConstructor(Block, C);
4617  return VisitChildren(C);
4618}
4619
4620CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
4621                                            AddStmtChoice asc) {
4622  if (asc.alwaysAdd(*this, E)) {
4623    autoCreateBlock();
4624    appendStmt(Block, E);
4625  }
4626
4627  if (E->getCastKind() == CK_IntegralToBoolean)
4628    tryEvaluateBool(E->getSubExpr()->IgnoreParens());
4629
4630  return Visit(E->getSubExpr(), AddStmtChoice());
4631}
4632
4633CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) {
4634  return Visit(E->getSubExpr(), AddStmtChoice());
4635}
4636
4637CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
4638  // Lazily create the indirect-goto dispatch block if there isn't one already.
4639  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
4640
4641  if (!IBlock) {
4642    IBlock = createBlock(false);
4643    cfg->setIndirectGotoBlock(IBlock);
4644  }
4645
4646  // IndirectGoto is a control-flow statement.  Thus we stop processing the
4647  // current block and create a new one.
4648  if (badCFG)
4649    return nullptr;
4650
4651  Block = createBlock(false);
4652  Block->setTerminator(I);
4653  addSuccessor(Block, IBlock);
4654  return addStmt(I->getTarget());
4655}
4656
4657CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
4658                                             TempDtorContext &Context) {
4659  assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
4660
4661tryAgain:
4662  if (!E) {
4663    badCFG = true;
4664    return nullptr;
4665  }
4666  switch (E->getStmtClass()) {
4667    default:
4668      return VisitChildrenForTemporaryDtors(E, false, Context);
4669
4670    case Stmt::InitListExprClass:
4671      return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
4672
4673    case Stmt::BinaryOperatorClass:
4674      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
4675                                                  ExternallyDestructed,
4676                                                  Context);
4677
4678    case Stmt::CXXBindTemporaryExprClass:
4679      return VisitCXXBindTemporaryExprForTemporaryDtors(
4680          cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context);
4681
4682    case Stmt::BinaryConditionalOperatorClass:
4683    case Stmt::ConditionalOperatorClass:
4684      return VisitConditionalOperatorForTemporaryDtors(
4685          cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context);
4686
4687    case Stmt::ImplicitCastExprClass:
4688      // For implicit cast we want ExternallyDestructed to be passed further.
4689      E = cast<CastExpr>(E)->getSubExpr();
4690      goto tryAgain;
4691
4692    case Stmt::CXXFunctionalCastExprClass:
4693      // For functional cast we want ExternallyDestructed to be passed further.
4694      E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
4695      goto tryAgain;
4696
4697    case Stmt::ConstantExprClass:
4698      E = cast<ConstantExpr>(E)->getSubExpr();
4699      goto tryAgain;
4700
4701    case Stmt::ParenExprClass:
4702      E = cast<ParenExpr>(E)->getSubExpr();
4703      goto tryAgain;
4704
4705    case Stmt::MaterializeTemporaryExprClass: {
4706      const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
4707      ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression);
4708      SmallVector<const Expr *, 2> CommaLHSs;
4709      SmallVector<SubobjectAdjustment, 2> Adjustments;
4710      // Find the expression whose lifetime needs to be extended.
4711      E = const_cast<Expr *>(
4712          cast<MaterializeTemporaryExpr>(E)
4713              ->getSubExpr()
4714              ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
4715      // Visit the skipped comma operator left-hand sides for other temporaries.
4716      for (const Expr *CommaLHS : CommaLHSs) {
4717        VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
4718                               /*ExternallyDestructed=*/false, Context);
4719      }
4720      goto tryAgain;
4721    }
4722
4723    case Stmt::BlockExprClass:
4724      // Don't recurse into blocks; their subexpressions don't get evaluated
4725      // here.
4726      return Block;
4727
4728    case Stmt::LambdaExprClass: {
4729      // For lambda expressions, only recurse into the capture initializers,
4730      // and not the body.
4731      auto *LE = cast<LambdaExpr>(E);
4732      CFGBlock *B = Block;
4733      for (Expr *Init : LE->capture_inits()) {
4734        if (Init) {
4735          if (CFGBlock *R = VisitForTemporaryDtors(
4736                  Init, /*ExternallyDestructed=*/true, Context))
4737            B = R;
4738        }
4739      }
4740      return B;
4741    }
4742
4743    case Stmt::StmtExprClass:
4744      // Don't recurse into statement expressions; any cleanups inside them
4745      // will be wrapped in their own ExprWithCleanups.
4746      return Block;
4747
4748    case Stmt::CXXDefaultArgExprClass:
4749      E = cast<CXXDefaultArgExpr>(E)->getExpr();
4750      goto tryAgain;
4751
4752    case Stmt::CXXDefaultInitExprClass:
4753      E = cast<CXXDefaultInitExpr>(E)->getExpr();
4754      goto tryAgain;
4755  }
4756}
4757
4758CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
4759                                                     bool ExternallyDestructed,
4760                                                     TempDtorContext &Context) {
4761  if (isa<LambdaExpr>(E)) {
4762    // Do not visit the children of lambdas; they have their own CFGs.
4763    return Block;
4764  }
4765
4766  // When visiting children for destructors we want to visit them in reverse
4767  // order that they will appear in the CFG.  Because the CFG is built
4768  // bottom-up, this means we visit them in their natural order, which
4769  // reverses them in the CFG.
4770  CFGBlock *B = Block;
4771  for (Stmt *Child : E->children())
4772    if (Child)
4773      if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context))
4774        B = R;
4775
4776  return B;
4777}
4778
4779CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
4780    BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) {
4781  if (E->isCommaOp()) {
4782    // For the comma operator, the LHS expression is evaluated before the RHS
4783    // expression, so prepend temporary destructors for the LHS first.
4784    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
4785    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context);
4786    return RHSBlock ? RHSBlock : LHSBlock;
4787  }
4788
4789  if (E->isLogicalOp()) {
4790    VisitForTemporaryDtors(E->getLHS(), false, Context);
4791    TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
4792    if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
4793      RHSExecuted.negate();
4794
4795    // We do not know at CFG-construction time whether the right-hand-side was
4796    // executed, thus we add a branch node that depends on the temporary
4797    // constructor call.
4798    TempDtorContext RHSContext(
4799        bothKnownTrue(Context.KnownExecuted, RHSExecuted));
4800    VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
4801    InsertTempDtorDecisionBlock(RHSContext);
4802
4803    return Block;
4804  }
4805
4806  if (E->isAssignmentOp()) {
4807    // For assignment operators, the RHS expression is evaluated before the LHS
4808    // expression, so prepend temporary destructors for the RHS first.
4809    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
4810    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
4811    return LHSBlock ? LHSBlock : RHSBlock;
4812  }
4813
4814  // Any other operator is visited normally.
4815  return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
4816}
4817
4818CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
4819    CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) {
4820  // First add destructors for temporaries in subexpression.
4821  // Because VisitCXXBindTemporaryExpr calls setDestructed:
4822  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context);
4823  if (!ExternallyDestructed) {
4824    // If lifetime of temporary is not prolonged (by assigning to constant
4825    // reference) add destructor for it.
4826
4827    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
4828
4829    if (Dtor->getParent()->isAnyDestructorNoReturn()) {
4830      // If the destructor is marked as a no-return destructor, we need to
4831      // create a new block for the destructor which does not have as a
4832      // successor anything built thus far. Control won't flow out of this
4833      // block.
4834      if (B) Succ = B;
4835      Block = createNoReturnBlock();
4836    } else if (Context.needsTempDtorBranch()) {
4837      // If we need to introduce a branch, we add a new block that we will hook
4838      // up to a decision block later.
4839      if (B) Succ = B;
4840      Block = createBlock();
4841    } else {
4842      autoCreateBlock();
4843    }
4844    if (Context.needsTempDtorBranch()) {
4845      Context.setDecisionPoint(Succ, E);
4846    }
4847    appendTemporaryDtor(Block, E);
4848
4849    B = Block;
4850  }
4851  return B;
4852}
4853
4854void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
4855                                             CFGBlock *FalseSucc) {
4856  if (!Context.TerminatorExpr) {
4857    // If no temporary was found, we do not need to insert a decision point.
4858    return;
4859  }
4860  assert(Context.TerminatorExpr);
4861  CFGBlock *Decision = createBlock(false);
4862  Decision->setTerminator(CFGTerminator(Context.TerminatorExpr,
4863                                        CFGTerminator::TemporaryDtorsBranch));
4864  addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
4865  addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
4866               !Context.KnownExecuted.isTrue());
4867  Block = Decision;
4868}
4869
4870CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
4871    AbstractConditionalOperator *E, bool ExternallyDestructed,
4872    TempDtorContext &Context) {
4873  VisitForTemporaryDtors(E->getCond(), false, Context);
4874  CFGBlock *ConditionBlock = Block;
4875  CFGBlock *ConditionSucc = Succ;
4876  TryResult ConditionVal = tryEvaluateBool(E->getCond());
4877  TryResult NegatedVal = ConditionVal;
4878  if (NegatedVal.isKnown()) NegatedVal.negate();
4879
4880  TempDtorContext TrueContext(
4881      bothKnownTrue(Context.KnownExecuted, ConditionVal));
4882  VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext);
4883  CFGBlock *TrueBlock = Block;
4884
4885  Block = ConditionBlock;
4886  Succ = ConditionSucc;
4887  TempDtorContext FalseContext(
4888      bothKnownTrue(Context.KnownExecuted, NegatedVal));
4889  VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext);
4890
4891  if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
4892    InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
4893  } else if (TrueContext.TerminatorExpr) {
4894    Block = TrueBlock;
4895    InsertTempDtorDecisionBlock(TrueContext);
4896  } else {
4897    InsertTempDtorDecisionBlock(FalseContext);
4898  }
4899  return Block;
4900}
4901
4902CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D,
4903                                                  AddStmtChoice asc) {
4904  if (asc.alwaysAdd(*this, D)) {
4905    autoCreateBlock();
4906    appendStmt(Block, D);
4907  }
4908
4909  // Iterate over all used expression in clauses.
4910  CFGBlock *B = Block;
4911
4912  // Reverse the elements to process them in natural order. Iterators are not
4913  // bidirectional, so we need to create temp vector.
4914  SmallVector<Stmt *, 8> Used(
4915      OMPExecutableDirective::used_clauses_children(D->clauses()));
4916  for (Stmt *S : llvm::reverse(Used)) {
4917    assert(S && "Expected non-null used-in-clause child.");
4918    if (CFGBlock *R = Visit(S))
4919      B = R;
4920  }
4921  // Visit associated structured block if any.
4922  if (!D->isStandaloneDirective()) {
4923    Stmt *S = D->getRawStmt();
4924    if (!isa<CompoundStmt>(S))
4925      addLocalScopeAndDtors(S);
4926    if (CFGBlock *R = addStmt(S))
4927      B = R;
4928  }
4929
4930  return B;
4931}
4932
4933/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
4934///  no successors or predecessors.  If this is the first block created in the
4935///  CFG, it is automatically set to be the Entry and Exit of the CFG.
4936CFGBlock *CFG::createBlock() {
4937  bool first_block = begin() == end();
4938
4939  // Create the block.
4940  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
4941  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
4942  Blocks.push_back(Mem, BlkBVC);
4943
4944  // If this is the first block, set it as the Entry and Exit.
4945  if (first_block)
4946    Entry = Exit = &back();
4947
4948  // Return the block.
4949  return &back();
4950}
4951
4952/// buildCFG - Constructs a CFG from an AST.
4953std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
4954                                   ASTContext *C, const BuildOptions &BO) {
4955  CFGBuilder Builder(C, BO);
4956  return Builder.buildCFG(D, Statement);
4957}
4958
4959bool CFG::isLinear() const {
4960  // Quick path: if we only have the ENTRY block, the EXIT block, and some code
4961  // in between, then we have no room for control flow.
4962  if (size() <= 3)
4963    return true;
4964
4965  // Traverse the CFG until we find a branch.
4966  // TODO: While this should still be very fast,
4967  // maybe we should cache the answer.
4968  llvm::SmallPtrSet<const CFGBlock *, 4> Visited;
4969  const CFGBlock *B = Entry;
4970  while (B != Exit) {
4971    auto IteratorAndFlag = Visited.insert(B);
4972    if (!IteratorAndFlag.second) {
4973      // We looped back to a block that we've already visited. Not linear.
4974      return false;
4975    }
4976
4977    // Iterate over reachable successors.
4978    const CFGBlock *FirstReachableB = nullptr;
4979    for (const CFGBlock::AdjacentBlock &AB : B->succs()) {
4980      if (!AB.isReachable())
4981        continue;
4982
4983      if (FirstReachableB == nullptr) {
4984        FirstReachableB = &*AB;
4985      } else {
4986        // We've encountered a branch. It's not a linear CFG.
4987        return false;
4988      }
4989    }
4990
4991    if (!FirstReachableB) {
4992      // We reached a dead end. EXIT is unreachable. This is linear enough.
4993      return true;
4994    }
4995
4996    // There's only one way to move forward. Proceed.
4997    B = FirstReachableB;
4998  }
4999
5000  // We reached EXIT and found no branches.
5001  return true;
5002}
5003
5004const CXXDestructorDecl *
5005CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
5006  switch (getKind()) {
5007    case CFGElement::Initializer:
5008    case CFGElement::NewAllocator:
5009    case CFGElement::LoopExit:
5010    case CFGElement::LifetimeEnds:
5011    case CFGElement::Statement:
5012    case CFGElement::Constructor:
5013    case CFGElement::CXXRecordTypedCall:
5014    case CFGElement::ScopeBegin:
5015    case CFGElement::ScopeEnd:
5016      llvm_unreachable("getDestructorDecl should only be used with "
5017                       "ImplicitDtors");
5018    case CFGElement::AutomaticObjectDtor: {
5019      const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
5020      QualType ty = var->getType();
5021
5022      // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
5023      //
5024      // Lifetime-extending constructs are handled here. This works for a single
5025      // temporary in an initializer expression.
5026      if (ty->isReferenceType()) {
5027        if (const Expr *Init = var->getInit()) {
5028          ty = getReferenceInitTemporaryType(Init);
5029        }
5030      }
5031
5032      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
5033        ty = arrayType->getElementType();
5034      }
5035
5036      // The situation when the type of the lifetime-extending reference
5037      // does not correspond to the type of the object is supposed
5038      // to be handled by now. In particular, 'ty' is now the unwrapped
5039      // record type.
5040      const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
5041      assert(classDecl);
5042      return classDecl->getDestructor();
5043    }
5044    case CFGElement::DeleteDtor: {
5045      const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
5046      QualType DTy = DE->getDestroyedType();
5047      DTy = DTy.getNonReferenceType();
5048      const CXXRecordDecl *classDecl =
5049          astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
5050      return classDecl->getDestructor();
5051    }
5052    case CFGElement::TemporaryDtor: {
5053      const CXXBindTemporaryExpr *bindExpr =
5054        castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5055      const CXXTemporary *temp = bindExpr->getTemporary();
5056      return temp->getDestructor();
5057    }
5058    case CFGElement::BaseDtor:
5059    case CFGElement::MemberDtor:
5060      // Not yet supported.
5061      return nullptr;
5062  }
5063  llvm_unreachable("getKind() returned bogus value");
5064}
5065
5066//===----------------------------------------------------------------------===//
5067// CFGBlock operations.
5068//===----------------------------------------------------------------------===//
5069
5070CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
5071    : ReachableBlock(IsReachable ? B : nullptr),
5072      UnreachableBlock(!IsReachable ? B : nullptr,
5073                       B && IsReachable ? AB_Normal : AB_Unreachable) {}
5074
5075CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
5076    : ReachableBlock(B),
5077      UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
5078                       B == AlternateBlock ? AB_Alternate : AB_Normal) {}
5079
5080void CFGBlock::addSuccessor(AdjacentBlock Succ,
5081                            BumpVectorContext &C) {
5082  if (CFGBlock *B = Succ.getReachableBlock())
5083    B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
5084
5085  if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
5086    UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
5087
5088  Succs.push_back(Succ, C);
5089}
5090
5091bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
5092        const CFGBlock *From, const CFGBlock *To) {
5093  if (F.IgnoreNullPredecessors && !From)
5094    return true;
5095
5096  if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
5097    // If the 'To' has no label or is labeled but the label isn't a
5098    // CaseStmt then filter this edge.
5099    if (const SwitchStmt *S =
5100        dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) {
5101      if (S->isAllEnumCasesCovered()) {
5102        const Stmt *L = To->getLabel();
5103        if (!L || !isa<CaseStmt>(L))
5104          return true;
5105      }
5106    }
5107  }
5108
5109  return false;
5110}
5111
5112//===----------------------------------------------------------------------===//
5113// CFG pretty printing
5114//===----------------------------------------------------------------------===//
5115
5116namespace {
5117
5118class StmtPrinterHelper : public PrinterHelper  {
5119  using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>;
5120  using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>;
5121
5122  StmtMapTy StmtMap;
5123  DeclMapTy DeclMap;
5124  signed currentBlock = 0;
5125  unsigned currStmt = 0;
5126  const LangOptions &LangOpts;
5127
5128public:
5129  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
5130      : LangOpts(LO) {
5131    if (!cfg)
5132      return;
5133    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
5134      unsigned j = 1;
5135      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
5136           BI != BEnd; ++BI, ++j ) {
5137        if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
5138          const Stmt *stmt= SE->getStmt();
5139          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
5140          StmtMap[stmt] = P;
5141
5142          switch (stmt->getStmtClass()) {
5143            case Stmt::DeclStmtClass:
5144              DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
5145              break;
5146            case Stmt::IfStmtClass: {
5147              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
5148              if (var)
5149                DeclMap[var] = P;
5150              break;
5151            }
5152            case Stmt::ForStmtClass: {
5153              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
5154              if (var)
5155                DeclMap[var] = P;
5156              break;
5157            }
5158            case Stmt::WhileStmtClass: {
5159              const VarDecl *var =
5160                cast<WhileStmt>(stmt)->getConditionVariable();
5161              if (var)
5162                DeclMap[var] = P;
5163              break;
5164            }
5165            case Stmt::SwitchStmtClass: {
5166              const VarDecl *var =
5167                cast<SwitchStmt>(stmt)->getConditionVariable();
5168              if (var)
5169                DeclMap[var] = P;
5170              break;
5171            }
5172            case Stmt::CXXCatchStmtClass: {
5173              const VarDecl *var =
5174                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
5175              if (var)
5176                DeclMap[var] = P;
5177              break;
5178            }
5179            default:
5180              break;
5181          }
5182        }
5183      }
5184    }
5185  }
5186
5187  ~StmtPrinterHelper() override = default;
5188
5189  const LangOptions &getLangOpts() const { return LangOpts; }
5190  void setBlockID(signed i) { currentBlock = i; }
5191  void setStmtID(unsigned i) { currStmt = i; }
5192
5193  bool handledStmt(Stmt *S, raw_ostream &OS) override {
5194    StmtMapTy::iterator I = StmtMap.find(S);
5195
5196    if (I == StmtMap.end())
5197      return false;
5198
5199    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5200                          && I->second.second == currStmt) {
5201      return false;
5202    }
5203
5204    OS << "[B" << I->second.first << "." << I->second.second << "]";
5205    return true;
5206  }
5207
5208  bool handleDecl(const Decl *D, raw_ostream &OS) {
5209    DeclMapTy::iterator I = DeclMap.find(D);
5210
5211    if (I == DeclMap.end())
5212      return false;
5213
5214    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5215                          && I->second.second == currStmt) {
5216      return false;
5217    }
5218
5219    OS << "[B" << I->second.first << "." << I->second.second << "]";
5220    return true;
5221  }
5222};
5223
5224class CFGBlockTerminatorPrint
5225    : public StmtVisitor<CFGBlockTerminatorPrint,void> {
5226  raw_ostream &OS;
5227  StmtPrinterHelper* Helper;
5228  PrintingPolicy Policy;
5229
5230public:
5231  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
5232                          const PrintingPolicy &Policy)
5233      : OS(os), Helper(helper), Policy(Policy) {
5234    this->Policy.IncludeNewlines = false;
5235  }
5236
5237  void VisitIfStmt(IfStmt *I) {
5238    OS << "if ";
5239    if (Stmt *C = I->getCond())
5240      C->printPretty(OS, Helper, Policy);
5241  }
5242
5243  // Default case.
5244  void VisitStmt(Stmt *Terminator) {
5245    Terminator->printPretty(OS, Helper, Policy);
5246  }
5247
5248  void VisitDeclStmt(DeclStmt *DS) {
5249    VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
5250    OS << "static init " << VD->getName();
5251  }
5252
5253  void VisitForStmt(ForStmt *F) {
5254    OS << "for (" ;
5255    if (F->getInit())
5256      OS << "...";
5257    OS << "; ";
5258    if (Stmt *C = F->getCond())
5259      C->printPretty(OS, Helper, Policy);
5260    OS << "; ";
5261    if (F->getInc())
5262      OS << "...";
5263    OS << ")";
5264  }
5265
5266  void VisitWhileStmt(WhileStmt *W) {
5267    OS << "while " ;
5268    if (Stmt *C = W->getCond())
5269      C->printPretty(OS, Helper, Policy);
5270  }
5271
5272  void VisitDoStmt(DoStmt *D) {
5273    OS << "do ... while ";
5274    if (Stmt *C = D->getCond())
5275      C->printPretty(OS, Helper, Policy);
5276  }
5277
5278  void VisitSwitchStmt(SwitchStmt *Terminator) {
5279    OS << "switch ";
5280    Terminator->getCond()->printPretty(OS, Helper, Policy);
5281  }
5282
5283  void VisitCXXTryStmt(CXXTryStmt *CS) {
5284    OS << "try ...";
5285  }
5286
5287  void VisitSEHTryStmt(SEHTryStmt *CS) {
5288    OS << "__try ...";
5289  }
5290
5291  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
5292    if (Stmt *Cond = C->getCond())
5293      Cond->printPretty(OS, Helper, Policy);
5294    OS << " ? ... : ...";
5295  }
5296
5297  void VisitChooseExpr(ChooseExpr *C) {
5298    OS << "__builtin_choose_expr( ";
5299    if (Stmt *Cond = C->getCond())
5300      Cond->printPretty(OS, Helper, Policy);
5301    OS << " )";
5302  }
5303
5304  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
5305    OS << "goto *";
5306    if (Stmt *T = I->getTarget())
5307      T->printPretty(OS, Helper, Policy);
5308  }
5309
5310  void VisitBinaryOperator(BinaryOperator* B) {
5311    if (!B->isLogicalOp()) {
5312      VisitExpr(B);
5313      return;
5314    }
5315
5316    if (B->getLHS())
5317      B->getLHS()->printPretty(OS, Helper, Policy);
5318
5319    switch (B->getOpcode()) {
5320      case BO_LOr:
5321        OS << " || ...";
5322        return;
5323      case BO_LAnd:
5324        OS << " && ...";
5325        return;
5326      default:
5327        llvm_unreachable("Invalid logical operator.");
5328    }
5329  }
5330
5331  void VisitExpr(Expr *E) {
5332    E->printPretty(OS, Helper, Policy);
5333  }
5334
5335public:
5336  void print(CFGTerminator T) {
5337    switch (T.getKind()) {
5338    case CFGTerminator::StmtBranch:
5339      Visit(T.getStmt());
5340      break;
5341    case CFGTerminator::TemporaryDtorsBranch:
5342      OS << "(Temp Dtor) ";
5343      Visit(T.getStmt());
5344      break;
5345    case CFGTerminator::VirtualBaseBranch:
5346      OS << "(See if most derived ctor has already initialized vbases)";
5347      break;
5348    }
5349  }
5350};
5351
5352} // namespace
5353
5354static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper,
5355                              const CXXCtorInitializer *I) {
5356  if (I->isBaseInitializer())
5357    OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
5358  else if (I->isDelegatingInitializer())
5359    OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
5360  else
5361    OS << I->getAnyMember()->getName();
5362  OS << "(";
5363  if (Expr *IE = I->getInit())
5364    IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5365  OS << ")";
5366
5367  if (I->isBaseInitializer())
5368    OS << " (Base initializer)";
5369  else if (I->isDelegatingInitializer())
5370    OS << " (Delegating initializer)";
5371  else
5372    OS << " (Member initializer)";
5373}
5374
5375static void print_construction_context(raw_ostream &OS,
5376                                       StmtPrinterHelper &Helper,
5377                                       const ConstructionContext *CC) {
5378  SmallVector<const Stmt *, 3> Stmts;
5379  switch (CC->getKind()) {
5380  case ConstructionContext::SimpleConstructorInitializerKind: {
5381    OS << ", ";
5382    const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC);
5383    print_initializer(OS, Helper, SICC->getCXXCtorInitializer());
5384    return;
5385  }
5386  case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: {
5387    OS << ", ";
5388    const auto *CICC =
5389        cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC);
5390    print_initializer(OS, Helper, CICC->getCXXCtorInitializer());
5391    Stmts.push_back(CICC->getCXXBindTemporaryExpr());
5392    break;
5393  }
5394  case ConstructionContext::SimpleVariableKind: {
5395    const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC);
5396    Stmts.push_back(SDSCC->getDeclStmt());
5397    break;
5398  }
5399  case ConstructionContext::CXX17ElidedCopyVariableKind: {
5400    const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC);
5401    Stmts.push_back(CDSCC->getDeclStmt());
5402    Stmts.push_back(CDSCC->getCXXBindTemporaryExpr());
5403    break;
5404  }
5405  case ConstructionContext::NewAllocatedObjectKind: {
5406    const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
5407    Stmts.push_back(NECC->getCXXNewExpr());
5408    break;
5409  }
5410  case ConstructionContext::SimpleReturnedValueKind: {
5411    const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC);
5412    Stmts.push_back(RSCC->getReturnStmt());
5413    break;
5414  }
5415  case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
5416    const auto *RSCC =
5417        cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC);
5418    Stmts.push_back(RSCC->getReturnStmt());
5419    Stmts.push_back(RSCC->getCXXBindTemporaryExpr());
5420    break;
5421  }
5422  case ConstructionContext::SimpleTemporaryObjectKind: {
5423    const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC);
5424    Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5425    Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5426    break;
5427  }
5428  case ConstructionContext::ElidedTemporaryObjectKind: {
5429    const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
5430    Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5431    Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5432    Stmts.push_back(TOCC->getConstructorAfterElision());
5433    break;
5434  }
5435  case ConstructionContext::ArgumentKind: {
5436    const auto *ACC = cast<ArgumentConstructionContext>(CC);
5437    if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) {
5438      OS << ", ";
5439      Helper.handledStmt(const_cast<Stmt *>(BTE), OS);
5440    }
5441    OS << ", ";
5442    Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS);
5443    OS << "+" << ACC->getIndex();
5444    return;
5445  }
5446  }
5447  for (auto I: Stmts)
5448    if (I) {
5449      OS << ", ";
5450      Helper.handledStmt(const_cast<Stmt *>(I), OS);
5451    }
5452}
5453
5454static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5455                       const CFGElement &E);
5456
5457void CFGElement::dumpToStream(llvm::raw_ostream &OS) const {
5458  StmtPrinterHelper Helper(nullptr, {});
5459  print_elem(OS, Helper, *this);
5460}
5461
5462static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5463                       const CFGElement &E) {
5464  switch (E.getKind()) {
5465  case CFGElement::Kind::Statement:
5466  case CFGElement::Kind::CXXRecordTypedCall:
5467  case CFGElement::Kind::Constructor: {
5468    CFGStmt CS = E.castAs<CFGStmt>();
5469    const Stmt *S = CS.getStmt();
5470    assert(S != nullptr && "Expecting non-null Stmt");
5471
5472    // special printing for statement-expressions.
5473    if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
5474      const CompoundStmt *Sub = SE->getSubStmt();
5475
5476      auto Children = Sub->children();
5477      if (Children.begin() != Children.end()) {
5478        OS << "({ ... ; ";
5479        Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
5480        OS << " })\n";
5481        return;
5482      }
5483    }
5484    // special printing for comma expressions.
5485    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
5486      if (B->getOpcode() == BO_Comma) {
5487        OS << "... , ";
5488        Helper.handledStmt(B->getRHS(),OS);
5489        OS << '\n';
5490        return;
5491      }
5492    }
5493    S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5494
5495    if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) {
5496      if (isa<CXXOperatorCallExpr>(S))
5497        OS << " (OperatorCall)";
5498      OS << " (CXXRecordTypedCall";
5499      print_construction_context(OS, Helper, VTC->getConstructionContext());
5500      OS << ")";
5501    } else if (isa<CXXOperatorCallExpr>(S)) {
5502      OS << " (OperatorCall)";
5503    } else if (isa<CXXBindTemporaryExpr>(S)) {
5504      OS << " (BindTemporary)";
5505    } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
5506      OS << " (CXXConstructExpr";
5507      if (Optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) {
5508        print_construction_context(OS, Helper, CE->getConstructionContext());
5509      }
5510      OS << ", " << CCE->getType().getAsString() << ")";
5511    } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
5512      OS << " (" << CE->getStmtClassName() << ", "
5513         << CE->getCastKindName()
5514         << ", " << CE->getType().getAsString()
5515         << ")";
5516    }
5517
5518    // Expressions need a newline.
5519    if (isa<Expr>(S))
5520      OS << '\n';
5521
5522    break;
5523  }
5524
5525  case CFGElement::Kind::Initializer:
5526    print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer());
5527    OS << '\n';
5528    break;
5529
5530  case CFGElement::Kind::AutomaticObjectDtor: {
5531    CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>();
5532    const VarDecl *VD = DE.getVarDecl();
5533    Helper.handleDecl(VD, OS);
5534
5535    QualType T = VD->getType();
5536    if (T->isReferenceType())
5537      T = getReferenceInitTemporaryType(VD->getInit(), nullptr);
5538
5539    OS << ".~";
5540    T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5541    OS << "() (Implicit destructor)\n";
5542    break;
5543  }
5544
5545  case CFGElement::Kind::LifetimeEnds:
5546    Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS);
5547    OS << " (Lifetime ends)\n";
5548    break;
5549
5550  case CFGElement::Kind::LoopExit:
5551    OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n";
5552    break;
5553
5554  case CFGElement::Kind::ScopeBegin:
5555    OS << "CFGScopeBegin(";
5556    if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl())
5557      OS << VD->getQualifiedNameAsString();
5558    OS << ")\n";
5559    break;
5560
5561  case CFGElement::Kind::ScopeEnd:
5562    OS << "CFGScopeEnd(";
5563    if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl())
5564      OS << VD->getQualifiedNameAsString();
5565    OS << ")\n";
5566    break;
5567
5568  case CFGElement::Kind::NewAllocator:
5569    OS << "CFGNewAllocator(";
5570    if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr())
5571      AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5572    OS << ")\n";
5573    break;
5574
5575  case CFGElement::Kind::DeleteDtor: {
5576    CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>();
5577    const CXXRecordDecl *RD = DE.getCXXRecordDecl();
5578    if (!RD)
5579      return;
5580    CXXDeleteExpr *DelExpr =
5581        const_cast<CXXDeleteExpr*>(DE.getDeleteExpr());
5582    Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
5583    OS << "->~" << RD->getName().str() << "()";
5584    OS << " (Implicit destructor)\n";
5585    break;
5586  }
5587
5588  case CFGElement::Kind::BaseDtor: {
5589    const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier();
5590    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
5591    OS << " (Base object destructor)\n";
5592    break;
5593  }
5594
5595  case CFGElement::Kind::MemberDtor: {
5596    const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl();
5597    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
5598    OS << "this->" << FD->getName();
5599    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
5600    OS << " (Member object destructor)\n";
5601    break;
5602  }
5603
5604  case CFGElement::Kind::TemporaryDtor: {
5605    const CXXBindTemporaryExpr *BT = E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5606    OS << "~";
5607    BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5608    OS << "() (Temporary object destructor)\n";
5609    break;
5610  }
5611  }
5612}
5613
5614static void print_block(raw_ostream &OS, const CFG* cfg,
5615                        const CFGBlock &B,
5616                        StmtPrinterHelper &Helper, bool print_edges,
5617                        bool ShowColors) {
5618  Helper.setBlockID(B.getBlockID());
5619
5620  // Print the header.
5621  if (ShowColors)
5622    OS.changeColor(raw_ostream::YELLOW, true);
5623
5624  OS << "\n [B" << B.getBlockID();
5625
5626  if (&B == &cfg->getEntry())
5627    OS << " (ENTRY)]\n";
5628  else if (&B == &cfg->getExit())
5629    OS << " (EXIT)]\n";
5630  else if (&B == cfg->getIndirectGotoBlock())
5631    OS << " (INDIRECT GOTO DISPATCH)]\n";
5632  else if (B.hasNoReturnElement())
5633    OS << " (NORETURN)]\n";
5634  else
5635    OS << "]\n";
5636
5637  if (ShowColors)
5638    OS.resetColor();
5639
5640  // Print the label of this block.
5641  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
5642    if (print_edges)
5643      OS << "  ";
5644
5645    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
5646      OS << L->getName();
5647    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
5648      OS << "case ";
5649      if (C->getLHS())
5650        C->getLHS()->printPretty(OS, &Helper,
5651                                 PrintingPolicy(Helper.getLangOpts()));
5652      if (C->getRHS()) {
5653        OS << " ... ";
5654        C->getRHS()->printPretty(OS, &Helper,
5655                                 PrintingPolicy(Helper.getLangOpts()));
5656      }
5657    } else if (isa<DefaultStmt>(Label))
5658      OS << "default";
5659    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
5660      OS << "catch (";
5661      if (CS->getExceptionDecl())
5662        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()),
5663                                      0);
5664      else
5665        OS << "...";
5666      OS << ")";
5667    } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) {
5668      OS << "__except (";
5669      ES->getFilterExpr()->printPretty(OS, &Helper,
5670                                       PrintingPolicy(Helper.getLangOpts()), 0);
5671      OS << ")";
5672    } else
5673      llvm_unreachable("Invalid label statement in CFGBlock.");
5674
5675    OS << ":\n";
5676  }
5677
5678  // Iterate through the statements in the block and print them.
5679  unsigned j = 1;
5680
5681  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
5682       I != E ; ++I, ++j ) {
5683    // Print the statement # in the basic block and the statement itself.
5684    if (print_edges)
5685      OS << " ";
5686
5687    OS << llvm::format("%3d", j) << ": ";
5688
5689    Helper.setStmtID(j);
5690
5691    print_elem(OS, Helper, *I);
5692  }
5693
5694  // Print the terminator of this block.
5695  if (B.getTerminator().isValid()) {
5696    if (ShowColors)
5697      OS.changeColor(raw_ostream::GREEN);
5698
5699    OS << "   T: ";
5700
5701    Helper.setBlockID(-1);
5702
5703    PrintingPolicy PP(Helper.getLangOpts());
5704    CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
5705    TPrinter.print(B.getTerminator());
5706    OS << '\n';
5707
5708    if (ShowColors)
5709      OS.resetColor();
5710  }
5711
5712  if (print_edges) {
5713    // Print the predecessors of this block.
5714    if (!B.pred_empty()) {
5715      const raw_ostream::Colors Color = raw_ostream::BLUE;
5716      if (ShowColors)
5717        OS.changeColor(Color);
5718      OS << "   Preds " ;
5719      if (ShowColors)
5720        OS.resetColor();
5721      OS << '(' << B.pred_size() << "):";
5722      unsigned i = 0;
5723
5724      if (ShowColors)
5725        OS.changeColor(Color);
5726
5727      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
5728           I != E; ++I, ++i) {
5729        if (i % 10 == 8)
5730          OS << "\n     ";
5731
5732        CFGBlock *B = *I;
5733        bool Reachable = true;
5734        if (!B) {
5735          Reachable = false;
5736          B = I->getPossiblyUnreachableBlock();
5737        }
5738
5739        OS << " B" << B->getBlockID();
5740        if (!Reachable)
5741          OS << "(Unreachable)";
5742      }
5743
5744      if (ShowColors)
5745        OS.resetColor();
5746
5747      OS << '\n';
5748    }
5749
5750    // Print the successors of this block.
5751    if (!B.succ_empty()) {
5752      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
5753      if (ShowColors)
5754        OS.changeColor(Color);
5755      OS << "   Succs ";
5756      if (ShowColors)
5757        OS.resetColor();
5758      OS << '(' << B.succ_size() << "):";
5759      unsigned i = 0;
5760
5761      if (ShowColors)
5762        OS.changeColor(Color);
5763
5764      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
5765           I != E; ++I, ++i) {
5766        if (i % 10 == 8)
5767          OS << "\n    ";
5768
5769        CFGBlock *B = *I;
5770
5771        bool Reachable = true;
5772        if (!B) {
5773          Reachable = false;
5774          B = I->getPossiblyUnreachableBlock();
5775        }
5776
5777        if (B) {
5778          OS << " B" << B->getBlockID();
5779          if (!Reachable)
5780            OS << "(Unreachable)";
5781        }
5782        else {
5783          OS << " NULL";
5784        }
5785      }
5786
5787      if (ShowColors)
5788        OS.resetColor();
5789      OS << '\n';
5790    }
5791  }
5792}
5793
5794/// dump - A simple pretty printer of a CFG that outputs to stderr.
5795void CFG::dump(const LangOptions &LO, bool ShowColors) const {
5796  print(llvm::errs(), LO, ShowColors);
5797}
5798
5799/// print - A simple pretty printer of a CFG that outputs to an ostream.
5800void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
5801  StmtPrinterHelper Helper(this, LO);
5802
5803  // Print the entry block.
5804  print_block(OS, this, getEntry(), Helper, true, ShowColors);
5805
5806  // Iterate through the CFGBlocks and print them one by one.
5807  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
5808    // Skip the entry block, because we already printed it.
5809    if (&(**I) == &getEntry() || &(**I) == &getExit())
5810      continue;
5811
5812    print_block(OS, this, **I, Helper, true, ShowColors);
5813  }
5814
5815  // Print the exit block.
5816  print_block(OS, this, getExit(), Helper, true, ShowColors);
5817  OS << '\n';
5818  OS.flush();
5819}
5820
5821size_t CFGBlock::getIndexInCFG() const {
5822  return llvm::find(*getParent(), this) - getParent()->begin();
5823}
5824
5825/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
5826void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
5827                    bool ShowColors) const {
5828  print(llvm::errs(), cfg, LO, ShowColors);
5829}
5830
5831LLVM_DUMP_METHOD void CFGBlock::dump() const {
5832  dump(getParent(), LangOptions(), false);
5833}
5834
5835/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
5836///   Generally this will only be called from CFG::print.
5837void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
5838                     const LangOptions &LO, bool ShowColors) const {
5839  StmtPrinterHelper Helper(cfg, LO);
5840  print_block(OS, cfg, *this, Helper, true, ShowColors);
5841  OS << '\n';
5842}
5843
5844/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
5845void CFGBlock::printTerminator(raw_ostream &OS,
5846                               const LangOptions &LO) const {
5847  CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
5848  TPrinter.print(getTerminator());
5849}
5850
5851/// printTerminatorJson - Pretty-prints the terminator in JSON format.
5852void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
5853                                   bool AddQuotes) const {
5854  std::string Buf;
5855  llvm::raw_string_ostream TempOut(Buf);
5856
5857  printTerminator(TempOut, LO);
5858
5859  Out << JsonFormat(TempOut.str(), AddQuotes);
5860}
5861
5862// Returns true if by simply looking at the block, we can be sure that it
5863// results in a sink during analysis. This is useful to know when the analysis
5864// was interrupted, and we try to figure out if it would sink eventually.
5865// There may be many more reasons why a sink would appear during analysis
5866// (eg. checkers may generate sinks arbitrarily), but here we only consider
5867// sinks that would be obvious by looking at the CFG.
5868static bool isImmediateSinkBlock(const CFGBlock *Blk) {
5869  if (Blk->hasNoReturnElement())
5870    return true;
5871
5872  // FIXME: Throw-expressions are currently generating sinks during analysis:
5873  // they're not supported yet, and also often used for actually terminating
5874  // the program. So we should treat them as sinks in this analysis as well,
5875  // at least for now, but once we have better support for exceptions,
5876  // we'd need to carefully handle the case when the throw is being
5877  // immediately caught.
5878  if (std::any_of(Blk->begin(), Blk->end(), [](const CFGElement &Elm) {
5879        if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>())
5880          if (isa<CXXThrowExpr>(StmtElm->getStmt()))
5881            return true;
5882        return false;
5883      }))
5884    return true;
5885
5886  return false;
5887}
5888
5889bool CFGBlock::isInevitablySinking() const {
5890  const CFG &Cfg = *getParent();
5891
5892  const CFGBlock *StartBlk = this;
5893  if (isImmediateSinkBlock(StartBlk))
5894    return true;
5895
5896  llvm::SmallVector<const CFGBlock *, 32> DFSWorkList;
5897  llvm::SmallPtrSet<const CFGBlock *, 32> Visited;
5898
5899  DFSWorkList.push_back(StartBlk);
5900  while (!DFSWorkList.empty()) {
5901    const CFGBlock *Blk = DFSWorkList.back();
5902    DFSWorkList.pop_back();
5903    Visited.insert(Blk);
5904
5905    // If at least one path reaches the CFG exit, it means that control is
5906    // returned to the caller. For now, say that we are not sure what
5907    // happens next. If necessary, this can be improved to analyze
5908    // the parent StackFrameContext's call site in a similar manner.
5909    if (Blk == &Cfg.getExit())
5910      return false;
5911
5912    for (const auto &Succ : Blk->succs()) {
5913      if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) {
5914        if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) {
5915          // If the block has reachable child blocks that aren't no-return,
5916          // add them to the worklist.
5917          DFSWorkList.push_back(SuccBlk);
5918        }
5919      }
5920    }
5921  }
5922
5923  // Nothing reached the exit. It can only mean one thing: there's no return.
5924  return true;
5925}
5926
5927const Expr *CFGBlock::getLastCondition() const {
5928  // If the terminator is a temporary dtor or a virtual base, etc, we can't
5929  // retrieve a meaningful condition, bail out.
5930  if (Terminator.getKind() != CFGTerminator::StmtBranch)
5931    return nullptr;
5932
5933  // Also, if this method was called on a block that doesn't have 2 successors,
5934  // this block doesn't have retrievable condition.
5935  if (succ_size() < 2)
5936    return nullptr;
5937
5938  // FIXME: Is there a better condition expression we can return in this case?
5939  if (size() == 0)
5940    return nullptr;
5941
5942  auto StmtElem = rbegin()->getAs<CFGStmt>();
5943  if (!StmtElem)
5944    return nullptr;
5945
5946  const Stmt *Cond = StmtElem->getStmt();
5947  if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond))
5948    return nullptr;
5949
5950  // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence
5951  // the cast<>.
5952  return cast<Expr>(Cond)->IgnoreParens();
5953}
5954
5955Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
5956  Stmt *Terminator = getTerminatorStmt();
5957  if (!Terminator)
5958    return nullptr;
5959
5960  Expr *E = nullptr;
5961
5962  switch (Terminator->getStmtClass()) {
5963    default:
5964      break;
5965
5966    case Stmt::CXXForRangeStmtClass:
5967      E = cast<CXXForRangeStmt>(Terminator)->getCond();
5968      break;
5969
5970    case Stmt::ForStmtClass:
5971      E = cast<ForStmt>(Terminator)->getCond();
5972      break;
5973
5974    case Stmt::WhileStmtClass:
5975      E = cast<WhileStmt>(Terminator)->getCond();
5976      break;
5977
5978    case Stmt::DoStmtClass:
5979      E = cast<DoStmt>(Terminator)->getCond();
5980      break;
5981
5982    case Stmt::IfStmtClass:
5983      E = cast<IfStmt>(Terminator)->getCond();
5984      break;
5985
5986    case Stmt::ChooseExprClass:
5987      E = cast<ChooseExpr>(Terminator)->getCond();
5988      break;
5989
5990    case Stmt::IndirectGotoStmtClass:
5991      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
5992      break;
5993
5994    case Stmt::SwitchStmtClass:
5995      E = cast<SwitchStmt>(Terminator)->getCond();
5996      break;
5997
5998    case Stmt::BinaryConditionalOperatorClass:
5999      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
6000      break;
6001
6002    case Stmt::ConditionalOperatorClass:
6003      E = cast<ConditionalOperator>(Terminator)->getCond();
6004      break;
6005
6006    case Stmt::BinaryOperatorClass: // '&&' and '||'
6007      E = cast<BinaryOperator>(Terminator)->getLHS();
6008      break;
6009
6010    case Stmt::ObjCForCollectionStmtClass:
6011      return Terminator;
6012  }
6013
6014  if (!StripParens)
6015    return E;
6016
6017  return E ? E->IgnoreParens() : nullptr;
6018}
6019
6020//===----------------------------------------------------------------------===//
6021// CFG Graphviz Visualization
6022//===----------------------------------------------------------------------===//
6023
6024#ifndef NDEBUG
6025static StmtPrinterHelper* GraphHelper;
6026#endif
6027
6028void CFG::viewCFG(const LangOptions &LO) const {
6029#ifndef NDEBUG
6030  StmtPrinterHelper H(this, LO);
6031  GraphHelper = &H;
6032  llvm::ViewGraph(this,"CFG");
6033  GraphHelper = nullptr;
6034#endif
6035}
6036
6037namespace llvm {
6038
6039template<>
6040struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
6041  DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
6042
6043  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
6044#ifndef NDEBUG
6045    std::string OutSStr;
6046    llvm::raw_string_ostream Out(OutSStr);
6047    print_block(Out,Graph, *Node, *GraphHelper, false, false);
6048    std::string& OutStr = Out.str();
6049
6050    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
6051
6052    // Process string output to make it nicer...
6053    for (unsigned i = 0; i != OutStr.length(); ++i)
6054      if (OutStr[i] == '\n') {                            // Left justify
6055        OutStr[i] = '\\';
6056        OutStr.insert(OutStr.begin()+i+1, 'l');
6057      }
6058
6059    return OutStr;
6060#else
6061    return {};
6062#endif
6063  }
6064};
6065
6066} // namespace llvm
6067