1//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "clang/AST/ASTContext.h"
10#include "clang/AST/ASTDiagnostic.h"
11#include "clang/AST/Attr.h"
12#include "clang/AST/CXXInheritance.h"
13#include "clang/AST/Decl.h"
14#include "clang/AST/DeclCXX.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/VTableBuilder.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/Support/Format.h"
22#include "llvm/Support/MathExtras.h"
23
24using namespace clang;
25
26namespace {
27
28/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29/// For a class hierarchy like
30///
31/// class A { };
32/// class B : A { };
33/// class C : A, B { };
34///
35/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36/// instances, one for B and two for A.
37///
38/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39struct BaseSubobjectInfo {
40  /// Class - The class for this base info.
41  const CXXRecordDecl *Class;
42
43  /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44  bool IsVirtual;
45
46  /// Bases - Information about the base subobjects.
47  SmallVector<BaseSubobjectInfo*, 4> Bases;
48
49  /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50  /// of this base info (if one exists).
51  BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52
53  // FIXME: Document.
54  const BaseSubobjectInfo *Derived;
55};
56
57/// Externally provided layout. Typically used when the AST source, such
58/// as DWARF, lacks all the information that was available at compile time, such
59/// as alignment attributes on fields and pragmas in effect.
60struct ExternalLayout {
61  ExternalLayout() : Size(0), Align(0) {}
62
63  /// Overall record size in bits.
64  uint64_t Size;
65
66  /// Overall record alignment in bits.
67  uint64_t Align;
68
69  /// Record field offsets in bits.
70  llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71
72  /// Direct, non-virtual base offsets.
73  llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74
75  /// Virtual base offsets.
76  llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77
78  /// Get the offset of the given field. The external source must provide
79  /// entries for all fields in the record.
80  uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81    assert(FieldOffsets.count(FD) &&
82           "Field does not have an external offset");
83    return FieldOffsets[FD];
84  }
85
86  bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87    auto Known = BaseOffsets.find(RD);
88    if (Known == BaseOffsets.end())
89      return false;
90    BaseOffset = Known->second;
91    return true;
92  }
93
94  bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95    auto Known = VirtualBaseOffsets.find(RD);
96    if (Known == VirtualBaseOffsets.end())
97      return false;
98    BaseOffset = Known->second;
99    return true;
100  }
101};
102
103/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104/// offsets while laying out a C++ class.
105class EmptySubobjectMap {
106  const ASTContext &Context;
107  uint64_t CharWidth;
108
109  /// Class - The class whose empty entries we're keeping track of.
110  const CXXRecordDecl *Class;
111
112  /// EmptyClassOffsets - A map from offsets to empty record decls.
113  typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114  typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115  EmptyClassOffsetsMapTy EmptyClassOffsets;
116
117  /// MaxEmptyClassOffset - The highest offset known to contain an empty
118  /// base subobject.
119  CharUnits MaxEmptyClassOffset;
120
121  /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122  /// member subobject that is empty.
123  void ComputeEmptySubobjectSizes();
124
125  void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126
127  void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128                                 CharUnits Offset, bool PlacingEmptyBase);
129
130  void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131                                  const CXXRecordDecl *Class, CharUnits Offset,
132                                  bool PlacingOverlappingField);
133  void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134                                  bool PlacingOverlappingField);
135
136  /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137  /// subobjects beyond the given offset.
138  bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139    return Offset <= MaxEmptyClassOffset;
140  }
141
142  CharUnits
143  getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144    uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145    assert(FieldOffset % CharWidth == 0 &&
146           "Field offset not at char boundary!");
147
148    return Context.toCharUnitsFromBits(FieldOffset);
149  }
150
151protected:
152  bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153                                 CharUnits Offset) const;
154
155  bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156                                     CharUnits Offset);
157
158  bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159                                      const CXXRecordDecl *Class,
160                                      CharUnits Offset) const;
161  bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162                                      CharUnits Offset) const;
163
164public:
165  /// This holds the size of the largest empty subobject (either a base
166  /// or a member). Will be zero if the record being built doesn't contain
167  /// any empty classes.
168  CharUnits SizeOfLargestEmptySubobject;
169
170  EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171  : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172      ComputeEmptySubobjectSizes();
173  }
174
175  /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176  /// at the given offset.
177  /// Returns false if placing the record will result in two components
178  /// (direct or indirect) of the same type having the same offset.
179  bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180                            CharUnits Offset);
181
182  /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183  /// offset.
184  bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185};
186
187void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188  // Check the bases.
189  for (const CXXBaseSpecifier &Base : Class->bases()) {
190    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191
192    CharUnits EmptySize;
193    const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194    if (BaseDecl->isEmpty()) {
195      // If the class decl is empty, get its size.
196      EmptySize = Layout.getSize();
197    } else {
198      // Otherwise, we get the largest empty subobject for the decl.
199      EmptySize = Layout.getSizeOfLargestEmptySubobject();
200    }
201
202    if (EmptySize > SizeOfLargestEmptySubobject)
203      SizeOfLargestEmptySubobject = EmptySize;
204  }
205
206  // Check the fields.
207  for (const FieldDecl *FD : Class->fields()) {
208    const RecordType *RT =
209        Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210
211    // We only care about record types.
212    if (!RT)
213      continue;
214
215    CharUnits EmptySize;
216    const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217    const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218    if (MemberDecl->isEmpty()) {
219      // If the class decl is empty, get its size.
220      EmptySize = Layout.getSize();
221    } else {
222      // Otherwise, we get the largest empty subobject for the decl.
223      EmptySize = Layout.getSizeOfLargestEmptySubobject();
224    }
225
226    if (EmptySize > SizeOfLargestEmptySubobject)
227      SizeOfLargestEmptySubobject = EmptySize;
228  }
229}
230
231bool
232EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233                                             CharUnits Offset) const {
234  // We only need to check empty bases.
235  if (!RD->isEmpty())
236    return true;
237
238  EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239  if (I == EmptyClassOffsets.end())
240    return true;
241
242  const ClassVectorTy &Classes = I->second;
243  if (llvm::find(Classes, RD) == Classes.end())
244    return true;
245
246  // There is already an empty class of the same type at this offset.
247  return false;
248}
249
250void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251                                             CharUnits Offset) {
252  // We only care about empty bases.
253  if (!RD->isEmpty())
254    return;
255
256  // If we have empty structures inside a union, we can assign both
257  // the same offset. Just avoid pushing them twice in the list.
258  ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259  if (llvm::is_contained(Classes, RD))
260    return;
261
262  Classes.push_back(RD);
263
264  // Update the empty class offset.
265  if (Offset > MaxEmptyClassOffset)
266    MaxEmptyClassOffset = Offset;
267}
268
269bool
270EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271                                                 CharUnits Offset) {
272  // We don't have to keep looking past the maximum offset that's known to
273  // contain an empty class.
274  if (!AnyEmptySubobjectsBeyondOffset(Offset))
275    return true;
276
277  if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278    return false;
279
280  // Traverse all non-virtual bases.
281  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282  for (const BaseSubobjectInfo *Base : Info->Bases) {
283    if (Base->IsVirtual)
284      continue;
285
286    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287
288    if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289      return false;
290  }
291
292  if (Info->PrimaryVirtualBaseInfo) {
293    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294
295    if (Info == PrimaryVirtualBaseInfo->Derived) {
296      if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297        return false;
298    }
299  }
300
301  // Traverse all member variables.
302  unsigned FieldNo = 0;
303  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305    if (I->isBitField())
306      continue;
307
308    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309    if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310      return false;
311  }
312
313  return true;
314}
315
316void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317                                                  CharUnits Offset,
318                                                  bool PlacingEmptyBase) {
319  if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320    // We know that the only empty subobjects that can conflict with empty
321    // subobject of non-empty bases, are empty bases that can be placed at
322    // offset zero. Because of this, we only need to keep track of empty base
323    // subobjects with offsets less than the size of the largest empty
324    // subobject for our class.
325    return;
326  }
327
328  AddSubobjectAtOffset(Info->Class, Offset);
329
330  // Traverse all non-virtual bases.
331  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332  for (const BaseSubobjectInfo *Base : Info->Bases) {
333    if (Base->IsVirtual)
334      continue;
335
336    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337    UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338  }
339
340  if (Info->PrimaryVirtualBaseInfo) {
341    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342
343    if (Info == PrimaryVirtualBaseInfo->Derived)
344      UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345                                PlacingEmptyBase);
346  }
347
348  // Traverse all member variables.
349  unsigned FieldNo = 0;
350  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352    if (I->isBitField())
353      continue;
354
355    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356    UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357  }
358}
359
360bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361                                             CharUnits Offset) {
362  // If we know this class doesn't have any empty subobjects we don't need to
363  // bother checking.
364  if (SizeOfLargestEmptySubobject.isZero())
365    return true;
366
367  if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368    return false;
369
370  // We are able to place the base at this offset. Make sure to update the
371  // empty base subobject map.
372  UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373  return true;
374}
375
376bool
377EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378                                                  const CXXRecordDecl *Class,
379                                                  CharUnits Offset) const {
380  // We don't have to keep looking past the maximum offset that's known to
381  // contain an empty class.
382  if (!AnyEmptySubobjectsBeyondOffset(Offset))
383    return true;
384
385  if (!CanPlaceSubobjectAtOffset(RD, Offset))
386    return false;
387
388  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389
390  // Traverse all non-virtual bases.
391  for (const CXXBaseSpecifier &Base : RD->bases()) {
392    if (Base.isVirtual())
393      continue;
394
395    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396
397    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398    if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399      return false;
400  }
401
402  if (RD == Class) {
403    // This is the most derived class, traverse virtual bases as well.
404    for (const CXXBaseSpecifier &Base : RD->vbases()) {
405      const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406
407      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408      if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409        return false;
410    }
411  }
412
413  // Traverse all member variables.
414  unsigned FieldNo = 0;
415  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416       I != E; ++I, ++FieldNo) {
417    if (I->isBitField())
418      continue;
419
420    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421
422    if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423      return false;
424  }
425
426  return true;
427}
428
429bool
430EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431                                                  CharUnits Offset) const {
432  // We don't have to keep looking past the maximum offset that's known to
433  // contain an empty class.
434  if (!AnyEmptySubobjectsBeyondOffset(Offset))
435    return true;
436
437  QualType T = FD->getType();
438  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439    return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440
441  // If we have an array type we need to look at every element.
442  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443    QualType ElemTy = Context.getBaseElementType(AT);
444    const RecordType *RT = ElemTy->getAs<RecordType>();
445    if (!RT)
446      return true;
447
448    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450
451    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452    CharUnits ElementOffset = Offset;
453    for (uint64_t I = 0; I != NumElements; ++I) {
454      // We don't have to keep looking past the maximum offset that's known to
455      // contain an empty class.
456      if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457        return true;
458
459      if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460        return false;
461
462      ElementOffset += Layout.getSize();
463    }
464  }
465
466  return true;
467}
468
469bool
470EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471                                         CharUnits Offset) {
472  if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473    return false;
474
475  // We are able to place the member variable at this offset.
476  // Make sure to update the empty field subobject map.
477  UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478  return true;
479}
480
481void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482    const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483    bool PlacingOverlappingField) {
484  // We know that the only empty subobjects that can conflict with empty
485  // field subobjects are subobjects of empty bases and potentially-overlapping
486  // fields that can be placed at offset zero. Because of this, we only need to
487  // keep track of empty field subobjects with offsets less than the size of
488  // the largest empty subobject for our class.
489  //
490  // (Proof: we will only consider placing a subobject at offset zero or at
491  // >= the current dsize. The only cases where the earlier subobject can be
492  // placed beyond the end of dsize is if it's an empty base or a
493  // potentially-overlapping field.)
494  if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495    return;
496
497  AddSubobjectAtOffset(RD, Offset);
498
499  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500
501  // Traverse all non-virtual bases.
502  for (const CXXBaseSpecifier &Base : RD->bases()) {
503    if (Base.isVirtual())
504      continue;
505
506    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507
508    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509    UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510                               PlacingOverlappingField);
511  }
512
513  if (RD == Class) {
514    // This is the most derived class, traverse virtual bases as well.
515    for (const CXXBaseSpecifier &Base : RD->vbases()) {
516      const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517
518      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519      UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520                                 PlacingOverlappingField);
521    }
522  }
523
524  // Traverse all member variables.
525  unsigned FieldNo = 0;
526  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527       I != E; ++I, ++FieldNo) {
528    if (I->isBitField())
529      continue;
530
531    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532
533    UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534  }
535}
536
537void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538    const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539  QualType T = FD->getType();
540  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541    UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542    return;
543  }
544
545  // If we have an array type we need to update every element.
546  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547    QualType ElemTy = Context.getBaseElementType(AT);
548    const RecordType *RT = ElemTy->getAs<RecordType>();
549    if (!RT)
550      return;
551
552    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554
555    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556    CharUnits ElementOffset = Offset;
557
558    for (uint64_t I = 0; I != NumElements; ++I) {
559      // We know that the only empty subobjects that can conflict with empty
560      // field subobjects are subobjects of empty bases that can be placed at
561      // offset zero. Because of this, we only need to keep track of empty field
562      // subobjects with offsets less than the size of the largest empty
563      // subobject for our class.
564      if (!PlacingOverlappingField &&
565          ElementOffset >= SizeOfLargestEmptySubobject)
566        return;
567
568      UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569                                 PlacingOverlappingField);
570      ElementOffset += Layout.getSize();
571    }
572  }
573}
574
575typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576
577class ItaniumRecordLayoutBuilder {
578protected:
579  // FIXME: Remove this and make the appropriate fields public.
580  friend class clang::ASTContext;
581
582  const ASTContext &Context;
583
584  EmptySubobjectMap *EmptySubobjects;
585
586  /// Size - The current size of the record layout.
587  uint64_t Size;
588
589  /// Alignment - The current alignment of the record layout.
590  CharUnits Alignment;
591
592  /// PreferredAlignment - The preferred alignment of the record layout.
593  CharUnits PreferredAlignment;
594
595  /// The alignment if attribute packed is not used.
596  CharUnits UnpackedAlignment;
597
598  /// \brief The maximum of the alignments of top-level members.
599  CharUnits UnadjustedAlignment;
600
601  SmallVector<uint64_t, 16> FieldOffsets;
602
603  /// Whether the external AST source has provided a layout for this
604  /// record.
605  unsigned UseExternalLayout : 1;
606
607  /// Whether we need to infer alignment, even when we have an
608  /// externally-provided layout.
609  unsigned InferAlignment : 1;
610
611  /// Packed - Whether the record is packed or not.
612  unsigned Packed : 1;
613
614  unsigned IsUnion : 1;
615
616  unsigned IsMac68kAlign : 1;
617
618  unsigned IsNaturalAlign : 1;
619
620  unsigned IsMsStruct : 1;
621
622  /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
623  /// this contains the number of bits in the last unit that can be used for
624  /// an adjacent bitfield if necessary.  The unit in question is usually
625  /// a byte, but larger units are used if IsMsStruct.
626  unsigned char UnfilledBitsInLastUnit;
627
628  /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
629  /// storage unit of the previous field if it was a bitfield.
630  unsigned char LastBitfieldStorageUnitSize;
631
632  /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
633  /// #pragma pack.
634  CharUnits MaxFieldAlignment;
635
636  /// DataSize - The data size of the record being laid out.
637  uint64_t DataSize;
638
639  CharUnits NonVirtualSize;
640  CharUnits NonVirtualAlignment;
641  CharUnits PreferredNVAlignment;
642
643  /// If we've laid out a field but not included its tail padding in Size yet,
644  /// this is the size up to the end of that field.
645  CharUnits PaddedFieldSize;
646
647  /// PrimaryBase - the primary base class (if one exists) of the class
648  /// we're laying out.
649  const CXXRecordDecl *PrimaryBase;
650
651  /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
652  /// out is virtual.
653  bool PrimaryBaseIsVirtual;
654
655  /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
656  /// pointer, as opposed to inheriting one from a primary base class.
657  bool HasOwnVFPtr;
658
659  /// the flag of field offset changing due to packed attribute.
660  bool HasPackedField;
661
662  /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
663  /// When there are OverlappingEmptyFields existing in the aggregate, the
664  /// flag shows if the following first non-empty or empty-but-non-overlapping
665  /// field has been handled, if any.
666  bool HandledFirstNonOverlappingEmptyField;
667
668  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
669
670  /// Bases - base classes and their offsets in the record.
671  BaseOffsetsMapTy Bases;
672
673  // VBases - virtual base classes and their offsets in the record.
674  ASTRecordLayout::VBaseOffsetsMapTy VBases;
675
676  /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
677  /// primary base classes for some other direct or indirect base class.
678  CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
679
680  /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
681  /// inheritance graph order. Used for determining the primary base class.
682  const CXXRecordDecl *FirstNearlyEmptyVBase;
683
684  /// VisitedVirtualBases - A set of all the visited virtual bases, used to
685  /// avoid visiting virtual bases more than once.
686  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
687
688  /// Valid if UseExternalLayout is true.
689  ExternalLayout External;
690
691  ItaniumRecordLayoutBuilder(const ASTContext &Context,
692                             EmptySubobjectMap *EmptySubobjects)
693      : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
694        Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
695        UnpackedAlignment(CharUnits::One()),
696        UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
697        InferAlignment(false), Packed(false), IsUnion(false),
698        IsMac68kAlign(false),
699        IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()),
700        IsMsStruct(false), UnfilledBitsInLastUnit(0),
701        LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
702        DataSize(0), NonVirtualSize(CharUnits::Zero()),
703        NonVirtualAlignment(CharUnits::One()),
704        PreferredNVAlignment(CharUnits::One()),
705        PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
706        PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
707        HandledFirstNonOverlappingEmptyField(false),
708        FirstNearlyEmptyVBase(nullptr) {}
709
710  void Layout(const RecordDecl *D);
711  void Layout(const CXXRecordDecl *D);
712  void Layout(const ObjCInterfaceDecl *D);
713
714  void LayoutFields(const RecordDecl *D);
715  void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
716  void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
717                          bool FieldPacked, const FieldDecl *D);
718  void LayoutBitField(const FieldDecl *D);
719
720  TargetCXXABI getCXXABI() const {
721    return Context.getTargetInfo().getCXXABI();
722  }
723
724  /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
725  llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
726
727  typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
728    BaseSubobjectInfoMapTy;
729
730  /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
731  /// of the class we're laying out to their base subobject info.
732  BaseSubobjectInfoMapTy VirtualBaseInfo;
733
734  /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
735  /// class we're laying out to their base subobject info.
736  BaseSubobjectInfoMapTy NonVirtualBaseInfo;
737
738  /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
739  /// bases of the given class.
740  void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
741
742  /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
743  /// single class and all of its base classes.
744  BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
745                                              bool IsVirtual,
746                                              BaseSubobjectInfo *Derived);
747
748  /// DeterminePrimaryBase - Determine the primary base of the given class.
749  void DeterminePrimaryBase(const CXXRecordDecl *RD);
750
751  void SelectPrimaryVBase(const CXXRecordDecl *RD);
752
753  void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
754
755  /// LayoutNonVirtualBases - Determines the primary base class (if any) and
756  /// lays it out. Will then proceed to lay out all non-virtual base clasess.
757  void LayoutNonVirtualBases(const CXXRecordDecl *RD);
758
759  /// LayoutNonVirtualBase - Lays out a single non-virtual base.
760  void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
761
762  void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
763                                    CharUnits Offset);
764
765  /// LayoutVirtualBases - Lays out all the virtual bases.
766  void LayoutVirtualBases(const CXXRecordDecl *RD,
767                          const CXXRecordDecl *MostDerivedClass);
768
769  /// LayoutVirtualBase - Lays out a single virtual base.
770  void LayoutVirtualBase(const BaseSubobjectInfo *Base);
771
772  /// LayoutBase - Will lay out a base and return the offset where it was
773  /// placed, in chars.
774  CharUnits LayoutBase(const BaseSubobjectInfo *Base);
775
776  /// InitializeLayout - Initialize record layout for the given record decl.
777  void InitializeLayout(const Decl *D);
778
779  /// FinishLayout - Finalize record layout. Adjust record size based on the
780  /// alignment.
781  void FinishLayout(const NamedDecl *D);
782
783  void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
784                       CharUnits PreferredAlignment);
785  void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
786    UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
787  }
788  void UpdateAlignment(CharUnits NewAlignment) {
789    UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
790  }
791
792  /// Retrieve the externally-supplied field offset for the given
793  /// field.
794  ///
795  /// \param Field The field whose offset is being queried.
796  /// \param ComputedOffset The offset that we've computed for this field.
797  uint64_t updateExternalFieldOffset(const FieldDecl *Field,
798                                     uint64_t ComputedOffset);
799
800  void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
801                          uint64_t UnpackedOffset, unsigned UnpackedAlign,
802                          bool isPacked, const FieldDecl *D);
803
804  DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
805
806  CharUnits getSize() const {
807    assert(Size % Context.getCharWidth() == 0);
808    return Context.toCharUnitsFromBits(Size);
809  }
810  uint64_t getSizeInBits() const { return Size; }
811
812  void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
813  void setSize(uint64_t NewSize) { Size = NewSize; }
814
815  CharUnits getAligment() const { return Alignment; }
816
817  CharUnits getDataSize() const {
818    assert(DataSize % Context.getCharWidth() == 0);
819    return Context.toCharUnitsFromBits(DataSize);
820  }
821  uint64_t getDataSizeInBits() const { return DataSize; }
822
823  void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
824  void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
825
826  ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
827  void operator=(const ItaniumRecordLayoutBuilder &) = delete;
828};
829} // end anonymous namespace
830
831void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
832  for (const auto &I : RD->bases()) {
833    assert(!I.getType()->isDependentType() &&
834           "Cannot layout class with dependent bases.");
835
836    const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
837
838    // Check if this is a nearly empty virtual base.
839    if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
840      // If it's not an indirect primary base, then we've found our primary
841      // base.
842      if (!IndirectPrimaryBases.count(Base)) {
843        PrimaryBase = Base;
844        PrimaryBaseIsVirtual = true;
845        return;
846      }
847
848      // Is this the first nearly empty virtual base?
849      if (!FirstNearlyEmptyVBase)
850        FirstNearlyEmptyVBase = Base;
851    }
852
853    SelectPrimaryVBase(Base);
854    if (PrimaryBase)
855      return;
856  }
857}
858
859/// DeterminePrimaryBase - Determine the primary base of the given class.
860void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
861  // If the class isn't dynamic, it won't have a primary base.
862  if (!RD->isDynamicClass())
863    return;
864
865  // Compute all the primary virtual bases for all of our direct and
866  // indirect bases, and record all their primary virtual base classes.
867  RD->getIndirectPrimaryBases(IndirectPrimaryBases);
868
869  // If the record has a dynamic base class, attempt to choose a primary base
870  // class. It is the first (in direct base class order) non-virtual dynamic
871  // base class, if one exists.
872  for (const auto &I : RD->bases()) {
873    // Ignore virtual bases.
874    if (I.isVirtual())
875      continue;
876
877    const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
878
879    if (Base->isDynamicClass()) {
880      // We found it.
881      PrimaryBase = Base;
882      PrimaryBaseIsVirtual = false;
883      return;
884    }
885  }
886
887  // Under the Itanium ABI, if there is no non-virtual primary base class,
888  // try to compute the primary virtual base.  The primary virtual base is
889  // the first nearly empty virtual base that is not an indirect primary
890  // virtual base class, if one exists.
891  if (RD->getNumVBases() != 0) {
892    SelectPrimaryVBase(RD);
893    if (PrimaryBase)
894      return;
895  }
896
897  // Otherwise, it is the first indirect primary base class, if one exists.
898  if (FirstNearlyEmptyVBase) {
899    PrimaryBase = FirstNearlyEmptyVBase;
900    PrimaryBaseIsVirtual = true;
901    return;
902  }
903
904  assert(!PrimaryBase && "Should not get here with a primary base!");
905}
906
907BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
908    const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
909  BaseSubobjectInfo *Info;
910
911  if (IsVirtual) {
912    // Check if we already have info about this virtual base.
913    BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
914    if (InfoSlot) {
915      assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
916      return InfoSlot;
917    }
918
919    // We don't, create it.
920    InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
921    Info = InfoSlot;
922  } else {
923    Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
924  }
925
926  Info->Class = RD;
927  Info->IsVirtual = IsVirtual;
928  Info->Derived = nullptr;
929  Info->PrimaryVirtualBaseInfo = nullptr;
930
931  const CXXRecordDecl *PrimaryVirtualBase = nullptr;
932  BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
933
934  // Check if this base has a primary virtual base.
935  if (RD->getNumVBases()) {
936    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
937    if (Layout.isPrimaryBaseVirtual()) {
938      // This base does have a primary virtual base.
939      PrimaryVirtualBase = Layout.getPrimaryBase();
940      assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
941
942      // Now check if we have base subobject info about this primary base.
943      PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
944
945      if (PrimaryVirtualBaseInfo) {
946        if (PrimaryVirtualBaseInfo->Derived) {
947          // We did have info about this primary base, and it turns out that it
948          // has already been claimed as a primary virtual base for another
949          // base.
950          PrimaryVirtualBase = nullptr;
951        } else {
952          // We can claim this base as our primary base.
953          Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
954          PrimaryVirtualBaseInfo->Derived = Info;
955        }
956      }
957    }
958  }
959
960  // Now go through all direct bases.
961  for (const auto &I : RD->bases()) {
962    bool IsVirtual = I.isVirtual();
963
964    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
965
966    Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
967  }
968
969  if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
970    // Traversing the bases must have created the base info for our primary
971    // virtual base.
972    PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
973    assert(PrimaryVirtualBaseInfo &&
974           "Did not create a primary virtual base!");
975
976    // Claim the primary virtual base as our primary virtual base.
977    Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
978    PrimaryVirtualBaseInfo->Derived = Info;
979  }
980
981  return Info;
982}
983
984void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
985    const CXXRecordDecl *RD) {
986  for (const auto &I : RD->bases()) {
987    bool IsVirtual = I.isVirtual();
988
989    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
990
991    // Compute the base subobject info for this base.
992    BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
993                                                       nullptr);
994
995    if (IsVirtual) {
996      // ComputeBaseInfo has already added this base for us.
997      assert(VirtualBaseInfo.count(BaseDecl) &&
998             "Did not add virtual base!");
999    } else {
1000      // Add the base info to the map of non-virtual bases.
1001      assert(!NonVirtualBaseInfo.count(BaseDecl) &&
1002             "Non-virtual base already exists!");
1003      NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1004    }
1005  }
1006}
1007
1008void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1009    CharUnits UnpackedBaseAlign) {
1010  CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1011
1012  // The maximum field alignment overrides base align.
1013  if (!MaxFieldAlignment.isZero()) {
1014    BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1015    UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1016  }
1017
1018  // Round up the current record size to pointer alignment.
1019  setSize(getSize().alignTo(BaseAlign));
1020
1021  // Update the alignment.
1022  UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1023}
1024
1025void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1026    const CXXRecordDecl *RD) {
1027  // Then, determine the primary base class.
1028  DeterminePrimaryBase(RD);
1029
1030  // Compute base subobject info.
1031  ComputeBaseSubobjectInfo(RD);
1032
1033  // If we have a primary base class, lay it out.
1034  if (PrimaryBase) {
1035    if (PrimaryBaseIsVirtual) {
1036      // If the primary virtual base was a primary virtual base of some other
1037      // base class we'll have to steal it.
1038      BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1039      PrimaryBaseInfo->Derived = nullptr;
1040
1041      // We have a virtual primary base, insert it as an indirect primary base.
1042      IndirectPrimaryBases.insert(PrimaryBase);
1043
1044      assert(!VisitedVirtualBases.count(PrimaryBase) &&
1045             "vbase already visited!");
1046      VisitedVirtualBases.insert(PrimaryBase);
1047
1048      LayoutVirtualBase(PrimaryBaseInfo);
1049    } else {
1050      BaseSubobjectInfo *PrimaryBaseInfo =
1051        NonVirtualBaseInfo.lookup(PrimaryBase);
1052      assert(PrimaryBaseInfo &&
1053             "Did not find base info for non-virtual primary base!");
1054
1055      LayoutNonVirtualBase(PrimaryBaseInfo);
1056    }
1057
1058  // If this class needs a vtable/vf-table and didn't get one from a
1059  // primary base, add it in now.
1060  } else if (RD->isDynamicClass()) {
1061    assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1062    CharUnits PtrWidth =
1063      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1064    CharUnits PtrAlign =
1065      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1066    EnsureVTablePointerAlignment(PtrAlign);
1067    HasOwnVFPtr = true;
1068
1069    assert(!IsUnion && "Unions cannot be dynamic classes.");
1070    HandledFirstNonOverlappingEmptyField = true;
1071
1072    setSize(getSize() + PtrWidth);
1073    setDataSize(getSize());
1074  }
1075
1076  // Now lay out the non-virtual bases.
1077  for (const auto &I : RD->bases()) {
1078
1079    // Ignore virtual bases.
1080    if (I.isVirtual())
1081      continue;
1082
1083    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1084
1085    // Skip the primary base, because we've already laid it out.  The
1086    // !PrimaryBaseIsVirtual check is required because we might have a
1087    // non-virtual base of the same type as a primary virtual base.
1088    if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1089      continue;
1090
1091    // Lay out the base.
1092    BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1093    assert(BaseInfo && "Did not find base info for non-virtual base!");
1094
1095    LayoutNonVirtualBase(BaseInfo);
1096  }
1097}
1098
1099void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1100    const BaseSubobjectInfo *Base) {
1101  // Layout the base.
1102  CharUnits Offset = LayoutBase(Base);
1103
1104  // Add its base class offset.
1105  assert(!Bases.count(Base->Class) && "base offset already exists!");
1106  Bases.insert(std::make_pair(Base->Class, Offset));
1107
1108  AddPrimaryVirtualBaseOffsets(Base, Offset);
1109}
1110
1111void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1112    const BaseSubobjectInfo *Info, CharUnits Offset) {
1113  // This base isn't interesting, it has no virtual bases.
1114  if (!Info->Class->getNumVBases())
1115    return;
1116
1117  // First, check if we have a virtual primary base to add offsets for.
1118  if (Info->PrimaryVirtualBaseInfo) {
1119    assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1120           "Primary virtual base is not virtual!");
1121    if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1122      // Add the offset.
1123      assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1124             "primary vbase offset already exists!");
1125      VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1126                                   ASTRecordLayout::VBaseInfo(Offset, false)));
1127
1128      // Traverse the primary virtual base.
1129      AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1130    }
1131  }
1132
1133  // Now go through all direct non-virtual bases.
1134  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1135  for (const BaseSubobjectInfo *Base : Info->Bases) {
1136    if (Base->IsVirtual)
1137      continue;
1138
1139    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1140    AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1141  }
1142}
1143
1144void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1145    const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1146  const CXXRecordDecl *PrimaryBase;
1147  bool PrimaryBaseIsVirtual;
1148
1149  if (MostDerivedClass == RD) {
1150    PrimaryBase = this->PrimaryBase;
1151    PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1152  } else {
1153    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1154    PrimaryBase = Layout.getPrimaryBase();
1155    PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1156  }
1157
1158  for (const CXXBaseSpecifier &Base : RD->bases()) {
1159    assert(!Base.getType()->isDependentType() &&
1160           "Cannot layout class with dependent bases.");
1161
1162    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1163
1164    if (Base.isVirtual()) {
1165      if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1166        bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1167
1168        // Only lay out the virtual base if it's not an indirect primary base.
1169        if (!IndirectPrimaryBase) {
1170          // Only visit virtual bases once.
1171          if (!VisitedVirtualBases.insert(BaseDecl).second)
1172            continue;
1173
1174          const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1175          assert(BaseInfo && "Did not find virtual base info!");
1176          LayoutVirtualBase(BaseInfo);
1177        }
1178      }
1179    }
1180
1181    if (!BaseDecl->getNumVBases()) {
1182      // This base isn't interesting since it doesn't have any virtual bases.
1183      continue;
1184    }
1185
1186    LayoutVirtualBases(BaseDecl, MostDerivedClass);
1187  }
1188}
1189
1190void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1191    const BaseSubobjectInfo *Base) {
1192  assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1193
1194  // Layout the base.
1195  CharUnits Offset = LayoutBase(Base);
1196
1197  // Add its base class offset.
1198  assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1199  VBases.insert(std::make_pair(Base->Class,
1200                       ASTRecordLayout::VBaseInfo(Offset, false)));
1201
1202  AddPrimaryVirtualBaseOffsets(Base, Offset);
1203}
1204
1205CharUnits
1206ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1207  assert(!IsUnion && "Unions cannot have base classes.");
1208
1209  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1210  CharUnits Offset;
1211
1212  // Query the external layout to see if it provides an offset.
1213  bool HasExternalLayout = false;
1214  if (UseExternalLayout) {
1215    if (Base->IsVirtual)
1216      HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1217    else
1218      HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1219  }
1220
1221  auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1222    // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1223    // Per GCC's documentation, it only applies to non-static data members.
1224    return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1225                        LangOptions::ClangABI::Ver6) ||
1226                       Context.getTargetInfo().getTriple().isPS4() ||
1227                       Context.getTargetInfo().getTriple().isOSAIX()))
1228               ? CharUnits::One()
1229               : UnpackedAlign;
1230  };
1231
1232  CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1233  CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1234  CharUnits BaseAlign =
1235      getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1236  CharUnits PreferredBaseAlign =
1237      getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1238
1239  const bool DefaultsToAIXPowerAlignment =
1240      Context.getTargetInfo().defaultsToAIXPowerAlignment();
1241  if (DefaultsToAIXPowerAlignment) {
1242    // AIX `power` alignment does not apply the preferred alignment for
1243    // non-union classes if the source of the alignment (the current base in
1244    // this context) follows introduction of the first subobject with
1245    // exclusively allocated space or zero-extent array.
1246    if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1247      // By handling a base class that is not empty, we're handling the
1248      // "first (inherited) member".
1249      HandledFirstNonOverlappingEmptyField = true;
1250    } else if (!IsNaturalAlign) {
1251      UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1252      PreferredBaseAlign = BaseAlign;
1253    }
1254  }
1255
1256  CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1257                                  ? UnpackedBaseAlign
1258                                  : UnpackedPreferredBaseAlign;
1259  // If we have an empty base class, try to place it at offset 0.
1260  if (Base->Class->isEmpty() &&
1261      (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1262      EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1263    setSize(std::max(getSize(), Layout.getSize()));
1264    UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1265
1266    return CharUnits::Zero();
1267  }
1268
1269  // The maximum field alignment overrides the base align/(AIX-only) preferred
1270  // base align.
1271  if (!MaxFieldAlignment.isZero()) {
1272    BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1273    PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1274    UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1275  }
1276
1277  CharUnits AlignTo =
1278      !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1279  if (!HasExternalLayout) {
1280    // Round up the current record size to the base's alignment boundary.
1281    Offset = getDataSize().alignTo(AlignTo);
1282
1283    // Try to place the base.
1284    while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1285      Offset += AlignTo;
1286  } else {
1287    bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1288    (void)Allowed;
1289    assert(Allowed && "Base subobject externally placed at overlapping offset");
1290
1291    if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1292      // The externally-supplied base offset is before the base offset we
1293      // computed. Assume that the structure is packed.
1294      Alignment = CharUnits::One();
1295      InferAlignment = false;
1296    }
1297  }
1298
1299  if (!Base->Class->isEmpty()) {
1300    // Update the data size.
1301    setDataSize(Offset + Layout.getNonVirtualSize());
1302
1303    setSize(std::max(getSize(), getDataSize()));
1304  } else
1305    setSize(std::max(getSize(), Offset + Layout.getSize()));
1306
1307  // Remember max struct/class alignment.
1308  UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1309
1310  return Offset;
1311}
1312
1313void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1314  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1315    IsUnion = RD->isUnion();
1316    IsMsStruct = RD->isMsStruct(Context);
1317  }
1318
1319  Packed = D->hasAttr<PackedAttr>();
1320
1321  // Honor the default struct packing maximum alignment flag.
1322  if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1323    MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1324  }
1325
1326  // mac68k alignment supersedes maximum field alignment and attribute aligned,
1327  // and forces all structures to have 2-byte alignment. The IBM docs on it
1328  // allude to additional (more complicated) semantics, especially with regard
1329  // to bit-fields, but gcc appears not to follow that.
1330  if (D->hasAttr<AlignMac68kAttr>()) {
1331    assert(
1332        !D->hasAttr<AlignNaturalAttr>() &&
1333        "Having both mac68k and natural alignment on a decl is not allowed.");
1334    IsMac68kAlign = true;
1335    MaxFieldAlignment = CharUnits::fromQuantity(2);
1336    Alignment = CharUnits::fromQuantity(2);
1337    PreferredAlignment = CharUnits::fromQuantity(2);
1338  } else {
1339    if (D->hasAttr<AlignNaturalAttr>())
1340      IsNaturalAlign = true;
1341
1342    if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1343      MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1344
1345    if (unsigned MaxAlign = D->getMaxAlignment())
1346      UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1347  }
1348
1349  HandledFirstNonOverlappingEmptyField =
1350      !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign;
1351
1352  // If there is an external AST source, ask it for the various offsets.
1353  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1354    if (ExternalASTSource *Source = Context.getExternalSource()) {
1355      UseExternalLayout = Source->layoutRecordType(
1356          RD, External.Size, External.Align, External.FieldOffsets,
1357          External.BaseOffsets, External.VirtualBaseOffsets);
1358
1359      // Update based on external alignment.
1360      if (UseExternalLayout) {
1361        if (External.Align > 0) {
1362          Alignment = Context.toCharUnitsFromBits(External.Align);
1363          PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1364        } else {
1365          // The external source didn't have alignment information; infer it.
1366          InferAlignment = true;
1367        }
1368      }
1369    }
1370}
1371
1372void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1373  InitializeLayout(D);
1374  LayoutFields(D);
1375
1376  // Finally, round the size of the total struct up to the alignment of the
1377  // struct itself.
1378  FinishLayout(D);
1379}
1380
1381void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1382  InitializeLayout(RD);
1383
1384  // Lay out the vtable and the non-virtual bases.
1385  LayoutNonVirtualBases(RD);
1386
1387  LayoutFields(RD);
1388
1389  NonVirtualSize = Context.toCharUnitsFromBits(
1390      llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1391  NonVirtualAlignment = Alignment;
1392  PreferredNVAlignment = PreferredAlignment;
1393
1394  // Lay out the virtual bases and add the primary virtual base offsets.
1395  LayoutVirtualBases(RD, RD);
1396
1397  // Finally, round the size of the total struct up to the alignment
1398  // of the struct itself.
1399  FinishLayout(RD);
1400
1401#ifndef NDEBUG
1402  // Check that we have base offsets for all bases.
1403  for (const CXXBaseSpecifier &Base : RD->bases()) {
1404    if (Base.isVirtual())
1405      continue;
1406
1407    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1408
1409    assert(Bases.count(BaseDecl) && "Did not find base offset!");
1410  }
1411
1412  // And all virtual bases.
1413  for (const CXXBaseSpecifier &Base : RD->vbases()) {
1414    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1415
1416    assert(VBases.count(BaseDecl) && "Did not find base offset!");
1417  }
1418#endif
1419}
1420
1421void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1422  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1423    const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1424
1425    UpdateAlignment(SL.getAlignment());
1426
1427    // We start laying out ivars not at the end of the superclass
1428    // structure, but at the next byte following the last field.
1429    setDataSize(SL.getDataSize());
1430    setSize(getDataSize());
1431  }
1432
1433  InitializeLayout(D);
1434  // Layout each ivar sequentially.
1435  for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1436       IVD = IVD->getNextIvar())
1437    LayoutField(IVD, false);
1438
1439  // Finally, round the size of the total struct up to the alignment of the
1440  // struct itself.
1441  FinishLayout(D);
1442}
1443
1444void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1445  // Layout each field, for now, just sequentially, respecting alignment.  In
1446  // the future, this will need to be tweakable by targets.
1447  bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1448  bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1449  for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1450    auto Next(I);
1451    ++Next;
1452    LayoutField(*I,
1453                InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1454  }
1455}
1456
1457// Rounds the specified size to have it a multiple of the char size.
1458static uint64_t
1459roundUpSizeToCharAlignment(uint64_t Size,
1460                           const ASTContext &Context) {
1461  uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1462  return llvm::alignTo(Size, CharAlignment);
1463}
1464
1465void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1466                                                    uint64_t StorageUnitSize,
1467                                                    bool FieldPacked,
1468                                                    const FieldDecl *D) {
1469  assert(Context.getLangOpts().CPlusPlus &&
1470         "Can only have wide bit-fields in C++!");
1471
1472  // Itanium C++ ABI 2.4:
1473  //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1474  //   sizeof(T')*8 <= n.
1475
1476  QualType IntegralPODTypes[] = {
1477    Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1478    Context.UnsignedLongTy, Context.UnsignedLongLongTy
1479  };
1480
1481  QualType Type;
1482  for (const QualType &QT : IntegralPODTypes) {
1483    uint64_t Size = Context.getTypeSize(QT);
1484
1485    if (Size > FieldSize)
1486      break;
1487
1488    Type = QT;
1489  }
1490  assert(!Type.isNull() && "Did not find a type!");
1491
1492  CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1493
1494  // We're not going to use any of the unfilled bits in the last byte.
1495  UnfilledBitsInLastUnit = 0;
1496  LastBitfieldStorageUnitSize = 0;
1497
1498  uint64_t FieldOffset;
1499  uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1500
1501  if (IsUnion) {
1502    uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1503                                                           Context);
1504    setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1505    FieldOffset = 0;
1506  } else {
1507    // The bitfield is allocated starting at the next offset aligned
1508    // appropriately for T', with length n bits.
1509    FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1510
1511    uint64_t NewSizeInBits = FieldOffset + FieldSize;
1512
1513    setDataSize(
1514        llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1515    UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1516  }
1517
1518  // Place this field at the current location.
1519  FieldOffsets.push_back(FieldOffset);
1520
1521  CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1522                    Context.toBits(TypeAlign), FieldPacked, D);
1523
1524  // Update the size.
1525  setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1526
1527  // Remember max struct/class alignment.
1528  UpdateAlignment(TypeAlign);
1529}
1530
1531static bool isAIXLayout(const ASTContext &Context) {
1532  return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX;
1533}
1534
1535void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1536  bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1537  uint64_t FieldSize = D->getBitWidthValue(Context);
1538  TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1539  uint64_t StorageUnitSize = FieldInfo.Width;
1540  unsigned FieldAlign = FieldInfo.Align;
1541  bool AlignIsRequired = FieldInfo.AlignIsRequired;
1542
1543  // UnfilledBitsInLastUnit is the difference between the end of the
1544  // last allocated bitfield (i.e. the first bit offset available for
1545  // bitfields) and the end of the current data size in bits (i.e. the
1546  // first bit offset available for non-bitfields).  The current data
1547  // size in bits is always a multiple of the char size; additionally,
1548  // for ms_struct records it's also a multiple of the
1549  // LastBitfieldStorageUnitSize (if set).
1550
1551  // The struct-layout algorithm is dictated by the platform ABI,
1552  // which in principle could use almost any rules it likes.  In
1553  // practice, UNIXy targets tend to inherit the algorithm described
1554  // in the System V generic ABI.  The basic bitfield layout rule in
1555  // System V is to place bitfields at the next available bit offset
1556  // where the entire bitfield would fit in an aligned storage unit of
1557  // the declared type; it's okay if an earlier or later non-bitfield
1558  // is allocated in the same storage unit.  However, some targets
1559  // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1560  // require this storage unit to be aligned, and therefore always put
1561  // the bitfield at the next available bit offset.
1562
1563  // ms_struct basically requests a complete replacement of the
1564  // platform ABI's struct-layout algorithm, with the high-level goal
1565  // of duplicating MSVC's layout.  For non-bitfields, this follows
1566  // the standard algorithm.  The basic bitfield layout rule is to
1567  // allocate an entire unit of the bitfield's declared type
1568  // (e.g. 'unsigned long'), then parcel it up among successive
1569  // bitfields whose declared types have the same size, making a new
1570  // unit as soon as the last can no longer store the whole value.
1571  // Since it completely replaces the platform ABI's algorithm,
1572  // settings like !useBitFieldTypeAlignment() do not apply.
1573
1574  // A zero-width bitfield forces the use of a new storage unit for
1575  // later bitfields.  In general, this occurs by rounding up the
1576  // current size of the struct as if the algorithm were about to
1577  // place a non-bitfield of the field's formal type.  Usually this
1578  // does not change the alignment of the struct itself, but it does
1579  // on some targets (those that useZeroLengthBitfieldAlignment(),
1580  // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1581  // ignored unless they follow a non-zero-width bitfield.
1582
1583  // A field alignment restriction (e.g. from #pragma pack) or
1584  // specification (e.g. from __attribute__((aligned))) changes the
1585  // formal alignment of the field.  For System V, this alters the
1586  // required alignment of the notional storage unit that must contain
1587  // the bitfield.  For ms_struct, this only affects the placement of
1588  // new storage units.  In both cases, the effect of #pragma pack is
1589  // ignored on zero-width bitfields.
1590
1591  // On System V, a packed field (e.g. from #pragma pack or
1592  // __attribute__((packed))) always uses the next available bit
1593  // offset.
1594
1595  // In an ms_struct struct, the alignment of a fundamental type is
1596  // always equal to its size.  This is necessary in order to mimic
1597  // the i386 alignment rules on targets which might not fully align
1598  // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1599
1600  // First, some simple bookkeeping to perform for ms_struct structs.
1601  if (IsMsStruct) {
1602    // The field alignment for integer types is always the size.
1603    FieldAlign = StorageUnitSize;
1604
1605    // If the previous field was not a bitfield, or was a bitfield
1606    // with a different storage unit size, or if this field doesn't fit into
1607    // the current storage unit, we're done with that storage unit.
1608    if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1609        UnfilledBitsInLastUnit < FieldSize) {
1610      // Also, ignore zero-length bitfields after non-bitfields.
1611      if (!LastBitfieldStorageUnitSize && !FieldSize)
1612        FieldAlign = 1;
1613
1614      UnfilledBitsInLastUnit = 0;
1615      LastBitfieldStorageUnitSize = 0;
1616    }
1617  }
1618
1619  if (isAIXLayout(Context)) {
1620    if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) {
1621      // On AIX, [bool, char, short] bitfields have the same alignment
1622      // as [unsigned].
1623      StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy);
1624    } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) &&
1625               Context.getTargetInfo().getTriple().isArch32Bit() &&
1626               FieldSize <= 32) {
1627      // Under 32-bit compile mode, the bitcontainer is 32 bits if a single
1628      // long long bitfield has length no greater than 32 bits.
1629      StorageUnitSize = 32;
1630
1631      if (!AlignIsRequired)
1632        FieldAlign = 32;
1633    }
1634
1635    if (FieldAlign < StorageUnitSize) {
1636      // The bitfield alignment should always be greater than or equal to
1637      // bitcontainer size.
1638      FieldAlign = StorageUnitSize;
1639    }
1640  }
1641
1642  // If the field is wider than its declared type, it follows
1643  // different rules in all cases, except on AIX.
1644  // On AIX, wide bitfield follows the same rules as normal bitfield.
1645  if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) {
1646    LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1647    return;
1648  }
1649
1650  // Compute the next available bit offset.
1651  uint64_t FieldOffset =
1652    IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1653
1654  // Handle targets that don't honor bitfield type alignment.
1655  if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1656    // Some such targets do honor it on zero-width bitfields.
1657    if (FieldSize == 0 &&
1658        Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1659      // Some targets don't honor leading zero-width bitfield.
1660      if (!IsUnion && FieldOffset == 0 &&
1661          !Context.getTargetInfo().useLeadingZeroLengthBitfield())
1662        FieldAlign = 1;
1663      else {
1664        // The alignment to round up to is the max of the field's natural
1665        // alignment and a target-specific fixed value (sometimes zero).
1666        unsigned ZeroLengthBitfieldBoundary =
1667            Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1668        FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1669      }
1670    // If that doesn't apply, just ignore the field alignment.
1671    } else {
1672      FieldAlign = 1;
1673    }
1674  }
1675
1676  // Remember the alignment we would have used if the field were not packed.
1677  unsigned UnpackedFieldAlign = FieldAlign;
1678
1679  // Ignore the field alignment if the field is packed unless it has zero-size.
1680  if (!IsMsStruct && FieldPacked && FieldSize != 0)
1681    FieldAlign = 1;
1682
1683  // But, if there's an 'aligned' attribute on the field, honor that.
1684  unsigned ExplicitFieldAlign = D->getMaxAlignment();
1685  if (ExplicitFieldAlign) {
1686    FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1687    UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1688  }
1689
1690  // But, if there's a #pragma pack in play, that takes precedent over
1691  // even the 'aligned' attribute, for non-zero-width bitfields.
1692  unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1693  if (!MaxFieldAlignment.isZero() && FieldSize) {
1694    UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1695    if (FieldPacked)
1696      FieldAlign = UnpackedFieldAlign;
1697    else
1698      FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1699  }
1700
1701  // But, ms_struct just ignores all of that in unions, even explicit
1702  // alignment attributes.
1703  if (IsMsStruct && IsUnion) {
1704    FieldAlign = UnpackedFieldAlign = 1;
1705  }
1706
1707  // For purposes of diagnostics, we're going to simultaneously
1708  // compute the field offsets that we would have used if we weren't
1709  // adding any alignment padding or if the field weren't packed.
1710  uint64_t UnpaddedFieldOffset = FieldOffset;
1711  uint64_t UnpackedFieldOffset = FieldOffset;
1712
1713  // Check if we need to add padding to fit the bitfield within an
1714  // allocation unit with the right size and alignment.  The rules are
1715  // somewhat different here for ms_struct structs.
1716  if (IsMsStruct) {
1717    // If it's not a zero-width bitfield, and we can fit the bitfield
1718    // into the active storage unit (and we haven't already decided to
1719    // start a new storage unit), just do so, regardless of any other
1720    // other consideration.  Otherwise, round up to the right alignment.
1721    if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1722      FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1723      UnpackedFieldOffset =
1724          llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1725      UnfilledBitsInLastUnit = 0;
1726    }
1727
1728  } else {
1729    // #pragma pack, with any value, suppresses the insertion of padding.
1730    bool AllowPadding = MaxFieldAlignment.isZero();
1731
1732    // Compute the real offset.
1733    if (FieldSize == 0 ||
1734        (AllowPadding &&
1735         (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1736      FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1737    } else if (ExplicitFieldAlign &&
1738               (MaxFieldAlignmentInBits == 0 ||
1739                ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1740               Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1741      // TODO: figure it out what needs to be done on targets that don't honor
1742      // bit-field type alignment like ARM APCS ABI.
1743      FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1744    }
1745
1746    // Repeat the computation for diagnostic purposes.
1747    if (FieldSize == 0 ||
1748        (AllowPadding &&
1749         (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1750             StorageUnitSize))
1751      UnpackedFieldOffset =
1752          llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1753    else if (ExplicitFieldAlign &&
1754             (MaxFieldAlignmentInBits == 0 ||
1755              ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1756             Context.getTargetInfo().useExplicitBitFieldAlignment())
1757      UnpackedFieldOffset =
1758          llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1759  }
1760
1761  // If we're using external layout, give the external layout a chance
1762  // to override this information.
1763  if (UseExternalLayout)
1764    FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1765
1766  // Okay, place the bitfield at the calculated offset.
1767  FieldOffsets.push_back(FieldOffset);
1768
1769  // Bookkeeping:
1770
1771  // Anonymous members don't affect the overall record alignment,
1772  // except on targets where they do.
1773  if (!IsMsStruct &&
1774      !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1775      !D->getIdentifier())
1776    FieldAlign = UnpackedFieldAlign = 1;
1777
1778  // Diagnose differences in layout due to padding or packing.
1779  if (!UseExternalLayout)
1780    CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1781                      UnpackedFieldAlign, FieldPacked, D);
1782
1783  // Update DataSize to include the last byte containing (part of) the bitfield.
1784
1785  // For unions, this is just a max operation, as usual.
1786  if (IsUnion) {
1787    // For ms_struct, allocate the entire storage unit --- unless this
1788    // is a zero-width bitfield, in which case just use a size of 1.
1789    uint64_t RoundedFieldSize;
1790    if (IsMsStruct) {
1791      RoundedFieldSize = (FieldSize ? StorageUnitSize
1792                                    : Context.getTargetInfo().getCharWidth());
1793
1794      // Otherwise, allocate just the number of bytes required to store
1795      // the bitfield.
1796    } else {
1797      RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1798    }
1799    setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1800
1801  // For non-zero-width bitfields in ms_struct structs, allocate a new
1802  // storage unit if necessary.
1803  } else if (IsMsStruct && FieldSize) {
1804    // We should have cleared UnfilledBitsInLastUnit in every case
1805    // where we changed storage units.
1806    if (!UnfilledBitsInLastUnit) {
1807      setDataSize(FieldOffset + StorageUnitSize);
1808      UnfilledBitsInLastUnit = StorageUnitSize;
1809    }
1810    UnfilledBitsInLastUnit -= FieldSize;
1811    LastBitfieldStorageUnitSize = StorageUnitSize;
1812
1813    // Otherwise, bump the data size up to include the bitfield,
1814    // including padding up to char alignment, and then remember how
1815    // bits we didn't use.
1816  } else {
1817    uint64_t NewSizeInBits = FieldOffset + FieldSize;
1818    uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1819    setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1820    UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1821
1822    // The only time we can get here for an ms_struct is if this is a
1823    // zero-width bitfield, which doesn't count as anything for the
1824    // purposes of unfilled bits.
1825    LastBitfieldStorageUnitSize = 0;
1826  }
1827
1828  // Update the size.
1829  setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1830
1831  // Remember max struct/class alignment.
1832  UnadjustedAlignment =
1833      std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1834  UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1835                  Context.toCharUnitsFromBits(UnpackedFieldAlign));
1836}
1837
1838void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1839                                             bool InsertExtraPadding) {
1840  auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1841  bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1842  bool IsOverlappingEmptyField =
1843      PotentiallyOverlapping && FieldClass->isEmpty();
1844
1845  CharUnits FieldOffset =
1846      (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1847
1848  const bool DefaultsToAIXPowerAlignment =
1849      Context.getTargetInfo().defaultsToAIXPowerAlignment();
1850  bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1851  if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1852    assert(FieldOffset == CharUnits::Zero() &&
1853           "The first non-overlapping empty field should have been handled.");
1854
1855    if (!IsOverlappingEmptyField) {
1856      FoundFirstNonOverlappingEmptyFieldForAIX = true;
1857
1858      // We're going to handle the "first member" based on
1859      // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1860      // invocation of this function; record it as handled for future
1861      // invocations (except for unions, because the current field does not
1862      // represent all "firsts").
1863      HandledFirstNonOverlappingEmptyField = !IsUnion;
1864    }
1865  }
1866
1867  if (D->isBitField()) {
1868    LayoutBitField(D);
1869    return;
1870  }
1871
1872  uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1873  // Reset the unfilled bits.
1874  UnfilledBitsInLastUnit = 0;
1875  LastBitfieldStorageUnitSize = 0;
1876
1877  bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1878
1879  bool AlignIsRequired = false;
1880  CharUnits FieldSize;
1881  CharUnits FieldAlign;
1882  // The amount of this class's dsize occupied by the field.
1883  // This is equal to FieldSize unless we're permitted to pack
1884  // into the field's tail padding.
1885  CharUnits EffectiveFieldSize;
1886
1887  auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1888    auto TI = Context.getTypeInfoInChars(D->getType());
1889    FieldAlign = TI.Align;
1890    // Flexible array members don't have any size, but they have to be
1891    // aligned appropriately for their element type.
1892    EffectiveFieldSize = FieldSize =
1893        IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1894    AlignIsRequired = TI.AlignIsRequired;
1895  };
1896
1897  if (D->getType()->isIncompleteArrayType()) {
1898    setDeclInfo(true /* IsIncompleteArrayType */);
1899  } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1900    unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
1901    EffectiveFieldSize = FieldSize = Context.toCharUnitsFromBits(
1902        Context.getTargetInfo().getPointerWidth(AS));
1903    FieldAlign = Context.toCharUnitsFromBits(
1904        Context.getTargetInfo().getPointerAlign(AS));
1905  } else {
1906    setDeclInfo(false /* IsIncompleteArrayType */);
1907
1908    // A potentially-overlapping field occupies its dsize or nvsize, whichever
1909    // is larger.
1910    if (PotentiallyOverlapping) {
1911      const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1912      EffectiveFieldSize =
1913          std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1914    }
1915
1916    if (IsMsStruct) {
1917      // If MS bitfield layout is required, figure out what type is being
1918      // laid out and align the field to the width of that type.
1919
1920      // Resolve all typedefs down to their base type and round up the field
1921      // alignment if necessary.
1922      QualType T = Context.getBaseElementType(D->getType());
1923      if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1924        CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1925
1926        if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1927          assert(
1928              !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1929              "Non PowerOf2 size in MSVC mode");
1930          // Base types with sizes that aren't a power of two don't work
1931          // with the layout rules for MS structs. This isn't an issue in
1932          // MSVC itself since there are no such base data types there.
1933          // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1934          // Any structs involving that data type obviously can't be ABI
1935          // compatible with MSVC regardless of how it is laid out.
1936
1937          // Since ms_struct can be mass enabled (via a pragma or via the
1938          // -mms-bitfields command line parameter), this can trigger for
1939          // structs that don't actually need MSVC compatibility, so we
1940          // need to be able to sidestep the ms_struct layout for these types.
1941
1942          // Since the combination of -mms-bitfields together with structs
1943          // like max_align_t (which contains a long double) for mingw is
1944          // quite comon (and GCC handles it silently), just handle it
1945          // silently there. For other targets that have ms_struct enabled
1946          // (most probably via a pragma or attribute), trigger a diagnostic
1947          // that defaults to an error.
1948          if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1949            Diag(D->getLocation(), diag::warn_npot_ms_struct);
1950        }
1951        if (TypeSize > FieldAlign &&
1952            llvm::isPowerOf2_64(TypeSize.getQuantity()))
1953          FieldAlign = TypeSize;
1954      }
1955    }
1956  }
1957
1958  // The AIX `power` alignment rules apply the natural alignment of the
1959  // "first member" if it is of a floating-point data type (or is an aggregate
1960  // whose recursively "first" member or element is such a type). The alignment
1961  // associated with these types for subsequent members use an alignment value
1962  // where the floating-point data type is considered to have 4-byte alignment.
1963  //
1964  // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1965  // and zero-width bit-fields count as prior members; members of empty class
1966  // types marked `no_unique_address` are not considered to be prior members.
1967  CharUnits PreferredAlign = FieldAlign;
1968  if (DefaultsToAIXPowerAlignment && !AlignIsRequired &&
1969      (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) {
1970    auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
1971      if (BTy->getKind() == BuiltinType::Double ||
1972          BTy->getKind() == BuiltinType::LongDouble) {
1973        assert(PreferredAlign == CharUnits::fromQuantity(4) &&
1974               "No need to upgrade the alignment value.");
1975        PreferredAlign = CharUnits::fromQuantity(8);
1976      }
1977    };
1978
1979    const Type *Ty = D->getType()->getBaseElementTypeUnsafe();
1980    if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
1981      performBuiltinTypeAlignmentUpgrade(CTy->getElementType()->castAs<BuiltinType>());
1982    } else if (const BuiltinType *BTy = Ty->getAs<BuiltinType>()) {
1983      performBuiltinTypeAlignmentUpgrade(BTy);
1984    } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1985      const RecordDecl *RD = RT->getDecl();
1986      assert(RD && "Expected non-null RecordDecl.");
1987      const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
1988      PreferredAlign = FieldRecord.getPreferredAlignment();
1989    }
1990  }
1991
1992  // The align if the field is not packed. This is to check if the attribute
1993  // was unnecessary (-Wpacked).
1994  CharUnits UnpackedFieldAlign =
1995      !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
1996  CharUnits UnpackedFieldOffset = FieldOffset;
1997
1998  if (FieldPacked) {
1999    FieldAlign = CharUnits::One();
2000    PreferredAlign = CharUnits::One();
2001  }
2002  CharUnits MaxAlignmentInChars =
2003      Context.toCharUnitsFromBits(D->getMaxAlignment());
2004  FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
2005  PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
2006  UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
2007
2008  // The maximum field alignment overrides the aligned attribute.
2009  if (!MaxFieldAlignment.isZero()) {
2010    FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
2011    PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
2012    UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
2013  }
2014
2015  CharUnits AlignTo =
2016      !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2017  // Round up the current record size to the field's alignment boundary.
2018  FieldOffset = FieldOffset.alignTo(AlignTo);
2019  UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
2020
2021  if (UseExternalLayout) {
2022    FieldOffset = Context.toCharUnitsFromBits(
2023        updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
2024
2025    if (!IsUnion && EmptySubobjects) {
2026      // Record the fact that we're placing a field at this offset.
2027      bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
2028      (void)Allowed;
2029      assert(Allowed && "Externally-placed field cannot be placed here");
2030    }
2031  } else {
2032    if (!IsUnion && EmptySubobjects) {
2033      // Check if we can place the field at this offset.
2034      while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2035        // We couldn't place the field at the offset. Try again at a new offset.
2036        // We try offset 0 (for an empty field) and then dsize(C) onwards.
2037        if (FieldOffset == CharUnits::Zero() &&
2038            getDataSize() != CharUnits::Zero())
2039          FieldOffset = getDataSize().alignTo(AlignTo);
2040        else
2041          FieldOffset += AlignTo;
2042      }
2043    }
2044  }
2045
2046  // Place this field at the current location.
2047  FieldOffsets.push_back(Context.toBits(FieldOffset));
2048
2049  if (!UseExternalLayout)
2050    CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2051                      Context.toBits(UnpackedFieldOffset),
2052                      Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2053
2054  if (InsertExtraPadding) {
2055    CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2056    CharUnits ExtraSizeForAsan = ASanAlignment;
2057    if (FieldSize % ASanAlignment)
2058      ExtraSizeForAsan +=
2059          ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2060    EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2061  }
2062
2063  // Reserve space for this field.
2064  if (!IsOverlappingEmptyField) {
2065    uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2066    if (IsUnion)
2067      setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2068    else
2069      setDataSize(FieldOffset + EffectiveFieldSize);
2070
2071    PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2072    setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2073  } else {
2074    setSize(std::max(getSizeInBits(),
2075                     (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2076  }
2077
2078  // Remember max struct/class ABI-specified alignment.
2079  UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2080  UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2081}
2082
2083void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2084  // In C++, records cannot be of size 0.
2085  if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2086    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2087      // Compatibility with gcc requires a class (pod or non-pod)
2088      // which is not empty but of size 0; such as having fields of
2089      // array of zero-length, remains of Size 0
2090      if (RD->isEmpty())
2091        setSize(CharUnits::One());
2092    }
2093    else
2094      setSize(CharUnits::One());
2095  }
2096
2097  // If we have any remaining field tail padding, include that in the overall
2098  // size.
2099  setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2100
2101  // Finally, round the size of the record up to the alignment of the
2102  // record itself.
2103  uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2104  uint64_t UnpackedSizeInBits =
2105      llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2106
2107  uint64_t RoundedSize = llvm::alignTo(
2108      getSizeInBits(),
2109      Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2110                         ? Alignment
2111                         : PreferredAlignment));
2112
2113  if (UseExternalLayout) {
2114    // If we're inferring alignment, and the external size is smaller than
2115    // our size after we've rounded up to alignment, conservatively set the
2116    // alignment to 1.
2117    if (InferAlignment && External.Size < RoundedSize) {
2118      Alignment = CharUnits::One();
2119      PreferredAlignment = CharUnits::One();
2120      InferAlignment = false;
2121    }
2122    setSize(External.Size);
2123    return;
2124  }
2125
2126  // Set the size to the final size.
2127  setSize(RoundedSize);
2128
2129  unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2130  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2131    // Warn if padding was introduced to the struct/class/union.
2132    if (getSizeInBits() > UnpaddedSize) {
2133      unsigned PadSize = getSizeInBits() - UnpaddedSize;
2134      bool InBits = true;
2135      if (PadSize % CharBitNum == 0) {
2136        PadSize = PadSize / CharBitNum;
2137        InBits = false;
2138      }
2139      Diag(RD->getLocation(), diag::warn_padded_struct_size)
2140          << Context.getTypeDeclType(RD)
2141          << PadSize
2142          << (InBits ? 1 : 0); // (byte|bit)
2143    }
2144
2145    // Warn if we packed it unnecessarily, when the unpacked alignment is not
2146    // greater than the one after packing, the size in bits doesn't change and
2147    // the offset of each field is identical.
2148    if (Packed && UnpackedAlignment <= Alignment &&
2149        UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
2150      Diag(D->getLocation(), diag::warn_unnecessary_packed)
2151          << Context.getTypeDeclType(RD);
2152  }
2153}
2154
2155void ItaniumRecordLayoutBuilder::UpdateAlignment(
2156    CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2157    CharUnits PreferredNewAlignment) {
2158  // The alignment is not modified when using 'mac68k' alignment or when
2159  // we have an externally-supplied layout that also provides overall alignment.
2160  if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2161    return;
2162
2163  if (NewAlignment > Alignment) {
2164    assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2165           "Alignment not a power of 2");
2166    Alignment = NewAlignment;
2167  }
2168
2169  if (UnpackedNewAlignment > UnpackedAlignment) {
2170    assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2171           "Alignment not a power of 2");
2172    UnpackedAlignment = UnpackedNewAlignment;
2173  }
2174
2175  if (PreferredNewAlignment > PreferredAlignment) {
2176    assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2177           "Alignment not a power of 2");
2178    PreferredAlignment = PreferredNewAlignment;
2179  }
2180}
2181
2182uint64_t
2183ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2184                                                      uint64_t ComputedOffset) {
2185  uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2186
2187  if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2188    // The externally-supplied field offset is before the field offset we
2189    // computed. Assume that the structure is packed.
2190    Alignment = CharUnits::One();
2191    PreferredAlignment = CharUnits::One();
2192    InferAlignment = false;
2193  }
2194
2195  // Use the externally-supplied field offset.
2196  return ExternalFieldOffset;
2197}
2198
2199/// Get diagnostic %select index for tag kind for
2200/// field padding diagnostic message.
2201/// WARNING: Indexes apply to particular diagnostics only!
2202///
2203/// \returns diagnostic %select index.
2204static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2205  switch (Tag) {
2206  case TTK_Struct: return 0;
2207  case TTK_Interface: return 1;
2208  case TTK_Class: return 2;
2209  default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2210  }
2211}
2212
2213void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2214    uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2215    unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2216  // We let objc ivars without warning, objc interfaces generally are not used
2217  // for padding tricks.
2218  if (isa<ObjCIvarDecl>(D))
2219    return;
2220
2221  // Don't warn about structs created without a SourceLocation.  This can
2222  // be done by clients of the AST, such as codegen.
2223  if (D->getLocation().isInvalid())
2224    return;
2225
2226  unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2227
2228  // Warn if padding was introduced to the struct/class.
2229  if (!IsUnion && Offset > UnpaddedOffset) {
2230    unsigned PadSize = Offset - UnpaddedOffset;
2231    bool InBits = true;
2232    if (PadSize % CharBitNum == 0) {
2233      PadSize = PadSize / CharBitNum;
2234      InBits = false;
2235    }
2236    if (D->getIdentifier())
2237      Diag(D->getLocation(), diag::warn_padded_struct_field)
2238          << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2239          << Context.getTypeDeclType(D->getParent())
2240          << PadSize
2241          << (InBits ? 1 : 0) // (byte|bit)
2242          << D->getIdentifier();
2243    else
2244      Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2245          << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2246          << Context.getTypeDeclType(D->getParent())
2247          << PadSize
2248          << (InBits ? 1 : 0); // (byte|bit)
2249 }
2250 if (isPacked && Offset != UnpackedOffset) {
2251   HasPackedField = true;
2252 }
2253}
2254
2255static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2256                                               const CXXRecordDecl *RD) {
2257  // If a class isn't polymorphic it doesn't have a key function.
2258  if (!RD->isPolymorphic())
2259    return nullptr;
2260
2261  // A class that is not externally visible doesn't have a key function. (Or
2262  // at least, there's no point to assigning a key function to such a class;
2263  // this doesn't affect the ABI.)
2264  if (!RD->isExternallyVisible())
2265    return nullptr;
2266
2267  // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2268  // Same behavior as GCC.
2269  TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2270  if (TSK == TSK_ImplicitInstantiation ||
2271      TSK == TSK_ExplicitInstantiationDeclaration ||
2272      TSK == TSK_ExplicitInstantiationDefinition)
2273    return nullptr;
2274
2275  bool allowInlineFunctions =
2276    Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2277
2278  for (const CXXMethodDecl *MD : RD->methods()) {
2279    if (!MD->isVirtual())
2280      continue;
2281
2282    if (MD->isPure())
2283      continue;
2284
2285    // Ignore implicit member functions, they are always marked as inline, but
2286    // they don't have a body until they're defined.
2287    if (MD->isImplicit())
2288      continue;
2289
2290    if (MD->isInlineSpecified() || MD->isConstexpr())
2291      continue;
2292
2293    if (MD->hasInlineBody())
2294      continue;
2295
2296    // Ignore inline deleted or defaulted functions.
2297    if (!MD->isUserProvided())
2298      continue;
2299
2300    // In certain ABIs, ignore functions with out-of-line inline definitions.
2301    if (!allowInlineFunctions) {
2302      const FunctionDecl *Def;
2303      if (MD->hasBody(Def) && Def->isInlineSpecified())
2304        continue;
2305    }
2306
2307    if (Context.getLangOpts().CUDA) {
2308      // While compiler may see key method in this TU, during CUDA
2309      // compilation we should ignore methods that are not accessible
2310      // on this side of compilation.
2311      if (Context.getLangOpts().CUDAIsDevice) {
2312        // In device mode ignore methods without __device__ attribute.
2313        if (!MD->hasAttr<CUDADeviceAttr>())
2314          continue;
2315      } else {
2316        // In host mode ignore __device__-only methods.
2317        if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2318          continue;
2319      }
2320    }
2321
2322    // If the key function is dllimport but the class isn't, then the class has
2323    // no key function. The DLL that exports the key function won't export the
2324    // vtable in this case.
2325    if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() &&
2326        !Context.getTargetInfo().hasPS4DLLImportExport())
2327      return nullptr;
2328
2329    // We found it.
2330    return MD;
2331  }
2332
2333  return nullptr;
2334}
2335
2336DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2337                                                   unsigned DiagID) {
2338  return Context.getDiagnostics().Report(Loc, DiagID);
2339}
2340
2341/// Does the target C++ ABI require us to skip over the tail-padding
2342/// of the given class (considering it as a base class) when allocating
2343/// objects?
2344static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2345  switch (ABI.getTailPaddingUseRules()) {
2346  case TargetCXXABI::AlwaysUseTailPadding:
2347    return false;
2348
2349  case TargetCXXABI::UseTailPaddingUnlessPOD03:
2350    // FIXME: To the extent that this is meant to cover the Itanium ABI
2351    // rules, we should implement the restrictions about over-sized
2352    // bitfields:
2353    //
2354    // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2355    //   In general, a type is considered a POD for the purposes of
2356    //   layout if it is a POD type (in the sense of ISO C++
2357    //   [basic.types]). However, a POD-struct or POD-union (in the
2358    //   sense of ISO C++ [class]) with a bitfield member whose
2359    //   declared width is wider than the declared type of the
2360    //   bitfield is not a POD for the purpose of layout.  Similarly,
2361    //   an array type is not a POD for the purpose of layout if the
2362    //   element type of the array is not a POD for the purpose of
2363    //   layout.
2364    //
2365    //   Where references to the ISO C++ are made in this paragraph,
2366    //   the Technical Corrigendum 1 version of the standard is
2367    //   intended.
2368    return RD->isPOD();
2369
2370  case TargetCXXABI::UseTailPaddingUnlessPOD11:
2371    // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2372    // but with a lot of abstraction penalty stripped off.  This does
2373    // assume that these properties are set correctly even in C++98
2374    // mode; fortunately, that is true because we want to assign
2375    // consistently semantics to the type-traits intrinsics (or at
2376    // least as many of them as possible).
2377    return RD->isTrivial() && RD->isCXX11StandardLayout();
2378  }
2379
2380  llvm_unreachable("bad tail-padding use kind");
2381}
2382
2383static bool isMsLayout(const ASTContext &Context) {
2384  return Context.getTargetInfo().getCXXABI().isMicrosoft();
2385}
2386
2387// This section contains an implementation of struct layout that is, up to the
2388// included tests, compatible with cl.exe (2013).  The layout produced is
2389// significantly different than those produced by the Itanium ABI.  Here we note
2390// the most important differences.
2391//
2392// * The alignment of bitfields in unions is ignored when computing the
2393//   alignment of the union.
2394// * The existence of zero-width bitfield that occurs after anything other than
2395//   a non-zero length bitfield is ignored.
2396// * There is no explicit primary base for the purposes of layout.  All bases
2397//   with vfptrs are laid out first, followed by all bases without vfptrs.
2398// * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2399//   function pointer) and a vbptr (virtual base pointer).  They can each be
2400//   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2401//   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2402//   placed after the lexicographically last non-virtual base.  This placement
2403//   is always before fields but can be in the middle of the non-virtual bases
2404//   due to the two-pass layout scheme for non-virtual-bases.
2405// * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2406//   the virtual base and is used in conjunction with virtual overrides during
2407//   construction and destruction.  This is always a 4 byte value and is used as
2408//   an alternative to constructor vtables.
2409// * vtordisps are allocated in a block of memory with size and alignment equal
2410//   to the alignment of the completed structure (before applying __declspec(
2411//   align())).  The vtordisp always occur at the end of the allocation block,
2412//   immediately prior to the virtual base.
2413// * vfptrs are injected after all bases and fields have been laid out.  In
2414//   order to guarantee proper alignment of all fields, the vfptr injection
2415//   pushes all bases and fields back by the alignment imposed by those bases
2416//   and fields.  This can potentially add a significant amount of padding.
2417//   vfptrs are always injected at offset 0.
2418// * vbptrs are injected after all bases and fields have been laid out.  In
2419//   order to guarantee proper alignment of all fields, the vfptr injection
2420//   pushes all bases and fields back by the alignment imposed by those bases
2421//   and fields.  This can potentially add a significant amount of padding.
2422//   vbptrs are injected immediately after the last non-virtual base as
2423//   lexicographically ordered in the code.  If this site isn't pointer aligned
2424//   the vbptr is placed at the next properly aligned location.  Enough padding
2425//   is added to guarantee a fit.
2426// * The last zero sized non-virtual base can be placed at the end of the
2427//   struct (potentially aliasing another object), or may alias with the first
2428//   field, even if they are of the same type.
2429// * The last zero size virtual base may be placed at the end of the struct
2430//   potentially aliasing another object.
2431// * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2432//   between bases or vbases with specific properties.  The criteria for
2433//   additional padding between two bases is that the first base is zero sized
2434//   or ends with a zero sized subobject and the second base is zero sized or
2435//   trails with a zero sized base or field (sharing of vfptrs can reorder the
2436//   layout of the so the leading base is not always the first one declared).
2437//   This rule does take into account fields that are not records, so padding
2438//   will occur even if the last field is, e.g. an int. The padding added for
2439//   bases is 1 byte.  The padding added between vbases depends on the alignment
2440//   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2441// * There is no concept of non-virtual alignment, non-virtual alignment and
2442//   alignment are always identical.
2443// * There is a distinction between alignment and required alignment.
2444//   __declspec(align) changes the required alignment of a struct.  This
2445//   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2446//   record inherits required alignment from all of its fields and bases.
2447// * __declspec(align) on bitfields has the effect of changing the bitfield's
2448//   alignment instead of its required alignment.  This is the only known way
2449//   to make the alignment of a struct bigger than 8.  Interestingly enough
2450//   this alignment is also immune to the effects of #pragma pack and can be
2451//   used to create structures with large alignment under #pragma pack.
2452//   However, because it does not impact required alignment, such a structure,
2453//   when used as a field or base, will not be aligned if #pragma pack is
2454//   still active at the time of use.
2455//
2456// Known incompatibilities:
2457// * all: #pragma pack between fields in a record
2458// * 2010 and back: If the last field in a record is a bitfield, every object
2459//   laid out after the record will have extra padding inserted before it.  The
2460//   extra padding will have size equal to the size of the storage class of the
2461//   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2462//   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2463//   sized bitfield.
2464// * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2465//   greater due to __declspec(align()) then a second layout phase occurs after
2466//   The locations of the vf and vb pointers are known.  This layout phase
2467//   suffers from the "last field is a bitfield" bug in 2010 and results in
2468//   _every_ field getting padding put in front of it, potentially including the
2469//   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2470//   anything tries to read the vftbl.  The second layout phase also treats
2471//   bitfields as separate entities and gives them each storage rather than
2472//   packing them.  Additionally, because this phase appears to perform a
2473//   (an unstable) sort on the members before laying them out and because merged
2474//   bitfields have the same address, the bitfields end up in whatever order
2475//   the sort left them in, a behavior we could never hope to replicate.
2476
2477namespace {
2478struct MicrosoftRecordLayoutBuilder {
2479  struct ElementInfo {
2480    CharUnits Size;
2481    CharUnits Alignment;
2482  };
2483  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2484  MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2485private:
2486  MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2487  void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2488public:
2489  void layout(const RecordDecl *RD);
2490  void cxxLayout(const CXXRecordDecl *RD);
2491  /// Initializes size and alignment and honors some flags.
2492  void initializeLayout(const RecordDecl *RD);
2493  /// Initialized C++ layout, compute alignment and virtual alignment and
2494  /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2495  /// laid out.
2496  void initializeCXXLayout(const CXXRecordDecl *RD);
2497  void layoutNonVirtualBases(const CXXRecordDecl *RD);
2498  void layoutNonVirtualBase(const CXXRecordDecl *RD,
2499                            const CXXRecordDecl *BaseDecl,
2500                            const ASTRecordLayout &BaseLayout,
2501                            const ASTRecordLayout *&PreviousBaseLayout);
2502  void injectVFPtr(const CXXRecordDecl *RD);
2503  void injectVBPtr(const CXXRecordDecl *RD);
2504  /// Lays out the fields of the record.  Also rounds size up to
2505  /// alignment.
2506  void layoutFields(const RecordDecl *RD);
2507  void layoutField(const FieldDecl *FD);
2508  void layoutBitField(const FieldDecl *FD);
2509  /// Lays out a single zero-width bit-field in the record and handles
2510  /// special cases associated with zero-width bit-fields.
2511  void layoutZeroWidthBitField(const FieldDecl *FD);
2512  void layoutVirtualBases(const CXXRecordDecl *RD);
2513  void finalizeLayout(const RecordDecl *RD);
2514  /// Gets the size and alignment of a base taking pragma pack and
2515  /// __declspec(align) into account.
2516  ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2517  /// Gets the size and alignment of a field taking pragma  pack and
2518  /// __declspec(align) into account.  It also updates RequiredAlignment as a
2519  /// side effect because it is most convenient to do so here.
2520  ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2521  /// Places a field at an offset in CharUnits.
2522  void placeFieldAtOffset(CharUnits FieldOffset) {
2523    FieldOffsets.push_back(Context.toBits(FieldOffset));
2524  }
2525  /// Places a bitfield at a bit offset.
2526  void placeFieldAtBitOffset(uint64_t FieldOffset) {
2527    FieldOffsets.push_back(FieldOffset);
2528  }
2529  /// Compute the set of virtual bases for which vtordisps are required.
2530  void computeVtorDispSet(
2531      llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2532      const CXXRecordDecl *RD) const;
2533  const ASTContext &Context;
2534  /// The size of the record being laid out.
2535  CharUnits Size;
2536  /// The non-virtual size of the record layout.
2537  CharUnits NonVirtualSize;
2538  /// The data size of the record layout.
2539  CharUnits DataSize;
2540  /// The current alignment of the record layout.
2541  CharUnits Alignment;
2542  /// The maximum allowed field alignment. This is set by #pragma pack.
2543  CharUnits MaxFieldAlignment;
2544  /// The alignment that this record must obey.  This is imposed by
2545  /// __declspec(align()) on the record itself or one of its fields or bases.
2546  CharUnits RequiredAlignment;
2547  /// The size of the allocation of the currently active bitfield.
2548  /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2549  /// is true.
2550  CharUnits CurrentBitfieldSize;
2551  /// Offset to the virtual base table pointer (if one exists).
2552  CharUnits VBPtrOffset;
2553  /// Minimum record size possible.
2554  CharUnits MinEmptyStructSize;
2555  /// The size and alignment info of a pointer.
2556  ElementInfo PointerInfo;
2557  /// The primary base class (if one exists).
2558  const CXXRecordDecl *PrimaryBase;
2559  /// The class we share our vb-pointer with.
2560  const CXXRecordDecl *SharedVBPtrBase;
2561  /// The collection of field offsets.
2562  SmallVector<uint64_t, 16> FieldOffsets;
2563  /// Base classes and their offsets in the record.
2564  BaseOffsetsMapTy Bases;
2565  /// virtual base classes and their offsets in the record.
2566  ASTRecordLayout::VBaseOffsetsMapTy VBases;
2567  /// The number of remaining bits in our last bitfield allocation.
2568  /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2569  /// true.
2570  unsigned RemainingBitsInField;
2571  bool IsUnion : 1;
2572  /// True if the last field laid out was a bitfield and was not 0
2573  /// width.
2574  bool LastFieldIsNonZeroWidthBitfield : 1;
2575  /// True if the class has its own vftable pointer.
2576  bool HasOwnVFPtr : 1;
2577  /// True if the class has a vbtable pointer.
2578  bool HasVBPtr : 1;
2579  /// True if the last sub-object within the type is zero sized or the
2580  /// object itself is zero sized.  This *does not* count members that are not
2581  /// records.  Only used for MS-ABI.
2582  bool EndsWithZeroSizedObject : 1;
2583  /// True if this class is zero sized or first base is zero sized or
2584  /// has this property.  Only used for MS-ABI.
2585  bool LeadsWithZeroSizedBase : 1;
2586
2587  /// True if the external AST source provided a layout for this record.
2588  bool UseExternalLayout : 1;
2589
2590  /// The layout provided by the external AST source. Only active if
2591  /// UseExternalLayout is true.
2592  ExternalLayout External;
2593};
2594} // namespace
2595
2596MicrosoftRecordLayoutBuilder::ElementInfo
2597MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2598    const ASTRecordLayout &Layout) {
2599  ElementInfo Info;
2600  Info.Alignment = Layout.getAlignment();
2601  // Respect pragma pack.
2602  if (!MaxFieldAlignment.isZero())
2603    Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2604  // Track zero-sized subobjects here where it's already available.
2605  EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2606  // Respect required alignment, this is necessary because we may have adjusted
2607  // the alignment in the case of pragam pack.  Note that the required alignment
2608  // doesn't actually apply to the struct alignment at this point.
2609  Alignment = std::max(Alignment, Info.Alignment);
2610  RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2611  Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2612  Info.Size = Layout.getNonVirtualSize();
2613  return Info;
2614}
2615
2616MicrosoftRecordLayoutBuilder::ElementInfo
2617MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2618    const FieldDecl *FD) {
2619  // Get the alignment of the field type's natural alignment, ignore any
2620  // alignment attributes.
2621  auto TInfo =
2622      Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2623  ElementInfo Info{TInfo.Width, TInfo.Align};
2624  // Respect align attributes on the field.
2625  CharUnits FieldRequiredAlignment =
2626      Context.toCharUnitsFromBits(FD->getMaxAlignment());
2627  // Respect align attributes on the type.
2628  if (Context.isAlignmentRequired(FD->getType()))
2629    FieldRequiredAlignment = std::max(
2630        Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2631  // Respect attributes applied to subobjects of the field.
2632  if (FD->isBitField())
2633    // For some reason __declspec align impacts alignment rather than required
2634    // alignment when it is applied to bitfields.
2635    Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2636  else {
2637    if (auto RT =
2638            FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2639      auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2640      EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2641      FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2642                                        Layout.getRequiredAlignment());
2643    }
2644    // Capture required alignment as a side-effect.
2645    RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2646  }
2647  // Respect pragma pack, attribute pack and declspec align
2648  if (!MaxFieldAlignment.isZero())
2649    Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2650  if (FD->hasAttr<PackedAttr>())
2651    Info.Alignment = CharUnits::One();
2652  Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2653  return Info;
2654}
2655
2656void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2657  // For C record layout, zero-sized records always have size 4.
2658  MinEmptyStructSize = CharUnits::fromQuantity(4);
2659  initializeLayout(RD);
2660  layoutFields(RD);
2661  DataSize = Size = Size.alignTo(Alignment);
2662  RequiredAlignment = std::max(
2663      RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2664  finalizeLayout(RD);
2665}
2666
2667void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2668  // The C++ standard says that empty structs have size 1.
2669  MinEmptyStructSize = CharUnits::One();
2670  initializeLayout(RD);
2671  initializeCXXLayout(RD);
2672  layoutNonVirtualBases(RD);
2673  layoutFields(RD);
2674  injectVBPtr(RD);
2675  injectVFPtr(RD);
2676  if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2677    Alignment = std::max(Alignment, PointerInfo.Alignment);
2678  auto RoundingAlignment = Alignment;
2679  if (!MaxFieldAlignment.isZero())
2680    RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2681  if (!UseExternalLayout)
2682    Size = Size.alignTo(RoundingAlignment);
2683  NonVirtualSize = Size;
2684  RequiredAlignment = std::max(
2685      RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2686  layoutVirtualBases(RD);
2687  finalizeLayout(RD);
2688}
2689
2690void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2691  IsUnion = RD->isUnion();
2692  Size = CharUnits::Zero();
2693  Alignment = CharUnits::One();
2694  // In 64-bit mode we always perform an alignment step after laying out vbases.
2695  // In 32-bit mode we do not.  The check to see if we need to perform alignment
2696  // checks the RequiredAlignment field and performs alignment if it isn't 0.
2697  RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2698                          ? CharUnits::One()
2699                          : CharUnits::Zero();
2700  // Compute the maximum field alignment.
2701  MaxFieldAlignment = CharUnits::Zero();
2702  // Honor the default struct packing maximum alignment flag.
2703  if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2704      MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2705  // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2706  // than the pointer size.
2707  if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2708    unsigned PackedAlignment = MFAA->getAlignment();
2709    if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2710      MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2711  }
2712  // Packed attribute forces max field alignment to be 1.
2713  if (RD->hasAttr<PackedAttr>())
2714    MaxFieldAlignment = CharUnits::One();
2715
2716  // Try to respect the external layout if present.
2717  UseExternalLayout = false;
2718  if (ExternalASTSource *Source = Context.getExternalSource())
2719    UseExternalLayout = Source->layoutRecordType(
2720        RD, External.Size, External.Align, External.FieldOffsets,
2721        External.BaseOffsets, External.VirtualBaseOffsets);
2722}
2723
2724void
2725MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2726  EndsWithZeroSizedObject = false;
2727  LeadsWithZeroSizedBase = false;
2728  HasOwnVFPtr = false;
2729  HasVBPtr = false;
2730  PrimaryBase = nullptr;
2731  SharedVBPtrBase = nullptr;
2732  // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2733  // injection.
2734  PointerInfo.Size =
2735      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2736  PointerInfo.Alignment =
2737      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2738  // Respect pragma pack.
2739  if (!MaxFieldAlignment.isZero())
2740    PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2741}
2742
2743void
2744MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2745  // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2746  // out any bases that do not contain vfptrs.  We implement this as two passes
2747  // over the bases.  This approach guarantees that the primary base is laid out
2748  // first.  We use these passes to calculate some additional aggregated
2749  // information about the bases, such as required alignment and the presence of
2750  // zero sized members.
2751  const ASTRecordLayout *PreviousBaseLayout = nullptr;
2752  bool HasPolymorphicBaseClass = false;
2753  // Iterate through the bases and lay out the non-virtual ones.
2754  for (const CXXBaseSpecifier &Base : RD->bases()) {
2755    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2756    HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2757    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2758    // Mark and skip virtual bases.
2759    if (Base.isVirtual()) {
2760      HasVBPtr = true;
2761      continue;
2762    }
2763    // Check for a base to share a VBPtr with.
2764    if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2765      SharedVBPtrBase = BaseDecl;
2766      HasVBPtr = true;
2767    }
2768    // Only lay out bases with extendable VFPtrs on the first pass.
2769    if (!BaseLayout.hasExtendableVFPtr())
2770      continue;
2771    // If we don't have a primary base, this one qualifies.
2772    if (!PrimaryBase) {
2773      PrimaryBase = BaseDecl;
2774      LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2775    }
2776    // Lay out the base.
2777    layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2778  }
2779  // Figure out if we need a fresh VFPtr for this class.
2780  if (RD->isPolymorphic()) {
2781    if (!HasPolymorphicBaseClass)
2782      // This class introduces polymorphism, so we need a vftable to store the
2783      // RTTI information.
2784      HasOwnVFPtr = true;
2785    else if (!PrimaryBase) {
2786      // We have a polymorphic base class but can't extend its vftable. Add a
2787      // new vfptr if we would use any vftable slots.
2788      for (CXXMethodDecl *M : RD->methods()) {
2789        if (MicrosoftVTableContext::hasVtableSlot(M) &&
2790            M->size_overridden_methods() == 0) {
2791          HasOwnVFPtr = true;
2792          break;
2793        }
2794      }
2795    }
2796  }
2797  // If we don't have a primary base then we have a leading object that could
2798  // itself lead with a zero-sized object, something we track.
2799  bool CheckLeadingLayout = !PrimaryBase;
2800  // Iterate through the bases and lay out the non-virtual ones.
2801  for (const CXXBaseSpecifier &Base : RD->bases()) {
2802    if (Base.isVirtual())
2803      continue;
2804    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2805    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2806    // Only lay out bases without extendable VFPtrs on the second pass.
2807    if (BaseLayout.hasExtendableVFPtr()) {
2808      VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2809      continue;
2810    }
2811    // If this is the first layout, check to see if it leads with a zero sized
2812    // object.  If it does, so do we.
2813    if (CheckLeadingLayout) {
2814      CheckLeadingLayout = false;
2815      LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2816    }
2817    // Lay out the base.
2818    layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2819    VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2820  }
2821  // Set our VBPtroffset if we know it at this point.
2822  if (!HasVBPtr)
2823    VBPtrOffset = CharUnits::fromQuantity(-1);
2824  else if (SharedVBPtrBase) {
2825    const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2826    VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2827  }
2828}
2829
2830static bool recordUsesEBO(const RecordDecl *RD) {
2831  if (!isa<CXXRecordDecl>(RD))
2832    return false;
2833  if (RD->hasAttr<EmptyBasesAttr>())
2834    return true;
2835  if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2836    // TODO: Double check with the next version of MSVC.
2837    if (LVA->getVersion() <= LangOptions::MSVC2015)
2838      return false;
2839  // TODO: Some later version of MSVC will change the default behavior of the
2840  // compiler to enable EBO by default.  When this happens, we will need an
2841  // additional isCompatibleWithMSVC check.
2842  return false;
2843}
2844
2845void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2846    const CXXRecordDecl *RD,
2847    const CXXRecordDecl *BaseDecl,
2848    const ASTRecordLayout &BaseLayout,
2849    const ASTRecordLayout *&PreviousBaseLayout) {
2850  // Insert padding between two bases if the left first one is zero sized or
2851  // contains a zero sized subobject and the right is zero sized or one leads
2852  // with a zero sized base.
2853  bool MDCUsesEBO = recordUsesEBO(RD);
2854  if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2855      BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2856    Size++;
2857  ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2858  CharUnits BaseOffset;
2859
2860  // Respect the external AST source base offset, if present.
2861  bool FoundBase = false;
2862  if (UseExternalLayout) {
2863    FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2864    if (FoundBase) {
2865      assert(BaseOffset >= Size && "base offset already allocated");
2866      Size = BaseOffset;
2867    }
2868  }
2869
2870  if (!FoundBase) {
2871    if (MDCUsesEBO && BaseDecl->isEmpty()) {
2872      assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2873      BaseOffset = CharUnits::Zero();
2874    } else {
2875      // Otherwise, lay the base out at the end of the MDC.
2876      BaseOffset = Size = Size.alignTo(Info.Alignment);
2877    }
2878  }
2879  Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2880  Size += BaseLayout.getNonVirtualSize();
2881  PreviousBaseLayout = &BaseLayout;
2882}
2883
2884void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2885  LastFieldIsNonZeroWidthBitfield = false;
2886  for (const FieldDecl *Field : RD->fields())
2887    layoutField(Field);
2888}
2889
2890void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2891  if (FD->isBitField()) {
2892    layoutBitField(FD);
2893    return;
2894  }
2895  LastFieldIsNonZeroWidthBitfield = false;
2896  ElementInfo Info = getAdjustedElementInfo(FD);
2897  Alignment = std::max(Alignment, Info.Alignment);
2898  CharUnits FieldOffset;
2899  if (UseExternalLayout)
2900    FieldOffset =
2901        Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2902  else if (IsUnion)
2903    FieldOffset = CharUnits::Zero();
2904  else
2905    FieldOffset = Size.alignTo(Info.Alignment);
2906  placeFieldAtOffset(FieldOffset);
2907  Size = std::max(Size, FieldOffset + Info.Size);
2908}
2909
2910void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2911  unsigned Width = FD->getBitWidthValue(Context);
2912  if (Width == 0) {
2913    layoutZeroWidthBitField(FD);
2914    return;
2915  }
2916  ElementInfo Info = getAdjustedElementInfo(FD);
2917  // Clamp the bitfield to a containable size for the sake of being able
2918  // to lay them out.  Sema will throw an error.
2919  if (Width > Context.toBits(Info.Size))
2920    Width = Context.toBits(Info.Size);
2921  // Check to see if this bitfield fits into an existing allocation.  Note:
2922  // MSVC refuses to pack bitfields of formal types with different sizes
2923  // into the same allocation.
2924  if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2925      CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2926    placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2927    RemainingBitsInField -= Width;
2928    return;
2929  }
2930  LastFieldIsNonZeroWidthBitfield = true;
2931  CurrentBitfieldSize = Info.Size;
2932  if (UseExternalLayout) {
2933    auto FieldBitOffset = External.getExternalFieldOffset(FD);
2934    placeFieldAtBitOffset(FieldBitOffset);
2935    auto NewSize = Context.toCharUnitsFromBits(
2936        llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2937        Context.toBits(Info.Size));
2938    Size = std::max(Size, NewSize);
2939    Alignment = std::max(Alignment, Info.Alignment);
2940  } else if (IsUnion) {
2941    placeFieldAtOffset(CharUnits::Zero());
2942    Size = std::max(Size, Info.Size);
2943    // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2944  } else {
2945    // Allocate a new block of memory and place the bitfield in it.
2946    CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2947    placeFieldAtOffset(FieldOffset);
2948    Size = FieldOffset + Info.Size;
2949    Alignment = std::max(Alignment, Info.Alignment);
2950    RemainingBitsInField = Context.toBits(Info.Size) - Width;
2951  }
2952}
2953
2954void
2955MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2956  // Zero-width bitfields are ignored unless they follow a non-zero-width
2957  // bitfield.
2958  if (!LastFieldIsNonZeroWidthBitfield) {
2959    placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2960    // TODO: Add a Sema warning that MS ignores alignment for zero
2961    // sized bitfields that occur after zero-size bitfields or non-bitfields.
2962    return;
2963  }
2964  LastFieldIsNonZeroWidthBitfield = false;
2965  ElementInfo Info = getAdjustedElementInfo(FD);
2966  if (IsUnion) {
2967    placeFieldAtOffset(CharUnits::Zero());
2968    Size = std::max(Size, Info.Size);
2969    // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2970  } else {
2971    // Round up the current record size to the field's alignment boundary.
2972    CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2973    placeFieldAtOffset(FieldOffset);
2974    Size = FieldOffset;
2975    Alignment = std::max(Alignment, Info.Alignment);
2976  }
2977}
2978
2979void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2980  if (!HasVBPtr || SharedVBPtrBase)
2981    return;
2982  // Inject the VBPointer at the injection site.
2983  CharUnits InjectionSite = VBPtrOffset;
2984  // But before we do, make sure it's properly aligned.
2985  VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
2986  // Determine where the first field should be laid out after the vbptr.
2987  CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2988  // Shift everything after the vbptr down, unless we're using an external
2989  // layout.
2990  if (UseExternalLayout) {
2991    // It is possible that there were no fields or bases located after vbptr,
2992    // so the size was not adjusted before.
2993    if (Size < FieldStart)
2994      Size = FieldStart;
2995    return;
2996  }
2997  // Make sure that the amount we push the fields back by is a multiple of the
2998  // alignment.
2999  CharUnits Offset = (FieldStart - InjectionSite)
3000                         .alignTo(std::max(RequiredAlignment, Alignment));
3001  Size += Offset;
3002  for (uint64_t &FieldOffset : FieldOffsets)
3003    FieldOffset += Context.toBits(Offset);
3004  for (BaseOffsetsMapTy::value_type &Base : Bases)
3005    if (Base.second >= InjectionSite)
3006      Base.second += Offset;
3007}
3008
3009void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
3010  if (!HasOwnVFPtr)
3011    return;
3012  // Make sure that the amount we push the struct back by is a multiple of the
3013  // alignment.
3014  CharUnits Offset =
3015      PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
3016  // Push back the vbptr, but increase the size of the object and push back
3017  // regular fields by the offset only if not using external record layout.
3018  if (HasVBPtr)
3019    VBPtrOffset += Offset;
3020
3021  if (UseExternalLayout) {
3022    // The class may have no bases or fields, but still have a vfptr
3023    // (e.g. it's an interface class). The size was not correctly set before
3024    // in this case.
3025    if (FieldOffsets.empty() && Bases.empty())
3026      Size += Offset;
3027    return;
3028  }
3029
3030  Size += Offset;
3031
3032  // If we're using an external layout, the fields offsets have already
3033  // accounted for this adjustment.
3034  for (uint64_t &FieldOffset : FieldOffsets)
3035    FieldOffset += Context.toBits(Offset);
3036  for (BaseOffsetsMapTy::value_type &Base : Bases)
3037    Base.second += Offset;
3038}
3039
3040void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
3041  if (!HasVBPtr)
3042    return;
3043  // Vtordisps are always 4 bytes (even in 64-bit mode)
3044  CharUnits VtorDispSize = CharUnits::fromQuantity(4);
3045  CharUnits VtorDispAlignment = VtorDispSize;
3046  // vtordisps respect pragma pack.
3047  if (!MaxFieldAlignment.isZero())
3048    VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3049  // The alignment of the vtordisp is at least the required alignment of the
3050  // entire record.  This requirement may be present to support vtordisp
3051  // injection.
3052  for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3053    const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3054    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3055    RequiredAlignment =
3056        std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3057  }
3058  VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3059  // Compute the vtordisp set.
3060  llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3061  computeVtorDispSet(HasVtorDispSet, RD);
3062  // Iterate through the virtual bases and lay them out.
3063  const ASTRecordLayout *PreviousBaseLayout = nullptr;
3064  for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3065    const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3066    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3067    bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
3068    // Insert padding between two bases if the left first one is zero sized or
3069    // contains a zero sized subobject and the right is zero sized or one leads
3070    // with a zero sized base.  The padding between virtual bases is 4
3071    // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3072    // the required alignment, we don't know why.
3073    if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3074         BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3075        HasVtordisp) {
3076      Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3077      Alignment = std::max(VtorDispAlignment, Alignment);
3078    }
3079    // Insert the virtual base.
3080    ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3081    CharUnits BaseOffset;
3082
3083    // Respect the external AST source base offset, if present.
3084    if (UseExternalLayout) {
3085      if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3086        BaseOffset = Size;
3087    } else
3088      BaseOffset = Size.alignTo(Info.Alignment);
3089
3090    assert(BaseOffset >= Size && "base offset already allocated");
3091
3092    VBases.insert(std::make_pair(BaseDecl,
3093        ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3094    Size = BaseOffset + BaseLayout.getNonVirtualSize();
3095    PreviousBaseLayout = &BaseLayout;
3096  }
3097}
3098
3099void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3100  // Respect required alignment.  Note that in 32-bit mode Required alignment
3101  // may be 0 and cause size not to be updated.
3102  DataSize = Size;
3103  if (!RequiredAlignment.isZero()) {
3104    Alignment = std::max(Alignment, RequiredAlignment);
3105    auto RoundingAlignment = Alignment;
3106    if (!MaxFieldAlignment.isZero())
3107      RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3108    RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3109    Size = Size.alignTo(RoundingAlignment);
3110  }
3111  if (Size.isZero()) {
3112    if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3113      EndsWithZeroSizedObject = true;
3114      LeadsWithZeroSizedBase = true;
3115    }
3116    // Zero-sized structures have size equal to their alignment if a
3117    // __declspec(align) came into play.
3118    if (RequiredAlignment >= MinEmptyStructSize)
3119      Size = Alignment;
3120    else
3121      Size = MinEmptyStructSize;
3122  }
3123
3124  if (UseExternalLayout) {
3125    Size = Context.toCharUnitsFromBits(External.Size);
3126    if (External.Align)
3127      Alignment = Context.toCharUnitsFromBits(External.Align);
3128  }
3129}
3130
3131// Recursively walks the non-virtual bases of a class and determines if any of
3132// them are in the bases with overridden methods set.
3133static bool
3134RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3135                     BasesWithOverriddenMethods,
3136                 const CXXRecordDecl *RD) {
3137  if (BasesWithOverriddenMethods.count(RD))
3138    return true;
3139  // If any of a virtual bases non-virtual bases (recursively) requires a
3140  // vtordisp than so does this virtual base.
3141  for (const CXXBaseSpecifier &Base : RD->bases())
3142    if (!Base.isVirtual() &&
3143        RequiresVtordisp(BasesWithOverriddenMethods,
3144                         Base.getType()->getAsCXXRecordDecl()))
3145      return true;
3146  return false;
3147}
3148
3149void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3150    llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3151    const CXXRecordDecl *RD) const {
3152  // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3153  // vftables.
3154  if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3155    for (const CXXBaseSpecifier &Base : RD->vbases()) {
3156      const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3157      const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3158      if (Layout.hasExtendableVFPtr())
3159        HasVtordispSet.insert(BaseDecl);
3160    }
3161    return;
3162  }
3163
3164  // If any of our bases need a vtordisp for this type, so do we.  Check our
3165  // direct bases for vtordisp requirements.
3166  for (const CXXBaseSpecifier &Base : RD->bases()) {
3167    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3168    const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3169    for (const auto &bi : Layout.getVBaseOffsetsMap())
3170      if (bi.second.hasVtorDisp())
3171        HasVtordispSet.insert(bi.first);
3172  }
3173  // We don't introduce any additional vtordisps if either:
3174  // * A user declared constructor or destructor aren't declared.
3175  // * #pragma vtordisp(0) or the /vd0 flag are in use.
3176  if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3177      RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3178    return;
3179  // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3180  // possible for a partially constructed object with virtual base overrides to
3181  // escape a non-trivial constructor.
3182  assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3183  // Compute a set of base classes which define methods we override.  A virtual
3184  // base in this set will require a vtordisp.  A virtual base that transitively
3185  // contains one of these bases as a non-virtual base will also require a
3186  // vtordisp.
3187  llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3188  llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3189  // Seed the working set with our non-destructor, non-pure virtual methods.
3190  for (const CXXMethodDecl *MD : RD->methods())
3191    if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3192        !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3193      Work.insert(MD);
3194  while (!Work.empty()) {
3195    const CXXMethodDecl *MD = *Work.begin();
3196    auto MethodRange = MD->overridden_methods();
3197    // If a virtual method has no-overrides it lives in its parent's vtable.
3198    if (MethodRange.begin() == MethodRange.end())
3199      BasesWithOverriddenMethods.insert(MD->getParent());
3200    else
3201      Work.insert(MethodRange.begin(), MethodRange.end());
3202    // We've finished processing this element, remove it from the working set.
3203    Work.erase(MD);
3204  }
3205  // For each of our virtual bases, check if it is in the set of overridden
3206  // bases or if it transitively contains a non-virtual base that is.
3207  for (const CXXBaseSpecifier &Base : RD->vbases()) {
3208    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3209    if (!HasVtordispSet.count(BaseDecl) &&
3210        RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3211      HasVtordispSet.insert(BaseDecl);
3212  }
3213}
3214
3215/// getASTRecordLayout - Get or compute information about the layout of the
3216/// specified record (struct/union/class), which indicates its size and field
3217/// position information.
3218const ASTRecordLayout &
3219ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3220  // These asserts test different things.  A record has a definition
3221  // as soon as we begin to parse the definition.  That definition is
3222  // not a complete definition (which is what isDefinition() tests)
3223  // until we *finish* parsing the definition.
3224
3225  if (D->hasExternalLexicalStorage() && !D->getDefinition())
3226    getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3227
3228  D = D->getDefinition();
3229  assert(D && "Cannot get layout of forward declarations!");
3230  assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3231  assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3232
3233  // Look up this layout, if already laid out, return what we have.
3234  // Note that we can't save a reference to the entry because this function
3235  // is recursive.
3236  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3237  if (Entry) return *Entry;
3238
3239  const ASTRecordLayout *NewEntry = nullptr;
3240
3241  if (isMsLayout(*this)) {
3242    MicrosoftRecordLayoutBuilder Builder(*this);
3243    if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3244      Builder.cxxLayout(RD);
3245      NewEntry = new (*this) ASTRecordLayout(
3246          *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3247          Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3248          Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3249          Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3250          Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3251          Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3252          Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3253          Builder.Bases, Builder.VBases);
3254    } else {
3255      Builder.layout(D);
3256      NewEntry = new (*this) ASTRecordLayout(
3257          *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3258          Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3259          Builder.FieldOffsets);
3260    }
3261  } else {
3262    if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3263      EmptySubobjectMap EmptySubobjects(*this, RD);
3264      ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3265      Builder.Layout(RD);
3266
3267      // In certain situations, we are allowed to lay out objects in the
3268      // tail-padding of base classes.  This is ABI-dependent.
3269      // FIXME: this should be stored in the record layout.
3270      bool skipTailPadding =
3271          mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3272
3273      // FIXME: This should be done in FinalizeLayout.
3274      CharUnits DataSize =
3275          skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3276      CharUnits NonVirtualSize =
3277          skipTailPadding ? DataSize : Builder.NonVirtualSize;
3278      NewEntry = new (*this) ASTRecordLayout(
3279          *this, Builder.getSize(), Builder.Alignment,
3280          Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3281          /*RequiredAlignment : used by MS-ABI)*/
3282          Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3283          CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3284          NonVirtualSize, Builder.NonVirtualAlignment,
3285          Builder.PreferredNVAlignment,
3286          EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3287          Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3288          Builder.VBases);
3289    } else {
3290      ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3291      Builder.Layout(D);
3292
3293      NewEntry = new (*this) ASTRecordLayout(
3294          *this, Builder.getSize(), Builder.Alignment,
3295          Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3296          /*RequiredAlignment : used by MS-ABI)*/
3297          Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3298    }
3299  }
3300
3301  ASTRecordLayouts[D] = NewEntry;
3302
3303  if (getLangOpts().DumpRecordLayouts) {
3304    llvm::outs() << "\n*** Dumping AST Record Layout\n";
3305    DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3306  }
3307
3308  return *NewEntry;
3309}
3310
3311const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3312  if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3313    return nullptr;
3314
3315  assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3316  RD = RD->getDefinition();
3317
3318  // Beware:
3319  //  1) computing the key function might trigger deserialization, which might
3320  //     invalidate iterators into KeyFunctions
3321  //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
3322  //     invalidate the LazyDeclPtr within the map itself
3323  LazyDeclPtr Entry = KeyFunctions[RD];
3324  const Decl *Result =
3325      Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3326
3327  // Store it back if it changed.
3328  if (Entry.isOffset() || Entry.isValid() != bool(Result))
3329    KeyFunctions[RD] = const_cast<Decl*>(Result);
3330
3331  return cast_or_null<CXXMethodDecl>(Result);
3332}
3333
3334void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3335  assert(Method == Method->getFirstDecl() &&
3336         "not working with method declaration from class definition");
3337
3338  // Look up the cache entry.  Since we're working with the first
3339  // declaration, its parent must be the class definition, which is
3340  // the correct key for the KeyFunctions hash.
3341  const auto &Map = KeyFunctions;
3342  auto I = Map.find(Method->getParent());
3343
3344  // If it's not cached, there's nothing to do.
3345  if (I == Map.end()) return;
3346
3347  // If it is cached, check whether it's the target method, and if so,
3348  // remove it from the cache. Note, the call to 'get' might invalidate
3349  // the iterator and the LazyDeclPtr object within the map.
3350  LazyDeclPtr Ptr = I->second;
3351  if (Ptr.get(getExternalSource()) == Method) {
3352    // FIXME: remember that we did this for module / chained PCH state?
3353    KeyFunctions.erase(Method->getParent());
3354  }
3355}
3356
3357static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3358  const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3359  return Layout.getFieldOffset(FD->getFieldIndex());
3360}
3361
3362uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3363  uint64_t OffsetInBits;
3364  if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3365    OffsetInBits = ::getFieldOffset(*this, FD);
3366  } else {
3367    const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3368
3369    OffsetInBits = 0;
3370    for (const NamedDecl *ND : IFD->chain())
3371      OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3372  }
3373
3374  return OffsetInBits;
3375}
3376
3377uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3378                                          const ObjCImplementationDecl *ID,
3379                                          const ObjCIvarDecl *Ivar) const {
3380  const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3381
3382  // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3383  // in here; it should never be necessary because that should be the lexical
3384  // decl context for the ivar.
3385
3386  // If we know have an implementation (and the ivar is in it) then
3387  // look up in the implementation layout.
3388  const ASTRecordLayout *RL;
3389  if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3390    RL = &getASTObjCImplementationLayout(ID);
3391  else
3392    RL = &getASTObjCInterfaceLayout(Container);
3393
3394  // Compute field index.
3395  //
3396  // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3397  // implemented. This should be fixed to get the information from the layout
3398  // directly.
3399  unsigned Index = 0;
3400
3401  for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3402       IVD; IVD = IVD->getNextIvar()) {
3403    if (Ivar == IVD)
3404      break;
3405    ++Index;
3406  }
3407  assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3408
3409  return RL->getFieldOffset(Index);
3410}
3411
3412/// getObjCLayout - Get or compute information about the layout of the
3413/// given interface.
3414///
3415/// \param Impl - If given, also include the layout of the interface's
3416/// implementation. This may differ by including synthesized ivars.
3417const ASTRecordLayout &
3418ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3419                          const ObjCImplementationDecl *Impl) const {
3420  // Retrieve the definition
3421  if (D->hasExternalLexicalStorage() && !D->getDefinition())
3422    getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3423  D = D->getDefinition();
3424  assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3425         "Invalid interface decl!");
3426
3427  // Look up this layout, if already laid out, return what we have.
3428  const ObjCContainerDecl *Key =
3429    Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3430  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3431    return *Entry;
3432
3433  // Add in synthesized ivar count if laying out an implementation.
3434  if (Impl) {
3435    unsigned SynthCount = CountNonClassIvars(D);
3436    // If there aren't any synthesized ivars then reuse the interface
3437    // entry. Note we can't cache this because we simply free all
3438    // entries later; however we shouldn't look up implementations
3439    // frequently.
3440    if (SynthCount == 0)
3441      return getObjCLayout(D, nullptr);
3442  }
3443
3444  ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3445  Builder.Layout(D);
3446
3447  const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3448      *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3449      Builder.UnadjustedAlignment,
3450      /*RequiredAlignment : used by MS-ABI)*/
3451      Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3452
3453  ObjCLayouts[Key] = NewEntry;
3454
3455  return *NewEntry;
3456}
3457
3458static void PrintOffset(raw_ostream &OS,
3459                        CharUnits Offset, unsigned IndentLevel) {
3460  OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3461  OS.indent(IndentLevel * 2);
3462}
3463
3464static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3465                                unsigned Begin, unsigned Width,
3466                                unsigned IndentLevel) {
3467  llvm::SmallString<10> Buffer;
3468  {
3469    llvm::raw_svector_ostream BufferOS(Buffer);
3470    BufferOS << Offset.getQuantity() << ':';
3471    if (Width == 0) {
3472      BufferOS << '-';
3473    } else {
3474      BufferOS << Begin << '-' << (Begin + Width - 1);
3475    }
3476  }
3477
3478  OS << llvm::right_justify(Buffer, 10) << " | ";
3479  OS.indent(IndentLevel * 2);
3480}
3481
3482static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3483  OS << "           | ";
3484  OS.indent(IndentLevel * 2);
3485}
3486
3487static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3488                             const ASTContext &C,
3489                             CharUnits Offset,
3490                             unsigned IndentLevel,
3491                             const char* Description,
3492                             bool PrintSizeInfo,
3493                             bool IncludeVirtualBases) {
3494  const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3495  auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3496
3497  PrintOffset(OS, Offset, IndentLevel);
3498  OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3499  if (Description)
3500    OS << ' ' << Description;
3501  if (CXXRD && CXXRD->isEmpty())
3502    OS << " (empty)";
3503  OS << '\n';
3504
3505  IndentLevel++;
3506
3507  // Dump bases.
3508  if (CXXRD) {
3509    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3510    bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3511    bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3512
3513    // Vtable pointer.
3514    if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3515      PrintOffset(OS, Offset, IndentLevel);
3516      OS << '(' << *RD << " vtable pointer)\n";
3517    } else if (HasOwnVFPtr) {
3518      PrintOffset(OS, Offset, IndentLevel);
3519      // vfptr (for Microsoft C++ ABI)
3520      OS << '(' << *RD << " vftable pointer)\n";
3521    }
3522
3523    // Collect nvbases.
3524    SmallVector<const CXXRecordDecl *, 4> Bases;
3525    for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3526      assert(!Base.getType()->isDependentType() &&
3527             "Cannot layout class with dependent bases.");
3528      if (!Base.isVirtual())
3529        Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3530    }
3531
3532    // Sort nvbases by offset.
3533    llvm::stable_sort(
3534        Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3535          return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3536        });
3537
3538    // Dump (non-virtual) bases
3539    for (const CXXRecordDecl *Base : Bases) {
3540      CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3541      DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3542                       Base == PrimaryBase ? "(primary base)" : "(base)",
3543                       /*PrintSizeInfo=*/false,
3544                       /*IncludeVirtualBases=*/false);
3545    }
3546
3547    // vbptr (for Microsoft C++ ABI)
3548    if (HasOwnVBPtr) {
3549      PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3550      OS << '(' << *RD << " vbtable pointer)\n";
3551    }
3552  }
3553
3554  // Dump fields.
3555  uint64_t FieldNo = 0;
3556  for (RecordDecl::field_iterator I = RD->field_begin(),
3557         E = RD->field_end(); I != E; ++I, ++FieldNo) {
3558    const FieldDecl &Field = **I;
3559    uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3560    CharUnits FieldOffset =
3561      Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3562
3563    // Recursively dump fields of record type.
3564    if (auto RT = Field.getType()->getAs<RecordType>()) {
3565      DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3566                       Field.getName().data(),
3567                       /*PrintSizeInfo=*/false,
3568                       /*IncludeVirtualBases=*/true);
3569      continue;
3570    }
3571
3572    if (Field.isBitField()) {
3573      uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3574      unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3575      unsigned Width = Field.getBitWidthValue(C);
3576      PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3577    } else {
3578      PrintOffset(OS, FieldOffset, IndentLevel);
3579    }
3580    OS << Field.getType().getAsString() << ' ' << Field << '\n';
3581  }
3582
3583  // Dump virtual bases.
3584  if (CXXRD && IncludeVirtualBases) {
3585    const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3586      Layout.getVBaseOffsetsMap();
3587
3588    for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3589      assert(Base.isVirtual() && "Found non-virtual class!");
3590      const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3591
3592      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3593
3594      if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3595        PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3596        OS << "(vtordisp for vbase " << *VBase << ")\n";
3597      }
3598
3599      DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3600                       VBase == Layout.getPrimaryBase() ?
3601                         "(primary virtual base)" : "(virtual base)",
3602                       /*PrintSizeInfo=*/false,
3603                       /*IncludeVirtualBases=*/false);
3604    }
3605  }
3606
3607  if (!PrintSizeInfo) return;
3608
3609  PrintIndentNoOffset(OS, IndentLevel - 1);
3610  OS << "[sizeof=" << Layout.getSize().getQuantity();
3611  if (CXXRD && !isMsLayout(C))
3612    OS << ", dsize=" << Layout.getDataSize().getQuantity();
3613  OS << ", align=" << Layout.getAlignment().getQuantity();
3614  if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3615    OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3616
3617  if (CXXRD) {
3618    OS << ",\n";
3619    PrintIndentNoOffset(OS, IndentLevel - 1);
3620    OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3621    OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3622    if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3623      OS << ", preferrednvalign="
3624         << Layout.getPreferredNVAlignment().getQuantity();
3625  }
3626  OS << "]\n";
3627}
3628
3629void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3630                                  bool Simple) const {
3631  if (!Simple) {
3632    ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3633                       /*PrintSizeInfo*/ true,
3634                       /*IncludeVirtualBases=*/true);
3635    return;
3636  }
3637
3638  // The "simple" format is designed to be parsed by the
3639  // layout-override testing code.  There shouldn't be any external
3640  // uses of this format --- when LLDB overrides a layout, it sets up
3641  // the data structures directly --- so feel free to adjust this as
3642  // you like as long as you also update the rudimentary parser for it
3643  // in libFrontend.
3644
3645  const ASTRecordLayout &Info = getASTRecordLayout(RD);
3646  OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3647  OS << "\nLayout: ";
3648  OS << "<ASTRecordLayout\n";
3649  OS << "  Size:" << toBits(Info.getSize()) << "\n";
3650  if (!isMsLayout(*this))
3651    OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3652  OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3653  if (Target->defaultsToAIXPowerAlignment())
3654    OS << "  PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3655       << "\n";
3656  OS << "  FieldOffsets: [";
3657  for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3658    if (i)
3659      OS << ", ";
3660    OS << Info.getFieldOffset(i);
3661  }
3662  OS << "]>\n";
3663}
3664