1/*	$NetBSD: tommath.h,v 1.2 2017/01/28 21:31:47 christos Exp $	*/
2
3/* LibTomMath, multiple-precision integer library -- Tom St Denis
4 *
5 * LibTomMath is a library that provides multiple-precision
6 * integer arithmetic as well as number theoretic functionality.
7 *
8 * The library was designed directly after the MPI library by
9 * Michael Fromberger but has been written from scratch with
10 * additional optimizations in place.
11 *
12 * The library is free for all purposes without any express
13 * guarantee it works.
14 *
15 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
16 */
17#ifndef BN_H_
18#define BN_H_
19
20#include <stdio.h>
21#include <string.h>
22#include <stdlib.h>
23#include <ctype.h>
24#include <limits.h>
25
26#include <tommath_class.h>
27
28#ifndef MIN
29   #define MIN(x,y) ((x)<(y)?(x):(y))
30#endif
31
32#ifndef MAX
33   #define MAX(x,y) ((x)>(y)?(x):(y))
34#endif
35
36#ifdef __cplusplus
37extern "C" {
38
39/* C++ compilers don't like assigning void * to mp_digit * */
40#define  OPT_CAST(x)  (x *)
41
42#else
43
44/* C on the other hand doesn't care */
45#define  OPT_CAST(x)
46
47#endif
48
49
50/* detect 64-bit mode if possible */
51#if defined(__x86_64__) && !defined(__ILP32__)
52   #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
53      #define MP_64BIT
54   #endif
55#endif
56
57/* some default configurations.
58 *
59 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
60 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
61 *
62 * At the very least a mp_digit must be able to hold 7 bits
63 * [any size beyond that is ok provided it doesn't overflow the data type]
64 */
65#ifdef MP_8BIT
66   typedef unsigned char      mp_digit;
67   typedef unsigned short     mp_word;
68#elif defined(MP_16BIT)
69   typedef unsigned short     mp_digit;
70   typedef unsigned long      mp_word;
71#elif defined(MP_64BIT)
72   /* for GCC only on supported platforms */
73#ifndef CRYPT
74   typedef unsigned long long ulong64;
75   typedef signed long long   long64;
76#endif
77
78   typedef unsigned long      mp_digit;
79   typedef unsigned long      mp_word __attribute__ ((mode(TI)));
80
81   #define DIGIT_BIT          60
82#else
83   /* this is the default case, 28-bit digits */
84
85   /* this is to make porting into LibTomCrypt easier :-) */
86#ifndef CRYPT
87   #if defined(_MSC_VER) || defined(__BORLANDC__)
88      typedef unsigned __int64   ulong64;
89      typedef signed __int64     long64;
90   #else
91      typedef unsigned long long ulong64;
92      typedef signed long long   long64;
93   #endif
94#endif
95
96   typedef unsigned long      mp_digit;
97   typedef ulong64            mp_word;
98
99#ifdef MP_31BIT
100   /* this is an extension that uses 31-bit digits */
101   #define DIGIT_BIT          31
102#else
103   /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
104   #define DIGIT_BIT          28
105   #define MP_28BIT
106#endif
107#endif
108
109/* define heap macros */
110#ifndef CRYPT
111   /* default to libc stuff */
112   #ifndef XMALLOC
113       #define XMALLOC  malloc
114       #define XFREE    free
115       #define XREALLOC realloc
116       #define XCALLOC  calloc
117   #else
118      /* prototypes for our heap functions */
119      extern void *XMALLOC(size_t n);
120      extern void *XREALLOC(void *p, size_t n);
121      extern void *XCALLOC(size_t n, size_t s);
122      extern void XFREE(void *p);
123   #endif
124#endif
125
126
127/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
128#ifndef DIGIT_BIT
129   #define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */
130#endif
131
132#define MP_DIGIT_BIT     DIGIT_BIT
133#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
134#define MP_DIGIT_MAX     MP_MASK
135
136/* equalities */
137#define MP_LT        -1   /* less than */
138#define MP_EQ         0   /* equal to */
139#define MP_GT         1   /* greater than */
140
141#define MP_ZPOS       0   /* positive integer */
142#define MP_NEG        1   /* negative */
143
144#define MP_OKAY       0   /* ok result */
145#define MP_MEM        -2  /* out of mem */
146#define MP_VAL        -3  /* invalid input */
147#define MP_RANGE      MP_VAL
148
149#define MP_YES        1   /* yes response */
150#define MP_NO         0   /* no response */
151
152/* Primality generation flags */
153#define LTM_PRIME_BBS      0x0001 /* BBS style prime */
154#define LTM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
155#define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */
156
157typedef int           mp_err;
158
159/* you'll have to tune these... */
160extern int KARATSUBA_MUL_CUTOFF,
161           KARATSUBA_SQR_CUTOFF,
162           TOOM_MUL_CUTOFF,
163           TOOM_SQR_CUTOFF;
164
165/* define this to use lower memory usage routines (exptmods mostly) */
166/* #define MP_LOW_MEM */
167
168/* default precision */
169#ifndef MP_PREC
170   #ifndef MP_LOW_MEM
171      #define MP_PREC                 32     /* default digits of precision */
172   #else
173      #define MP_PREC                 8      /* default digits of precision */
174   #endif
175#endif
176
177/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
178#define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
179
180/* the infamous mp_int structure */
181typedef struct  {
182    int used, alloc, sign;
183    mp_digit *dp;
184} mp_int;
185
186/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
187typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
188
189
190#define USED(m)    ((m)->used)
191#define DIGIT(m,k) ((m)->dp[(k)])
192#define SIGN(m)    ((m)->sign)
193
194/* error code to const char* string */
195const char *mp_error_to_string(int code);
196
197/* ---> init and deinit bignum functions <--- */
198/* init a bignum */
199int mp_init(mp_int *a);
200
201/* free a bignum */
202void mp_clear(mp_int *a);
203
204/* init a null terminated series of arguments */
205int mp_init_multi(mp_int *mp, ...);
206
207/* clear a null terminated series of arguments */
208void mp_clear_multi(mp_int *mp, ...);
209
210/* exchange two ints */
211void mp_exch(mp_int *a, mp_int *b);
212
213/* shrink ram required for a bignum */
214int mp_shrink(mp_int *a);
215
216/* grow an int to a given size */
217int mp_grow(mp_int *a, int size);
218
219/* init to a given number of digits */
220int mp_init_size(mp_int *a, int size);
221
222/* ---> Basic Manipulations <--- */
223#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
224#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
225#define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
226#define mp_isneg(a)  (((a)->sign) ? MP_YES : MP_NO)
227
228/* set to zero */
229void mp_zero(mp_int *a);
230
231/* set to zero, multi */
232void mp_zero_multi(mp_int *a, ...);
233
234/* set to a digit */
235void mp_set(mp_int *a, mp_digit b);
236
237/* set a 32-bit const */
238int mp_set_int(mp_int *a, unsigned long b);
239
240/* get a 32-bit value */
241unsigned long mp_get_int(mp_int * a);
242
243/* initialize and set a digit */
244int mp_init_set (mp_int * a, mp_digit b);
245
246/* initialize and set 32-bit value */
247int mp_init_set_int (mp_int * a, unsigned long b);
248
249/* copy, b = a */
250int mp_copy(mp_int *a, mp_int *b);
251
252/* inits and copies, a = b */
253int mp_init_copy(mp_int *a, mp_int *b);
254
255/* trim unused digits */
256void mp_clamp(mp_int *a);
257
258/* ---> digit manipulation <--- */
259
260/* right shift by "b" digits */
261void mp_rshd(mp_int *a, int b);
262
263/* left shift by "b" digits */
264int mp_lshd(mp_int *a, int b);
265
266/* c = a / 2**b */
267int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
268
269/* b = a/2 */
270int mp_div_2(mp_int *a, mp_int *b);
271
272/* c = a * 2**b */
273int mp_mul_2d(mp_int *a, int b, mp_int *c);
274
275/* b = a*2 */
276int mp_mul_2(mp_int *a, mp_int *b);
277
278/* c = a mod 2**d */
279int mp_mod_2d(mp_int *a, int b, mp_int *c);
280
281/* computes a = 2**b */
282int mp_2expt(mp_int *a, int b);
283
284/* Counts the number of lsbs which are zero before the first zero bit */
285int mp_cnt_lsb(mp_int *a);
286
287/* I Love Earth! */
288
289/* makes a pseudo-random int of a given size */
290int mp_rand(mp_int *a, int digits);
291
292/* ---> binary operations <--- */
293/* c = a XOR b  */
294int mp_xor(mp_int *a, mp_int *b, mp_int *c);
295
296/* c = a OR b */
297int mp_or(mp_int *a, mp_int *b, mp_int *c);
298
299/* c = a AND b */
300int mp_and(mp_int *a, mp_int *b, mp_int *c);
301
302/* ---> Basic arithmetic <--- */
303
304/* b = -a */
305int mp_neg(mp_int *a, mp_int *b);
306
307/* b = |a| */
308int mp_abs(mp_int *a, mp_int *b);
309
310/* compare a to b */
311int mp_cmp(mp_int *a, mp_int *b);
312
313/* compare |a| to |b| */
314int mp_cmp_mag(mp_int *a, mp_int *b);
315
316/* c = a + b */
317int mp_add(mp_int *a, mp_int *b, mp_int *c);
318
319/* c = a - b */
320int mp_sub(mp_int *a, mp_int *b, mp_int *c);
321
322/* c = a * b */
323int mp_mul(mp_int *a, mp_int *b, mp_int *c);
324
325/* b = a*a  */
326int mp_sqr(mp_int *a, mp_int *b);
327
328/* a/b => cb + d == a */
329int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
330
331/* c = a mod b, 0 <= c < b  */
332int mp_mod(mp_int *a, mp_int *b, mp_int *c);
333
334/* ---> single digit functions <--- */
335
336/* compare against a single digit */
337int mp_cmp_d(mp_int *a, mp_digit b);
338
339/* c = a + b */
340int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
341
342/* c = a - b */
343int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
344
345/* c = a * b */
346int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
347
348/* a/b => cb + d == a */
349int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
350
351/* a/3 => 3c + d == a */
352int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
353
354/* c = a**b */
355int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
356
357/* c = a mod b, 0 <= c < b  */
358int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
359
360/* ---> number theory <--- */
361
362/* d = a + b (mod c) */
363int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
364
365/* d = a - b (mod c) */
366int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
367
368/* d = a * b (mod c) */
369int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
370
371/* c = a * a (mod b) */
372int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
373
374/* c = 1/a (mod b) */
375int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
376
377/* c = (a, b) */
378int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
379
380/* produces value such that U1*a + U2*b = U3 */
381int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
382
383/* c = [a, b] or (a*b)/(a, b) */
384int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
385
386/* finds one of the b'th root of a, such that |c|**b <= |a|
387 *
388 * returns error if a < 0 and b is even
389 */
390int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
391
392/* special sqrt algo */
393int mp_sqrt(mp_int *arg, mp_int *ret);
394
395/* is number a square? */
396int mp_is_square(mp_int *arg, int *ret);
397
398/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
399int mp_jacobi(mp_int *a, mp_int *n, int *c);
400
401/* used to setup the Barrett reduction for a given modulus b */
402int mp_reduce_setup(mp_int *a, mp_int *b);
403
404/* Barrett Reduction, computes a (mod b) with a precomputed value c
405 *
406 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
407 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
408 */
409int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
410
411/* setups the montgomery reduction */
412int mp_montgomery_setup(mp_int *a, mp_digit *mp);
413
414/* computes a = B**n mod b without division or multiplication useful for
415 * normalizing numbers in a Montgomery system.
416 */
417int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
418
419/* computes x/R == x (mod N) via Montgomery Reduction */
420int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
421
422/* returns 1 if a is a valid DR modulus */
423int mp_dr_is_modulus(mp_int *a);
424
425/* sets the value of "d" required for mp_dr_reduce */
426void mp_dr_setup(mp_int *a, mp_digit *d);
427
428/* reduces a modulo b using the Diminished Radix method */
429int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
430
431/* returns true if a can be reduced with mp_reduce_2k */
432int mp_reduce_is_2k(mp_int *a);
433
434/* determines k value for 2k reduction */
435int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
436
437/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
438int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
439
440/* returns true if a can be reduced with mp_reduce_2k_l */
441int mp_reduce_is_2k_l(mp_int *a);
442
443/* determines k value for 2k reduction */
444int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
445
446/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
447int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
448
449/* d = a**b (mod c) */
450int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
451
452/* ---> Primes <--- */
453
454/* number of primes */
455#ifdef MP_8BIT
456   #define PRIME_SIZE      31
457#else
458   #define PRIME_SIZE      256
459#endif
460
461/* table of first PRIME_SIZE primes */
462extern const mp_digit ltm_prime_tab[];
463
464/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
465int mp_prime_is_divisible(mp_int *a, int *result);
466
467/* performs one Fermat test of "a" using base "b".
468 * Sets result to 0 if composite or 1 if probable prime
469 */
470int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
471
472/* performs one Miller-Rabin test of "a" using base "b".
473 * Sets result to 0 if composite or 1 if probable prime
474 */
475int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
476
477/* This gives [for a given bit size] the number of trials required
478 * such that Miller-Rabin gives a prob of failure lower than 2^-96
479 */
480int mp_prime_rabin_miller_trials(int size);
481
482/* performs t rounds of Miller-Rabin on "a" using the first
483 * t prime bases.  Also performs an initial sieve of trial
484 * division.  Determines if "a" is prime with probability
485 * of error no more than (1/4)**t.
486 *
487 * Sets result to 1 if probably prime, 0 otherwise
488 */
489int mp_prime_is_prime(mp_int *a, int t, int *result);
490
491/* finds the next prime after the number "a" using "t" trials
492 * of Miller-Rabin.
493 *
494 * bbs_style = 1 means the prime must be congruent to 3 mod 4
495 */
496int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
497
498/* makes a truly random prime of a given size (bytes),
499 * call with bbs = 1 if you want it to be congruent to 3 mod 4
500 *
501 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
502 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
503 * so it can be NULL
504 *
505 * The prime generated will be larger than 2^(8*size).
506 */
507#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
508
509/* makes a truly random prime of a given size (bits),
510 *
511 * Flags are as follows:
512 *
513 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
514 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
515 *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
516 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
517 *
518 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
519 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
520 * so it can be NULL
521 *
522 */
523int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
524
525int mp_find_prime(mp_int *a, int t);
526
527/* ---> radix conversion <--- */
528int mp_count_bits(mp_int *a);
529
530int mp_unsigned_bin_size(mp_int *a);
531int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
532int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
533int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
534
535int mp_signed_bin_size(mp_int *a);
536int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
537int mp_to_signed_bin(mp_int *a,  unsigned char *b);
538int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
539
540int mp_read_radix(mp_int *a, const char *str, int radix);
541int mp_toradix(mp_int *a, char *str, int radix);
542int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
543int mp_radix_size(mp_int *a, int radix, int *size);
544
545int mp_fread(mp_int *a, int radix, FILE *stream);
546int mp_fwrite(mp_int *a, int radix, FILE *stream);
547
548#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
549#define mp_raw_size(mp)           mp_signed_bin_size(mp)
550#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
551#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
552#define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
553#define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))
554
555#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
556#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
557#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
558#define mp_tohex(M, S)     mp_toradix((M), (S), 16)
559
560/* lowlevel functions, do not call! */
561int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
562int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
563#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
564int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
565int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
566int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
567int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
568int fast_s_mp_sqr(mp_int *a, mp_int *b);
569int s_mp_sqr(mp_int *a, mp_int *b);
570int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
571int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
572int mp_karatsuba_sqr(mp_int *a, mp_int *b);
573int mp_toom_sqr(mp_int *a, mp_int *b);
574int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
575int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
576int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
577int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
578int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
579void bn_reverse(unsigned char *s, int len);
580
581extern const char *mp_s_rmap;
582
583#ifdef __cplusplus
584   }
585#endif
586
587#endif
588
589
590/* Source: /cvs/libtom/libtommath/tommath.h,v  */
591/* Revision: 1.8  */
592/* Date: 2006/03/31 14:18:44  */
593