1/*	$NetBSD: sha3.c,v 1.4 2024/01/19 19:32:42 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2015 Taylor R. Campbell
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/*
30 * SHA-3: FIPS-202, Permutation-Based Hash and Extendable-Output Functions
31 */
32
33#if HAVE_NBTOOL_CONFIG_H
34#include "nbtool_config.h"
35#endif
36
37#include <sys/cdefs.h>
38
39#if defined(_KERNEL) || defined(_STANDALONE)
40
41__KERNEL_RCSID(0, "$NetBSD: sha3.c,v 1.4 2024/01/19 19:32:42 christos Exp $");
42#include <lib/libkern/libkern.h>
43
44#define	SHA3_ASSERT	KASSERT
45
46#else
47
48__RCSID("$NetBSD: sha3.c,v 1.4 2024/01/19 19:32:42 christos Exp $");
49
50#include "namespace.h"
51
52#include <assert.h>
53#include <string.h>
54
55#define	SHA3_ASSERT	_DIAGASSERT
56
57#endif
58
59#include <sys/endian.h>
60#include <sys/sha3.h>
61
62#include "keccak.h"
63
64/* XXX Disabled for now -- these will be libc-private.  */
65#if 0 && !defined(_KERNEL) && !defined(_STANDALONE)
66#ifdef __weak_alias
67__weak_alias(SHA3_224_Init,_SHA3_224_Init)
68__weak_alias(SHA3_224_Update,_SHA3_224_Update)
69__weak_alias(SHA3_224_Final,_SHA3_224_Final)
70__weak_alias(SHA3_256_Init,_SHA3_256_Init)
71__weak_alias(SHA3_256_Update,_SHA3_256_Update)
72__weak_alias(SHA3_256_Final,_SHA3_256_Final)
73__weak_alias(SHA3_384_Init,_SHA3_384_Init)
74__weak_alias(SHA3_384_Update,_SHA3_384_Update)
75__weak_alias(SHA3_384_Final,_SHA3_384_Final)
76__weak_alias(SHA3_512_Init,_SHA3_512_Init)
77__weak_alias(SHA3_512_Update,_SHA3_512_Update)
78__weak_alias(SHA3_512_Final,_SHA3_512_Final)
79__weak_alias(SHA3_Selftest,_SHA3_Selftest)
80__weak_alias(SHAKE128_Init,_SHAKE128_Init)
81__weak_alias(SHAKE128_Update,_SHAKE128_Update)
82__weak_alias(SHAKE128_Final,_SHAKE128_Final)
83__weak_alias(SHAKE256_Init,_SHAKE256_Init)
84__weak_alias(SHAKE256_Update,_SHAKE256_Update)
85__weak_alias(SHAKE256_Final,_SHAKE256_Final)
86#endif	/* __weak_alias */
87#endif	/* kernel/standalone */
88
89#define	MIN(a,b)	((a) < (b) ? (a) : (b))
90#define	arraycount(a)	(sizeof(a)/sizeof((a)[0]))
91
92/*
93 * Common body.  All the SHA-3 functions share code structure.  They
94 * differ only in the size of the chunks they split the message into:
95 * for digest size d, they are split into chunks of 200 - d bytes.
96 */
97
98static inline unsigned
99sha3_rate(unsigned d)
100{
101	const unsigned cw = 2*d/8;	/* capacity in words */
102
103	return 25 - cw;
104}
105
106static void
107sha3_init(struct sha3 *C, unsigned rw)
108{
109	unsigned iw;
110
111	C->nb = 8*rw;
112	for (iw = 0; iw < 25; iw++)
113		C->A[iw] = 0;
114}
115
116static void
117sha3_update(struct sha3 *C, const uint8_t *data, size_t len, unsigned rw)
118{
119	uint64_t T;
120	unsigned ib, iw;		/* index of byte/word */
121
122	assert(0 < C->nb);
123
124	/* If there's a partial word, try to fill it.  */
125	if ((C->nb % 8) != 0) {
126		T = 0;
127		for (ib = 0; ib < MIN(len, C->nb % 8); ib++)
128			T |= (uint64_t)data[ib] << (8*ib);
129		C->A[rw - (C->nb + 7)/8] ^= T << (8*(8 - (C->nb % 8)));
130		C->nb -= ib;
131		data += ib;
132		len -= ib;
133
134		/* If we filled the buffer, permute now.  */
135		if (C->nb == 0) {
136			keccakf1600(C->A);
137			C->nb = 8*rw;
138		}
139
140		/* If that exhausted the input, we're done.  */
141		if (len == 0)
142			return;
143	}
144
145	/* At a word boundary.  Fill any partial buffer.  */
146	assert((C->nb % 8) == 0);
147	if (C->nb < 8*rw) {
148		for (iw = 0; iw < MIN(len, C->nb)/8; iw++)
149			C->A[rw - C->nb/8 + iw] ^= le64dec(data + 8*iw);
150		C->nb -= 8*iw;
151		data += 8*iw;
152		len -= 8*iw;
153
154		/* If we filled the buffer, permute now.  */
155		if (C->nb == 0) {
156			keccakf1600(C->A);
157			C->nb = 8*rw;
158		} else {
159			/* Otherwise, less than a word left.  */
160			assert(len < 8);
161			goto partial;
162		}
163	}
164
165	/* At a buffer boundary.  Absorb input one buffer at a time.  */
166	assert(C->nb == 8*rw);
167	while (8*rw <= len) {
168		for (iw = 0; iw < rw; iw++)
169			C->A[iw] ^= le64dec(data + 8*iw);
170		keccakf1600(C->A);
171		data += 8*rw;
172		len -= 8*rw;
173	}
174
175	/* Partially fill the buffer with as many words as we can.  */
176	for (iw = 0; iw < len/8; iw++)
177		C->A[rw - C->nb/8 + iw] ^= le64dec(data + 8*iw);
178	C->nb -= 8*iw;
179	data += 8*iw;
180	len -= 8*iw;
181
182partial:
183	/* Partially fill the last word with as many bytes as we can.  */
184	assert(len < 8);
185	assert(0 < C->nb);
186	assert((C->nb % 8) == 0);
187	T = 0;
188	for (ib = 0; ib < len; ib++)
189		T |= (uint64_t)data[ib] << (8*ib);
190	C->A[rw - C->nb/8] ^= T;
191	C->nb -= ib;
192	assert(0 < C->nb);
193}
194
195static void
196sha3_final(uint8_t *h, unsigned d, struct sha3 *C, unsigned rw)
197{
198	unsigned nw, iw;
199
200	assert(d <= 8*25);
201	assert(0 < C->nb);
202
203	/* Append 01, pad with 10*1 up to buffer boundary, LSB first.  */
204	nw = (C->nb + 7)/8;
205	assert(0 < nw);
206	assert(nw <= rw);
207	C->A[rw - nw] ^= (uint64_t)0x06 << (8*(8*nw - C->nb));
208	C->A[rw - 1] ^= 0x8000000000000000ULL;
209
210	/* Permute one last time.  */
211	keccakf1600(C->A);
212
213	/* Reveal the first 8d bits of state, forget 1600-8d of them.  */
214	for (iw = 0; iw < d/8; iw++)
215		le64enc(h + 8*iw, C->A[iw]);
216	h += 8*iw;
217	d -= 8*iw;
218	if (0 < d) {
219		/* For SHA3-224, we need to expose a partial word.  */
220		uint64_t T = C->A[iw];
221		do {
222			*h++ = T & 0xff;
223			T >>= 8;
224		} while (--d);
225	}
226	(void)explicit_memset(C->A, 0, sizeof C->A);
227	C->nb = 0;
228}
229
230static void
231shake_final(uint8_t *h, size_t d, struct sha3 *C, unsigned rw)
232{
233	unsigned nw, iw;
234
235	assert(0 < C->nb);
236
237	/* Append 1111, pad with 10*1 up to buffer boundary, LSB first.  */
238	nw = (C->nb + 7)/8;
239	assert(0 < nw);
240	assert(nw <= rw);
241	C->A[rw - nw] ^= (uint64_t)0x1f << (8*(8*nw - C->nb));
242	C->A[rw - 1] ^= 0x8000000000000000ULL;
243
244	/* Permute, reveal first rw words of state, repeat.  */
245	while (8*rw <= d) {
246		keccakf1600(C->A);
247		for (iw = 0; iw < rw; iw++)
248			le64enc(h + 8*iw, C->A[iw]);
249		h += 8*iw;
250		d -= 8*iw;
251	}
252
253	/*
254	 * If 8*rw (the output rate in bytes) does not divide d, more
255	 * words are wanted: permute again and reveal a little more.
256	 */
257	if (0 < d) {
258		keccakf1600(C->A);
259		for (iw = 0; iw < d/8; iw++)
260			le64enc(h + 8*iw, C->A[iw]);
261		h += 8*iw;
262		d -= 8*iw;
263
264		/*
265		 * If 8 does not divide d, more bytes are wanted:
266		 * reveal them.
267		 */
268		if (0 < d) {
269			uint64_t T = C->A[iw];
270			do {
271				*h++ = T & 0xff;
272				T >>= 8;
273			} while (--d);
274		}
275	}
276
277	(void)explicit_memset(C->A, 0, sizeof C->A);
278	C->nb = 0;
279}
280
281void
282SHA3_224_Init(SHA3_224_CTX *C)
283{
284
285	sha3_init(&C->C224, sha3_rate(SHA3_224_DIGEST_LENGTH));
286}
287
288void
289SHA3_224_Update(SHA3_224_CTX *C, const uint8_t *data, size_t len)
290{
291
292	sha3_update(&C->C224, data, len, sha3_rate(SHA3_224_DIGEST_LENGTH));
293}
294
295void
296SHA3_224_Final(uint8_t h[SHA3_224_DIGEST_LENGTH], SHA3_224_CTX *C)
297{
298
299	sha3_final(h, SHA3_224_DIGEST_LENGTH, &C->C224,
300	    sha3_rate(SHA3_224_DIGEST_LENGTH));
301}
302
303void
304SHA3_256_Init(SHA3_256_CTX *C)
305{
306
307	sha3_init(&C->C256, sha3_rate(SHA3_256_DIGEST_LENGTH));
308}
309
310void
311SHA3_256_Update(SHA3_256_CTX *C, const uint8_t *data, size_t len)
312{
313
314	sha3_update(&C->C256, data, len, sha3_rate(SHA3_256_DIGEST_LENGTH));
315}
316
317void
318SHA3_256_Final(uint8_t h[SHA3_256_DIGEST_LENGTH], SHA3_256_CTX *C)
319{
320
321	sha3_final(h, SHA3_256_DIGEST_LENGTH, &C->C256,
322	    sha3_rate(SHA3_256_DIGEST_LENGTH));
323}
324
325void
326SHA3_384_Init(SHA3_384_CTX *C)
327{
328
329	sha3_init(&C->C384, sha3_rate(SHA3_384_DIGEST_LENGTH));
330}
331
332void
333SHA3_384_Update(SHA3_384_CTX *C, const uint8_t *data, size_t len)
334{
335
336	sha3_update(&C->C384, data, len, sha3_rate(SHA3_384_DIGEST_LENGTH));
337}
338
339void
340SHA3_384_Final(uint8_t h[SHA3_384_DIGEST_LENGTH], SHA3_384_CTX *C)
341{
342
343	sha3_final(h, SHA3_384_DIGEST_LENGTH, &C->C384,
344	    sha3_rate(SHA3_384_DIGEST_LENGTH));
345}
346
347void
348SHA3_512_Init(SHA3_512_CTX *C)
349{
350
351	sha3_init(&C->C512, sha3_rate(SHA3_512_DIGEST_LENGTH));
352}
353
354void
355SHA3_512_Update(SHA3_512_CTX *C, const uint8_t *data, size_t len)
356{
357
358	sha3_update(&C->C512, data, len, sha3_rate(SHA3_512_DIGEST_LENGTH));
359}
360
361void
362SHA3_512_Final(uint8_t h[SHA3_512_DIGEST_LENGTH], SHA3_512_CTX *C)
363{
364
365	sha3_final(h, SHA3_512_DIGEST_LENGTH, &C->C512,
366	    sha3_rate(SHA3_512_DIGEST_LENGTH));
367}
368
369void
370SHAKE128_Init(SHAKE128_CTX *C)
371{
372
373	sha3_init(&C->C128, sha3_rate(128/8));
374}
375
376void
377SHAKE128_Update(SHAKE128_CTX *C, const uint8_t *data, size_t len)
378{
379
380	sha3_update(&C->C128, data, len, sha3_rate(128/8));
381}
382
383void
384SHAKE128_Final(uint8_t *h, size_t d, SHAKE128_CTX *C)
385{
386
387	shake_final(h, d, &C->C128, sha3_rate(128/8));
388}
389
390void
391SHAKE256_Init(SHAKE256_CTX *C)
392{
393
394	sha3_init(&C->C256, sha3_rate(256/8));
395}
396
397void
398SHAKE256_Update(SHAKE256_CTX *C, const uint8_t *data, size_t len)
399{
400
401	sha3_update(&C->C256, data, len, sha3_rate(256/8));
402}
403
404void
405SHAKE256_Final(uint8_t *h, size_t d, SHAKE256_CTX *C)
406{
407
408	shake_final(h, d, &C->C256, sha3_rate(256/8));
409}
410
411static void
412sha3_selftest_prng(void *buf, size_t len, uint32_t seed)
413{
414	uint8_t *p = buf;
415	size_t n = len;
416	uint32_t t, a, b;
417
418	a = 0xdead4bad * seed;
419	b = 1;
420
421	while (n--) {
422		t = a + b;
423		*p++ = t >> 24;
424		a = b;
425		b = t;
426	}
427}
428
429int
430SHA3_Selftest(void)
431{
432	static const uint8_t d224_0[] = { /* SHA3-224(0-bit) */
433		0x6b,0x4e,0x03,0x42,0x36,0x67,0xdb,0xb7,
434		0x3b,0x6e,0x15,0x45,0x4f,0x0e,0xb1,0xab,
435		0xd4,0x59,0x7f,0x9a,0x1b,0x07,0x8e,0x3f,
436		0x5b,0x5a,0x6b,0xc7,
437	};
438	static const uint8_t d256_0[] = { /* SHA3-256(0-bit) */
439		0xa7,0xff,0xc6,0xf8,0xbf,0x1e,0xd7,0x66,
440		0x51,0xc1,0x47,0x56,0xa0,0x61,0xd6,0x62,
441		0xf5,0x80,0xff,0x4d,0xe4,0x3b,0x49,0xfa,
442		0x82,0xd8,0x0a,0x4b,0x80,0xf8,0x43,0x4a,
443	};
444	static const uint8_t d384_0[] = { /* SHA3-384(0-bit) */
445		0x0c,0x63,0xa7,0x5b,0x84,0x5e,0x4f,0x7d,
446		0x01,0x10,0x7d,0x85,0x2e,0x4c,0x24,0x85,
447		0xc5,0x1a,0x50,0xaa,0xaa,0x94,0xfc,0x61,
448		0x99,0x5e,0x71,0xbb,0xee,0x98,0x3a,0x2a,
449		0xc3,0x71,0x38,0x31,0x26,0x4a,0xdb,0x47,
450		0xfb,0x6b,0xd1,0xe0,0x58,0xd5,0xf0,0x04,
451	};
452	static const uint8_t d512_0[] = { /* SHA3-512(0-bit) */
453		0xa6,0x9f,0x73,0xcc,0xa2,0x3a,0x9a,0xc5,
454		0xc8,0xb5,0x67,0xdc,0x18,0x5a,0x75,0x6e,
455		0x97,0xc9,0x82,0x16,0x4f,0xe2,0x58,0x59,
456		0xe0,0xd1,0xdc,0xc1,0x47,0x5c,0x80,0xa6,
457		0x15,0xb2,0x12,0x3a,0xf1,0xf5,0xf9,0x4c,
458		0x11,0xe3,0xe9,0x40,0x2c,0x3a,0xc5,0x58,
459		0xf5,0x00,0x19,0x9d,0x95,0xb6,0xd3,0xe3,
460		0x01,0x75,0x85,0x86,0x28,0x1d,0xcd,0x26,
461	};
462	static const uint8_t shake128_0_41[] = { /* SHAKE128(0-bit, 41) */
463		0x7f,0x9c,0x2b,0xa4,0xe8,0x8f,0x82,0x7d,
464		0x61,0x60,0x45,0x50,0x76,0x05,0x85,0x3e,
465		0xd7,0x3b,0x80,0x93,0xf6,0xef,0xbc,0x88,
466		0xeb,0x1a,0x6e,0xac,0xfa,0x66,0xef,0x26,
467		0x3c,0xb1,0xee,0xa9,0x88,0x00,0x4b,0x93,0x10,
468	};
469	static const uint8_t shake256_0_73[] = { /* SHAKE256(0-bit, 73) */
470		0x46,0xb9,0xdd,0x2b,0x0b,0xa8,0x8d,0x13,
471		0x23,0x3b,0x3f,0xeb,0x74,0x3e,0xeb,0x24,
472		0x3f,0xcd,0x52,0xea,0x62,0xb8,0x1b,0x82,
473		0xb5,0x0c,0x27,0x64,0x6e,0xd5,0x76,0x2f,
474		0xd7,0x5d,0xc4,0xdd,0xd8,0xc0,0xf2,0x00,
475		0xcb,0x05,0x01,0x9d,0x67,0xb5,0x92,0xf6,
476		0xfc,0x82,0x1c,0x49,0x47,0x9a,0xb4,0x86,
477		0x40,0x29,0x2e,0xac,0xb3,0xb7,0xc4,0xbe,
478		0x14,0x1e,0x96,0x61,0x6f,0xb1,0x39,0x57,0x69,
479	};
480	static const uint8_t d224_1600[] = { /* SHA3-224(200 * 0xa3) */
481		0x93,0x76,0x81,0x6a,0xba,0x50,0x3f,0x72,
482		0xf9,0x6c,0xe7,0xeb,0x65,0xac,0x09,0x5d,
483		0xee,0xe3,0xbe,0x4b,0xf9,0xbb,0xc2,0xa1,
484		0xcb,0x7e,0x11,0xe0,
485	};
486	static const uint8_t d256_1600[] = { /* SHA3-256(200 * 0xa3) */
487		0x79,0xf3,0x8a,0xde,0xc5,0xc2,0x03,0x07,
488		0xa9,0x8e,0xf7,0x6e,0x83,0x24,0xaf,0xbf,
489		0xd4,0x6c,0xfd,0x81,0xb2,0x2e,0x39,0x73,
490		0xc6,0x5f,0xa1,0xbd,0x9d,0xe3,0x17,0x87,
491	};
492	static const uint8_t d384_1600[] = { /* SHA3-384(200 * 0xa3) */
493		0x18,0x81,0xde,0x2c,0xa7,0xe4,0x1e,0xf9,
494		0x5d,0xc4,0x73,0x2b,0x8f,0x5f,0x00,0x2b,
495		0x18,0x9c,0xc1,0xe4,0x2b,0x74,0x16,0x8e,
496		0xd1,0x73,0x26,0x49,0xce,0x1d,0xbc,0xdd,
497		0x76,0x19,0x7a,0x31,0xfd,0x55,0xee,0x98,
498		0x9f,0x2d,0x70,0x50,0xdd,0x47,0x3e,0x8f,
499	};
500	static const uint8_t d512_1600[] = { /* SHA3-512(200 * 0xa3) */
501		0xe7,0x6d,0xfa,0xd2,0x20,0x84,0xa8,0xb1,
502		0x46,0x7f,0xcf,0x2f,0xfa,0x58,0x36,0x1b,
503		0xec,0x76,0x28,0xed,0xf5,0xf3,0xfd,0xc0,
504		0xe4,0x80,0x5d,0xc4,0x8c,0xae,0xec,0xa8,
505		0x1b,0x7c,0x13,0xc3,0x0a,0xdf,0x52,0xa3,
506		0x65,0x95,0x84,0x73,0x9a,0x2d,0xf4,0x6b,
507		0xe5,0x89,0xc5,0x1c,0xa1,0xa4,0xa8,0x41,
508		0x6d,0xf6,0x54,0x5a,0x1c,0xe8,0xba,0x00,
509	};
510	static const uint8_t shake128_1600_41[] = {
511		/* SHAKE128(200 * 0xa3, 41) */
512		0x13,0x1a,0xb8,0xd2,0xb5,0x94,0x94,0x6b,
513		0x9c,0x81,0x33,0x3f,0x9b,0xb6,0xe0,0xce,
514		0x75,0xc3,0xb9,0x31,0x04,0xfa,0x34,0x69,
515		0xd3,0x91,0x74,0x57,0x38,0x5d,0xa0,0x37,
516		0xcf,0x23,0x2e,0xf7,0x16,0x4a,0x6d,0x1e,0xb4,
517	};
518	static const uint8_t shake256_1600_73[] = {
519		/* SHAKE256(200 * 0xa3, 73) */
520		0xcd,0x8a,0x92,0x0e,0xd1,0x41,0xaa,0x04,
521		0x07,0xa2,0x2d,0x59,0x28,0x86,0x52,0xe9,
522		0xd9,0xf1,0xa7,0xee,0x0c,0x1e,0x7c,0x1c,
523		0xa6,0x99,0x42,0x4d,0xa8,0x4a,0x90,0x4d,
524		0x2d,0x70,0x0c,0xaa,0xe7,0x39,0x6e,0xce,
525		0x96,0x60,0x44,0x40,0x57,0x7d,0xa4,0xf3,
526		0xaa,0x22,0xae,0xb8,0x85,0x7f,0x96,0x1c,
527		0x4c,0xd8,0xe0,0x6f,0x0a,0xe6,0x61,0x0b,
528		0x10,0x48,0xa7,0xf6,0x4e,0x10,0x74,0xcd,0x62,
529	};
530	static const uint8_t d0[] = {
531		0x5d,0x3e,0x45,0xdd,0x9b,0x6b,0xda,0xf8,
532		0xe6,0xe6,0xb8,0x72,0xfb,0xc5,0x0d,0x0a,
533		0x4f,0x52,0x65,0xb4,0x11,0xf1,0xa1,0x0c,
534		0x00,0xa4,0x74,0x6c,0x0f,0xc0,0xdc,0xe0,
535		0x97,0x73,0xd6,0x70,0xaf,0xd4,0x64,0x0b,
536		0x8c,0x52,0x32,0x4c,0x87,0x8c,0xfa,0x4a,
537		0xdc,0x11,0x66,0x91,0x66,0x5a,0x1e,0xa4,
538		0xd6,0x69,0x97,0xc7,0xcb,0xe2,0x73,0xca,
539	};
540	static const unsigned mlen[] = { 0, 3, 128, 129, 255 };
541	uint8_t m[255], d[73];
542	struct sha3 sha3;
543	SHA3_224_CTX *sha3224 = (SHA3_224_CTX *)&sha3;
544	SHA3_256_CTX *sha3256 = (SHA3_256_CTX *)&sha3;
545	SHA3_384_CTX *sha3384 = (SHA3_384_CTX *)&sha3;
546	SHA3_512_CTX *sha3512 = (SHA3_512_CTX *)&sha3;
547	SHAKE128_CTX *shake128 = (SHAKE128_CTX *)&sha3;
548	SHAKE256_CTX *shake256 = (SHAKE256_CTX *)&sha3;
549	SHA3_512_CTX ctx;
550	unsigned mi;
551
552	/*
553	 * NIST test vectors from
554	 * <http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing>:
555	 * 0-bit, 1600-bit repeated 0xa3 (= 0b10100011).
556	 */
557	SHA3_224_Init(sha3224);
558	SHA3_224_Final(d, sha3224);
559	if (memcmp(d, d224_0, 28) != 0)
560		return -1;
561	SHA3_256_Init(sha3256);
562	SHA3_256_Final(d, sha3256);
563	if (memcmp(d, d256_0, 32) != 0)
564		return -1;
565	SHA3_384_Init(sha3384);
566	SHA3_384_Final(d, sha3384);
567	if (memcmp(d, d384_0, 48) != 0)
568		return -1;
569	SHA3_512_Init(sha3512);
570	SHA3_512_Final(d, sha3512);
571	if (memcmp(d, d512_0, 64) != 0)
572		return -1;
573	SHAKE128_Init(shake128);
574	SHAKE128_Final(d, 41, shake128);
575	if (memcmp(d, shake128_0_41, 41) != 0)
576		return -1;
577	SHAKE256_Init(shake256);
578	SHAKE256_Final(d, 73, shake256);
579	if (memcmp(d, shake256_0_73, 73) != 0)
580		return -1;
581
582	(void)memset(m, 0xa3, 200);
583	SHA3_224_Init(sha3224);
584	SHA3_224_Update(sha3224, m, 200);
585	SHA3_224_Final(d, sha3224);
586	if (memcmp(d, d224_1600, 28) != 0)
587		return -1;
588	SHA3_256_Init(sha3256);
589	SHA3_256_Update(sha3256, m, 200);
590	SHA3_256_Final(d, sha3256);
591	if (memcmp(d, d256_1600, 32) != 0)
592		return -1;
593	SHA3_384_Init(sha3384);
594	SHA3_384_Update(sha3384, m, 200);
595	SHA3_384_Final(d, sha3384);
596	if (memcmp(d, d384_1600, 48) != 0)
597		return -1;
598	SHA3_512_Init(sha3512);
599	SHA3_512_Update(sha3512, m, 200);
600	SHA3_512_Final(d, sha3512);
601	if (memcmp(d, d512_1600, 64) != 0)
602		return -1;
603	SHAKE128_Init(shake128);
604	SHAKE128_Update(shake128, m, 200);
605	SHAKE128_Final(d, 41, shake128);
606	if (memcmp(d, shake128_1600_41, 41) != 0)
607		return -1;
608	SHAKE256_Init(shake256);
609	SHAKE256_Update(shake256, m, 200);
610	SHAKE256_Final(d, 73, shake256);
611	if (memcmp(d, shake256_1600_73, 73) != 0)
612		return -1;
613
614	/*
615	 * Hand-crufted test vectors with unaligned message lengths.
616	 */
617	SHA3_512_Init(&ctx);
618	for (mi = 0; mi < arraycount(mlen); mi++) {
619		sha3_selftest_prng(m, mlen[mi], (224/8)*mlen[mi]);
620		SHA3_224_Init(sha3224);
621		SHA3_224_Update(sha3224, m, mlen[mi]);
622		SHA3_224_Final(d, sha3224);
623		SHA3_512_Update(&ctx, d, 224/8);
624	}
625	for (mi = 0; mi < arraycount(mlen); mi++) {
626		sha3_selftest_prng(m, mlen[mi], (256/8)*mlen[mi]);
627		SHA3_256_Init(sha3256);
628		SHA3_256_Update(sha3256, m, mlen[mi]);
629		SHA3_256_Final(d, sha3256);
630		SHA3_512_Update(&ctx, d, 256/8);
631	}
632	for (mi = 0; mi < arraycount(mlen); mi++) {
633		sha3_selftest_prng(m, mlen[mi], (384/8)*mlen[mi]);
634		SHA3_384_Init(sha3384);
635		SHA3_384_Update(sha3384, m, mlen[mi]);
636		SHA3_384_Final(d, sha3384);
637		SHA3_512_Update(&ctx, d, 384/8);
638	}
639	for (mi = 0; mi < arraycount(mlen); mi++) {
640		sha3_selftest_prng(m, mlen[mi], (512/8)*mlen[mi]);
641		SHA3_512_Init(sha3512);
642		SHA3_512_Update(sha3512, m, mlen[mi]);
643		SHA3_512_Final(d, sha3512);
644		SHA3_512_Update(&ctx, d, 512/8);
645	}
646	SHA3_512_Final(d, &ctx);
647	if (memcmp(d, d0, 64) != 0)
648		return -1;
649
650	return 0;
651}
652