1/*	$NetBSD: uvm_glue.c,v 1.156.2.2 2012/04/09 17:58:11 riz Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56 *  School of Computer Science
57 *  Carnegie Mellon University
58 *  Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64#include <sys/cdefs.h>
65__KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.156.2.2 2012/04/09 17:58:11 riz Exp $");
66
67#include "opt_kgdb.h"
68#include "opt_kstack.h"
69#include "opt_uvmhist.h"
70
71/*
72 * uvm_glue.c: glue functions
73 */
74
75#include <sys/param.h>
76#include <sys/kernel.h>
77
78#include <sys/systm.h>
79#include <sys/proc.h>
80#include <sys/resourcevar.h>
81#include <sys/buf.h>
82#include <sys/syncobj.h>
83#include <sys/cpu.h>
84#include <sys/atomic.h>
85#include <sys/lwp.h>
86
87#include <uvm/uvm.h>
88
89/*
90 * uvm_kernacc: test if kernel can access a memory region.
91 *
92 * => Currently used only by /dev/kmem driver (dev/mm.c).
93 */
94bool
95uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
96{
97	vaddr_t saddr = trunc_page((vaddr_t)addr);
98	vaddr_t eaddr = round_page(saddr + len);
99	bool rv;
100
101	vm_map_lock_read(kernel_map);
102	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
103	vm_map_unlock_read(kernel_map);
104
105	return rv;
106}
107
108#ifdef KGDB
109/*
110 * Change protections on kernel pages from addr to addr+len
111 * (presumably so debugger can plant a breakpoint).
112 *
113 * We force the protection change at the pmap level.  If we were
114 * to use vm_map_protect a change to allow writing would be lazily-
115 * applied meaning we would still take a protection fault, something
116 * we really don't want to do.  It would also fragment the kernel
117 * map unnecessarily.  We cannot use pmap_protect since it also won't
118 * enforce a write-enable request.  Using pmap_enter is the only way
119 * we can ensure the change takes place properly.
120 */
121void
122uvm_chgkprot(void *addr, size_t len, int rw)
123{
124	vm_prot_t prot;
125	paddr_t pa;
126	vaddr_t sva, eva;
127
128	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
129	eva = round_page((vaddr_t)addr + len);
130	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
131		/*
132		 * Extract physical address for the page.
133		 */
134		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
135			panic("%s: invalid page", __func__);
136		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
137	}
138	pmap_update(pmap_kernel());
139}
140#endif
141
142/*
143 * uvm_vslock: wire user memory for I/O
144 *
145 * - called from physio and sys___sysctl
146 * - XXXCDC: consider nuking this (or making it a macro?)
147 */
148
149int
150uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
151{
152	struct vm_map *map;
153	vaddr_t start, end;
154	int error;
155
156	map = &vs->vm_map;
157	start = trunc_page((vaddr_t)addr);
158	end = round_page((vaddr_t)addr + len);
159	error = uvm_fault_wire(map, start, end, access_type, 0);
160	return error;
161}
162
163/*
164 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
165 *
166 * - called from physio and sys___sysctl
167 * - XXXCDC: consider nuking this (or making it a macro?)
168 */
169
170void
171uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
172{
173	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
174		round_page((vaddr_t)addr + len));
175}
176
177/*
178 * uvm_proc_fork: fork a virtual address space
179 *
180 * - the address space is copied as per parent map's inherit values
181 */
182void
183uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
184{
185
186	if (shared == true) {
187		p2->p_vmspace = NULL;
188		uvmspace_share(p1, p2);
189	} else {
190		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
191	}
192
193	cpu_proc_fork(p1, p2);
194}
195
196/*
197 * uvm_lwp_fork: fork a thread
198 *
199 * - a new PCB structure is allocated for the child process,
200 *	and filled in by MD layer
201 * - if specified, the child gets a new user stack described by
202 *	stack and stacksize
203 * - NOTE: the kernel stack may be at a different location in the child
204 *	process, and thus addresses of automatic variables may be invalid
205 *	after cpu_lwp_fork returns in the child process.  We do nothing here
206 *	after cpu_lwp_fork returns.
207 */
208void
209uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
210    void (*func)(void *), void *arg)
211{
212
213	/* Fill stack with magic number. */
214	kstack_setup_magic(l2);
215
216	/*
217	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
218 	 * to run.  If this is a normal user fork, the child will exit
219	 * directly to user mode via child_return() on its first time
220	 * slice and will not return here.  If this is a kernel thread,
221	 * the specified entry point will be executed.
222	 */
223	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
224
225	/* Inactive emap for new LWP. */
226	l2->l_emap_gen = UVM_EMAP_INACTIVE;
227}
228
229#ifndef USPACE_ALIGN
230#define	USPACE_ALIGN	0
231#endif
232
233static pool_cache_t uvm_uarea_cache;
234#if defined(__HAVE_CPU_UAREA_ROUTINES)
235static pool_cache_t uvm_uarea_system_cache;
236#else
237#define uvm_uarea_system_cache uvm_uarea_cache
238#endif
239
240static void *
241uarea_poolpage_alloc(struct pool *pp, int flags)
242{
243#if defined(PMAP_MAP_POOLPAGE)
244	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
245		struct vm_page *pg;
246		vaddr_t va;
247
248#if defined(PMAP_ALLOC_POOLPAGE)
249		pg = PMAP_ALLOC_POOLPAGE(
250		   ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
251#else
252		pg = uvm_pagealloc(NULL, 0, NULL,
253		   ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
254#endif
255		if (pg == NULL)
256			return NULL;
257		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
258		if (va == 0)
259			uvm_pagefree(pg);
260		return (void *)va;
261	}
262#endif
263#if defined(__HAVE_CPU_UAREA_ROUTINES)
264	void *va = cpu_uarea_alloc(false);
265	if (va)
266		return (void *)va;
267#endif
268	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
269	    USPACE_ALIGN, UVM_KMF_WIRED |
270	    ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
271	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
272}
273
274static void
275uarea_poolpage_free(struct pool *pp, void *addr)
276{
277#if defined(PMAP_MAP_POOLPAGE)
278	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
279		paddr_t pa;
280
281		pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
282		KASSERT(pa != 0);
283		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
284		return;
285	}
286#endif
287#if defined(__HAVE_CPU_UAREA_ROUTINES)
288	if (cpu_uarea_free(addr))
289		return;
290#endif
291	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
292	    UVM_KMF_WIRED);
293}
294
295static struct pool_allocator uvm_uarea_allocator = {
296	.pa_alloc = uarea_poolpage_alloc,
297	.pa_free = uarea_poolpage_free,
298	.pa_pagesz = USPACE,
299};
300
301#if defined(__HAVE_CPU_UAREA_ROUTINES)
302static void *
303uarea_system_poolpage_alloc(struct pool *pp, int flags)
304{
305	void * const va = cpu_uarea_alloc(true);
306	if (va != NULL)
307		return va;
308
309	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
310	    USPACE_ALIGN, UVM_KMF_WIRED |
311	    ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
312	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
313}
314
315static void
316uarea_system_poolpage_free(struct pool *pp, void *addr)
317{
318	if (cpu_uarea_free(addr))
319		return;
320
321	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
322	    UVM_KMF_WIRED);
323}
324
325static struct pool_allocator uvm_uarea_system_allocator = {
326	.pa_alloc = uarea_system_poolpage_alloc,
327	.pa_free = uarea_system_poolpage_free,
328	.pa_pagesz = USPACE,
329};
330#endif /* __HAVE_CPU_UAREA_ROUTINES */
331
332void
333uvm_uarea_init(void)
334{
335	int flags = PR_NOTOUCH;
336
337	/*
338	 * specify PR_NOALIGN unless the alignment provided by
339	 * the backend (USPACE_ALIGN) is sufficient to provide
340	 * pool page size (UPSACE) alignment.
341	 */
342
343	if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
344	    (USPACE_ALIGN % USPACE) != 0) {
345		flags |= PR_NOALIGN;
346	}
347
348	uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
349	    "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
350#if defined(__HAVE_CPU_UAREA_ROUTINES)
351	uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
352	    0, flags, "uareasys", &uvm_uarea_system_allocator,
353	    IPL_NONE, NULL, NULL, NULL);
354#endif
355}
356
357/*
358 * uvm_uarea_alloc: allocate a u-area
359 */
360
361vaddr_t
362uvm_uarea_alloc(void)
363{
364
365	return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
366}
367
368vaddr_t
369uvm_uarea_system_alloc(void)
370{
371
372	return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
373}
374
375/*
376 * uvm_uarea_free: free a u-area
377 */
378
379void
380uvm_uarea_free(vaddr_t uaddr)
381{
382
383	pool_cache_put(uvm_uarea_cache, (void *)uaddr);
384}
385
386void
387uvm_uarea_system_free(vaddr_t uaddr)
388{
389
390	pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
391}
392
393vaddr_t
394uvm_lwp_getuarea(lwp_t *l)
395{
396
397	return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
398}
399
400void
401uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
402{
403
404	l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
405}
406
407/*
408 * uvm_proc_exit: exit a virtual address space
409 *
410 * - borrow proc0's address space because freeing the vmspace
411 *   of the dead process may block.
412 */
413
414void
415uvm_proc_exit(struct proc *p)
416{
417	struct lwp *l = curlwp; /* XXX */
418	struct vmspace *ovm;
419
420	KASSERT(p == l->l_proc);
421	ovm = p->p_vmspace;
422	KASSERT(ovm != NULL);
423
424	if (__predict_false(ovm == proc0.p_vmspace))
425		return;
426
427	/*
428	 * borrow proc0's address space.
429	 */
430	KPREEMPT_DISABLE(l);
431	pmap_deactivate(l);
432	p->p_vmspace = proc0.p_vmspace;
433	pmap_activate(l);
434	KPREEMPT_ENABLE(l);
435
436	uvmspace_free(ovm);
437}
438
439void
440uvm_lwp_exit(struct lwp *l)
441{
442	vaddr_t va = uvm_lwp_getuarea(l);
443	bool system = (l->l_flag & LW_SYSTEM) != 0;
444
445	if (system)
446		uvm_uarea_system_free(va);
447	else
448		uvm_uarea_free(va);
449#ifdef DIAGNOSTIC
450	uvm_lwp_setuarea(l, (vaddr_t)NULL);
451#endif
452}
453
454/*
455 * uvm_init_limit: init per-process VM limits
456 *
457 * - called for process 0 and then inherited by all others.
458 */
459
460void
461uvm_init_limits(struct proc *p)
462{
463
464	/*
465	 * Set up the initial limits on process VM.  Set the maximum
466	 * resident set size to be all of (reasonably) available memory.
467	 * This causes any single, large process to start random page
468	 * replacement once it fills memory.
469	 */
470
471	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
472	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
473	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
474	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
475	p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
476	p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
477	p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(
478	    VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
479}
480
481/*
482 * uvm_scheduler: process zero main loop.
483 */
484
485extern struct loadavg averunnable;
486
487void
488uvm_scheduler(void)
489{
490	lwp_t *l = curlwp;
491
492	lwp_lock(l);
493	l->l_priority = PRI_VM;
494	l->l_class = SCHED_FIFO;
495	lwp_unlock(l);
496
497	for (;;) {
498		sched_pstats();
499		(void)kpause("uvm", false, hz, NULL);
500	}
501}
502