1/*	$NetBSD$	*/
2
3/*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant@hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31/*
32 * Copyright (c) 1986, 1989, 1991, 1993, 1995
33 *	The Regents of the University of California.  All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 *    notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 *    notice, this list of conditions and the following disclaimer in the
42 *    documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 *    may be used to endorse or promote products derived from this software
45 *    without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
60 */
61
62#include <sys/cdefs.h>
63__KERNEL_RCSID(0, "$NetBSD$");
64
65#ifdef _KERNEL_OPT
66#include "opt_compat_netbsd.h"
67#include "opt_uvm_page_trkown.h"
68#endif
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/namei.h>
73#include <sys/resourcevar.h>
74#include <sys/kernel.h>
75#include <sys/file.h>
76#include <sys/stat.h>
77#include <sys/buf.h>
78#include <sys/proc.h>
79#include <sys/mount.h>
80#include <sys/vnode.h>
81#include <sys/pool.h>
82#include <sys/signalvar.h>
83#include <sys/kauth.h>
84#include <sys/syslog.h>
85#include <sys/fstrans.h>
86
87#include <miscfs/fifofs/fifo.h>
88#include <miscfs/genfs/genfs.h>
89#include <miscfs/specfs/specdev.h>
90
91#include <ufs/ufs/inode.h>
92#include <ufs/ufs/dir.h>
93#include <ufs/ufs/ufsmount.h>
94#include <ufs/ufs/ufs_bswap.h>
95#include <ufs/ufs/ufs_extern.h>
96
97#include <uvm/uvm.h>
98#include <uvm/uvm_pmap.h>
99#include <uvm/uvm_stat.h>
100#include <uvm/uvm_pager.h>
101
102#include <ufs/lfs/lfs.h>
103#include <ufs/lfs/lfs_extern.h>
104
105extern pid_t lfs_writer_daemon;
106int lfs_ignore_lazy_sync = 1;
107
108/* Global vfs data structures for lfs. */
109int (**lfs_vnodeop_p)(void *);
110const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
111	{ &vop_default_desc, vn_default_error },
112	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
113	{ &vop_create_desc, lfs_create },		/* create */
114	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
115	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
116	{ &vop_open_desc, ufs_open },			/* open */
117	{ &vop_close_desc, lfs_close },			/* close */
118	{ &vop_access_desc, ufs_access },		/* access */
119	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
120	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
121	{ &vop_read_desc, lfs_read },			/* read */
122	{ &vop_write_desc, lfs_write },			/* write */
123	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
124	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
125	{ &vop_poll_desc, ufs_poll },			/* poll */
126	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
127	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
128	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
129	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
130	{ &vop_seek_desc, ufs_seek },			/* seek */
131	{ &vop_remove_desc, lfs_remove },		/* remove */
132	{ &vop_link_desc, lfs_link },			/* link */
133	{ &vop_rename_desc, lfs_rename },		/* rename */
134	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
135	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
136	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
137	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
138	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
139	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
140	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
141	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
142	{ &vop_lock_desc, ufs_lock },			/* lock */
143	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
144	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
145	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
146	{ &vop_print_desc, ufs_print },			/* print */
147	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
148	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
149	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
150	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
151	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
152	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
153	{ NULL, NULL }
154};
155const struct vnodeopv_desc lfs_vnodeop_opv_desc =
156	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
157
158int (**lfs_specop_p)(void *);
159const struct vnodeopv_entry_desc lfs_specop_entries[] = {
160	{ &vop_default_desc, vn_default_error },
161	{ &vop_lookup_desc, spec_lookup },		/* lookup */
162	{ &vop_create_desc, spec_create },		/* create */
163	{ &vop_mknod_desc, spec_mknod },		/* mknod */
164	{ &vop_open_desc, spec_open },			/* open */
165	{ &vop_close_desc, lfsspec_close },		/* close */
166	{ &vop_access_desc, ufs_access },		/* access */
167	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
168	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
169	{ &vop_read_desc, ufsspec_read },		/* read */
170	{ &vop_write_desc, ufsspec_write },		/* write */
171	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
172	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
173	{ &vop_poll_desc, spec_poll },			/* poll */
174	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
175	{ &vop_revoke_desc, spec_revoke },		/* revoke */
176	{ &vop_mmap_desc, spec_mmap },			/* mmap */
177	{ &vop_fsync_desc, spec_fsync },		/* fsync */
178	{ &vop_seek_desc, spec_seek },			/* seek */
179	{ &vop_remove_desc, spec_remove },		/* remove */
180	{ &vop_link_desc, spec_link },			/* link */
181	{ &vop_rename_desc, spec_rename },		/* rename */
182	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
183	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
184	{ &vop_symlink_desc, spec_symlink },		/* symlink */
185	{ &vop_readdir_desc, spec_readdir },		/* readdir */
186	{ &vop_readlink_desc, spec_readlink },		/* readlink */
187	{ &vop_abortop_desc, spec_abortop },		/* abortop */
188	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
189	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
190	{ &vop_lock_desc, ufs_lock },			/* lock */
191	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
192	{ &vop_bmap_desc, spec_bmap },			/* bmap */
193	{ &vop_strategy_desc, spec_strategy },		/* strategy */
194	{ &vop_print_desc, ufs_print },			/* print */
195	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
196	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
197	{ &vop_advlock_desc, spec_advlock },		/* advlock */
198	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
199	{ &vop_getpages_desc, spec_getpages },		/* getpages */
200	{ &vop_putpages_desc, spec_putpages },		/* putpages */
201	{ NULL, NULL }
202};
203const struct vnodeopv_desc lfs_specop_opv_desc =
204	{ &lfs_specop_p, lfs_specop_entries };
205
206int (**lfs_fifoop_p)(void *);
207const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
208	{ &vop_default_desc, vn_default_error },
209	{ &vop_lookup_desc, vn_fifo_bypass },		/* lookup */
210	{ &vop_create_desc, vn_fifo_bypass },		/* create */
211	{ &vop_mknod_desc, vn_fifo_bypass },		/* mknod */
212	{ &vop_open_desc, vn_fifo_bypass },		/* open */
213	{ &vop_close_desc, lfsfifo_close },		/* close */
214	{ &vop_access_desc, ufs_access },		/* access */
215	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
216	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
217	{ &vop_read_desc, ufsfifo_read },		/* read */
218	{ &vop_write_desc, ufsfifo_write },		/* write */
219	{ &vop_ioctl_desc, vn_fifo_bypass },		/* ioctl */
220	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
221	{ &vop_poll_desc, vn_fifo_bypass },		/* poll */
222	{ &vop_kqfilter_desc, vn_fifo_bypass },		/* kqfilter */
223	{ &vop_revoke_desc, vn_fifo_bypass },		/* revoke */
224	{ &vop_mmap_desc, vn_fifo_bypass },		/* mmap */
225	{ &vop_fsync_desc, vn_fifo_bypass },		/* fsync */
226	{ &vop_seek_desc, vn_fifo_bypass },		/* seek */
227	{ &vop_remove_desc, vn_fifo_bypass },		/* remove */
228	{ &vop_link_desc, vn_fifo_bypass },		/* link */
229	{ &vop_rename_desc, vn_fifo_bypass },		/* rename */
230	{ &vop_mkdir_desc, vn_fifo_bypass },		/* mkdir */
231	{ &vop_rmdir_desc, vn_fifo_bypass },		/* rmdir */
232	{ &vop_symlink_desc, vn_fifo_bypass },		/* symlink */
233	{ &vop_readdir_desc, vn_fifo_bypass },		/* readdir */
234	{ &vop_readlink_desc, vn_fifo_bypass },		/* readlink */
235	{ &vop_abortop_desc, vn_fifo_bypass },		/* abortop */
236	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
237	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
238	{ &vop_lock_desc, ufs_lock },			/* lock */
239	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
240	{ &vop_bmap_desc, vn_fifo_bypass },		/* bmap */
241	{ &vop_strategy_desc, vn_fifo_bypass },		/* strategy */
242	{ &vop_print_desc, ufs_print },			/* print */
243	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
244	{ &vop_pathconf_desc, vn_fifo_bypass },		/* pathconf */
245	{ &vop_advlock_desc, vn_fifo_bypass },		/* advlock */
246	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
247	{ &vop_putpages_desc, vn_fifo_bypass },		/* putpages */
248	{ NULL, NULL }
249};
250const struct vnodeopv_desc lfs_fifoop_opv_desc =
251	{ &lfs_fifoop_p, lfs_fifoop_entries };
252
253static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
254
255#define	LFS_READWRITE
256#include <ufs/ufs/ufs_readwrite.c>
257#undef	LFS_READWRITE
258
259/*
260 * Synch an open file.
261 */
262/* ARGSUSED */
263int
264lfs_fsync(void *v)
265{
266	struct vop_fsync_args /* {
267		struct vnode *a_vp;
268		kauth_cred_t a_cred;
269		int a_flags;
270		off_t offlo;
271		off_t offhi;
272	} */ *ap = v;
273	struct vnode *vp = ap->a_vp;
274	int error, wait;
275	struct inode *ip = VTOI(vp);
276	struct lfs *fs = ip->i_lfs;
277
278	/* If we're mounted read-only, don't try to sync. */
279	if (fs->lfs_ronly)
280		return 0;
281
282	/* If a removed vnode is being cleaned, no need to sync here. */
283	if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
284		return 0;
285
286	/*
287	 * Trickle sync simply adds this vnode to the pager list, as if
288	 * the pagedaemon had requested a pageout.
289	 */
290	if (ap->a_flags & FSYNC_LAZY) {
291		if (lfs_ignore_lazy_sync == 0) {
292			mutex_enter(&lfs_lock);
293			if (!(ip->i_flags & IN_PAGING)) {
294				ip->i_flags |= IN_PAGING;
295				TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
296						  i_lfs_pchain);
297			}
298			wakeup(&lfs_writer_daemon);
299			mutex_exit(&lfs_lock);
300		}
301		return 0;
302	}
303
304	/*
305	 * If a vnode is bring cleaned, flush it out before we try to
306	 * reuse it.  This prevents the cleaner from writing files twice
307	 * in the same partial segment, causing an accounting underflow.
308	 */
309	if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
310		lfs_vflush(vp);
311	}
312
313	wait = (ap->a_flags & FSYNC_WAIT);
314	do {
315		mutex_enter(vp->v_interlock);
316		error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
317				     round_page(ap->a_offhi),
318				     PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
319		if (error == EAGAIN) {
320			mutex_enter(&lfs_lock);
321			mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
322				hz / 100 + 1, &lfs_lock);
323			mutex_exit(&lfs_lock);
324		}
325	} while (error == EAGAIN);
326	if (error)
327		return error;
328
329	if ((ap->a_flags & FSYNC_DATAONLY) == 0)
330		error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
331
332	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
333		int l = 0;
334		error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
335				  curlwp->l_cred);
336	}
337	if (wait && !VPISEMPTY(vp))
338		LFS_SET_UINO(ip, IN_MODIFIED);
339
340	return error;
341}
342
343/*
344 * Take IN_ADIROP off, then call ufs_inactive.
345 */
346int
347lfs_inactive(void *v)
348{
349	struct vop_inactive_args /* {
350		struct vnode *a_vp;
351	} */ *ap = v;
352
353	lfs_unmark_vnode(ap->a_vp);
354
355	/*
356	 * The Ifile is only ever inactivated on unmount.
357	 * Streamline this process by not giving it more dirty blocks.
358	 */
359	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
360		mutex_enter(&lfs_lock);
361		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
362		mutex_exit(&lfs_lock);
363		VOP_UNLOCK(ap->a_vp);
364		return 0;
365	}
366
367#ifdef DEBUG
368	/*
369	 * This might happen on unmount.
370	 * XXX If it happens at any other time, it should be a panic.
371	 */
372	if (ap->a_vp->v_uflag & VU_DIROP) {
373		struct inode *ip = VTOI(ap->a_vp);
374		printf("lfs_inactive: inactivating VU_DIROP? ino = %d\n", (int)ip->i_number);
375	}
376#endif /* DIAGNOSTIC */
377
378	return ufs_inactive(v);
379}
380
381/*
382 * These macros are used to bracket UFS directory ops, so that we can
383 * identify all the pages touched during directory ops which need to
384 * be ordered and flushed atomically, so that they may be recovered.
385 *
386 * Because we have to mark nodes VU_DIROP in order to prevent
387 * the cache from reclaiming them while a dirop is in progress, we must
388 * also manage the number of nodes so marked (otherwise we can run out).
389 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
390 * is decremented during segment write, when VU_DIROP is taken off.
391 */
392#define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
393#define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
394#define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
395#define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
396static int lfs_set_dirop_create(struct vnode *, struct vnode **);
397static int lfs_set_dirop(struct vnode *, struct vnode *);
398
399static int
400lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
401{
402	struct lfs *fs;
403	int error;
404
405	KASSERT(VOP_ISLOCKED(dvp));
406	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
407
408	fs = VTOI(dvp)->i_lfs;
409
410	ASSERT_NO_SEGLOCK(fs);
411	/*
412	 * LFS_NRESERVE calculates direct and indirect blocks as well
413	 * as an inode block; an overestimate in most cases.
414	 */
415	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
416		return (error);
417
418    restart:
419	mutex_enter(&lfs_lock);
420	if (fs->lfs_dirops == 0) {
421		mutex_exit(&lfs_lock);
422		lfs_check(dvp, LFS_UNUSED_LBN, 0);
423		mutex_enter(&lfs_lock);
424	}
425	while (fs->lfs_writer) {
426		error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
427		    "lfs_sdirop", 0, &lfs_lock);
428		if (error == EINTR) {
429			mutex_exit(&lfs_lock);
430			goto unreserve;
431		}
432	}
433	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
434		wakeup(&lfs_writer_daemon);
435		mutex_exit(&lfs_lock);
436		preempt();
437		goto restart;
438	}
439
440	if (lfs_dirvcount > LFS_MAX_DIROP) {
441		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
442		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
443		if ((error = mtsleep(&lfs_dirvcount,
444		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
445		    &lfs_lock)) != 0) {
446			goto unreserve;
447		}
448		goto restart;
449	}
450
451	++fs->lfs_dirops;
452	/* fs->lfs_doifile = 1; */ /* XXX why? --ks */
453	mutex_exit(&lfs_lock);
454
455	/* Hold a reference so SET_ENDOP will be happy */
456	vref(dvp);
457	if (vp) {
458		vref(vp);
459		MARK_VNODE(vp);
460	}
461
462	MARK_VNODE(dvp);
463	return 0;
464
465  unreserve:
466	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
467	return error;
468}
469
470/*
471 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
472 * in getnewvnode(), if we have a stacked filesystem mounted on top
473 * of us.
474 *
475 * NB: this means we have to clear the new vnodes on error.  Fortunately
476 * SET_ENDOP is there to do that for us.
477 */
478static int
479lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
480{
481	int error;
482	struct lfs *fs;
483
484	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
485	ASSERT_NO_SEGLOCK(fs);
486	if (fs->lfs_ronly)
487		return EROFS;
488	if (vpp == NULL) {
489		return lfs_set_dirop(dvp, NULL);
490	}
491	error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
492	if (error) {
493		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
494		      dvp, error));
495		return error;
496	}
497	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
498		ungetnewvnode(*vpp);
499		*vpp = NULL;
500		return error;
501	}
502	return 0;
503}
504
505#define	SET_ENDOP_BASE(fs, dvp, str)					\
506	do {								\
507		mutex_enter(&lfs_lock);				\
508		--(fs)->lfs_dirops;					\
509		if (!(fs)->lfs_dirops) {				\
510			if ((fs)->lfs_nadirop) {			\
511				panic("SET_ENDOP: %s: no dirops but "	\
512					" nadirop=%d", (str),		\
513					(fs)->lfs_nadirop);		\
514			}						\
515			wakeup(&(fs)->lfs_writer);			\
516			mutex_exit(&lfs_lock);				\
517			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
518		} else							\
519			mutex_exit(&lfs_lock);				\
520	} while(0)
521#define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
522	do {								\
523		UNMARK_VNODE(dvp);					\
524		if (nvpp && *nvpp)					\
525			UNMARK_VNODE(*nvpp);				\
526		/* Check for error return to stem vnode leakage */	\
527		if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP))	\
528			ungetnewvnode(*(nvpp));				\
529		SET_ENDOP_BASE((fs), (dvp), (str));			\
530		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
531		vrele(dvp);						\
532	} while(0)
533#define SET_ENDOP_CREATE_AP(ap, str)					\
534	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
535			 (ap)->a_vpp, (str))
536#define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
537	do {								\
538		UNMARK_VNODE(dvp);					\
539		if (ovp)						\
540			UNMARK_VNODE(ovp);				\
541		SET_ENDOP_BASE((fs), (dvp), (str));			\
542		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
543		vrele(dvp);						\
544		if (ovp)						\
545			vrele(ovp);					\
546	} while(0)
547
548void
549lfs_mark_vnode(struct vnode *vp)
550{
551	struct inode *ip = VTOI(vp);
552	struct lfs *fs = ip->i_lfs;
553
554	mutex_enter(&lfs_lock);
555	if (!(ip->i_flag & IN_ADIROP)) {
556		if (!(vp->v_uflag & VU_DIROP)) {
557			mutex_exit(&lfs_lock);
558			mutex_enter(vp->v_interlock);
559			if (lfs_vref(vp) != 0)
560				panic("lfs_mark_vnode: could not vref");
561			mutex_enter(&lfs_lock);
562			++lfs_dirvcount;
563			++fs->lfs_dirvcount;
564			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
565			vp->v_uflag |= VU_DIROP;
566		}
567		++fs->lfs_nadirop;
568		ip->i_flag &= ~IN_CDIROP;
569		ip->i_flag |= IN_ADIROP;
570	} else
571		KASSERT(vp->v_uflag & VU_DIROP);
572	mutex_exit(&lfs_lock);
573}
574
575void
576lfs_unmark_vnode(struct vnode *vp)
577{
578	struct inode *ip = VTOI(vp);
579
580	mutex_enter(&lfs_lock);
581	if (ip && (ip->i_flag & IN_ADIROP)) {
582		KASSERT(vp->v_uflag & VU_DIROP);
583		--ip->i_lfs->lfs_nadirop;
584		ip->i_flag &= ~IN_ADIROP;
585	}
586	mutex_exit(&lfs_lock);
587}
588
589int
590lfs_symlink(void *v)
591{
592	struct vop_symlink_args /* {
593		struct vnode *a_dvp;
594		struct vnode **a_vpp;
595		struct componentname *a_cnp;
596		struct vattr *a_vap;
597		char *a_target;
598	} */ *ap = v;
599	int error;
600
601	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
602		vput(ap->a_dvp);
603		return error;
604	}
605	error = ufs_symlink(ap);
606	SET_ENDOP_CREATE_AP(ap, "symlink");
607	return (error);
608}
609
610int
611lfs_mknod(void *v)
612{
613	struct vop_mknod_args	/* {
614		struct vnode *a_dvp;
615		struct vnode **a_vpp;
616		struct componentname *a_cnp;
617		struct vattr *a_vap;
618	} */ *ap = v;
619	struct vattr *vap = ap->a_vap;
620	struct vnode **vpp = ap->a_vpp;
621	struct inode *ip;
622	int error;
623	struct mount	*mp;
624	ino_t		ino;
625	struct ufs_lookup_results *ulr;
626
627	/* XXX should handle this material another way */
628	ulr = &VTOI(ap->a_dvp)->i_crap;
629	UFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
630
631	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
632		vput(ap->a_dvp);
633		return error;
634	}
635	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
636			      ap->a_dvp, ulr, vpp, ap->a_cnp);
637
638	/* Either way we're done with the dirop at this point */
639	SET_ENDOP_CREATE_AP(ap, "mknod");
640
641	if (error)
642		return (error);
643
644	ip = VTOI(*vpp);
645	mp  = (*vpp)->v_mount;
646	ino = ip->i_number;
647	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
648	if (vap->va_rdev != VNOVAL) {
649		/*
650		 * Want to be able to use this to make badblock
651		 * inodes, so don't truncate the dev number.
652		 */
653#if 0
654		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
655					   UFS_MPNEEDSWAP((*vpp)->v_mount));
656#else
657		ip->i_ffs1_rdev = vap->va_rdev;
658#endif
659	}
660
661	/*
662	 * Call fsync to write the vnode so that we don't have to deal with
663	 * flushing it when it's marked VU_DIROP|VI_XLOCK.
664	 *
665	 * XXX KS - If we can't flush we also can't call vgone(), so must
666	 * return.  But, that leaves this vnode in limbo, also not good.
667	 * Can this ever happen (barring hardware failure)?
668	 */
669	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
670		panic("lfs_mknod: couldn't fsync (ino %llu)",
671		      (unsigned long long)ino);
672		/* return (error); */
673	}
674	/*
675	 * Remove vnode so that it will be reloaded by VFS_VGET and
676	 * checked to see if it is an alias of an existing entry in
677	 * the inode cache.
678	 */
679	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
680
681	VOP_UNLOCK(*vpp);
682	(*vpp)->v_type = VNON;
683	vgone(*vpp);
684	error = VFS_VGET(mp, ino, vpp);
685
686	if (error != 0) {
687		*vpp = NULL;
688		return (error);
689	}
690	return (0);
691}
692
693int
694lfs_create(void *v)
695{
696	struct vop_create_args	/* {
697		struct vnode *a_dvp;
698		struct vnode **a_vpp;
699		struct componentname *a_cnp;
700		struct vattr *a_vap;
701	} */ *ap = v;
702	int error;
703
704	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
705		vput(ap->a_dvp);
706		return error;
707	}
708	error = ufs_create(ap);
709	SET_ENDOP_CREATE_AP(ap, "create");
710	return (error);
711}
712
713int
714lfs_mkdir(void *v)
715{
716	struct vop_mkdir_args	/* {
717		struct vnode *a_dvp;
718		struct vnode **a_vpp;
719		struct componentname *a_cnp;
720		struct vattr *a_vap;
721	} */ *ap = v;
722	int error;
723
724	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
725		vput(ap->a_dvp);
726		return error;
727	}
728	error = ufs_mkdir(ap);
729	SET_ENDOP_CREATE_AP(ap, "mkdir");
730	return (error);
731}
732
733int
734lfs_remove(void *v)
735{
736	struct vop_remove_args	/* {
737		struct vnode *a_dvp;
738		struct vnode *a_vp;
739		struct componentname *a_cnp;
740	} */ *ap = v;
741	struct vnode *dvp, *vp;
742	struct inode *ip;
743	int error;
744
745	dvp = ap->a_dvp;
746	vp = ap->a_vp;
747	ip = VTOI(vp);
748	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
749		if (dvp == vp)
750			vrele(vp);
751		else
752			vput(vp);
753		vput(dvp);
754		return error;
755	}
756	error = ufs_remove(ap);
757	if (ip->i_nlink == 0)
758		lfs_orphan(ip->i_lfs, ip->i_number);
759	SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
760	return (error);
761}
762
763int
764lfs_rmdir(void *v)
765{
766	struct vop_rmdir_args	/* {
767		struct vnodeop_desc *a_desc;
768		struct vnode *a_dvp;
769		struct vnode *a_vp;
770		struct componentname *a_cnp;
771	} */ *ap = v;
772	struct vnode *vp;
773	struct inode *ip;
774	int error;
775
776	vp = ap->a_vp;
777	ip = VTOI(vp);
778	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
779		if (ap->a_dvp == vp)
780			vrele(ap->a_dvp);
781		else
782			vput(ap->a_dvp);
783		vput(vp);
784		return error;
785	}
786	error = ufs_rmdir(ap);
787	if (ip->i_nlink == 0)
788		lfs_orphan(ip->i_lfs, ip->i_number);
789	SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
790	return (error);
791}
792
793int
794lfs_link(void *v)
795{
796	struct vop_link_args	/* {
797		struct vnode *a_dvp;
798		struct vnode *a_vp;
799		struct componentname *a_cnp;
800	} */ *ap = v;
801	int error;
802	struct vnode **vpp = NULL;
803
804	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
805		vput(ap->a_dvp);
806		return error;
807	}
808	error = ufs_link(ap);
809	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
810	return (error);
811}
812
813/* XXX following lifted from ufs_lookup.c */
814#define	FSFMT(vp)	(((vp)->v_mount->mnt_iflag & IMNT_DTYPE) == 0)
815
816/*
817 * Check if either entry referred to by FROM_ULR is within the range
818 * of entries named by TO_ULR.
819 */
820static int
821ulr_overlap(const struct ufs_lookup_results *from_ulr,
822	    const struct ufs_lookup_results *to_ulr)
823{
824	doff_t from_start, from_prevstart;
825	doff_t to_start, to_end;
826
827	/*
828	 * FROM is a DELETE result; offset points to the entry to
829	 * remove and subtracting count gives the previous entry.
830	 */
831	from_start = from_ulr->ulr_offset - from_ulr->ulr_count;
832	from_prevstart = from_ulr->ulr_offset;
833
834	/*
835	 * TO is a RENAME (thus non-DELETE) result; offset points
836	 * to the beginning of a region to write in, and adding
837	 * count gives the end of the region.
838	 */
839	to_start = to_ulr->ulr_offset;
840	to_end = to_ulr->ulr_offset + to_ulr->ulr_count;
841
842	if (from_prevstart >= to_start && from_prevstart < to_end) {
843		return 1;
844	}
845	if (from_start >= to_start && from_start < to_end) {
846		return 1;
847	}
848	return 0;
849}
850
851/*
852 * A virgin directory (no blushing please).
853 */
854static const struct dirtemplate mastertemplate = {
855	0,	12,		DT_DIR,	1,	".",
856	0,	DIRBLKSIZ - 12,	DT_DIR,	2,	".."
857};
858
859/*
860 * Wrapper for relookup that also updates the supplemental results.
861 */
862static int
863do_relookup(struct vnode *dvp, struct ufs_lookup_results *ulr,
864	    struct vnode **vp, struct componentname *cnp)
865{
866	int error;
867
868	error = relookup(dvp, vp, cnp, 0);
869	if (error) {
870		return error;
871	}
872	/* update the supplemental reasults */
873	*ulr = VTOI(dvp)->i_crap;
874	UFS_CHECK_CRAPCOUNTER(VTOI(dvp));
875	return 0;
876}
877
878/*
879 * Lock and relookup a sequence of two directories and two children.
880 *
881 */
882static int
883lock_vnode_sequence(struct vnode *d1, struct ufs_lookup_results *ulr1,
884		    struct vnode **v1_ret, struct componentname *cn1,
885		    int v1_missing_ok,
886		    int overlap_error,
887		    struct vnode *d2, struct ufs_lookup_results *ulr2,
888		    struct vnode **v2_ret, struct componentname *cn2,
889		    int v2_missing_ok)
890{
891	struct vnode *v1, *v2;
892	int error;
893
894	KASSERT(d1 != d2);
895
896	vn_lock(d1, LK_EXCLUSIVE | LK_RETRY);
897	if (VTOI(d1)->i_size == 0) {
898		/* d1 has been rmdir'd */
899		VOP_UNLOCK(d1);
900		return ENOENT;
901	}
902	error = do_relookup(d1, ulr1, &v1, cn1);
903	if (v1_missing_ok) {
904		if (error == ENOENT) {
905			/*
906			 * Note: currently if the name doesn't exist,
907			 * relookup succeeds (it intercepts the
908			 * EJUSTRETURN from VOP_LOOKUP) and sets tvp
909			 * to NULL. Therefore, we will never get
910			 * ENOENT and this branch is not needed.
911			 * However, in a saner future the EJUSTRETURN
912			 * garbage will go away, so let's DTRT.
913			 */
914			v1 = NULL;
915			error = 0;
916		}
917	} else {
918		if (error == 0 && v1 == NULL) {
919			/* This is what relookup sets if v1 disappeared. */
920			error = ENOENT;
921		}
922	}
923	if (error) {
924		VOP_UNLOCK(d1);
925		return error;
926	}
927	if (v1 && v1 == d2) {
928		VOP_UNLOCK(d1);
929		VOP_UNLOCK(v1);
930		vrele(v1);
931		return overlap_error;
932	}
933
934	/*
935	 * The right way to do this is to do lookups without locking
936	 * the results, and lock the results afterwards; then at the
937	 * end we can avoid trying to lock v2 if v2 == v1.
938	 *
939	 * However, for the reasons described in the fdvp == tdvp case
940	 * in rename below, we can't do that safely. So, in the case
941	 * where v1 is not a directory, unlock it and lock it again
942	 * afterwards. This is safe in locking order because a
943	 * non-directory can't be above anything else in the tree. If
944	 * v1 *is* a directory, that's not true, but then because d1
945	 * != d2, v1 != v2.
946	 */
947	if (v1 && v1->v_type != VDIR) {
948		VOP_UNLOCK(v1);
949	}
950	vn_lock(d2, LK_EXCLUSIVE | LK_RETRY);
951	if (VTOI(d2)->i_size == 0) {
952		/* d2 has been rmdir'd */
953		VOP_UNLOCK(d2);
954		if (v1 && v1->v_type == VDIR) {
955			VOP_UNLOCK(v1);
956		}
957		VOP_UNLOCK(d1);
958		if (v1) {
959			vrele(v1);
960		}
961		return ENOENT;
962	}
963	error = do_relookup(d2, ulr2, &v2, cn2);
964	if (v2_missing_ok) {
965		if (error == ENOENT) {
966			/* as above */
967			v2 = NULL;
968			error = 0;
969		}
970	} else {
971		if (error == 0 && v2 == NULL) {
972			/* This is what relookup sets if v2 disappeared. */
973			error = ENOENT;
974		}
975	}
976	if (error) {
977		VOP_UNLOCK(d2);
978		if (v1 && v1->v_type == VDIR) {
979			VOP_UNLOCK(v1);
980		}
981		VOP_UNLOCK(d1);
982		if (v1) {
983			vrele(v1);
984		}
985		return error;
986	}
987	if (v1 && v1->v_type != VDIR && v1 != v2) {
988		vn_lock(v1, LK_EXCLUSIVE | LK_RETRY);
989	}
990	*v1_ret = v1;
991	*v2_ret = v2;
992	return 0;
993}
994
995int
996lfs_rename(void *v)
997{
998	struct vop_rename_args	/* {
999		struct vnode *a_fdvp;
1000		struct vnode *a_fvp;
1001		struct componentname *a_fcnp;
1002		struct vnode *a_tdvp;
1003		struct vnode *a_tvp;
1004		struct componentname *a_tcnp;
1005	} */ *ap = v;
1006	struct vnode		*tvp, *tdvp, *fvp, *fdvp;
1007	struct componentname *tcnp, *fcnp;
1008	struct inode		*ip, *txp, *fxp, *tdp, *fdp;
1009	struct mount		*mp;
1010	struct direct		*newdir;
1011	int			doingdirectory, error, marked;
1012	ino_t			oldparent, newparent;
1013
1014	struct ufs_lookup_results from_ulr, to_ulr;
1015	struct lfs *fs = VTOI(ap->a_fvp)->i_lfs;
1016
1017	tvp = ap->a_tvp;
1018	tdvp = ap->a_tdvp;
1019	fvp = ap->a_fvp;
1020	fdvp = ap->a_fdvp;
1021	tcnp = ap->a_tcnp;
1022	fcnp = ap->a_fcnp;
1023	doingdirectory = error = 0;
1024	oldparent = newparent = 0;
1025	marked = 0;
1026
1027	/* save the supplemental lookup results as they currently exist */
1028	from_ulr = VTOI(fdvp)->i_crap;
1029	to_ulr = VTOI(tdvp)->i_crap;
1030	UFS_CHECK_CRAPCOUNTER(VTOI(fdvp));
1031	UFS_CHECK_CRAPCOUNTER(VTOI(tdvp));
1032
1033	/*
1034	 * Owing to VFS oddities we are currently called with tdvp/tvp
1035	 * locked and not fdvp/fvp. In a sane world we'd be passed
1036	 * tdvp and fdvp only, unlocked, and two name strings. Pretend
1037	 * we have a sane world and unlock tdvp and tvp.
1038	 */
1039	VOP_UNLOCK(tdvp);
1040	if (tvp && tvp != tdvp) {
1041		VOP_UNLOCK(tvp);
1042	}
1043
1044	/* Also pretend we have a sane world and vrele fvp/tvp. */
1045	vrele(fvp);
1046	fvp = NULL;
1047	if (tvp) {
1048		vrele(tvp);
1049		tvp = NULL;
1050	}
1051
1052	/*
1053	 * Check for cross-device rename.
1054	 */
1055	if (fdvp->v_mount != tdvp->v_mount) {
1056		error = EXDEV;
1057		goto abort;
1058	}
1059
1060	/*
1061	 * Reject "." and ".."
1062	 */
1063	if ((fcnp->cn_flags & ISDOTDOT) || (tcnp->cn_flags & ISDOTDOT) ||
1064	    (fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
1065	    (tcnp->cn_namelen == 1 && tcnp->cn_nameptr[0] == '.')) {
1066		error = EINVAL;
1067		goto abort;
1068	}
1069
1070	/*
1071	 * Get locks.
1072	 */
1073
1074	/* paranoia */
1075	fcnp->cn_flags |= LOCKPARENT|LOCKLEAF;
1076	tcnp->cn_flags |= LOCKPARENT|LOCKLEAF;
1077
1078	if (fdvp == tdvp) {
1079		/* One directory. Lock it and relookup both children. */
1080		vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
1081
1082		if (VTOI(fdvp)->i_size == 0) {
1083			/* directory has been rmdir'd */
1084			VOP_UNLOCK(fdvp);
1085			error = ENOENT;
1086			goto abort;
1087		}
1088
1089		error = do_relookup(fdvp, &from_ulr, &fvp, fcnp);
1090		if (error == 0 && fvp == NULL) {
1091			/* relookup may produce this if fvp disappears */
1092			error = ENOENT;
1093		}
1094		if (error) {
1095			VOP_UNLOCK(fdvp);
1096			goto abort;
1097		}
1098
1099		/*
1100		 * The right way to do this is to look up both children
1101		 * without locking either, and then lock both unless they
1102		 * turn out to be the same. However, due to deep-seated
1103		 * VFS-level issues all lookups lock the child regardless
1104		 * of whether LOCKLEAF is set (if LOCKLEAF is not set,
1105		 * the child is locked during lookup and then unlocked)
1106		 * so it is not safe to look up tvp while fvp is locked.
1107		 *
1108		 * Unlocking fvp here temporarily is more or less safe,
1109		 * because with the directory locked there's not much
1110		 * that can happen to it. However, ideally it wouldn't
1111		 * be necessary. XXX.
1112		 */
1113		VOP_UNLOCK(fvp);
1114		/* remember fdvp == tdvp so tdvp is locked */
1115		error = do_relookup(tdvp, &to_ulr, &tvp, tcnp);
1116		if (error && error != ENOENT) {
1117			VOP_UNLOCK(fdvp);
1118			goto abort;
1119		}
1120		if (error == ENOENT) {
1121			/*
1122			 * Note: currently if the name doesn't exist,
1123			 * relookup succeeds (it intercepts the
1124			 * EJUSTRETURN from VOP_LOOKUP) and sets tvp
1125			 * to NULL. Therefore, we will never get
1126			 * ENOENT and this branch is not needed.
1127			 * However, in a saner future the EJUSTRETURN
1128			 * garbage will go away, so let's DTRT.
1129			 */
1130			tvp = NULL;
1131		}
1132
1133		/* tvp is locked; lock fvp if necessary */
1134		if (!tvp || tvp != fvp) {
1135			vn_lock(fvp, LK_EXCLUSIVE | LK_RETRY);
1136		}
1137	} else {
1138		int found_fdvp;
1139		struct vnode *illegal_fvp;
1140
1141		/*
1142		 * The source must not be above the destination. (If
1143		 * it were, the rename would detach a section of the
1144		 * tree.)
1145		 *
1146		 * Look up the tree from tdvp to see if we find fdvp,
1147		 * and if so, return the immediate child of fdvp we're
1148		 * under; that must not turn out to be the same as
1149		 * fvp.
1150	 *
1151		 * The per-volume rename lock guarantees that the
1152		 * result of this check remains true until we finish
1153		 * looking up and locking.
1154	 */
1155		error = ufs_parentcheck(fdvp, tdvp, fcnp->cn_cred,
1156					&found_fdvp, &illegal_fvp);
1157		if (error) {
1158			goto abort;
1159		}
1160
1161		/* Must lock in tree order. */
1162
1163		if (found_fdvp) {
1164			/* fdvp -> fvp -> tdvp -> tvp */
1165			error = lock_vnode_sequence(fdvp, &from_ulr,
1166						    &fvp, fcnp, 0,
1167						    EINVAL,
1168						    tdvp, &to_ulr,
1169						    &tvp, tcnp, 1);
1170		} else {
1171			/* tdvp -> tvp -> fdvp -> fvp */
1172			error = lock_vnode_sequence(tdvp, &to_ulr,
1173						    &tvp, tcnp, 1,
1174						    ENOTEMPTY,
1175						    fdvp, &from_ulr,
1176						    &fvp, fcnp, 0);
1177		}
1178		if (error) {
1179			if (illegal_fvp) {
1180				vrele(illegal_fvp);
1181			}
1182			goto abort;
1183		}
1184		KASSERT(fvp != NULL);
1185
1186		if (illegal_fvp && fvp == illegal_fvp) {
1187			vrele(illegal_fvp);
1188			error = EINVAL;
1189			goto abort_withlocks;
1190		}
1191
1192		if (illegal_fvp) {
1193			vrele(illegal_fvp);
1194		}
1195	}
1196
1197	KASSERT(fdvp && VOP_ISLOCKED(fdvp));
1198	KASSERT(fvp && VOP_ISLOCKED(fvp));
1199	KASSERT(tdvp && VOP_ISLOCKED(tdvp));
1200	KASSERT(tvp == NULL || VOP_ISLOCKED(tvp));
1201
1202	/* --- everything is now locked --- */
1203
1204	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
1205		    (VTOI(tdvp)->i_flags & APPEND))) {
1206		error = EPERM;
1207		goto abort_withlocks;
1208	}
1209
1210	/*
1211	 * Check if just deleting a link name.
1212	 */
1213	if (fvp == tvp) {
1214		if (fvp->v_type == VDIR) {
1215			error = EINVAL;
1216			goto abort_withlocks;
1217		}
1218
1219		/* Release destination completely. Leave fdvp locked. */
1220		VOP_ABORTOP(tdvp, tcnp);
1221		if (fdvp != tdvp) {
1222			VOP_UNLOCK(tdvp);
1223		}
1224		VOP_UNLOCK(tvp);
1225		vrele(tdvp);
1226		vrele(tvp);
1227
1228		/* Delete source. */
1229		/* XXX: do we really need to relookup again? */
1230
1231		/*
1232		 * fdvp is still locked, but we just unlocked fvp
1233		 * (because fvp == tvp) so just decref fvp
1234		 */
1235		vrele(fvp);
1236		fcnp->cn_flags &= ~(MODMASK);
1237		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
1238		fcnp->cn_nameiop = DELETE;
1239		if ((error = relookup(fdvp, &fvp, fcnp, 0))) {
1240			vput(fdvp);
1241			return (error);
1242		}
1243		return (VOP_REMOVE(fdvp, fvp, fcnp));
1244	}
1245
1246	/* The tiny bit of actual LFS code in this function */
1247	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
1248		goto abort_withlocks;
1249	MARK_VNODE(fdvp);
1250	MARK_VNODE(fvp);
1251	marked = 1;
1252
1253	fdp = VTOI(fdvp);
1254	ip = VTOI(fvp);
1255	if ((nlink_t) ip->i_nlink >= LINK_MAX) {
1256		error = EMLINK;
1257		goto abort_withlocks;
1258	}
1259	if ((ip->i_flags & (IMMUTABLE | APPEND)) ||
1260		(fdp->i_flags & APPEND)) {
1261		error = EPERM;
1262		goto abort_withlocks;
1263	}
1264	if ((ip->i_mode & IFMT) == IFDIR) {
1265		/*
1266		 * Avoid ".", "..", and aliases of "." for obvious reasons.
1267		 */
1268		if ((fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
1269		    fdp == ip ||
1270		    (fcnp->cn_flags & ISDOTDOT) ||
1271		    (tcnp->cn_flags & ISDOTDOT) ||
1272		    (ip->i_flag & IN_RENAME)) {
1273			error = EINVAL;
1274			goto abort_withlocks;
1275		}
1276		ip->i_flag |= IN_RENAME;
1277		doingdirectory = 1;
1278	}
1279	oldparent = fdp->i_number;
1280	VN_KNOTE(fdvp, NOTE_WRITE);		/* XXXLUKEM/XXX: right place? */
1281
1282	/*
1283	 * Both the directory
1284	 * and target vnodes are locked.
1285	 */
1286	tdp = VTOI(tdvp);
1287	txp = NULL;
1288	if (tvp)
1289		txp = VTOI(tvp);
1290
1291	mp = fdvp->v_mount;
1292	fstrans_start(mp, FSTRANS_SHARED);
1293
1294	if (oldparent != tdp->i_number)
1295		newparent = tdp->i_number;
1296
1297	/*
1298	 * If ".." must be changed (ie the directory gets a new
1299	 * parent) the user must have write permission in the source
1300	 * so as to be able to change "..".
1301	 */
1302	if (doingdirectory && newparent) {
1303		error = VOP_ACCESS(fvp, VWRITE, tcnp->cn_cred);
1304		if (error)
1305			goto out;
1306	}
1307
1308	KASSERT(fdvp != tvp);
1309
1310	if (newparent) {
1311		/* Check for the rename("foo/foo", "foo") case. */
1312		if (fdvp == tvp) {
1313			error = doingdirectory ? ENOTEMPTY : EISDIR;
1314			goto out;
1315		}
1316	}
1317
1318	fxp = VTOI(fvp);
1319	fdp = VTOI(fdvp);
1320
1321	error = UFS_WAPBL_BEGIN(fdvp->v_mount);
1322	if (error)
1323		goto out2;
1324
1325	/*
1326	 * 1) Bump link count while we're moving stuff
1327	 *    around.  If we crash somewhere before
1328	 *    completing our work, the link count
1329	 *    may be wrong, but correctable.
1330	 */
1331	ip->i_nlink++;
1332	DIP_ASSIGN(ip, nlink, ip->i_nlink);
1333	ip->i_flag |= IN_CHANGE;
1334	if ((error = UFS_UPDATE(fvp, NULL, NULL, UPDATE_DIROP)) != 0) {
1335		goto bad;
1336	}
1337
1338	/*
1339	 * 2) If target doesn't exist, link the target
1340	 *    to the source and unlink the source.
1341	 *    Otherwise, rewrite the target directory
1342	 *    entry to reference the source inode and
1343	 *    expunge the original entry's existence.
1344	 */
1345	if (txp == NULL) {
1346		if (tdp->i_dev != ip->i_dev)
1347			panic("rename: EXDEV");
1348		/*
1349		 * Account for ".." in new directory.
1350		 * When source and destination have the same
1351		 * parent we don't fool with the link count.
1352		 */
1353		if (doingdirectory && newparent) {
1354			if ((nlink_t)tdp->i_nlink >= LINK_MAX) {
1355				error = EMLINK;
1356				goto bad;
1357			}
1358			tdp->i_nlink++;
1359			DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
1360			tdp->i_flag |= IN_CHANGE;
1361			if ((error = UFS_UPDATE(tdvp, NULL, NULL,
1362			    UPDATE_DIROP)) != 0) {
1363				tdp->i_nlink--;
1364				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
1365				tdp->i_flag |= IN_CHANGE;
1366				goto bad;
1367			}
1368		}
1369		newdir = pool_cache_get(ufs_direct_cache, PR_WAITOK);
1370		ufs_makedirentry(ip, tcnp, newdir);
1371		error = ufs_direnter(tdvp, &to_ulr,
1372				     NULL, newdir, tcnp, NULL);
1373		pool_cache_put(ufs_direct_cache, newdir);
1374		if (error != 0) {
1375			if (doingdirectory && newparent) {
1376				tdp->i_nlink--;
1377				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
1378				tdp->i_flag |= IN_CHANGE;
1379				(void)UFS_UPDATE(tdvp, NULL, NULL,
1380						 UPDATE_WAIT | UPDATE_DIROP);
1381			}
1382			goto bad;
1383		}
1384		VN_KNOTE(tdvp, NOTE_WRITE);
1385	} else {
1386		if (txp->i_dev != tdp->i_dev || txp->i_dev != ip->i_dev)
1387			panic("rename: EXDEV");
1388		/*
1389		 * Short circuit rename(foo, foo).
1390		 */
1391		if (txp->i_number == ip->i_number)
1392			panic("rename: same file");
1393		/*
1394		 * If the parent directory is "sticky", then the user must
1395		 * own the parent directory, or the destination of the rename,
1396		 * otherwise the destination may not be changed (except by
1397		 * root). This implements append-only directories.
1398		 */
1399		if ((tdp->i_mode & S_ISTXT) &&
1400		    kauth_authorize_generic(tcnp->cn_cred,
1401		     KAUTH_GENERIC_ISSUSER, NULL) != 0 &&
1402		    kauth_cred_geteuid(tcnp->cn_cred) != tdp->i_uid &&
1403		    txp->i_uid != kauth_cred_geteuid(tcnp->cn_cred)) {
1404			error = EPERM;
1405			goto bad;
1406		}
1407		/*
1408		 * Target must be empty if a directory and have no links
1409		 * to it. Also, ensure source and target are compatible
1410		 * (both directories, or both not directories).
1411		 */
1412		if ((txp->i_mode & IFMT) == IFDIR) {
1413			if (txp->i_nlink > 2 ||
1414			    !ufs_dirempty(txp, tdp->i_number, tcnp->cn_cred)) {
1415				error = ENOTEMPTY;
1416				goto bad;
1417			}
1418			if (!doingdirectory) {
1419				error = ENOTDIR;
1420				goto bad;
1421			}
1422			cache_purge(tdvp);
1423		} else if (doingdirectory) {
1424			error = EISDIR;
1425			goto bad;
1426		}
1427		if ((error = ufs_dirrewrite(tdp, to_ulr.ulr_offset,
1428		    txp, ip->i_number,
1429		    IFTODT(ip->i_mode), doingdirectory && newparent ?
1430		    newparent : doingdirectory, IN_CHANGE | IN_UPDATE)) != 0)
1431			goto bad;
1432		if (doingdirectory) {
1433			/*
1434			 * Truncate inode. The only stuff left in the directory
1435			 * is "." and "..". The "." reference is inconsequential
1436			 * since we are quashing it. We have removed the "."
1437			 * reference and the reference in the parent directory,
1438			 * but there may be other hard links.
1439			 */
1440			if (!newparent) {
1441				tdp->i_nlink--;
1442				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
1443				tdp->i_flag |= IN_CHANGE;
1444				UFS_WAPBL_UPDATE(tdvp, NULL, NULL, 0);
1445			}
1446			txp->i_nlink--;
1447			DIP_ASSIGN(txp, nlink, txp->i_nlink);
1448			txp->i_flag |= IN_CHANGE;
1449			if ((error = UFS_TRUNCATE(tvp, (off_t)0, IO_SYNC,
1450			    tcnp->cn_cred)))
1451				goto bad;
1452		}
1453		VN_KNOTE(tdvp, NOTE_WRITE);
1454		VN_KNOTE(tvp, NOTE_DELETE);
1455	}
1456
1457	/*
1458	 * Handle case where the directory entry we need to remove,
1459	 * which is/was at from_ulr.ulr_offset, or the one before it,
1460	 * which is/was at from_ulr.ulr_offset - from_ulr.ulr_count,
1461	 * may have been moved when the directory insertion above
1462	 * performed compaction.
1463	 */
1464	if (tdp->i_number == fdp->i_number &&
1465	    ulr_overlap(&from_ulr, &to_ulr)) {
1466
1467		struct buf *bp;
1468		struct direct *ep;
1469		struct ufsmount *ump = fdp->i_ump;
1470		doff_t curpos;
1471		doff_t endsearch;	/* offset to end directory search */
1472		uint32_t prev_reclen;
1473		int dirblksiz = ump->um_dirblksiz;
1474		const int needswap = UFS_MPNEEDSWAP(ump);
1475		u_long bmask;
1476		int namlen, entryoffsetinblock;
1477		char *dirbuf;
1478
1479		bmask = fdvp->v_mount->mnt_stat.f_iosize - 1;
1480
1481		/*
1482		 * The fcnp entry will be somewhere between the start of
1483		 * compaction (to_ulr.ulr_offset) and the original location
1484		 * (from_ulr.ulr_offset).
1485		 */
1486		curpos = to_ulr.ulr_offset;
1487		endsearch = from_ulr.ulr_offset + from_ulr.ulr_reclen;
1488		entryoffsetinblock = 0;
1489
1490		/*
1491		 * Get the directory block containing the start of
1492		 * compaction.
1493		 */
1494		error = ufs_blkatoff(fdvp, (off_t)to_ulr.ulr_offset, &dirbuf,
1495		    &bp, false);
1496		if (error)
1497			goto bad;
1498
1499		/*
1500		 * Keep existing ulr_count (length of previous record)
1501		 * for the case where compaction did not include the
1502		 * previous entry but started at the from-entry.
1503		 */
1504		prev_reclen = from_ulr.ulr_count;
1505
1506		while (curpos < endsearch) {
1507			uint32_t reclen;
1508
1509			/*
1510			 * If necessary, get the next directory block.
1511			 *
1512			 * dholland 7/13/11 to the best of my understanding
1513			 * this should never happen; compaction occurs only
1514			 * within single blocks. I think.
1515			 */
1516			if ((curpos & bmask) == 0) {
1517				if (bp != NULL)
1518					brelse(bp, 0);
1519				error = ufs_blkatoff(fdvp, (off_t)curpos,
1520				    &dirbuf, &bp, false);
1521				if (error)
1522					goto bad;
1523				entryoffsetinblock = 0;
1524			}
1525
1526			KASSERT(bp != NULL);
1527			ep = (struct direct *)(dirbuf + entryoffsetinblock);
1528			reclen = ufs_rw16(ep->d_reclen, needswap);
1529
1530#if (BYTE_ORDER == LITTLE_ENDIAN)
1531			if (FSFMT(fdvp) && needswap == 0)
1532				namlen = ep->d_type;
1533			else
1534				namlen = ep->d_namlen;
1535#else
1536			if (FSFMT(fdvp) && needswap != 0)
1537				namlen = ep->d_type;
1538			else
1539				namlen = ep->d_namlen;
1540#endif
1541			if ((ep->d_ino != 0) &&
1542			    (ufs_rw32(ep->d_ino, needswap) != WINO) &&
1543			    (namlen == fcnp->cn_namelen) &&
1544			    memcmp(ep->d_name, fcnp->cn_nameptr, namlen) == 0) {
1545				from_ulr.ulr_reclen = reclen;
1546				break;
1547			}
1548			curpos += reclen;
1549			entryoffsetinblock += reclen;
1550			prev_reclen = reclen;
1551		}
1552
1553		from_ulr.ulr_offset = curpos;
1554		from_ulr.ulr_count = prev_reclen;
1555
1556		KASSERT(curpos <= endsearch);
1557
1558		/*
1559		 * If ulr_offset points to start of a directory block,
1560		 * clear ulr_count so ufs_dirremove() doesn't try to
1561		 * merge free space over a directory block boundary.
1562		 */
1563		if ((from_ulr.ulr_offset & (dirblksiz - 1)) == 0)
1564			from_ulr.ulr_count = 0;
1565
1566		brelse(bp, 0);
1567	}
1568
1569	/*
1570	 * 3) Unlink the source.
1571	 */
1572
1573#if 0
1574	/*
1575	 * Ensure that the directory entry still exists and has not
1576	 * changed while the new name has been entered. If the source is
1577	 * a file then the entry may have been unlinked or renamed. In
1578	 * either case there is no further work to be done. If the source
1579	 * is a directory then it cannot have been rmdir'ed; The IRENAME
1580	 * flag ensures that it cannot be moved by another rename or removed
1581	 * by a rmdir.
1582	 */
1583#endif
1584	KASSERT(fxp == ip);
1585
1586	/*
1587	 * If the source is a directory with a new parent, the link
1588	 * count of the old parent directory must be decremented and
1589	 * ".." set to point to the new parent.
1590	 */
1591	if (doingdirectory && newparent) {
1592		KASSERT(fdp != NULL);
1593		ufs_dirrewrite(fxp, mastertemplate.dot_reclen,
1594			       fdp, newparent, DT_DIR, 0, IN_CHANGE);
1595		cache_purge(fdvp);
1596	}
1597	error = ufs_dirremove(fdvp, &from_ulr,
1598			      fxp, fcnp->cn_flags, 0);
1599	fxp->i_flag &= ~IN_RENAME;
1600
1601	VN_KNOTE(fvp, NOTE_RENAME);
1602	goto done;
1603
1604 out:
1605	goto out2;
1606
1607	/* exit routines from steps 1 & 2 */
1608 bad:
1609	if (doingdirectory)
1610		ip->i_flag &= ~IN_RENAME;
1611	ip->i_nlink--;
1612	DIP_ASSIGN(ip, nlink, ip->i_nlink);
1613	ip->i_flag |= IN_CHANGE;
1614	ip->i_flag &= ~IN_RENAME;
1615	UFS_WAPBL_UPDATE(fvp, NULL, NULL, 0);
1616 done:
1617	UFS_WAPBL_END(fdvp->v_mount);
1618 out2:
1619	/*
1620	 * clear IN_RENAME - some exit paths happen too early to go
1621	 * through the cleanup done in the "bad" case above, so we
1622	 * always do this mini-cleanup here.
1623	 */
1624	ip->i_flag &= ~IN_RENAME;
1625
1626	VOP_UNLOCK(fdvp);
1627	if (tdvp != fdvp) {
1628		VOP_UNLOCK(tdvp);
1629	}
1630	VOP_UNLOCK(fvp);
1631	if (tvp && tvp != fvp) {
1632		VOP_UNLOCK(tvp);
1633	}
1634
1635	vrele(fdvp);
1636	vrele(tdvp);
1637	vrele(fvp);
1638	if (tvp) {
1639		vrele(tvp);
1640	}
1641
1642	fstrans_done(mp);
1643	if (marked) {
1644	UNMARK_VNODE(fdvp);
1645	UNMARK_VNODE(fvp);
1646	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
1647	}
1648	return (error);
1649
1650 abort_withlocks:
1651	VOP_UNLOCK(fdvp);
1652	if (tdvp != fdvp) {
1653		VOP_UNLOCK(tdvp);
1654	}
1655	VOP_UNLOCK(fvp);
1656	if (tvp && tvp != fvp) {
1657		VOP_UNLOCK(tvp);
1658	}
1659
1660 abort:
1661	VOP_ABORTOP(fdvp, fcnp); /* XXX, why not in NFS? */
1662	VOP_ABORTOP(tdvp, tcnp); /* XXX, why not in NFS? */
1663		vrele(tdvp);
1664	if (tvp) {
1665		vrele(tvp);
1666	}
1667	vrele(fdvp);
1668	if (fvp) {
1669	vrele(fvp);
1670	}
1671	if (marked) {
1672		UNMARK_VNODE(fdvp);
1673		UNMARK_VNODE(fvp);
1674		SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
1675	}
1676	return (error);
1677}
1678
1679/* XXX hack to avoid calling ITIMES in getattr */
1680int
1681lfs_getattr(void *v)
1682{
1683	struct vop_getattr_args /* {
1684		struct vnode *a_vp;
1685		struct vattr *a_vap;
1686		kauth_cred_t a_cred;
1687	} */ *ap = v;
1688	struct vnode *vp = ap->a_vp;
1689	struct inode *ip = VTOI(vp);
1690	struct vattr *vap = ap->a_vap;
1691	struct lfs *fs = ip->i_lfs;
1692	/*
1693	 * Copy from inode table
1694	 */
1695	vap->va_fsid = ip->i_dev;
1696	vap->va_fileid = ip->i_number;
1697	vap->va_mode = ip->i_mode & ~IFMT;
1698	vap->va_nlink = ip->i_nlink;
1699	vap->va_uid = ip->i_uid;
1700	vap->va_gid = ip->i_gid;
1701	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
1702	vap->va_size = vp->v_size;
1703	vap->va_atime.tv_sec = ip->i_ffs1_atime;
1704	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
1705	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
1706	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
1707	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
1708	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
1709	vap->va_flags = ip->i_flags;
1710	vap->va_gen = ip->i_gen;
1711	/* this doesn't belong here */
1712	if (vp->v_type == VBLK)
1713		vap->va_blocksize = BLKDEV_IOSIZE;
1714	else if (vp->v_type == VCHR)
1715		vap->va_blocksize = MAXBSIZE;
1716	else
1717		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
1718	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
1719	vap->va_type = vp->v_type;
1720	vap->va_filerev = ip->i_modrev;
1721	return (0);
1722}
1723
1724/*
1725 * Check to make sure the inode blocks won't choke the buffer
1726 * cache, then call ufs_setattr as usual.
1727 */
1728int
1729lfs_setattr(void *v)
1730{
1731	struct vop_setattr_args /* {
1732		struct vnode *a_vp;
1733		struct vattr *a_vap;
1734		kauth_cred_t a_cred;
1735	} */ *ap = v;
1736	struct vnode *vp = ap->a_vp;
1737
1738	lfs_check(vp, LFS_UNUSED_LBN, 0);
1739	return ufs_setattr(v);
1740}
1741
1742/*
1743 * Release the block we hold on lfs_newseg wrapping.  Called on file close,
1744 * or explicitly from LFCNWRAPGO.  Called with the interlock held.
1745 */
1746static int
1747lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
1748{
1749	if (fs->lfs_stoplwp != curlwp)
1750		return EBUSY;
1751
1752	fs->lfs_stoplwp = NULL;
1753	cv_signal(&fs->lfs_stopcv);
1754
1755	KASSERT(fs->lfs_nowrap > 0);
1756	if (fs->lfs_nowrap <= 0) {
1757		return 0;
1758	}
1759
1760	if (--fs->lfs_nowrap == 0) {
1761		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
1762		wakeup(&fs->lfs_wrappass);
1763		lfs_wakeup_cleaner(fs);
1764	}
1765	if (waitfor) {
1766		mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
1767		    0, &lfs_lock);
1768	}
1769
1770	return 0;
1771}
1772
1773/*
1774 * Close called
1775 */
1776/* ARGSUSED */
1777int
1778lfs_close(void *v)
1779{
1780	struct vop_close_args /* {
1781		struct vnode *a_vp;
1782		int  a_fflag;
1783		kauth_cred_t a_cred;
1784	} */ *ap = v;
1785	struct vnode *vp = ap->a_vp;
1786	struct inode *ip = VTOI(vp);
1787	struct lfs *fs = ip->i_lfs;
1788
1789	if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1790	    fs->lfs_stoplwp == curlwp) {
1791		mutex_enter(&lfs_lock);
1792		log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1793		lfs_wrapgo(fs, ip, 0);
1794		mutex_exit(&lfs_lock);
1795	}
1796
1797	if (vp == ip->i_lfs->lfs_ivnode &&
1798	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1799		return 0;
1800
1801	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1802		LFS_ITIMES(ip, NULL, NULL, NULL);
1803	}
1804	return (0);
1805}
1806
1807/*
1808 * Close wrapper for special devices.
1809 *
1810 * Update the times on the inode then do device close.
1811 */
1812int
1813lfsspec_close(void *v)
1814{
1815	struct vop_close_args /* {
1816		struct vnode	*a_vp;
1817		int		a_fflag;
1818		kauth_cred_t	a_cred;
1819	} */ *ap = v;
1820	struct vnode	*vp;
1821	struct inode	*ip;
1822
1823	vp = ap->a_vp;
1824	ip = VTOI(vp);
1825	if (vp->v_usecount > 1) {
1826		LFS_ITIMES(ip, NULL, NULL, NULL);
1827	}
1828	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1829}
1830
1831/*
1832 * Close wrapper for fifo's.
1833 *
1834 * Update the times on the inode then do device close.
1835 */
1836int
1837lfsfifo_close(void *v)
1838{
1839	struct vop_close_args /* {
1840		struct vnode	*a_vp;
1841		int		a_fflag;
1842		kauth_cred_	a_cred;
1843	} */ *ap = v;
1844	struct vnode	*vp;
1845	struct inode	*ip;
1846
1847	vp = ap->a_vp;
1848	ip = VTOI(vp);
1849	if (ap->a_vp->v_usecount > 1) {
1850		LFS_ITIMES(ip, NULL, NULL, NULL);
1851	}
1852	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1853}
1854
1855/*
1856 * Reclaim an inode so that it can be used for other purposes.
1857 */
1858
1859int
1860lfs_reclaim(void *v)
1861{
1862	struct vop_reclaim_args /* {
1863		struct vnode *a_vp;
1864	} */ *ap = v;
1865	struct vnode *vp = ap->a_vp;
1866	struct inode *ip = VTOI(vp);
1867	struct lfs *fs = ip->i_lfs;
1868	int error;
1869
1870	/*
1871	 * The inode must be freed and updated before being removed
1872	 * from its hash chain.  Other threads trying to gain a hold
1873	 * on the inode will be stalled because it is locked (VI_XLOCK).
1874	 */
1875	if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
1876		lfs_vfree(vp, ip->i_number, ip->i_omode);
1877
1878	mutex_enter(&lfs_lock);
1879	LFS_CLR_UINO(ip, IN_ALLMOD);
1880	mutex_exit(&lfs_lock);
1881	if ((error = ufs_reclaim(vp)))
1882		return (error);
1883
1884	/*
1885	 * Take us off the paging and/or dirop queues if we were on them.
1886	 * We shouldn't be on them.
1887	 */
1888	mutex_enter(&lfs_lock);
1889	if (ip->i_flags & IN_PAGING) {
1890		log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1891		    fs->lfs_fsmnt);
1892		ip->i_flags &= ~IN_PAGING;
1893		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1894	}
1895	if (vp->v_uflag & VU_DIROP) {
1896		panic("reclaimed vnode is VU_DIROP");
1897		vp->v_uflag &= ~VU_DIROP;
1898		TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1899	}
1900	mutex_exit(&lfs_lock);
1901
1902	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1903	lfs_deregister_all(vp);
1904	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1905	ip->inode_ext.lfs = NULL;
1906	genfs_node_destroy(vp);
1907	pool_put(&lfs_inode_pool, vp->v_data);
1908	vp->v_data = NULL;
1909	return (0);
1910}
1911
1912/*
1913 * Read a block from a storage device.
1914 * In order to avoid reading blocks that are in the process of being
1915 * written by the cleaner---and hence are not mutexed by the normal
1916 * buffer cache / page cache mechanisms---check for collisions before
1917 * reading.
1918 *
1919 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1920 * the active cleaner test.
1921 *
1922 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1923 */
1924int
1925lfs_strategy(void *v)
1926{
1927	struct vop_strategy_args /* {
1928		struct vnode *a_vp;
1929		struct buf *a_bp;
1930	} */ *ap = v;
1931	struct buf	*bp;
1932	struct lfs	*fs;
1933	struct vnode	*vp;
1934	struct inode	*ip;
1935	daddr_t		tbn;
1936#define MAXLOOP 25
1937	int		i, sn, error, slept, loopcount;
1938
1939	bp = ap->a_bp;
1940	vp = ap->a_vp;
1941	ip = VTOI(vp);
1942	fs = ip->i_lfs;
1943
1944	/* lfs uses its strategy routine only for read */
1945	KASSERT(bp->b_flags & B_READ);
1946
1947	if (vp->v_type == VBLK || vp->v_type == VCHR)
1948		panic("lfs_strategy: spec");
1949	KASSERT(bp->b_bcount != 0);
1950	if (bp->b_blkno == bp->b_lblkno) {
1951		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1952				 NULL);
1953		if (error) {
1954			bp->b_error = error;
1955			bp->b_resid = bp->b_bcount;
1956			biodone(bp);
1957			return (error);
1958		}
1959		if ((long)bp->b_blkno == -1) /* no valid data */
1960			clrbuf(bp);
1961	}
1962	if ((long)bp->b_blkno < 0) { /* block is not on disk */
1963		bp->b_resid = bp->b_bcount;
1964		biodone(bp);
1965		return (0);
1966	}
1967
1968	slept = 1;
1969	loopcount = 0;
1970	mutex_enter(&lfs_lock);
1971	while (slept && fs->lfs_seglock) {
1972		mutex_exit(&lfs_lock);
1973		/*
1974		 * Look through list of intervals.
1975		 * There will only be intervals to look through
1976		 * if the cleaner holds the seglock.
1977		 * Since the cleaner is synchronous, we can trust
1978		 * the list of intervals to be current.
1979		 */
1980		tbn = dbtofsb(fs, bp->b_blkno);
1981		sn = dtosn(fs, tbn);
1982		slept = 0;
1983		for (i = 0; i < fs->lfs_cleanind; i++) {
1984			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1985			    tbn >= fs->lfs_cleanint[i]) {
1986				DLOG((DLOG_CLEAN,
1987				      "lfs_strategy: ino %d lbn %" PRId64
1988				      " ind %d sn %d fsb %" PRIx32
1989				      " given sn %d fsb %" PRIx64 "\n",
1990				      ip->i_number, bp->b_lblkno, i,
1991				      dtosn(fs, fs->lfs_cleanint[i]),
1992				      fs->lfs_cleanint[i], sn, tbn));
1993				DLOG((DLOG_CLEAN,
1994				      "lfs_strategy: sleeping on ino %d lbn %"
1995				      PRId64 "\n", ip->i_number, bp->b_lblkno));
1996				mutex_enter(&lfs_lock);
1997				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1998					/*
1999					 * Cleaner can't wait for itself.
2000					 * Instead, wait for the blocks
2001					 * to be written to disk.
2002					 * XXX we need pribio in the test
2003					 * XXX here.
2004					 */
2005 					mtsleep(&fs->lfs_iocount,
2006 						(PRIBIO + 1) | PNORELOCK,
2007						"clean2", hz/10 + 1,
2008 						&lfs_lock);
2009					slept = 1;
2010					++loopcount;
2011					break;
2012				} else if (fs->lfs_seglock) {
2013					mtsleep(&fs->lfs_seglock,
2014						(PRIBIO + 1) | PNORELOCK,
2015						"clean1", 0,
2016						&lfs_lock);
2017					slept = 1;
2018					break;
2019				}
2020				mutex_exit(&lfs_lock);
2021			}
2022		}
2023		mutex_enter(&lfs_lock);
2024		if (loopcount > MAXLOOP) {
2025			printf("lfs_strategy: breaking out of clean2 loop\n");
2026			break;
2027		}
2028	}
2029	mutex_exit(&lfs_lock);
2030
2031	vp = ip->i_devvp;
2032	VOP_STRATEGY(vp, bp);
2033	return (0);
2034}
2035
2036/*
2037 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
2038 * Technically this is a checkpoint (the on-disk state is valid)
2039 * even though we are leaving out all the file data.
2040 */
2041int
2042lfs_flush_dirops(struct lfs *fs)
2043{
2044	struct inode *ip, *nip;
2045	struct vnode *vp;
2046	extern int lfs_dostats;
2047	struct segment *sp;
2048	int flags = 0;
2049	int error = 0;
2050
2051	ASSERT_MAYBE_SEGLOCK(fs);
2052	KASSERT(fs->lfs_nadirop == 0);
2053
2054	if (fs->lfs_ronly)
2055		return EROFS;
2056
2057	mutex_enter(&lfs_lock);
2058	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
2059		mutex_exit(&lfs_lock);
2060		return 0;
2061	} else
2062		mutex_exit(&lfs_lock);
2063
2064	if (lfs_dostats)
2065		++lfs_stats.flush_invoked;
2066
2067	lfs_imtime(fs);
2068	lfs_seglock(fs, flags);
2069	sp = fs->lfs_sp;
2070
2071	/*
2072	 * lfs_writevnodes, optimized to get dirops out of the way.
2073	 * Only write dirops, and don't flush files' pages, only
2074	 * blocks from the directories.
2075	 *
2076	 * We don't need to vref these files because they are
2077	 * dirops and so hold an extra reference until the
2078	 * segunlock clears them of that status.
2079	 *
2080	 * We don't need to check for IN_ADIROP because we know that
2081	 * no dirops are active.
2082	 *
2083	 */
2084	mutex_enter(&lfs_lock);
2085	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
2086		nip = TAILQ_NEXT(ip, i_lfs_dchain);
2087		mutex_exit(&lfs_lock);
2088		vp = ITOV(ip);
2089
2090		KASSERT((ip->i_flag & IN_ADIROP) == 0);
2091		KASSERT(vp->v_uflag & VU_DIROP);
2092		KASSERT(!(vp->v_iflag & VI_XLOCK));
2093
2094		/*
2095		 * All writes to directories come from dirops; all
2096		 * writes to files' direct blocks go through the page
2097		 * cache, which we're not touching.  Reads to files
2098		 * and/or directories will not be affected by writing
2099		 * directory blocks inodes and file inodes.  So we don't
2100		 * really need to lock.
2101		 */
2102		if (vp->v_iflag & VI_XLOCK) {
2103			mutex_enter(&lfs_lock);
2104			continue;
2105		}
2106		/* XXX see below
2107		 * waslocked = VOP_ISLOCKED(vp);
2108		 */
2109		if (vp->v_type != VREG &&
2110		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
2111			error = lfs_writefile(fs, sp, vp);
2112			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
2113			    !(ip->i_flag & IN_ALLMOD)) {
2114			    	mutex_enter(&lfs_lock);
2115				LFS_SET_UINO(ip, IN_MODIFIED);
2116			    	mutex_exit(&lfs_lock);
2117			}
2118			if (error && (sp->seg_flags & SEGM_SINGLE)) {
2119				mutex_enter(&lfs_lock);
2120				error = EAGAIN;
2121				break;
2122			}
2123		}
2124		KDASSERT(ip->i_number != LFS_IFILE_INUM);
2125		error = lfs_writeinode(fs, sp, ip);
2126		mutex_enter(&lfs_lock);
2127		if (error && (sp->seg_flags & SEGM_SINGLE)) {
2128			error = EAGAIN;
2129			break;
2130		}
2131
2132		/*
2133		 * We might need to update these inodes again,
2134		 * for example, if they have data blocks to write.
2135		 * Make sure that after this flush, they are still
2136		 * marked IN_MODIFIED so that we don't forget to
2137		 * write them.
2138		 */
2139		/* XXX only for non-directories? --KS */
2140		LFS_SET_UINO(ip, IN_MODIFIED);
2141	}
2142	mutex_exit(&lfs_lock);
2143	/* We've written all the dirops there are */
2144	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
2145	lfs_finalize_fs_seguse(fs);
2146	(void) lfs_writeseg(fs, sp);
2147	lfs_segunlock(fs);
2148
2149	return error;
2150}
2151
2152/*
2153 * Flush all vnodes for which the pagedaemon has requested pageouts.
2154 * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
2155 * has just run, this would be an error).  If we have to skip a vnode
2156 * for any reason, just skip it; if we have to wait for the cleaner,
2157 * abort.  The writer daemon will call us again later.
2158 */
2159int
2160lfs_flush_pchain(struct lfs *fs)
2161{
2162	struct inode *ip, *nip;
2163	struct vnode *vp;
2164	extern int lfs_dostats;
2165	struct segment *sp;
2166	int error, error2;
2167
2168	ASSERT_NO_SEGLOCK(fs);
2169
2170	if (fs->lfs_ronly)
2171		return EROFS;
2172
2173	mutex_enter(&lfs_lock);
2174	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
2175		mutex_exit(&lfs_lock);
2176		return 0;
2177	} else
2178		mutex_exit(&lfs_lock);
2179
2180	/* Get dirops out of the way */
2181	if ((error = lfs_flush_dirops(fs)) != 0)
2182		return error;
2183
2184	if (lfs_dostats)
2185		++lfs_stats.flush_invoked;
2186
2187	/*
2188	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
2189	 */
2190	lfs_imtime(fs);
2191	lfs_seglock(fs, 0);
2192	sp = fs->lfs_sp;
2193
2194	/*
2195	 * lfs_writevnodes, optimized to clear pageout requests.
2196	 * Only write non-dirop files that are in the pageout queue.
2197	 * We're very conservative about what we write; we want to be
2198	 * fast and async.
2199	 */
2200	mutex_enter(&lfs_lock);
2201    top:
2202	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
2203		nip = TAILQ_NEXT(ip, i_lfs_pchain);
2204		vp = ITOV(ip);
2205
2206		if (!(ip->i_flags & IN_PAGING))
2207			goto top;
2208
2209		mutex_enter(vp->v_interlock);
2210		if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
2211			mutex_exit(vp->v_interlock);
2212			continue;
2213		}
2214		if (vp->v_type != VREG) {
2215			mutex_exit(vp->v_interlock);
2216			continue;
2217		}
2218		if (lfs_vref(vp))
2219			continue;
2220		mutex_exit(&lfs_lock);
2221
2222		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
2223			lfs_vunref(vp);
2224			mutex_enter(&lfs_lock);
2225			continue;
2226		}
2227
2228		error = lfs_writefile(fs, sp, vp);
2229		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
2230		    !(ip->i_flag & IN_ALLMOD)) {
2231		    	mutex_enter(&lfs_lock);
2232			LFS_SET_UINO(ip, IN_MODIFIED);
2233		    	mutex_exit(&lfs_lock);
2234		}
2235		KDASSERT(ip->i_number != LFS_IFILE_INUM);
2236		error2 = lfs_writeinode(fs, sp, ip);
2237
2238		VOP_UNLOCK(vp);
2239		lfs_vunref(vp);
2240
2241		if (error == EAGAIN || error2 == EAGAIN) {
2242			lfs_writeseg(fs, sp);
2243			mutex_enter(&lfs_lock);
2244			break;
2245		}
2246		mutex_enter(&lfs_lock);
2247	}
2248	mutex_exit(&lfs_lock);
2249	(void) lfs_writeseg(fs, sp);
2250	lfs_segunlock(fs);
2251
2252	return 0;
2253}
2254
2255/*
2256 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
2257 */
2258int
2259lfs_fcntl(void *v)
2260{
2261	struct vop_fcntl_args /* {
2262		struct vnode *a_vp;
2263		u_int a_command;
2264		void * a_data;
2265		int  a_fflag;
2266		kauth_cred_t a_cred;
2267	} */ *ap = v;
2268	struct timeval tv;
2269	struct timeval *tvp;
2270	BLOCK_INFO *blkiov;
2271	CLEANERINFO *cip;
2272	SEGUSE *sup;
2273	int blkcnt, error, oclean;
2274	size_t fh_size;
2275	struct lfs_fcntl_markv blkvp;
2276	struct lwp *l;
2277	fsid_t *fsidp;
2278	struct lfs *fs;
2279	struct buf *bp;
2280	fhandle_t *fhp;
2281	daddr_t off;
2282
2283	/* Only respect LFS fcntls on fs root or Ifile */
2284	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
2285	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
2286		return ufs_fcntl(v);
2287	}
2288
2289	/* Avoid locking a draining lock */
2290	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
2291		return ESHUTDOWN;
2292	}
2293
2294	/* LFS control and monitoring fcntls are available only to root */
2295	l = curlwp;
2296	if (((ap->a_command & 0xff00) >> 8) == 'L' &&
2297	    (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
2298					     NULL)) != 0)
2299		return (error);
2300
2301	fs = VTOI(ap->a_vp)->i_lfs;
2302	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
2303
2304	error = 0;
2305	switch ((int)ap->a_command) {
2306	    case LFCNSEGWAITALL_COMPAT_50:
2307	    case LFCNSEGWAITALL_COMPAT:
2308		fsidp = NULL;
2309		/* FALLSTHROUGH */
2310	    case LFCNSEGWAIT_COMPAT_50:
2311	    case LFCNSEGWAIT_COMPAT:
2312		{
2313			struct timeval50 *tvp50
2314				= (struct timeval50 *)ap->a_data;
2315			timeval50_to_timeval(tvp50, &tv);
2316			tvp = &tv;
2317		}
2318		goto segwait_common;
2319	    case LFCNSEGWAITALL:
2320		fsidp = NULL;
2321		/* FALLSTHROUGH */
2322	    case LFCNSEGWAIT:
2323		tvp = (struct timeval *)ap->a_data;
2324segwait_common:
2325		mutex_enter(&lfs_lock);
2326		++fs->lfs_sleepers;
2327		mutex_exit(&lfs_lock);
2328
2329		error = lfs_segwait(fsidp, tvp);
2330
2331		mutex_enter(&lfs_lock);
2332		if (--fs->lfs_sleepers == 0)
2333			wakeup(&fs->lfs_sleepers);
2334		mutex_exit(&lfs_lock);
2335		return error;
2336
2337	    case LFCNBMAPV:
2338	    case LFCNMARKV:
2339		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
2340
2341		blkcnt = blkvp.blkcnt;
2342		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
2343			return (EINVAL);
2344		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
2345		if ((error = copyin(blkvp.blkiov, blkiov,
2346		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
2347			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
2348			return error;
2349		}
2350
2351		mutex_enter(&lfs_lock);
2352		++fs->lfs_sleepers;
2353		mutex_exit(&lfs_lock);
2354		if (ap->a_command == LFCNBMAPV)
2355			error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
2356		else /* LFCNMARKV */
2357			error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
2358		if (error == 0)
2359			error = copyout(blkiov, blkvp.blkiov,
2360					blkcnt * sizeof(BLOCK_INFO));
2361		mutex_enter(&lfs_lock);
2362		if (--fs->lfs_sleepers == 0)
2363			wakeup(&fs->lfs_sleepers);
2364		mutex_exit(&lfs_lock);
2365		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
2366		return error;
2367
2368	    case LFCNRECLAIM:
2369		/*
2370		 * Flush dirops and write Ifile, allowing empty segments
2371		 * to be immediately reclaimed.
2372		 */
2373		lfs_writer_enter(fs, "pndirop");
2374		off = fs->lfs_offset;
2375		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
2376		lfs_flush_dirops(fs);
2377		LFS_CLEANERINFO(cip, fs, bp);
2378		oclean = cip->clean;
2379		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
2380		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
2381		fs->lfs_sp->seg_flags |= SEGM_PROT;
2382		lfs_segunlock(fs);
2383		lfs_writer_leave(fs);
2384
2385#ifdef DEBUG
2386		LFS_CLEANERINFO(cip, fs, bp);
2387		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
2388		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
2389		      fs->lfs_offset - off, cip->clean - oclean,
2390		      fs->lfs_activesb));
2391		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
2392#endif
2393
2394		return 0;
2395
2396	    case LFCNIFILEFH_COMPAT:
2397		/* Return the filehandle of the Ifile */
2398		if ((error = kauth_authorize_system(l->l_cred,
2399		    KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
2400			return (error);
2401		fhp = (struct fhandle *)ap->a_data;
2402		fhp->fh_fsid = *fsidp;
2403		fh_size = 16;	/* former VFS_MAXFIDSIZ */
2404		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
2405
2406	    case LFCNIFILEFH_COMPAT2:
2407	    case LFCNIFILEFH:
2408		/* Return the filehandle of the Ifile */
2409		fhp = (struct fhandle *)ap->a_data;
2410		fhp->fh_fsid = *fsidp;
2411		fh_size = sizeof(struct lfs_fhandle) -
2412		    offsetof(fhandle_t, fh_fid);
2413		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
2414
2415	    case LFCNREWIND:
2416		/* Move lfs_offset to the lowest-numbered segment */
2417		return lfs_rewind(fs, *(int *)ap->a_data);
2418
2419	    case LFCNINVAL:
2420		/* Mark a segment SEGUSE_INVAL */
2421		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
2422		if (sup->su_nbytes > 0) {
2423			brelse(bp, 0);
2424			lfs_unset_inval_all(fs);
2425			return EBUSY;
2426		}
2427		sup->su_flags |= SEGUSE_INVAL;
2428		VOP_BWRITE(bp->b_vp, bp);
2429		return 0;
2430
2431	    case LFCNRESIZE:
2432		/* Resize the filesystem */
2433		return lfs_resize_fs(fs, *(int *)ap->a_data);
2434
2435	    case LFCNWRAPSTOP:
2436	    case LFCNWRAPSTOP_COMPAT:
2437		/*
2438		 * Hold lfs_newseg at segment 0; if requested, sleep until
2439		 * the filesystem wraps around.  To support external agents
2440		 * (dump, fsck-based regression test) that need to look at
2441		 * a snapshot of the filesystem, without necessarily
2442		 * requiring that all fs activity stops.
2443		 */
2444		if (fs->lfs_stoplwp == curlwp)
2445			return EALREADY;
2446
2447		mutex_enter(&lfs_lock);
2448		while (fs->lfs_stoplwp != NULL)
2449			cv_wait(&fs->lfs_stopcv, &lfs_lock);
2450		fs->lfs_stoplwp = curlwp;
2451		if (fs->lfs_nowrap == 0)
2452			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
2453		++fs->lfs_nowrap;
2454		if (*(int *)ap->a_data == 1
2455		    || ap->a_command == LFCNWRAPSTOP_COMPAT) {
2456			log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
2457			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
2458				"segwrap", 0, &lfs_lock);
2459			log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
2460			if (error) {
2461				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
2462			}
2463		}
2464		mutex_exit(&lfs_lock);
2465		return 0;
2466
2467	    case LFCNWRAPGO:
2468	    case LFCNWRAPGO_COMPAT:
2469		/*
2470		 * Having done its work, the agent wakes up the writer.
2471		 * If the argument is 1, it sleeps until a new segment
2472		 * is selected.
2473		 */
2474		mutex_enter(&lfs_lock);
2475		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
2476				   ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
2477				    *((int *)ap->a_data));
2478		mutex_exit(&lfs_lock);
2479		return error;
2480
2481	    case LFCNWRAPPASS:
2482		if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
2483			return EALREADY;
2484		mutex_enter(&lfs_lock);
2485		if (fs->lfs_stoplwp != curlwp) {
2486			mutex_exit(&lfs_lock);
2487			return EALREADY;
2488		}
2489		if (fs->lfs_nowrap == 0) {
2490			mutex_exit(&lfs_lock);
2491			return EBUSY;
2492		}
2493		fs->lfs_wrappass = 1;
2494		wakeup(&fs->lfs_wrappass);
2495		/* Wait for the log to wrap, if asked */
2496		if (*(int *)ap->a_data) {
2497			mutex_enter(ap->a_vp->v_interlock);
2498			if (lfs_vref(ap->a_vp) != 0)
2499				panic("LFCNWRAPPASS: lfs_vref failed");
2500			VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
2501			log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
2502			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
2503				"segwrap", 0, &lfs_lock);
2504			log(LOG_NOTICE, "LFCNPASS done waiting\n");
2505			VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
2506			lfs_vunref(ap->a_vp);
2507		}
2508		mutex_exit(&lfs_lock);
2509		return error;
2510
2511	    case LFCNWRAPSTATUS:
2512		mutex_enter(&lfs_lock);
2513		*(int *)ap->a_data = fs->lfs_wrapstatus;
2514		mutex_exit(&lfs_lock);
2515		return 0;
2516
2517	    default:
2518		return ufs_fcntl(v);
2519	}
2520	return 0;
2521}
2522
2523int
2524lfs_getpages(void *v)
2525{
2526	struct vop_getpages_args /* {
2527		struct vnode *a_vp;
2528		voff_t a_offset;
2529		struct vm_page **a_m;
2530		int *a_count;
2531		int a_centeridx;
2532		vm_prot_t a_access_type;
2533		int a_advice;
2534		int a_flags;
2535	} */ *ap = v;
2536
2537	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
2538	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
2539		return EPERM;
2540	}
2541	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
2542		mutex_enter(&lfs_lock);
2543		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
2544		mutex_exit(&lfs_lock);
2545	}
2546
2547	/*
2548	 * we're relying on the fact that genfs_getpages() always read in
2549	 * entire filesystem blocks.
2550	 */
2551	return genfs_getpages(v);
2552}
2553
2554/*
2555 * Wait for a page to become unbusy, possibly printing diagnostic messages
2556 * as well.
2557 *
2558 * Called with vp->v_interlock held; return with it held.
2559 */
2560static void
2561wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
2562{
2563	KASSERT(mutex_owned(vp->v_interlock));
2564	if ((pg->flags & PG_BUSY) == 0)
2565		return;		/* Nothing to wait for! */
2566
2567#if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
2568	static struct vm_page *lastpg;
2569
2570	if (label != NULL && pg != lastpg) {
2571		if (pg->owner_tag) {
2572			printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
2573			       curproc->p_pid, curlwp->l_lid, label,
2574			       pg, pg->owner, pg->lowner, pg->owner_tag);
2575		} else {
2576			printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
2577			       curproc->p_pid, curlwp->l_lid, label, pg);
2578		}
2579	}
2580	lastpg = pg;
2581#endif
2582
2583	pg->flags |= PG_WANTED;
2584	UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
2585	mutex_enter(vp->v_interlock);
2586}
2587
2588/*
2589 * This routine is called by lfs_putpages() when it can't complete the
2590 * write because a page is busy.  This means that either (1) someone,
2591 * possibly the pagedaemon, is looking at this page, and will give it up
2592 * presently; or (2) we ourselves are holding the page busy in the
2593 * process of being written (either gathered or actually on its way to
2594 * disk).  We don't need to give up the segment lock, but we might need
2595 * to call lfs_writeseg() to expedite the page's journey to disk.
2596 *
2597 * Called with vp->v_interlock held; return with it held.
2598 */
2599/* #define BUSYWAIT */
2600static void
2601write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
2602	       int seglocked, const char *label)
2603{
2604	KASSERT(mutex_owned(vp->v_interlock));
2605#ifndef BUSYWAIT
2606	struct inode *ip = VTOI(vp);
2607	struct segment *sp = fs->lfs_sp;
2608	int count = 0;
2609
2610	if (pg == NULL)
2611		return;
2612
2613	while (pg->flags & PG_BUSY &&
2614	    pg->uobject == &vp->v_uobj) {
2615		mutex_exit(vp->v_interlock);
2616		if (sp->cbpp - sp->bpp > 1) {
2617			/* Write gathered pages */
2618			lfs_updatemeta(sp);
2619			lfs_release_finfo(fs);
2620			(void) lfs_writeseg(fs, sp);
2621
2622			/*
2623			 * Reinitialize FIP
2624			 */
2625			KASSERT(sp->vp == vp);
2626			lfs_acquire_finfo(fs, ip->i_number,
2627					  ip->i_gen);
2628		}
2629		++count;
2630		mutex_enter(vp->v_interlock);
2631		wait_for_page(vp, pg, label);
2632	}
2633	if (label != NULL && count > 1) {
2634		DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
2635		      curproc->p_pid, label, (count > 0 ? "looping, " : ""),
2636		      count));
2637	}
2638#else
2639	preempt(1);
2640#endif
2641	KASSERT(mutex_owned(vp->v_interlock));
2642}
2643
2644/*
2645 * Make sure that for all pages in every block in the given range,
2646 * either all are dirty or all are clean.  If any of the pages
2647 * we've seen so far are dirty, put the vnode on the paging chain,
2648 * and mark it IN_PAGING.
2649 *
2650 * If checkfirst != 0, don't check all the pages but return at the
2651 * first dirty page.
2652 */
2653static int
2654check_dirty(struct lfs *fs, struct vnode *vp,
2655	    off_t startoffset, off_t endoffset, off_t blkeof,
2656	    int flags, int checkfirst, struct vm_page **pgp)
2657{
2658	int by_list;
2659	struct vm_page *curpg = NULL; /* XXX: gcc */
2660	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
2661	off_t soff = 0; /* XXX: gcc */
2662	voff_t off;
2663	int i;
2664	int nonexistent;
2665	int any_dirty;	/* number of dirty pages */
2666	int dirty;	/* number of dirty pages in a block */
2667	int tdirty;
2668	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
2669	int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2670
2671	KASSERT(mutex_owned(vp->v_interlock));
2672	ASSERT_MAYBE_SEGLOCK(fs);
2673  top:
2674	by_list = (vp->v_uobj.uo_npages <=
2675		   ((endoffset - startoffset) >> PAGE_SHIFT) *
2676		   UVM_PAGE_TREE_PENALTY);
2677	any_dirty = 0;
2678
2679	if (by_list) {
2680		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
2681	} else {
2682		soff = startoffset;
2683	}
2684	while (by_list || soff < MIN(blkeof, endoffset)) {
2685		if (by_list) {
2686			/*
2687			 * Find the first page in a block.  Skip
2688			 * blocks outside our area of interest or beyond
2689			 * the end of file.
2690			 */
2691			KASSERT(curpg == NULL
2692			    || (curpg->flags & PG_MARKER) == 0);
2693			if (pages_per_block > 1) {
2694				while (curpg &&
2695				    ((curpg->offset & fs->lfs_bmask) ||
2696				    curpg->offset >= vp->v_size ||
2697				    curpg->offset >= endoffset)) {
2698					curpg = TAILQ_NEXT(curpg, listq.queue);
2699					KASSERT(curpg == NULL ||
2700					    (curpg->flags & PG_MARKER) == 0);
2701				}
2702			}
2703			if (curpg == NULL)
2704				break;
2705			soff = curpg->offset;
2706		}
2707
2708		/*
2709		 * Mark all pages in extended range busy; find out if any
2710		 * of them are dirty.
2711		 */
2712		nonexistent = dirty = 0;
2713		for (i = 0; i == 0 || i < pages_per_block; i++) {
2714			KASSERT(mutex_owned(vp->v_interlock));
2715			if (by_list && pages_per_block <= 1) {
2716				pgs[i] = pg = curpg;
2717			} else {
2718				off = soff + (i << PAGE_SHIFT);
2719				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
2720				if (pg == NULL) {
2721					++nonexistent;
2722					continue;
2723				}
2724			}
2725			KASSERT(pg != NULL);
2726
2727			/*
2728			 * If we're holding the segment lock, we can deadlock
2729			 * against a process that has our page and is waiting
2730			 * for the cleaner, while the cleaner waits for the
2731			 * segment lock.  Just bail in that case.
2732			 */
2733			if ((pg->flags & PG_BUSY) &&
2734			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
2735				if (i > 0)
2736					uvm_page_unbusy(pgs, i);
2737				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
2738				if (pgp)
2739					*pgp = pg;
2740				KASSERT(mutex_owned(vp->v_interlock));
2741				return -1;
2742			}
2743
2744			while (pg->flags & PG_BUSY) {
2745				wait_for_page(vp, pg, NULL);
2746				KASSERT(mutex_owned(vp->v_interlock));
2747				if (i > 0)
2748					uvm_page_unbusy(pgs, i);
2749				KASSERT(mutex_owned(vp->v_interlock));
2750				goto top;
2751			}
2752			pg->flags |= PG_BUSY;
2753			UVM_PAGE_OWN(pg, "lfs_putpages");
2754
2755			pmap_page_protect(pg, VM_PROT_NONE);
2756			tdirty = (pmap_clear_modify(pg) ||
2757				  (pg->flags & PG_CLEAN) == 0);
2758			dirty += tdirty;
2759		}
2760		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
2761			if (by_list) {
2762				curpg = TAILQ_NEXT(curpg, listq.queue);
2763			} else {
2764				soff += fs->lfs_bsize;
2765			}
2766			continue;
2767		}
2768
2769		any_dirty += dirty;
2770		KASSERT(nonexistent == 0);
2771		KASSERT(mutex_owned(vp->v_interlock));
2772
2773		/*
2774		 * If any are dirty make all dirty; unbusy them,
2775		 * but if we were asked to clean, wire them so that
2776		 * the pagedaemon doesn't bother us about them while
2777		 * they're on their way to disk.
2778		 */
2779		for (i = 0; i == 0 || i < pages_per_block; i++) {
2780			KASSERT(mutex_owned(vp->v_interlock));
2781			pg = pgs[i];
2782			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
2783			KASSERT(pg->flags & PG_BUSY);
2784			if (dirty) {
2785				pg->flags &= ~PG_CLEAN;
2786				if (flags & PGO_FREE) {
2787					/*
2788					 * Wire the page so that
2789					 * pdaemon doesn't see it again.
2790					 */
2791					mutex_enter(&uvm_pageqlock);
2792					uvm_pagewire(pg);
2793					mutex_exit(&uvm_pageqlock);
2794
2795					/* Suspended write flag */
2796					pg->flags |= PG_DELWRI;
2797				}
2798			}
2799			if (pg->flags & PG_WANTED)
2800				wakeup(pg);
2801			pg->flags &= ~(PG_WANTED|PG_BUSY);
2802			UVM_PAGE_OWN(pg, NULL);
2803		}
2804
2805		if (checkfirst && any_dirty)
2806			break;
2807
2808		if (by_list) {
2809			curpg = TAILQ_NEXT(curpg, listq.queue);
2810		} else {
2811			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
2812		}
2813	}
2814
2815	KASSERT(mutex_owned(vp->v_interlock));
2816	return any_dirty;
2817}
2818
2819/*
2820 * lfs_putpages functions like genfs_putpages except that
2821 *
2822 * (1) It needs to bounds-check the incoming requests to ensure that
2823 *     they are block-aligned; if they are not, expand the range and
2824 *     do the right thing in case, e.g., the requested range is clean
2825 *     but the expanded range is dirty.
2826 *
2827 * (2) It needs to explicitly send blocks to be written when it is done.
2828 *     If VOP_PUTPAGES is called without the seglock held, we simply take
2829 *     the seglock and let lfs_segunlock wait for us.
2830 *     XXX There might be a bad situation if we have to flush a vnode while
2831 *     XXX lfs_markv is in operation.  As of this writing we panic in this
2832 *     XXX case.
2833 *
2834 * Assumptions:
2835 *
2836 * (1) The caller does not hold any pages in this vnode busy.  If it does,
2837 *     there is a danger that when we expand the page range and busy the
2838 *     pages we will deadlock.
2839 *
2840 * (2) We are called with vp->v_interlock held; we must return with it
2841 *     released.
2842 *
2843 * (3) We don't absolutely have to free pages right away, provided that
2844 *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
2845 *     us a request with PGO_FREE, we take the pages out of the paging
2846 *     queue and wake up the writer, which will handle freeing them for us.
2847 *
2848 *     We ensure that for any filesystem block, all pages for that
2849 *     block are either resident or not, even if those pages are higher
2850 *     than EOF; that means that we will be getting requests to free
2851 *     "unused" pages above EOF all the time, and should ignore them.
2852 *
2853 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
2854 *     into has been set up for us by lfs_writefile.  If not, we will
2855 *     have to handle allocating and/or freeing an finfo entry.
2856 *
2857 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
2858 */
2859
2860/* How many times to loop before we should start to worry */
2861#define TOOMANY 4
2862
2863int
2864lfs_putpages(void *v)
2865{
2866	int error;
2867	struct vop_putpages_args /* {
2868		struct vnode *a_vp;
2869		voff_t a_offlo;
2870		voff_t a_offhi;
2871		int a_flags;
2872	} */ *ap = v;
2873	struct vnode *vp;
2874	struct inode *ip;
2875	struct lfs *fs;
2876	struct segment *sp;
2877	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2878	off_t off, max_endoffset;
2879	bool seglocked, sync, pagedaemon, reclaim;
2880	struct vm_page *pg, *busypg;
2881	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2882	int oreclaim = 0;
2883	int donewriting = 0;
2884#ifdef DEBUG
2885	int debug_n_again, debug_n_dirtyclean;
2886#endif
2887
2888	vp = ap->a_vp;
2889	ip = VTOI(vp);
2890	fs = ip->i_lfs;
2891	sync = (ap->a_flags & PGO_SYNCIO) != 0;
2892	reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
2893	pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2894
2895	KASSERT(mutex_owned(vp->v_interlock));
2896
2897	/* Putpages does nothing for metadata. */
2898	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2899		mutex_exit(vp->v_interlock);
2900		return 0;
2901	}
2902
2903	/*
2904	 * If there are no pages, don't do anything.
2905	 */
2906	if (vp->v_uobj.uo_npages == 0) {
2907		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2908		    (vp->v_iflag & VI_ONWORKLST) &&
2909		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2910			vp->v_iflag &= ~VI_WRMAPDIRTY;
2911			vn_syncer_remove_from_worklist(vp);
2912		}
2913		mutex_exit(vp->v_interlock);
2914
2915		/* Remove us from paging queue, if we were on it */
2916		mutex_enter(&lfs_lock);
2917		if (ip->i_flags & IN_PAGING) {
2918			ip->i_flags &= ~IN_PAGING;
2919			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2920		}
2921		mutex_exit(&lfs_lock);
2922
2923		KASSERT(!mutex_owned(vp->v_interlock));
2924		return 0;
2925	}
2926
2927	blkeof = blkroundup(fs, ip->i_size);
2928
2929	/*
2930	 * Ignore requests to free pages past EOF but in the same block
2931	 * as EOF, unless the vnode is being reclaimed or the request
2932	 * is synchronous.  (If the request is sync, it comes from
2933	 * lfs_truncate.)
2934	 *
2935	 * To avoid being flooded with this request, make these pages
2936	 * look "active".
2937	 */
2938	if (!sync && !reclaim &&
2939	    ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2940		origoffset = ap->a_offlo;
2941		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2942			pg = uvm_pagelookup(&vp->v_uobj, off);
2943			KASSERT(pg != NULL);
2944			while (pg->flags & PG_BUSY) {
2945				pg->flags |= PG_WANTED;
2946				UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
2947						    "lfsput2", 0);
2948				mutex_enter(vp->v_interlock);
2949			}
2950			mutex_enter(&uvm_pageqlock);
2951			uvm_pageactivate(pg);
2952			mutex_exit(&uvm_pageqlock);
2953		}
2954		ap->a_offlo = blkeof;
2955		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2956			mutex_exit(vp->v_interlock);
2957			return 0;
2958		}
2959	}
2960
2961	/*
2962	 * Extend page range to start and end at block boundaries.
2963	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2964	 */
2965	origoffset = ap->a_offlo;
2966	origendoffset = ap->a_offhi;
2967	startoffset = origoffset & ~(fs->lfs_bmask);
2968	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2969					       << fs->lfs_bshift;
2970
2971	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2972		endoffset = max_endoffset;
2973		origendoffset = endoffset;
2974	} else {
2975		origendoffset = round_page(ap->a_offhi);
2976		endoffset = round_page(blkroundup(fs, origendoffset));
2977	}
2978
2979	KASSERT(startoffset > 0 || endoffset >= startoffset);
2980	if (startoffset == endoffset) {
2981		/* Nothing to do, why were we called? */
2982		mutex_exit(vp->v_interlock);
2983		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2984		      PRId64 "\n", startoffset));
2985		return 0;
2986	}
2987
2988	ap->a_offlo = startoffset;
2989	ap->a_offhi = endoffset;
2990
2991	/*
2992	 * If not cleaning, just send the pages through genfs_putpages
2993	 * to be returned to the pool.
2994	 */
2995	if (!(ap->a_flags & PGO_CLEANIT)) {
2996		DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
2997		      vp, (int)ip->i_number, ap->a_flags));
2998		int r = genfs_putpages(v);
2999		KASSERT(!mutex_owned(vp->v_interlock));
3000		return r;
3001	}
3002
3003	/* Set PGO_BUSYFAIL to avoid deadlocks */
3004	ap->a_flags |= PGO_BUSYFAIL;
3005
3006	/*
3007	 * Likewise, if we are asked to clean but the pages are not
3008	 * dirty, we can just free them using genfs_putpages.
3009	 */
3010#ifdef DEBUG
3011	debug_n_dirtyclean = 0;
3012#endif
3013	do {
3014		int r;
3015		KASSERT(mutex_owned(vp->v_interlock));
3016
3017		/* Count the number of dirty pages */
3018		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
3019				ap->a_flags, 1, NULL);
3020		if (r < 0) {
3021			/* Pages are busy with another process */
3022			mutex_exit(vp->v_interlock);
3023			return EDEADLK;
3024		}
3025		if (r > 0) /* Some pages are dirty */
3026			break;
3027
3028		/*
3029		 * Sometimes pages are dirtied between the time that
3030		 * we check and the time we try to clean them.
3031		 * Instruct lfs_gop_write to return EDEADLK in this case
3032		 * so we can write them properly.
3033		 */
3034		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
3035		r = genfs_do_putpages(vp, startoffset, endoffset,
3036				       ap->a_flags & ~PGO_SYNCIO, &busypg);
3037		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
3038		if (r != EDEADLK) {
3039			KASSERT(!mutex_owned(vp->v_interlock));
3040 			return r;
3041		}
3042
3043		/* One of the pages was busy.  Start over. */
3044		mutex_enter(vp->v_interlock);
3045		wait_for_page(vp, busypg, "dirtyclean");
3046#ifdef DEBUG
3047		++debug_n_dirtyclean;
3048#endif
3049	} while(1);
3050
3051#ifdef DEBUG
3052	if (debug_n_dirtyclean > TOOMANY)
3053		DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
3054		      debug_n_dirtyclean));
3055#endif
3056
3057	/*
3058	 * Dirty and asked to clean.
3059	 *
3060	 * Pagedaemon can't actually write LFS pages; wake up
3061	 * the writer to take care of that.  The writer will
3062	 * notice the pager inode queue and act on that.
3063	 *
3064	 * XXX We must drop the vp->interlock before taking the lfs_lock or we
3065	 * get a nasty deadlock with lfs_flush_pchain().
3066	 */
3067	if (pagedaemon) {
3068		mutex_exit(vp->v_interlock);
3069		mutex_enter(&lfs_lock);
3070		if (!(ip->i_flags & IN_PAGING)) {
3071			ip->i_flags |= IN_PAGING;
3072			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
3073		}
3074		wakeup(&lfs_writer_daemon);
3075		mutex_exit(&lfs_lock);
3076		preempt();
3077		KASSERT(!mutex_owned(vp->v_interlock));
3078		return EWOULDBLOCK;
3079	}
3080
3081	/*
3082	 * If this is a file created in a recent dirop, we can't flush its
3083	 * inode until the dirop is complete.  Drain dirops, then flush the
3084	 * filesystem (taking care of any other pending dirops while we're
3085	 * at it).
3086	 */
3087	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
3088	    (vp->v_uflag & VU_DIROP)) {
3089		DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
3090
3091 		lfs_writer_enter(fs, "ppdirop");
3092
3093		/* Note if we hold the vnode locked */
3094		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
3095		{
3096		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
3097		} else {
3098		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
3099		}
3100		mutex_exit(vp->v_interlock);
3101
3102		mutex_enter(&lfs_lock);
3103		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
3104		mutex_exit(&lfs_lock);
3105
3106		mutex_enter(vp->v_interlock);
3107		lfs_writer_leave(fs);
3108
3109		/* The flush will have cleaned out this vnode as well,
3110		   no need to do more to it. */
3111	}
3112
3113	/*
3114	 * This is it.	We are going to write some pages.  From here on
3115	 * down it's all just mechanics.
3116	 *
3117	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
3118	 */
3119	ap->a_flags &= ~PGO_SYNCIO;
3120
3121	/*
3122	 * If we've already got the seglock, flush the node and return.
3123	 * The FIP has already been set up for us by lfs_writefile,
3124	 * and FIP cleanup and lfs_updatemeta will also be done there,
3125	 * unless genfs_putpages returns EDEADLK; then we must flush
3126	 * what we have, and correct FIP and segment header accounting.
3127	 */
3128  get_seglock:
3129	/*
3130	 * If we are not called with the segment locked, lock it.
3131	 * Account for a new FIP in the segment header, and set sp->vp.
3132	 * (This should duplicate the setup at the top of lfs_writefile().)
3133	 */
3134	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
3135	if (!seglocked) {
3136		mutex_exit(vp->v_interlock);
3137		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
3138		if (error != 0) {
3139			KASSERT(!mutex_owned(vp->v_interlock));
3140 			return error;
3141		}
3142		mutex_enter(vp->v_interlock);
3143		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
3144	}
3145	sp = fs->lfs_sp;
3146	KASSERT(sp->vp == NULL);
3147	sp->vp = vp;
3148
3149	/* Note segments written by reclaim; only for debugging */
3150	if ((vp->v_iflag & VI_XLOCK) != 0) {
3151		sp->seg_flags |= SEGM_RECLAIM;
3152		fs->lfs_reclino = ip->i_number;
3153	}
3154
3155	/*
3156	 * Ensure that the partial segment is marked SS_DIROP if this
3157	 * vnode is a DIROP.
3158	 */
3159	if (!seglocked && vp->v_uflag & VU_DIROP)
3160		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
3161
3162	/*
3163	 * Loop over genfs_putpages until all pages are gathered.
3164	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
3165	 * Whenever we lose the interlock we have to rerun check_dirty, as
3166	 * well, since more pages might have been dirtied in our absence.
3167	 */
3168#ifdef DEBUG
3169	debug_n_again = 0;
3170#endif
3171	do {
3172		busypg = NULL;
3173		KASSERT(mutex_owned(vp->v_interlock));
3174		if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
3175				ap->a_flags, 0, &busypg) < 0) {
3176			mutex_exit(vp->v_interlock);
3177			/* XXX why? --ks */
3178			mutex_enter(vp->v_interlock);
3179			write_and_wait(fs, vp, busypg, seglocked, NULL);
3180			if (!seglocked) {
3181				mutex_exit(vp->v_interlock);
3182				lfs_release_finfo(fs);
3183				lfs_segunlock(fs);
3184				mutex_enter(vp->v_interlock);
3185			}
3186			sp->vp = NULL;
3187			goto get_seglock;
3188		}
3189
3190		busypg = NULL;
3191		KASSERT(!mutex_owned(&uvm_pageqlock));
3192		oreclaim = (ap->a_flags & PGO_RECLAIM);
3193		ap->a_flags &= ~PGO_RECLAIM;
3194		error = genfs_do_putpages(vp, startoffset, endoffset,
3195					   ap->a_flags, &busypg);
3196		ap->a_flags |= oreclaim;
3197
3198		if (error == EDEADLK || error == EAGAIN) {
3199			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
3200			      " %d ino %d off %x (seg %d)\n", error,
3201			      ip->i_number, fs->lfs_offset,
3202			      dtosn(fs, fs->lfs_offset)));
3203
3204			if (oreclaim) {
3205				mutex_enter(vp->v_interlock);
3206				write_and_wait(fs, vp, busypg, seglocked, "again");
3207				mutex_exit(vp->v_interlock);
3208			} else {
3209				if ((sp->seg_flags & SEGM_SINGLE) &&
3210				    fs->lfs_curseg != fs->lfs_startseg)
3211					donewriting = 1;
3212			}
3213		} else if (error) {
3214			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
3215			      " %d ino %d off %x (seg %d)\n", error,
3216			      (int)ip->i_number, fs->lfs_offset,
3217			      dtosn(fs, fs->lfs_offset)));
3218		}
3219		/* genfs_do_putpages loses the interlock */
3220#ifdef DEBUG
3221		++debug_n_again;
3222#endif
3223		if (oreclaim && error == EAGAIN) {
3224			DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
3225			      vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
3226			mutex_enter(vp->v_interlock);
3227		}
3228		if (error == EDEADLK)
3229			mutex_enter(vp->v_interlock);
3230	} while (error == EDEADLK || (oreclaim && error == EAGAIN));
3231#ifdef DEBUG
3232	if (debug_n_again > TOOMANY)
3233		DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
3234#endif
3235
3236	KASSERT(sp != NULL && sp->vp == vp);
3237	if (!seglocked && !donewriting) {
3238		sp->vp = NULL;
3239
3240		/* Write indirect blocks as well */
3241		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
3242		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
3243		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
3244
3245		KASSERT(sp->vp == NULL);
3246		sp->vp = vp;
3247	}
3248
3249	/*
3250	 * Blocks are now gathered into a segment waiting to be written.
3251	 * All that's left to do is update metadata, and write them.
3252	 */
3253	lfs_updatemeta(sp);
3254	KASSERT(sp->vp == vp);
3255	sp->vp = NULL;
3256
3257	/*
3258	 * If we were called from lfs_writefile, we don't need to clean up
3259	 * the FIP or unlock the segment lock.	We're done.
3260	 */
3261	if (seglocked) {
3262		KASSERT(!mutex_owned(vp->v_interlock));
3263		return error;
3264	}
3265
3266	/* Clean up FIP and send it to disk. */
3267	lfs_release_finfo(fs);
3268	lfs_writeseg(fs, fs->lfs_sp);
3269
3270	/*
3271	 * Remove us from paging queue if we wrote all our pages.
3272	 */
3273	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
3274		mutex_enter(&lfs_lock);
3275		if (ip->i_flags & IN_PAGING) {
3276			ip->i_flags &= ~IN_PAGING;
3277			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
3278		}
3279		mutex_exit(&lfs_lock);
3280	}
3281
3282	/*
3283	 * XXX - with the malloc/copy writeseg, the pages are freed by now
3284	 * even if we don't wait (e.g. if we hold a nested lock).  This
3285	 * will not be true if we stop using malloc/copy.
3286	 */
3287	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
3288	lfs_segunlock(fs);
3289
3290	/*
3291	 * Wait for v_numoutput to drop to zero.  The seglock should
3292	 * take care of this, but there is a slight possibility that
3293	 * aiodoned might not have got around to our buffers yet.
3294	 */
3295	if (sync) {
3296		mutex_enter(vp->v_interlock);
3297		while (vp->v_numoutput > 0) {
3298			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
3299			      " num %d\n", ip->i_number, vp->v_numoutput));
3300			cv_wait(&vp->v_cv, vp->v_interlock);
3301		}
3302		mutex_exit(vp->v_interlock);
3303	}
3304	KASSERT(!mutex_owned(vp->v_interlock));
3305	return error;
3306}
3307
3308/*
3309 * Return the last logical file offset that should be written for this file
3310 * if we're doing a write that ends at "size".	If writing, we need to know
3311 * about sizes on disk, i.e. fragments if there are any; if reading, we need
3312 * to know about entire blocks.
3313 */
3314void
3315lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
3316{
3317	struct inode *ip = VTOI(vp);
3318	struct lfs *fs = ip->i_lfs;
3319	daddr_t olbn, nlbn;
3320
3321	olbn = lblkno(fs, ip->i_size);
3322	nlbn = lblkno(fs, size);
3323	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
3324		*eobp = fragroundup(fs, size);
3325	} else {
3326		*eobp = blkroundup(fs, size);
3327	}
3328}
3329
3330#ifdef DEBUG
3331void lfs_dump_vop(void *);
3332
3333void
3334lfs_dump_vop(void *v)
3335{
3336	struct vop_putpages_args /* {
3337		struct vnode *a_vp;
3338		voff_t a_offlo;
3339		voff_t a_offhi;
3340		int a_flags;
3341	} */ *ap = v;
3342
3343#ifdef DDB
3344	vfs_vnode_print(ap->a_vp, 0, printf);
3345#endif
3346	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
3347}
3348#endif
3349
3350int
3351lfs_mmap(void *v)
3352{
3353	struct vop_mmap_args /* {
3354		const struct vnodeop_desc *a_desc;
3355		struct vnode *a_vp;
3356		vm_prot_t a_prot;
3357		kauth_cred_t a_cred;
3358	} */ *ap = v;
3359
3360	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
3361		return EOPNOTSUPP;
3362	return ufs_mmap(v);
3363}
3364