1/*	$NetBSD: if_tap.c,v 1.66 2010/11/22 21:31:51 christos Exp $	*/
2
3/*
4 *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 *  All rights reserved.
6 *
7 *  Redistribution and use in source and binary forms, with or without
8 *  modification, are permitted provided that the following conditions
9 *  are met:
10 *  1. Redistributions of source code must retain the above copyright
11 *     notice, this list of conditions and the following disclaimer.
12 *  2. Redistributions in binary form must reproduce the above copyright
13 *     notice, this list of conditions and the following disclaimer in the
14 *     documentation and/or other materials provided with the distribution.
15 *
16 *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 *  POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.66 2010/11/22 21:31:51 christos Exp $");
37
38#if defined(_KERNEL_OPT)
39
40#include "opt_modular.h"
41#include "opt_compat_netbsd.h"
42#endif
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/kernel.h>
47#include <sys/malloc.h>
48#include <sys/conf.h>
49#include <sys/device.h>
50#include <sys/file.h>
51#include <sys/filedesc.h>
52#include <sys/ksyms.h>
53#include <sys/poll.h>
54#include <sys/proc.h>
55#include <sys/select.h>
56#include <sys/sockio.h>
57#if defined(COMPAT_40) || defined(MODULAR)
58#include <sys/sysctl.h>
59#endif
60#include <sys/kauth.h>
61#include <sys/mutex.h>
62#include <sys/simplelock.h>
63#include <sys/intr.h>
64#include <sys/stat.h>
65
66#include <net/if.h>
67#include <net/if_dl.h>
68#include <net/if_ether.h>
69#include <net/if_media.h>
70#include <net/if_tap.h>
71#include <net/bpf.h>
72
73#include <compat/sys/sockio.h>
74
75#if defined(COMPAT_40) || defined(MODULAR)
76/*
77 * sysctl node management
78 *
79 * It's not really possible to use a SYSCTL_SETUP block with
80 * current module implementation, so it is easier to just define
81 * our own function.
82 *
83 * The handler function is a "helper" in Andrew Brown's sysctl
84 * framework terminology.  It is used as a gateway for sysctl
85 * requests over the nodes.
86 *
87 * tap_log allows the module to log creations of nodes and
88 * destroy them all at once using sysctl_teardown.
89 */
90static int tap_node;
91static int	tap_sysctl_handler(SYSCTLFN_PROTO);
92SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93#endif
94
95/*
96 * Since we're an Ethernet device, we need the 3 following
97 * components: a leading struct device, a struct ethercom,
98 * and also a struct ifmedia since we don't attach a PHY to
99 * ourselves. We could emulate one, but there's no real
100 * point.
101 */
102
103struct tap_softc {
104	device_t	sc_dev;
105	struct ifmedia	sc_im;
106	struct ethercom	sc_ec;
107	int		sc_flags;
108#define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
109#define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
110#define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
111#define TAP_GOING	0x00000008	/* interface is being destroyed */
112	struct selinfo	sc_rsel;
113	pid_t		sc_pgid; /* For async. IO */
114	kmutex_t	sc_rdlock;
115	struct simplelock	sc_kqlock;
116	void		*sc_sih;
117	struct timespec sc_atime;
118	struct timespec sc_mtime;
119	struct timespec sc_btime;
120};
121
122/* autoconf(9) glue */
123
124void	tapattach(int);
125
126static int	tap_match(device_t, cfdata_t, void *);
127static void	tap_attach(device_t, device_t, void *);
128static int	tap_detach(device_t, int);
129
130CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
131    tap_match, tap_attach, tap_detach, NULL);
132extern struct cfdriver tap_cd;
133
134/* Real device access routines */
135static int	tap_dev_close(struct tap_softc *);
136static int	tap_dev_read(int, struct uio *, int);
137static int	tap_dev_write(int, struct uio *, int);
138static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
139static int	tap_dev_poll(int, int, struct lwp *);
140static int	tap_dev_kqfilter(int, struct knote *);
141
142/* Fileops access routines */
143static int	tap_fops_close(file_t *);
144static int	tap_fops_read(file_t *, off_t *, struct uio *,
145    kauth_cred_t, int);
146static int	tap_fops_write(file_t *, off_t *, struct uio *,
147    kauth_cred_t, int);
148static int	tap_fops_ioctl(file_t *, u_long, void *);
149static int	tap_fops_poll(file_t *, int);
150static int	tap_fops_stat(file_t *, struct stat *);
151static int	tap_fops_kqfilter(file_t *, struct knote *);
152
153static const struct fileops tap_fileops = {
154	.fo_read = tap_fops_read,
155	.fo_write = tap_fops_write,
156	.fo_ioctl = tap_fops_ioctl,
157	.fo_fcntl = fnullop_fcntl,
158	.fo_poll = tap_fops_poll,
159	.fo_stat = tap_fops_stat,
160	.fo_close = tap_fops_close,
161	.fo_kqfilter = tap_fops_kqfilter,
162	.fo_restart = fnullop_restart,
163};
164
165/* Helper for cloning open() */
166static int	tap_dev_cloner(struct lwp *);
167
168/* Character device routines */
169static int	tap_cdev_open(dev_t, int, int, struct lwp *);
170static int	tap_cdev_close(dev_t, int, int, struct lwp *);
171static int	tap_cdev_read(dev_t, struct uio *, int);
172static int	tap_cdev_write(dev_t, struct uio *, int);
173static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
174static int	tap_cdev_poll(dev_t, int, struct lwp *);
175static int	tap_cdev_kqfilter(dev_t, struct knote *);
176
177const struct cdevsw tap_cdevsw = {
178	tap_cdev_open, tap_cdev_close,
179	tap_cdev_read, tap_cdev_write,
180	tap_cdev_ioctl, nostop, notty,
181	tap_cdev_poll, nommap,
182	tap_cdev_kqfilter,
183	D_OTHER,
184};
185
186#define TAP_CLONER	0xfffff		/* Maximal minor value */
187
188/* kqueue-related routines */
189static void	tap_kqdetach(struct knote *);
190static int	tap_kqread(struct knote *, long);
191
192/*
193 * Those are needed by the if_media interface.
194 */
195
196static int	tap_mediachange(struct ifnet *);
197static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
198
199/*
200 * Those are needed by the ifnet interface, and would typically be
201 * there for any network interface driver.
202 * Some other routines are optional: watchdog and drain.
203 */
204
205static void	tap_start(struct ifnet *);
206static void	tap_stop(struct ifnet *, int);
207static int	tap_init(struct ifnet *);
208static int	tap_ioctl(struct ifnet *, u_long, void *);
209
210/* Internal functions */
211#if defined(COMPAT_40) || defined(MODULAR)
212static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
213#endif
214static void	tap_softintr(void *);
215
216/*
217 * tap is a clonable interface, although it is highly unrealistic for
218 * an Ethernet device.
219 *
220 * Here are the bits needed for a clonable interface.
221 */
222static int	tap_clone_create(struct if_clone *, int);
223static int	tap_clone_destroy(struct ifnet *);
224
225struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
226					tap_clone_create,
227					tap_clone_destroy);
228
229/* Helper functionis shared by the two cloning code paths */
230static struct tap_softc *	tap_clone_creator(int);
231int	tap_clone_destroyer(device_t);
232
233void
234tapattach(int n)
235{
236	int error;
237
238	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
239	if (error) {
240		aprint_error("%s: unable to register cfattach\n",
241		    tap_cd.cd_name);
242		(void)config_cfdriver_detach(&tap_cd);
243		return;
244	}
245
246	if_clone_attach(&tap_cloners);
247}
248
249/* Pretty much useless for a pseudo-device */
250static int
251tap_match(device_t parent, cfdata_t cfdata, void *arg)
252{
253
254	return (1);
255}
256
257void
258tap_attach(device_t parent, device_t self, void *aux)
259{
260	struct tap_softc *sc = device_private(self);
261	struct ifnet *ifp;
262#if defined(COMPAT_40) || defined(MODULAR)
263	const struct sysctlnode *node;
264	int error;
265#endif
266	uint8_t enaddr[ETHER_ADDR_LEN] =
267	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
268	char enaddrstr[3 * ETHER_ADDR_LEN];
269	struct timeval tv;
270	uint32_t ui;
271
272	sc->sc_dev = self;
273	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
274	getnanotime(&sc->sc_btime);
275	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
276
277	if (!pmf_device_register(self, NULL, NULL))
278		aprint_error_dev(self, "couldn't establish power handler\n");
279
280	/*
281	 * In order to obtain unique initial Ethernet address on a host,
282	 * do some randomisation using the current uptime.  It's not meant
283	 * for anything but avoiding hard-coding an address.
284	 */
285	getmicrouptime(&tv);
286	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
287	memcpy(enaddr+3, (uint8_t *)&ui, 3);
288
289	aprint_verbose_dev(self, "Ethernet address %s\n",
290	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
291
292	/*
293	 * Why 1000baseT? Why not? You can add more.
294	 *
295	 * Note that there are 3 steps: init, one or several additions to
296	 * list of supported media, and in the end, the selection of one
297	 * of them.
298	 */
299	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
300	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
301	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
302	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
303	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
304	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
305	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
306	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
307	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
308
309	/*
310	 * One should note that an interface must do multicast in order
311	 * to support IPv6.
312	 */
313	ifp = &sc->sc_ec.ec_if;
314	strcpy(ifp->if_xname, device_xname(self));
315	ifp->if_softc	= sc;
316	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
317	ifp->if_ioctl	= tap_ioctl;
318	ifp->if_start	= tap_start;
319	ifp->if_stop	= tap_stop;
320	ifp->if_init	= tap_init;
321	IFQ_SET_READY(&ifp->if_snd);
322
323	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
324
325	/* Those steps are mandatory for an Ethernet driver, the fisrt call
326	 * being common to all network interface drivers. */
327	if_attach(ifp);
328	ether_ifattach(ifp, enaddr);
329
330	sc->sc_flags = 0;
331
332#if defined(COMPAT_40) || defined(MODULAR)
333	/*
334	 * Add a sysctl node for that interface.
335	 *
336	 * The pointer transmitted is not a string, but instead a pointer to
337	 * the softc structure, which we can use to build the string value on
338	 * the fly in the helper function of the node.  See the comments for
339	 * tap_sysctl_handler for details.
340	 *
341	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
342	 * component.  However, we can allocate a number ourselves, as we are
343	 * the only consumer of the net.link.<iface> node.  In this case, the
344	 * unit number is conveniently used to number the node.  CTL_CREATE
345	 * would just work, too.
346	 */
347	if ((error = sysctl_createv(NULL, 0, NULL,
348	    &node, CTLFLAG_READWRITE,
349	    CTLTYPE_STRING, device_xname(self), NULL,
350	    tap_sysctl_handler, 0, sc, 18,
351	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
352	    CTL_EOL)) != 0)
353		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
354		    error);
355#endif
356
357	/*
358	 * Initialize the two locks for the device.
359	 *
360	 * We need a lock here because even though the tap device can be
361	 * opened only once, the file descriptor might be passed to another
362	 * process, say a fork(2)ed child.
363	 *
364	 * The Giant saves us from most of the hassle, but since the read
365	 * operation can sleep, we don't want two processes to wake up at
366	 * the same moment and both try and dequeue a single packet.
367	 *
368	 * The queue for event listeners (used by kqueue(9), see below) has
369	 * to be protected, too, but we don't need the same level of
370	 * complexity for that lock, so a simple spinning lock is fine.
371	 */
372	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
373	simple_lock_init(&sc->sc_kqlock);
374
375	selinit(&sc->sc_rsel);
376}
377
378/*
379 * When detaching, we do the inverse of what is done in the attach
380 * routine, in reversed order.
381 */
382static int
383tap_detach(device_t self, int flags)
384{
385	struct tap_softc *sc = device_private(self);
386	struct ifnet *ifp = &sc->sc_ec.ec_if;
387#if defined(COMPAT_40) || defined(MODULAR)
388	int error;
389#endif
390	int s;
391
392	sc->sc_flags |= TAP_GOING;
393	s = splnet();
394	tap_stop(ifp, 1);
395	if_down(ifp);
396	splx(s);
397
398	softint_disestablish(sc->sc_sih);
399
400#if defined(COMPAT_40) || defined(MODULAR)
401	/*
402	 * Destroying a single leaf is a very straightforward operation using
403	 * sysctl_destroyv.  One should be sure to always end the path with
404	 * CTL_EOL.
405	 */
406	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
407	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
408		aprint_error_dev(self,
409		    "sysctl_destroyv returned %d, ignoring\n", error);
410#endif
411	ether_ifdetach(ifp);
412	if_detach(ifp);
413	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
414	seldestroy(&sc->sc_rsel);
415	mutex_destroy(&sc->sc_rdlock);
416
417	pmf_device_deregister(self);
418
419	return (0);
420}
421
422/*
423 * This function is called by the ifmedia layer to notify the driver
424 * that the user requested a media change.  A real driver would
425 * reconfigure the hardware.
426 */
427static int
428tap_mediachange(struct ifnet *ifp)
429{
430	return (0);
431}
432
433/*
434 * Here the user asks for the currently used media.
435 */
436static void
437tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
438{
439	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
440	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
441}
442
443/*
444 * This is the function where we SEND packets.
445 *
446 * There is no 'receive' equivalent.  A typical driver will get
447 * interrupts from the hardware, and from there will inject new packets
448 * into the network stack.
449 *
450 * Once handled, a packet must be freed.  A real driver might not be able
451 * to fit all the pending packets into the hardware, and is allowed to
452 * return before having sent all the packets.  It should then use the
453 * if_flags flag IFF_OACTIVE to notify the upper layer.
454 *
455 * There are also other flags one should check, such as IFF_PAUSE.
456 *
457 * It is our duty to make packets available to BPF listeners.
458 *
459 * You should be aware that this function is called by the Ethernet layer
460 * at splnet().
461 *
462 * When the device is opened, we have to pass the packet(s) to the
463 * userland.  For that we stay in OACTIVE mode while the userland gets
464 * the packets, and we send a signal to the processes waiting to read.
465 *
466 * wakeup(sc) is the counterpart to the tsleep call in
467 * tap_dev_read, while selnotify() is used for kevent(2) and
468 * poll(2) (which includes select(2)) listeners.
469 */
470static void
471tap_start(struct ifnet *ifp)
472{
473	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
474	struct mbuf *m0;
475
476	if ((sc->sc_flags & TAP_INUSE) == 0) {
477		/* Simply drop packets */
478		for(;;) {
479			IFQ_DEQUEUE(&ifp->if_snd, m0);
480			if (m0 == NULL)
481				return;
482
483			ifp->if_opackets++;
484			bpf_mtap(ifp, m0);
485
486			m_freem(m0);
487		}
488	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
489		ifp->if_flags |= IFF_OACTIVE;
490		wakeup(sc);
491		selnotify(&sc->sc_rsel, 0, 1);
492		if (sc->sc_flags & TAP_ASYNCIO)
493			softint_schedule(sc->sc_sih);
494	}
495}
496
497static void
498tap_softintr(void *cookie)
499{
500	struct tap_softc *sc;
501	struct ifnet *ifp;
502	int a, b;
503
504	sc = cookie;
505
506	if (sc->sc_flags & TAP_ASYNCIO) {
507		ifp = &sc->sc_ec.ec_if;
508		if (ifp->if_flags & IFF_RUNNING) {
509			a = POLL_IN;
510			b = POLLIN|POLLRDNORM;
511		} else {
512			a = POLL_HUP;
513			b = 0;
514		}
515		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
516	}
517}
518
519/*
520 * A typical driver will only contain the following handlers for
521 * ioctl calls, except SIOCSIFPHYADDR.
522 * The latter is a hack I used to set the Ethernet address of the
523 * faked device.
524 *
525 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
526 * called under splnet().
527 */
528static int
529tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
530{
531	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
532	struct ifreq *ifr = (struct ifreq *)data;
533	int s, error;
534
535	s = splnet();
536
537	switch (cmd) {
538#ifdef OSIOCSIFMEDIA
539	case OSIOCSIFMEDIA:
540#endif
541	case SIOCSIFMEDIA:
542	case SIOCGIFMEDIA:
543		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
544		break;
545#if defined(COMPAT_40) || defined(MODULAR)
546	case SIOCSIFPHYADDR:
547		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
548		break;
549#endif
550	default:
551		error = ether_ioctl(ifp, cmd, data);
552		if (error == ENETRESET)
553			error = 0;
554		break;
555	}
556
557	splx(s);
558
559	return (error);
560}
561
562#if defined(COMPAT_40) || defined(MODULAR)
563/*
564 * Helper function to set Ethernet address.  This has been replaced by
565 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
566 */
567static int
568tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
569{
570	const struct sockaddr *sa = &ifra->ifra_addr;
571
572	if (sa->sa_family != AF_LINK)
573		return (EINVAL);
574
575	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
576
577	return (0);
578}
579#endif
580
581/*
582 * _init() would typically be called when an interface goes up,
583 * meaning it should configure itself into the state in which it
584 * can send packets.
585 */
586static int
587tap_init(struct ifnet *ifp)
588{
589	ifp->if_flags |= IFF_RUNNING;
590
591	tap_start(ifp);
592
593	return (0);
594}
595
596/*
597 * _stop() is called when an interface goes down.  It is our
598 * responsability to validate that state by clearing the
599 * IFF_RUNNING flag.
600 *
601 * We have to wake up all the sleeping processes to have the pending
602 * read requests cancelled.
603 */
604static void
605tap_stop(struct ifnet *ifp, int disable)
606{
607	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
608
609	ifp->if_flags &= ~IFF_RUNNING;
610	wakeup(sc);
611	selnotify(&sc->sc_rsel, 0, 1);
612	if (sc->sc_flags & TAP_ASYNCIO)
613		softint_schedule(sc->sc_sih);
614}
615
616/*
617 * The 'create' command of ifconfig can be used to create
618 * any numbered instance of a given device.  Thus we have to
619 * make sure we have enough room in cd_devs to create the
620 * user-specified instance.  config_attach_pseudo will do this
621 * for us.
622 */
623static int
624tap_clone_create(struct if_clone *ifc, int unit)
625{
626	if (tap_clone_creator(unit) == NULL) {
627		aprint_error("%s%d: unable to attach an instance\n",
628                    tap_cd.cd_name, unit);
629		return (ENXIO);
630	}
631
632	return (0);
633}
634
635/*
636 * tap(4) can be cloned by two ways:
637 *   using 'ifconfig tap0 create', which will use the network
638 *     interface cloning API, and call tap_clone_create above.
639 *   opening the cloning device node, whose minor number is TAP_CLONER.
640 *     See below for an explanation on how this part work.
641 */
642static struct tap_softc *
643tap_clone_creator(int unit)
644{
645	struct cfdata *cf;
646
647	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
648	cf->cf_name = tap_cd.cd_name;
649	cf->cf_atname = tap_ca.ca_name;
650	if (unit == -1) {
651		/* let autoconf find the first free one */
652		cf->cf_unit = 0;
653		cf->cf_fstate = FSTATE_STAR;
654	} else {
655		cf->cf_unit = unit;
656		cf->cf_fstate = FSTATE_NOTFOUND;
657	}
658
659	return device_private(config_attach_pseudo(cf));
660}
661
662/*
663 * The clean design of if_clone and autoconf(9) makes that part
664 * really straightforward.  The second argument of config_detach
665 * means neither QUIET nor FORCED.
666 */
667static int
668tap_clone_destroy(struct ifnet *ifp)
669{
670	struct tap_softc *sc = ifp->if_softc;
671
672	return tap_clone_destroyer(sc->sc_dev);
673}
674
675int
676tap_clone_destroyer(device_t dev)
677{
678	cfdata_t cf = device_cfdata(dev);
679	int error;
680
681	if ((error = config_detach(dev, 0)) != 0)
682		aprint_error_dev(dev, "unable to detach instance\n");
683	free(cf, M_DEVBUF);
684
685	return (error);
686}
687
688/*
689 * tap(4) is a bit of an hybrid device.  It can be used in two different
690 * ways:
691 *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
692 *  2. open /dev/tap, get a new interface created and read/write off it.
693 *     That interface is destroyed when the process that had it created exits.
694 *
695 * The first way is managed by the cdevsw structure, and you access interfaces
696 * through a (major, minor) mapping:  tap4 is obtained by the minor number
697 * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
698 *
699 * The second way is the so-called "cloning" device.  It's a special minor
700 * number (chosen as the maximal number, to allow as much tap devices as
701 * possible).  The user first opens the cloner (e.g., /dev/tap), and that
702 * call ends in tap_cdev_open.  The actual place where it is handled is
703 * tap_dev_cloner.
704 *
705 * An tap device cannot be opened more than once at a time, so the cdevsw
706 * part of open() does nothing but noting that the interface is being used and
707 * hence ready to actually handle packets.
708 */
709
710static int
711tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
712{
713	struct tap_softc *sc;
714
715	if (minor(dev) == TAP_CLONER)
716		return tap_dev_cloner(l);
717
718	sc = device_lookup_private(&tap_cd, minor(dev));
719	if (sc == NULL)
720		return (ENXIO);
721
722	/* The device can only be opened once */
723	if (sc->sc_flags & TAP_INUSE)
724		return (EBUSY);
725	sc->sc_flags |= TAP_INUSE;
726	return (0);
727}
728
729/*
730 * There are several kinds of cloning devices, and the most simple is the one
731 * tap(4) uses.  What it does is change the file descriptor with a new one,
732 * with its own fileops structure (which maps to the various read, write,
733 * ioctl functions).  It starts allocating a new file descriptor with falloc,
734 * then actually creates the new tap devices.
735 *
736 * Once those two steps are successful, we can re-wire the existing file
737 * descriptor to its new self.  This is done with fdclone():  it fills the fp
738 * structure as needed (notably f_data gets filled with the fifth parameter
739 * passed, the unit of the tap device which will allows us identifying the
740 * device later), and returns EMOVEFD.
741 *
742 * That magic value is interpreted by sys_open() which then replaces the
743 * current file descriptor by the new one (through a magic member of struct
744 * lwp, l_dupfd).
745 *
746 * The tap device is flagged as being busy since it otherwise could be
747 * externally accessed through the corresponding device node with the cdevsw
748 * interface.
749 */
750
751static int
752tap_dev_cloner(struct lwp *l)
753{
754	struct tap_softc *sc;
755	file_t *fp;
756	int error, fd;
757
758	if ((error = fd_allocfile(&fp, &fd)) != 0)
759		return (error);
760
761	if ((sc = tap_clone_creator(-1)) == NULL) {
762		fd_abort(curproc, fp, fd);
763		return (ENXIO);
764	}
765
766	sc->sc_flags |= TAP_INUSE;
767
768	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
769	    (void *)(intptr_t)device_unit(sc->sc_dev));
770}
771
772/*
773 * While all other operations (read, write, ioctl, poll and kqfilter) are
774 * really the same whether we are in cdevsw or fileops mode, the close()
775 * function is slightly different in the two cases.
776 *
777 * As for the other, the core of it is shared in tap_dev_close.  What
778 * it does is sufficient for the cdevsw interface, but the cloning interface
779 * needs another thing:  the interface is destroyed when the processes that
780 * created it closes it.
781 */
782static int
783tap_cdev_close(dev_t dev, int flags, int fmt,
784    struct lwp *l)
785{
786	struct tap_softc *sc =
787	    device_lookup_private(&tap_cd, minor(dev));
788
789	if (sc == NULL)
790		return (ENXIO);
791
792	return tap_dev_close(sc);
793}
794
795/*
796 * It might happen that the administrator used ifconfig to externally destroy
797 * the interface.  In that case, tap_fops_close will be called while
798 * tap_detach is already happening.  If we called it again from here, we
799 * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
800 */
801static int
802tap_fops_close(file_t *fp)
803{
804	int unit = (intptr_t)fp->f_data;
805	struct tap_softc *sc;
806	int error;
807
808	sc = device_lookup_private(&tap_cd, unit);
809	if (sc == NULL)
810		return (ENXIO);
811
812	/* tap_dev_close currently always succeeds, but it might not
813	 * always be the case. */
814	KERNEL_LOCK(1, NULL);
815	if ((error = tap_dev_close(sc)) != 0) {
816		KERNEL_UNLOCK_ONE(NULL);
817		return (error);
818	}
819
820	/* Destroy the device now that it is no longer useful,
821	 * unless it's already being destroyed. */
822	if ((sc->sc_flags & TAP_GOING) != 0) {
823		KERNEL_UNLOCK_ONE(NULL);
824		return (0);
825	}
826
827	error = tap_clone_destroyer(sc->sc_dev);
828	KERNEL_UNLOCK_ONE(NULL);
829	return error;
830}
831
832static int
833tap_dev_close(struct tap_softc *sc)
834{
835	struct ifnet *ifp;
836	int s;
837
838	s = splnet();
839	/* Let tap_start handle packets again */
840	ifp = &sc->sc_ec.ec_if;
841	ifp->if_flags &= ~IFF_OACTIVE;
842
843	/* Purge output queue */
844	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
845		struct mbuf *m;
846
847		for (;;) {
848			IFQ_DEQUEUE(&ifp->if_snd, m);
849			if (m == NULL)
850				break;
851
852			ifp->if_opackets++;
853			bpf_mtap(ifp, m);
854			m_freem(m);
855		}
856	}
857	splx(s);
858
859	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
860
861	return (0);
862}
863
864static int
865tap_cdev_read(dev_t dev, struct uio *uio, int flags)
866{
867	return tap_dev_read(minor(dev), uio, flags);
868}
869
870static int
871tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
872    kauth_cred_t cred, int flags)
873{
874	int error;
875
876	KERNEL_LOCK(1, NULL);
877	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
878	KERNEL_UNLOCK_ONE(NULL);
879	return error;
880}
881
882static int
883tap_dev_read(int unit, struct uio *uio, int flags)
884{
885	struct tap_softc *sc =
886	    device_lookup_private(&tap_cd, unit);
887	struct ifnet *ifp;
888	struct mbuf *m, *n;
889	int error = 0, s;
890
891	if (sc == NULL)
892		return (ENXIO);
893
894	getnanotime(&sc->sc_atime);
895
896	ifp = &sc->sc_ec.ec_if;
897	if ((ifp->if_flags & IFF_UP) == 0)
898		return (EHOSTDOWN);
899
900	/*
901	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
902	 */
903	if ((sc->sc_flags & TAP_NBIO) != 0) {
904		if (!mutex_tryenter(&sc->sc_rdlock))
905			return (EWOULDBLOCK);
906	} else {
907		mutex_enter(&sc->sc_rdlock);
908	}
909
910	s = splnet();
911	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
912		ifp->if_flags &= ~IFF_OACTIVE;
913		/*
914		 * We must release the lock before sleeping, and re-acquire it
915		 * after.
916		 */
917		mutex_exit(&sc->sc_rdlock);
918		if (sc->sc_flags & TAP_NBIO)
919			error = EWOULDBLOCK;
920		else
921			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
922		splx(s);
923
924		if (error != 0)
925			return (error);
926		/* The device might have been downed */
927		if ((ifp->if_flags & IFF_UP) == 0)
928			return (EHOSTDOWN);
929		if ((sc->sc_flags & TAP_NBIO)) {
930			if (!mutex_tryenter(&sc->sc_rdlock))
931				return (EWOULDBLOCK);
932		} else {
933			mutex_enter(&sc->sc_rdlock);
934		}
935		s = splnet();
936	}
937
938	IFQ_DEQUEUE(&ifp->if_snd, m);
939	ifp->if_flags &= ~IFF_OACTIVE;
940	splx(s);
941	if (m == NULL) {
942		error = 0;
943		goto out;
944	}
945
946	ifp->if_opackets++;
947	bpf_mtap(ifp, m);
948
949	/*
950	 * One read is one packet.
951	 */
952	do {
953		error = uiomove(mtod(m, void *),
954		    min(m->m_len, uio->uio_resid), uio);
955		MFREE(m, n);
956		m = n;
957	} while (m != NULL && uio->uio_resid > 0 && error == 0);
958
959	if (m != NULL)
960		m_freem(m);
961
962out:
963	mutex_exit(&sc->sc_rdlock);
964	return (error);
965}
966
967static int
968tap_fops_stat(file_t *fp, struct stat *st)
969{
970	int error = 0;
971	struct tap_softc *sc;
972	int unit = (uintptr_t)fp->f_data;
973
974	(void)memset(st, 0, sizeof(*st));
975
976	KERNEL_LOCK(1, NULL);
977	sc = device_lookup_private(&tap_cd, unit);
978	if (sc == NULL) {
979		error = ENXIO;
980		goto out;
981	}
982
983	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
984	st->st_atimespec = sc->sc_atime;
985	st->st_mtimespec = sc->sc_mtime;
986	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
987	st->st_uid = kauth_cred_geteuid(fp->f_cred);
988	st->st_gid = kauth_cred_getegid(fp->f_cred);
989out:
990	KERNEL_UNLOCK_ONE(NULL);
991	return error;
992}
993
994static int
995tap_cdev_write(dev_t dev, struct uio *uio, int flags)
996{
997	return tap_dev_write(minor(dev), uio, flags);
998}
999
1000static int
1001tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1002    kauth_cred_t cred, int flags)
1003{
1004	int error;
1005
1006	KERNEL_LOCK(1, NULL);
1007	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1008	KERNEL_UNLOCK_ONE(NULL);
1009	return error;
1010}
1011
1012static int
1013tap_dev_write(int unit, struct uio *uio, int flags)
1014{
1015	struct tap_softc *sc =
1016	    device_lookup_private(&tap_cd, unit);
1017	struct ifnet *ifp;
1018	struct mbuf *m, **mp;
1019	int error = 0;
1020	int s;
1021
1022	if (sc == NULL)
1023		return (ENXIO);
1024
1025	getnanotime(&sc->sc_mtime);
1026	ifp = &sc->sc_ec.ec_if;
1027
1028	/* One write, one packet, that's the rule */
1029	MGETHDR(m, M_DONTWAIT, MT_DATA);
1030	if (m == NULL) {
1031		ifp->if_ierrors++;
1032		return (ENOBUFS);
1033	}
1034	m->m_pkthdr.len = uio->uio_resid;
1035
1036	mp = &m;
1037	while (error == 0 && uio->uio_resid > 0) {
1038		if (*mp != m) {
1039			MGET(*mp, M_DONTWAIT, MT_DATA);
1040			if (*mp == NULL) {
1041				error = ENOBUFS;
1042				break;
1043			}
1044		}
1045		(*mp)->m_len = min(MHLEN, uio->uio_resid);
1046		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1047		mp = &(*mp)->m_next;
1048	}
1049	if (error) {
1050		ifp->if_ierrors++;
1051		m_freem(m);
1052		return (error);
1053	}
1054
1055	ifp->if_ipackets++;
1056	m->m_pkthdr.rcvif = ifp;
1057
1058	bpf_mtap(ifp, m);
1059	s =splnet();
1060	(*ifp->if_input)(ifp, m);
1061	splx(s);
1062
1063	return (0);
1064}
1065
1066static int
1067tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1068    struct lwp *l)
1069{
1070	return tap_dev_ioctl(minor(dev), cmd, data, l);
1071}
1072
1073static int
1074tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1075{
1076	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1077}
1078
1079static int
1080tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1081{
1082	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1083
1084	if (sc == NULL)
1085		return ENXIO;
1086
1087	switch (cmd) {
1088	case FIONREAD:
1089		{
1090			struct ifnet *ifp = &sc->sc_ec.ec_if;
1091			struct mbuf *m;
1092			int s;
1093
1094			s = splnet();
1095			IFQ_POLL(&ifp->if_snd, m);
1096
1097			if (m == NULL)
1098				*(int *)data = 0;
1099			else
1100				*(int *)data = m->m_pkthdr.len;
1101			splx(s);
1102			return 0;
1103		}
1104	case TIOCSPGRP:
1105	case FIOSETOWN:
1106		return fsetown(&sc->sc_pgid, cmd, data);
1107	case TIOCGPGRP:
1108	case FIOGETOWN:
1109		return fgetown(sc->sc_pgid, cmd, data);
1110	case FIOASYNC:
1111		if (*(int *)data)
1112			sc->sc_flags |= TAP_ASYNCIO;
1113		else
1114			sc->sc_flags &= ~TAP_ASYNCIO;
1115		return 0;
1116	case FIONBIO:
1117		if (*(int *)data)
1118			sc->sc_flags |= TAP_NBIO;
1119		else
1120			sc->sc_flags &= ~TAP_NBIO;
1121		return 0;
1122#ifdef OTAPGIFNAME
1123	case OTAPGIFNAME:
1124#endif
1125	case TAPGIFNAME:
1126		{
1127			struct ifreq *ifr = (struct ifreq *)data;
1128			struct ifnet *ifp = &sc->sc_ec.ec_if;
1129
1130			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1131			return 0;
1132		}
1133	default:
1134		return ENOTTY;
1135	}
1136}
1137
1138static int
1139tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1140{
1141	return tap_dev_poll(minor(dev), events, l);
1142}
1143
1144static int
1145tap_fops_poll(file_t *fp, int events)
1146{
1147	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1148}
1149
1150static int
1151tap_dev_poll(int unit, int events, struct lwp *l)
1152{
1153	struct tap_softc *sc =
1154	    device_lookup_private(&tap_cd, unit);
1155	int revents = 0;
1156
1157	if (sc == NULL)
1158		return POLLERR;
1159
1160	if (events & (POLLIN|POLLRDNORM)) {
1161		struct ifnet *ifp = &sc->sc_ec.ec_if;
1162		struct mbuf *m;
1163		int s;
1164
1165		s = splnet();
1166		IFQ_POLL(&ifp->if_snd, m);
1167
1168		if (m != NULL)
1169			revents |= events & (POLLIN|POLLRDNORM);
1170		else {
1171			simple_lock(&sc->sc_kqlock);
1172			selrecord(l, &sc->sc_rsel);
1173			simple_unlock(&sc->sc_kqlock);
1174		}
1175		splx(s);
1176	}
1177	revents |= events & (POLLOUT|POLLWRNORM);
1178
1179	return (revents);
1180}
1181
1182static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1183	tap_kqread };
1184static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1185	filt_seltrue };
1186
1187static int
1188tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1189{
1190	return tap_dev_kqfilter(minor(dev), kn);
1191}
1192
1193static int
1194tap_fops_kqfilter(file_t *fp, struct knote *kn)
1195{
1196	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1197}
1198
1199static int
1200tap_dev_kqfilter(int unit, struct knote *kn)
1201{
1202	struct tap_softc *sc =
1203	    device_lookup_private(&tap_cd, unit);
1204
1205	if (sc == NULL)
1206		return (ENXIO);
1207
1208	KERNEL_LOCK(1, NULL);
1209	switch(kn->kn_filter) {
1210	case EVFILT_READ:
1211		kn->kn_fop = &tap_read_filterops;
1212		break;
1213	case EVFILT_WRITE:
1214		kn->kn_fop = &tap_seltrue_filterops;
1215		break;
1216	default:
1217		KERNEL_UNLOCK_ONE(NULL);
1218		return (EINVAL);
1219	}
1220
1221	kn->kn_hook = sc;
1222	simple_lock(&sc->sc_kqlock);
1223	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1224	simple_unlock(&sc->sc_kqlock);
1225	KERNEL_UNLOCK_ONE(NULL);
1226	return (0);
1227}
1228
1229static void
1230tap_kqdetach(struct knote *kn)
1231{
1232	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1233
1234	KERNEL_LOCK(1, NULL);
1235	simple_lock(&sc->sc_kqlock);
1236	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1237	simple_unlock(&sc->sc_kqlock);
1238	KERNEL_UNLOCK_ONE(NULL);
1239}
1240
1241static int
1242tap_kqread(struct knote *kn, long hint)
1243{
1244	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1245	struct ifnet *ifp = &sc->sc_ec.ec_if;
1246	struct mbuf *m;
1247	int s, rv;
1248
1249	KERNEL_LOCK(1, NULL);
1250	s = splnet();
1251	IFQ_POLL(&ifp->if_snd, m);
1252
1253	if (m == NULL)
1254		kn->kn_data = 0;
1255	else
1256		kn->kn_data = m->m_pkthdr.len;
1257	splx(s);
1258	rv = (kn->kn_data != 0 ? 1 : 0);
1259	KERNEL_UNLOCK_ONE(NULL);
1260	return rv;
1261}
1262
1263#if defined(COMPAT_40) || defined(MODULAR)
1264/*
1265 * sysctl management routines
1266 * You can set the address of an interface through:
1267 * net.link.tap.tap<number>
1268 *
1269 * Note the consistent use of tap_log in order to use
1270 * sysctl_teardown at unload time.
1271 *
1272 * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1273 * blocks register a function in a special section of the kernel
1274 * (called a link set) which is used at init_sysctl() time to cycle
1275 * through all those functions to create the kernel's sysctl tree.
1276 *
1277 * It is not possible to use link sets in a module, so the
1278 * easiest is to simply call our own setup routine at load time.
1279 *
1280 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1281 * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1282 * whole kernel sysctl tree is built, it is not possible to add any
1283 * permanent node.
1284 *
1285 * It should be noted that we're not saving the sysctlnode pointer
1286 * we are returned when creating the "tap" node.  That structure
1287 * cannot be trusted once out of the calling function, as it might
1288 * get reused.  So we just save the MIB number, and always give the
1289 * full path starting from the root for later calls to sysctl_createv
1290 * and sysctl_destroyv.
1291 */
1292SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1293{
1294	const struct sysctlnode *node;
1295	int error = 0;
1296
1297	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1298	    CTLFLAG_PERMANENT,
1299	    CTLTYPE_NODE, "net", NULL,
1300	    NULL, 0, NULL, 0,
1301	    CTL_NET, CTL_EOL)) != 0)
1302		return;
1303
1304	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1305	    CTLFLAG_PERMANENT,
1306	    CTLTYPE_NODE, "link", NULL,
1307	    NULL, 0, NULL, 0,
1308	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1309		return;
1310
1311	/*
1312	 * The first four parameters of sysctl_createv are for management.
1313	 *
1314	 * The four that follows, here starting with a '0' for the flags,
1315	 * describe the node.
1316	 *
1317	 * The next series of four set its value, through various possible
1318	 * means.
1319	 *
1320	 * Last but not least, the path to the node is described.  That path
1321	 * is relative to the given root (third argument).  Here we're
1322	 * starting from the root.
1323	 */
1324	if ((error = sysctl_createv(clog, 0, NULL, &node,
1325	    CTLFLAG_PERMANENT,
1326	    CTLTYPE_NODE, "tap", NULL,
1327	    NULL, 0, NULL, 0,
1328	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1329		return;
1330	tap_node = node->sysctl_num;
1331}
1332
1333/*
1334 * The helper functions make Andrew Brown's interface really
1335 * shine.  It makes possible to create value on the fly whether
1336 * the sysctl value is read or written.
1337 *
1338 * As shown as an example in the man page, the first step is to
1339 * create a copy of the node to have sysctl_lookup work on it.
1340 *
1341 * Here, we have more work to do than just a copy, since we have
1342 * to create the string.  The first step is to collect the actual
1343 * value of the node, which is a convenient pointer to the softc
1344 * of the interface.  From there we create the string and use it
1345 * as the value, but only for the *copy* of the node.
1346 *
1347 * Then we let sysctl_lookup do the magic, which consists in
1348 * setting oldp and newp as required by the operation.  When the
1349 * value is read, that means that the string will be copied to
1350 * the user, and when it is written, the new value will be copied
1351 * over in the addr array.
1352 *
1353 * If newp is NULL, the user was reading the value, so we don't
1354 * have anything else to do.  If a new value was written, we
1355 * have to check it.
1356 *
1357 * If it is incorrect, we can return an error and leave 'node' as
1358 * it is:  since it is a copy of the actual node, the change will
1359 * be forgotten.
1360 *
1361 * Upon a correct input, we commit the change to the ifnet
1362 * structure of our interface.
1363 */
1364static int
1365tap_sysctl_handler(SYSCTLFN_ARGS)
1366{
1367	struct sysctlnode node;
1368	struct tap_softc *sc;
1369	struct ifnet *ifp;
1370	int error;
1371	size_t len;
1372	char addr[3 * ETHER_ADDR_LEN];
1373	uint8_t enaddr[ETHER_ADDR_LEN];
1374
1375	node = *rnode;
1376	sc = node.sysctl_data;
1377	ifp = &sc->sc_ec.ec_if;
1378	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1379	node.sysctl_data = addr;
1380	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1381	if (error || newp == NULL)
1382		return (error);
1383
1384	len = strlen(addr);
1385	if (len < 11 || len > 17)
1386		return (EINVAL);
1387
1388	/* Commit change */
1389	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1390		return (EINVAL);
1391	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1392	return (error);
1393}
1394#endif
1395