1/*	$NetBSD$	*/
2
3/*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 *    nor the names of its contributors may be used to endorse or promote
20 *    products derived from this software without specific prior written
21 *    permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/*
37 * Copyright (c) 1992, 1993
38 *	The Regents of the University of California.  All rights reserved.
39 *
40 * This code is derived from software contributed to Berkeley by
41 * John Heidemann of the UCLA Ficus project.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
68 *
69 * Ancestors:
70 *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
71 *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72 *	...and...
73 *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74 */
75
76/*
77 * Generic layer vnode operations.
78 *
79 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80 * the core implementation of stacked file-systems.
81 *
82 * The layerfs duplicates a portion of the file system name space under
83 * a new name.  In this respect, it is similar to the loopback file system.
84 * It differs from the loopback fs in two respects: it is implemented using
85 * a stackable layers technique, and it is "layerfs-nodes" stack above all
86 * lower-layer vnodes, not just over directory vnodes.
87 *
88 * OPERATION OF LAYERFS
89 *
90 * The layerfs is the minimum file system layer, bypassing all possible
91 * operations to the lower layer for processing there.  The majority of its
92 * activity centers on the bypass routine, through which nearly all vnode
93 * operations pass.
94 *
95 * The bypass routine accepts arbitrary vnode operations for handling by
96 * the lower layer.  It begins by examining vnode operation arguments and
97 * replacing any layered nodes by their lower-layer equivalents.  It then
98 * invokes an operation on the lower layer.  Finally, it replaces the
99 * layered nodes in the arguments and, if a vnode is returned by the
100 * operation, stacks a layered node on top of the returned vnode.
101 *
102 * The bypass routine in this file, layer_bypass(), is suitable for use
103 * by many different layered filesystems. It can be used by multiple
104 * filesystems simultaneously. Alternatively, a layered fs may provide
105 * its own bypass routine, in which case layer_bypass() should be used as
106 * a model. For instance, the main functionality provided by umapfs, the user
107 * identity mapping file system, is handled by a custom bypass routine.
108 *
109 * Typically a layered fs registers its selected bypass routine as the
110 * default vnode operation in its vnodeopv_entry_desc table. Additionally
111 * the filesystem must store the bypass entry point in the layerm_bypass
112 * field of struct layer_mount. All other layer routines in this file will
113 * use the layerm_bypass() routine.
114 *
115 * Although the bypass routine handles most operations outright, a number
116 * of operations are special cased and handled by the layerfs.  For instance,
117 * layer_getattr() must change the fsid being returned.  While layer_lock()
118 * and layer_unlock() must handle any locking for the current vnode as well
119 * as pass the lock request down.  layer_inactive() and layer_reclaim() are
120 * not bypassed so that they can handle freeing layerfs-specific data.  Also,
121 * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122 * rmdir, and symlink) change the locking state within the operation.  Ideally
123 * these operations should not change the lock state, but should be changed
124 * to let the caller of the function unlock them.  Otherwise, all intermediate
125 * vnode layers (such as union, umapfs, etc) must catch these functions to do
126 * the necessary locking at their layer.
127 *
128 * INSTANTIATING VNODE STACKS
129 *
130 * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131 * stacking two VFSes.  The initial mount creates a single vnode stack for
132 * the root of the new layerfs.  All other vnode stacks are created as a
133 * result of vnode operations on this or other layerfs vnode stacks.
134 *
135 * New vnode stacks come into existence as a result of an operation which
136 * returns a vnode.  The bypass routine stacks a layerfs-node above the new
137 * vnode before returning it to the caller.
138 *
139 * For example, imagine mounting a null layer with:
140 *
141 *	"mount_null /usr/include /dev/layer/null"
142 *
143 * Changing directory to /dev/layer/null will assign the root layerfs-node,
144 * which was created when the null layer was mounted).  Now consider opening
145 * "sys".  A layer_lookup() would be performed on the root layerfs-node.
146 * This operation would bypass through to the lower layer which would return
147 * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
148 * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149 * Later operations on the layerfs-node "sys" will repeat this process when
150 * constructing other vnode stacks.
151 *
152 * INVOKING OPERATIONS ON LOWER LAYERS
153 *
154 * There are two techniques to invoke operations on a lower layer when the
155 * operation cannot be completely bypassed.  Each method is appropriate in
156 * different situations.  In both cases, it is the responsibility of the
157 * aliasing layer to make the operation arguments "correct" for the lower
158 * layer by mapping any vnode arguments to the lower layer.
159 *
160 * The first approach is to call the aliasing layer's bypass routine.  This
161 * method is most suitable when you wish to invoke the operation currently
162 * being handled on the lower layer.  It has the advantage that the bypass
163 * routine already must do argument mapping.  An example of this is
164 * layer_getattr().
165 *
166 * A second approach is to directly invoke vnode operations on the lower
167 * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
168 * is that it is easy to invoke arbitrary operations on the lower layer.
169 * The disadvantage is that vnode's arguments must be manually mapped.
170 */
171
172#include <sys/cdefs.h>
173__KERNEL_RCSID(0, "$NetBSD$");
174
175#include <sys/param.h>
176#include <sys/systm.h>
177#include <sys/proc.h>
178#include <sys/time.h>
179#include <sys/vnode.h>
180#include <sys/mount.h>
181#include <sys/namei.h>
182#include <sys/kmem.h>
183#include <sys/buf.h>
184#include <sys/kauth.h>
185
186#include <miscfs/genfs/layer.h>
187#include <miscfs/genfs/layer_extern.h>
188#include <miscfs/genfs/genfs.h>
189#include <miscfs/specfs/specdev.h>
190
191/*
192 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
193 *		routine by John Heidemann.
194 *	The new element for this version is that the whole nullfs
195 * system gained the concept of locks on the lower node.
196 *    The 10-Apr-92 version was optimized for speed, throwing away some
197 * safety checks.  It should still always work, but it's not as
198 * robust to programmer errors.
199 *
200 * In general, we map all vnodes going down and unmap them on the way back.
201 *
202 * Also, some BSD vnode operations have the side effect of vrele'ing
203 * their arguments.  With stacking, the reference counts are held
204 * by the upper node, not the lower one, so we must handle these
205 * side-effects here.  This is not of concern in Sun-derived systems
206 * since there are no such side-effects.
207 *
208 * New for the 08-June-99 version: we also handle operations which unlock
209 * the passed-in node (typically they vput the node).
210 *
211 * This makes the following assumptions:
212 * - only one returned vpp
213 * - no INOUT vpp's (Sun's vop_open has one of these)
214 * - the vnode operation vector of the first vnode should be used
215 *   to determine what implementation of the op should be invoked
216 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
217 *   problems on rmdir'ing mount points and renaming?)
218 */
219int
220layer_bypass(void *v)
221{
222	struct vop_generic_args /* {
223		struct vnodeop_desc *a_desc;
224		<other random data follows, presumably>
225	} */ *ap = v;
226	int (**our_vnodeop_p)(void *);
227	struct vnode **this_vp_p;
228	int error;
229	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
230	struct vnode **vps_p[VDESC_MAX_VPS];
231	struct vnode ***vppp;
232	struct mount *mp;
233	struct vnodeop_desc *descp = ap->a_desc;
234	int reles, i, flags;
235
236#ifdef DIAGNOSTIC
237	/*
238	 * We require at least one vp.
239	 */
240	if (descp->vdesc_vp_offsets == NULL ||
241	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
242		panic("%s: no vp's in map.\n", __func__);
243#endif
244
245	vps_p[0] =
246	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
247	vp0 = *vps_p[0];
248	mp = vp0->v_mount;
249	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
250	our_vnodeop_p = vp0->v_op;
251
252	if (flags & LAYERFS_MBYPASSDEBUG)
253		printf("%s: %s\n", __func__, descp->vdesc_name);
254
255	/*
256	 * Map the vnodes going in.
257	 * Later, we'll invoke the operation based on
258	 * the first mapped vnode's operation vector.
259	 */
260	reles = descp->vdesc_flags;
261	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
262		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
263			break;   /* bail out at end of list */
264		vps_p[i] = this_vp_p =
265		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
266		    ap);
267		/*
268		 * We're not guaranteed that any but the first vnode
269		 * are of our type.  Check for and don't map any
270		 * that aren't.  (We must always map first vp or vclean fails.)
271		 */
272		if (i && (*this_vp_p == NULL ||
273		    (*this_vp_p)->v_op != our_vnodeop_p)) {
274			old_vps[i] = NULL;
275		} else {
276			old_vps[i] = *this_vp_p;
277			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
278			/*
279			 * XXX - Several operations have the side effect
280			 * of vrele'ing their vp's.  We must account for
281			 * that.  (This should go away in the future.)
282			 */
283			if (reles & VDESC_VP0_WILLRELE)
284				vref(*this_vp_p);
285		}
286	}
287
288	/*
289	 * Call the operation on the lower layer
290	 * with the modified argument structure.
291	 */
292	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
293
294	/*
295	 * Maintain the illusion of call-by-value
296	 * by restoring vnodes in the argument structure
297	 * to their original value.
298	 */
299	reles = descp->vdesc_flags;
300	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
301		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
302			break;   /* bail out at end of list */
303		if (old_vps[i]) {
304			*(vps_p[i]) = old_vps[i];
305			if (reles & VDESC_VP0_WILLRELE)
306				vrele(*(vps_p[i]));
307		}
308	}
309
310	/*
311	 * Map the possible out-going vpp
312	 * (Assumes that the lower layer always returns
313	 * a VREF'ed vpp unless it gets an error.)
314	 */
315	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
316		vppp = VOPARG_OFFSETTO(struct vnode***,
317				 descp->vdesc_vpp_offset, ap);
318		/*
319		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
320		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
321		 * doesn't call bypass as the lower vpp is fine (we're just
322		 * going to do i/o on it). vop_lookup doesn't call bypass
323		 * as a lookup on "." would generate a locking error.
324		 * So all the calls which get us here have a locked vpp. :-)
325		 */
326		error = layer_node_create(mp, **vppp, *vppp);
327		if (error) {
328			vput(**vppp);
329			**vppp = NULL;
330		}
331	}
332	return error;
333}
334
335/*
336 * We have to carry on the locking protocol on the layer vnodes
337 * as we progress through the tree. We also have to enforce read-only
338 * if this layer is mounted read-only.
339 */
340int
341layer_lookup(void *v)
342{
343	struct vop_lookup_args /* {
344		struct vnodeop_desc *a_desc;
345		struct vnode * a_dvp;
346		struct vnode ** a_vpp;
347		struct componentname * a_cnp;
348	} */ *ap = v;
349	struct componentname *cnp = ap->a_cnp;
350	struct vnode *dvp, *lvp, *ldvp;
351	int error, flags = cnp->cn_flags;
352
353	dvp = ap->a_dvp;
354
355	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
356	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
357		*ap->a_vpp = NULL;
358		return EROFS;
359	}
360
361	ldvp = LAYERVPTOLOWERVP(dvp);
362	ap->a_dvp = ldvp;
363	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
364	lvp = *ap->a_vpp;
365	*ap->a_vpp = NULL;
366
367	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
368	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
369	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
370		error = EROFS;
371
372	/*
373	 * We must do the same locking and unlocking at this layer as
374	 * is done in the layers below us.
375	 */
376	if (ldvp == lvp) {
377		/*
378		 * Got the same object back, because we looked up ".",
379		 * or ".." in the root node of a mount point.
380		 * So we make another reference to dvp and return it.
381		 */
382		vref(dvp);
383		*ap->a_vpp = dvp;
384		vrele(lvp);
385	} else if (lvp != NULL) {
386		/* Note: dvp, ldvp and lvp are all locked. */
387		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
388		if (error) {
389			vput(lvp);
390		}
391	}
392	return error;
393}
394
395/*
396 * Setattr call. Disallow write attempts if the layer is mounted read-only.
397 */
398int
399layer_setattr(void *v)
400{
401	struct vop_setattr_args /* {
402		struct vnodeop_desc *a_desc;
403		struct vnode *a_vp;
404		struct vattr *a_vap;
405		kauth_cred_t a_cred;
406		struct lwp *a_l;
407	} */ *ap = v;
408	struct vnode *vp = ap->a_vp;
409	struct vattr *vap = ap->a_vap;
410
411  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
412	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
413	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
414	    (vp->v_mount->mnt_flag & MNT_RDONLY))
415		return EROFS;
416	if (vap->va_size != VNOVAL) {
417 		switch (vp->v_type) {
418 		case VDIR:
419 			return EISDIR;
420 		case VCHR:
421 		case VBLK:
422 		case VSOCK:
423 		case VFIFO:
424			return 0;
425		case VREG:
426		case VLNK:
427 		default:
428			/*
429			 * Disallow write attempts if the filesystem is
430			 * mounted read-only.
431			 */
432			if (vp->v_mount->mnt_flag & MNT_RDONLY)
433				return EROFS;
434		}
435	}
436	return LAYERFS_DO_BYPASS(vp, ap);
437}
438
439/*
440 *  We handle getattr only to change the fsid.
441 */
442int
443layer_getattr(void *v)
444{
445	struct vop_getattr_args /* {
446		struct vnode *a_vp;
447		struct vattr *a_vap;
448		kauth_cred_t a_cred;
449		struct lwp *a_l;
450	} */ *ap = v;
451	struct vnode *vp = ap->a_vp;
452	int error;
453
454	error = LAYERFS_DO_BYPASS(vp, ap);
455	if (error) {
456		return error;
457	}
458	/* Requires that arguments be restored. */
459	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
460	return 0;
461}
462
463int
464layer_access(void *v)
465{
466	struct vop_access_args /* {
467		struct vnode *a_vp;
468		int  a_mode;
469		kauth_cred_t a_cred;
470		struct lwp *a_l;
471	} */ *ap = v;
472	struct vnode *vp = ap->a_vp;
473	mode_t mode = ap->a_mode;
474
475	/*
476	 * Disallow write attempts on read-only layers;
477	 * unless the file is a socket, fifo, or a block or
478	 * character device resident on the file system.
479	 */
480	if (mode & VWRITE) {
481		switch (vp->v_type) {
482		case VDIR:
483		case VLNK:
484		case VREG:
485			if (vp->v_mount->mnt_flag & MNT_RDONLY)
486				return EROFS;
487			break;
488		default:
489			break;
490		}
491	}
492	return LAYERFS_DO_BYPASS(vp, ap);
493}
494
495/*
496 * We must handle open to be able to catch MNT_NODEV and friends.
497 */
498int
499layer_open(void *v)
500{
501	struct vop_open_args /* {
502		const struct vnodeop_desc *a_desc;
503		struct vnode *a_vp;
504		int a_mode;
505		kauth_cred_t a_cred;
506	} */ *ap = v;
507	struct vnode *vp = ap->a_vp;
508	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
509
510	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
511	    (vp->v_mount->mnt_flag & MNT_NODEV))
512		return ENXIO;
513
514	return LAYERFS_DO_BYPASS(vp, ap);
515}
516
517/*
518 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
519 * syncing the underlying vnodes, since they'll be fsync'ed when
520 * reclaimed; otherwise, pass it through to the underlying layer.
521 *
522 * XXX Do we still need to worry about shallow fsync?
523 */
524int
525layer_fsync(void *v)
526{
527	struct vop_fsync_args /* {
528		struct vnode *a_vp;
529		kauth_cred_t a_cred;
530		int  a_flags;
531		off_t offlo;
532		off_t offhi;
533		struct lwp *a_l;
534	} */ *ap = v;
535	int error;
536
537	if (ap->a_flags & FSYNC_RECLAIM) {
538		return 0;
539	}
540	if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
541		error = spec_fsync(v);
542		if (error)
543			return error;
544	}
545	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
546}
547
548int
549layer_inactive(void *v)
550{
551	struct vop_inactive_args /* {
552		struct vnode *a_vp;
553		bool *a_recycle;
554	} */ *ap = v;
555	struct vnode *vp = ap->a_vp;
556
557	/*
558	 * If we did a remove, don't cache the node.
559	 */
560	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
561
562	/*
563	 * Do nothing (and _don't_ bypass).
564	 * Wait to vrele lowervp until reclaim,
565	 * so that until then our layer_node is in the
566	 * cache and reusable.
567	 *
568	 * NEEDSWORK: Someday, consider inactive'ing
569	 * the lowervp and then trying to reactivate it
570	 * with capabilities (v_id)
571	 * like they do in the name lookup cache code.
572	 * That's too much work for now.
573	 */
574	VOP_UNLOCK(vp);
575	return 0;
576}
577
578int
579layer_remove(void *v)
580{
581	struct vop_remove_args /* {
582		struct vonde		*a_dvp;
583		struct vnode		*a_vp;
584		struct componentname	*a_cnp;
585	} */ *ap = v;
586	struct vnode *vp = ap->a_vp;
587	int error;
588
589	vref(vp);
590	error = LAYERFS_DO_BYPASS(vp, ap);
591	if (error == 0) {
592		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
593	}
594	vrele(vp);
595
596	return error;
597}
598
599int
600layer_rename(void *v)
601{
602	struct vop_rename_args  /* {
603		struct vnode		*a_fdvp;
604		struct vnode		*a_fvp;
605		struct componentname	*a_fcnp;
606		struct vnode		*a_tdvp;
607		struct vnode		*a_tvp;
608		struct componentname	*a_tcnp;
609	} */ *ap = v;
610	struct vnode *fdvp = ap->a_fdvp, *tvp;
611	int error;
612
613	tvp = ap->a_tvp;
614	if (tvp) {
615		if (tvp->v_mount != fdvp->v_mount)
616			tvp = NULL;
617		else
618			vref(tvp);
619	}
620	error = LAYERFS_DO_BYPASS(fdvp, ap);
621	if (tvp) {
622		if (error == 0)
623			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
624		vrele(tvp);
625	}
626	return error;
627}
628
629int
630layer_rmdir(void *v)
631{
632	struct vop_rmdir_args /* {
633		struct vnode		*a_dvp;
634		struct vnode		*a_vp;
635		struct componentname	*a_cnp;
636	} */ *ap = v;
637	int		error;
638	struct vnode	*vp = ap->a_vp;
639
640	vref(vp);
641	error = LAYERFS_DO_BYPASS(vp, ap);
642	if (error == 0) {
643		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
644	}
645	vrele(vp);
646
647	return error;
648}
649
650int
651layer_revoke(void *v)
652{
653        struct vop_revoke_args /* {
654		struct vnode *a_vp;
655		int a_flags;
656	} */ *ap = v;
657	struct vnode *vp = ap->a_vp;
658	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
659	int error;
660
661	/*
662	 * We will most likely end up in vclean which uses the v_usecount
663	 * to determine if a vnode is active.  Take an extra reference on
664	 * the lower vnode so it will always close and inactivate.
665	 */
666	vref(lvp);
667	error = LAYERFS_DO_BYPASS(vp, ap);
668	vrele(lvp);
669
670	return error;
671}
672
673int
674layer_reclaim(void *v)
675{
676	struct vop_reclaim_args /* {
677		struct vnode *a_vp;
678		struct lwp *a_l;
679	} */ *ap = v;
680	struct vnode *vp = ap->a_vp;
681	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
682	struct layer_node *xp = VTOLAYER(vp);
683	struct vnode *lowervp = xp->layer_lowervp;
684
685	/*
686	 * Note: in vop_reclaim, the node's struct lock has been
687	 * decomissioned, so we have to be careful about calling
688	 * VOP's on ourself.  We must be careful as VXLOCK is set.
689	 */
690	if (vp == lmp->layerm_rootvp) {
691		/*
692		 * Oops! We no longer have a root node. Most likely reason is
693		 * that someone forcably unmunted the underlying fs.
694		 *
695		 * Now getting the root vnode will fail. We're dead. :-(
696		 */
697		lmp->layerm_rootvp = NULL;
698	}
699	/* After this assignment, this node will not be re-used. */
700	xp->layer_lowervp = NULL;
701	mutex_enter(&lmp->layerm_hashlock);
702	LIST_REMOVE(xp, layer_hash);
703	mutex_exit(&lmp->layerm_hashlock);
704	kmem_free(vp->v_data, lmp->layerm_size);
705	vp->v_data = NULL;
706	vrele(lowervp);
707
708	return 0;
709}
710
711/*
712 * We just feed the returned vnode up to the caller - there's no need
713 * to build a layer node on top of the node on which we're going to do
714 * i/o. :-)
715 */
716int
717layer_bmap(void *v)
718{
719	struct vop_bmap_args /* {
720		struct vnode *a_vp;
721		daddr_t  a_bn;
722		struct vnode **a_vpp;
723		daddr_t *a_bnp;
724		int *a_runp;
725	} */ *ap = v;
726	struct vnode *vp;
727
728	vp = LAYERVPTOLOWERVP(ap->a_vp);
729	ap->a_vp = vp;
730
731	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
732}
733
734int
735layer_print(void *v)
736{
737	struct vop_print_args /* {
738		struct vnode *a_vp;
739	} */ *ap = v;
740	struct vnode *vp = ap->a_vp;
741	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
742	return 0;
743}
744
745int
746layer_getpages(void *v)
747{
748	struct vop_getpages_args /* {
749		struct vnode *a_vp;
750		voff_t a_offset;
751		struct vm_page **a_m;
752		int *a_count;
753		int a_centeridx;
754		vm_prot_t a_access_type;
755		int a_advice;
756		int a_flags;
757	} */ *ap = v;
758	struct vnode *vp = ap->a_vp;
759
760	KASSERT(mutex_owned(vp->v_interlock));
761
762	if (ap->a_flags & PGO_LOCKED) {
763		return EBUSY;
764	}
765	ap->a_vp = LAYERVPTOLOWERVP(vp);
766	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
767
768	/* Just pass the request on to the underlying layer. */
769	return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
770}
771
772int
773layer_putpages(void *v)
774{
775	struct vop_putpages_args /* {
776		struct vnode *a_vp;
777		voff_t a_offlo;
778		voff_t a_offhi;
779		int a_flags;
780	} */ *ap = v;
781	struct vnode *vp = ap->a_vp;
782
783	KASSERT(mutex_owned(vp->v_interlock));
784
785	ap->a_vp = LAYERVPTOLOWERVP(vp);
786	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
787
788	if (ap->a_flags & PGO_RECLAIM) {
789		mutex_exit(vp->v_interlock);
790		return 0;
791	}
792
793	/* Just pass the request on to the underlying layer. */
794	return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
795}
796