1/*	$NetBSD$	*/
2
3/*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 *	The Regents of the University of California.  All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 *    notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 *    notice, this list of conditions and the following disclaimer in the
45 *    documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 *    may be used to endorse or promote products derived from this software
48 *    without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
63 */
64
65#include <sys/cdefs.h>
66__KERNEL_RCSID(0, "$NetBSD$");
67
68#include "opt_compat_netbsd.h"
69#include "opt_sock_counters.h"
70#include "opt_sosend_loan.h"
71#include "opt_mbuftrace.h"
72#include "opt_somaxkva.h"
73#include "opt_multiprocessor.h"	/* XXX */
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/proc.h>
78#include <sys/file.h>
79#include <sys/filedesc.h>
80#include <sys/kmem.h>
81#include <sys/mbuf.h>
82#include <sys/domain.h>
83#include <sys/kernel.h>
84#include <sys/protosw.h>
85#include <sys/socket.h>
86#include <sys/socketvar.h>
87#include <sys/signalvar.h>
88#include <sys/resourcevar.h>
89#include <sys/uidinfo.h>
90#include <sys/event.h>
91#include <sys/poll.h>
92#include <sys/kauth.h>
93#include <sys/mutex.h>
94#include <sys/condvar.h>
95#include <sys/kthread.h>
96
97#ifdef COMPAT_50
98#include <compat/sys/time.h>
99#include <compat/sys/socket.h>
100#endif
101
102#include <uvm/uvm_extern.h>
103#include <uvm/uvm_loan.h>
104#include <uvm/uvm_page.h>
105
106MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
107MALLOC_DEFINE(M_SONAME, "soname", "socket name");
108
109extern const struct fileops socketops;
110
111extern int	somaxconn;			/* patchable (XXX sysctl) */
112int		somaxconn = SOMAXCONN;
113kmutex_t	*softnet_lock;
114
115#ifdef SOSEND_COUNTERS
116#include <sys/device.h>
117
118static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119    NULL, "sosend", "loan big");
120static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121    NULL, "sosend", "copy big");
122static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
123    NULL, "sosend", "copy small");
124static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
125    NULL, "sosend", "kva limit");
126
127#define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
128
129EVCNT_ATTACH_STATIC(sosend_loan_big);
130EVCNT_ATTACH_STATIC(sosend_copy_big);
131EVCNT_ATTACH_STATIC(sosend_copy_small);
132EVCNT_ATTACH_STATIC(sosend_kvalimit);
133#else
134
135#define	SOSEND_COUNTER_INCR(ev)		/* nothing */
136
137#endif /* SOSEND_COUNTERS */
138
139#if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
140int sock_loan_thresh = -1;
141#else
142int sock_loan_thresh = 4096;
143#endif
144
145static kmutex_t so_pendfree_lock;
146static struct mbuf *so_pendfree = NULL;
147
148#ifndef SOMAXKVA
149#define	SOMAXKVA (16 * 1024 * 1024)
150#endif
151int somaxkva = SOMAXKVA;
152static int socurkva;
153static kcondvar_t socurkva_cv;
154
155static kauth_listener_t socket_listener;
156
157#define	SOCK_LOAN_CHUNK		65536
158
159static void sopendfree_thread(void *);
160static kcondvar_t pendfree_thread_cv;
161static lwp_t *sopendfree_lwp;
162
163static void sysctl_kern_somaxkva_setup(void);
164static struct sysctllog *socket_sysctllog;
165
166static vsize_t
167sokvareserve(struct socket *so, vsize_t len)
168{
169	int error;
170
171	mutex_enter(&so_pendfree_lock);
172	while (socurkva + len > somaxkva) {
173		SOSEND_COUNTER_INCR(&sosend_kvalimit);
174		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
175		if (error) {
176			len = 0;
177			break;
178		}
179	}
180	socurkva += len;
181	mutex_exit(&so_pendfree_lock);
182	return len;
183}
184
185static void
186sokvaunreserve(vsize_t len)
187{
188
189	mutex_enter(&so_pendfree_lock);
190	socurkva -= len;
191	cv_broadcast(&socurkva_cv);
192	mutex_exit(&so_pendfree_lock);
193}
194
195/*
196 * sokvaalloc: allocate kva for loan.
197 */
198
199vaddr_t
200sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
201{
202	vaddr_t lva;
203
204	/*
205	 * reserve kva.
206	 */
207
208	if (sokvareserve(so, len) == 0)
209		return 0;
210
211	/*
212	 * allocate kva.
213	 */
214
215	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
216	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
217	if (lva == 0) {
218		sokvaunreserve(len);
219		return (0);
220	}
221
222	return lva;
223}
224
225/*
226 * sokvafree: free kva for loan.
227 */
228
229void
230sokvafree(vaddr_t sva, vsize_t len)
231{
232
233	/*
234	 * free kva.
235	 */
236
237	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
238
239	/*
240	 * unreserve kva.
241	 */
242
243	sokvaunreserve(len);
244}
245
246static void
247sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248{
249	vaddr_t sva, eva;
250	vsize_t len;
251	int npgs;
252
253	KASSERT(pgs != NULL);
254
255	eva = round_page((vaddr_t) buf + size);
256	sva = trunc_page((vaddr_t) buf);
257	len = eva - sva;
258	npgs = len >> PAGE_SHIFT;
259
260	pmap_kremove(sva, len);
261	pmap_update(pmap_kernel());
262	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263	sokvafree(sva, len);
264}
265
266/*
267 * sopendfree_thread: free mbufs on "pendfree" list.
268 * unlock and relock so_pendfree_lock when freeing mbufs.
269 */
270
271static void
272sopendfree_thread(void *v)
273{
274	struct mbuf *m, *next;
275	size_t rv;
276
277	mutex_enter(&so_pendfree_lock);
278
279	for (;;) {
280		rv = 0;
281		while (so_pendfree != NULL) {
282			m = so_pendfree;
283			so_pendfree = NULL;
284			mutex_exit(&so_pendfree_lock);
285
286			for (; m != NULL; m = next) {
287				next = m->m_next;
288				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
289				KASSERT(m->m_ext.ext_refcnt == 0);
290
291				rv += m->m_ext.ext_size;
292				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
293				    m->m_ext.ext_size);
294				pool_cache_put(mb_cache, m);
295			}
296
297			mutex_enter(&so_pendfree_lock);
298		}
299		if (rv)
300			cv_broadcast(&socurkva_cv);
301		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
302	}
303	panic("sopendfree_thread");
304	/* NOTREACHED */
305}
306
307void
308soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
309{
310
311	KASSERT(m != NULL);
312
313	/*
314	 * postpone freeing mbuf.
315	 *
316	 * we can't do it in interrupt context
317	 * because we need to put kva back to kernel_map.
318	 */
319
320	mutex_enter(&so_pendfree_lock);
321	m->m_next = so_pendfree;
322	so_pendfree = m;
323	cv_signal(&pendfree_thread_cv);
324	mutex_exit(&so_pendfree_lock);
325}
326
327static long
328sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
329{
330	struct iovec *iov = uio->uio_iov;
331	vaddr_t sva, eva;
332	vsize_t len;
333	vaddr_t lva;
334	int npgs, error;
335	vaddr_t va;
336	int i;
337
338	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
339		return (0);
340
341	if (iov->iov_len < (size_t) space)
342		space = iov->iov_len;
343	if (space > SOCK_LOAN_CHUNK)
344		space = SOCK_LOAN_CHUNK;
345
346	eva = round_page((vaddr_t) iov->iov_base + space);
347	sva = trunc_page((vaddr_t) iov->iov_base);
348	len = eva - sva;
349	npgs = len >> PAGE_SHIFT;
350
351	KASSERT(npgs <= M_EXT_MAXPAGES);
352
353	lva = sokvaalloc(sva, len, so);
354	if (lva == 0)
355		return 0;
356
357	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
358	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
359	if (error) {
360		sokvafree(lva, len);
361		return (0);
362	}
363
364	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
365		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
366		    VM_PROT_READ, 0);
367	pmap_update(pmap_kernel());
368
369	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
370
371	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
372	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
373
374	uio->uio_resid -= space;
375	/* uio_offset not updated, not set/used for write(2) */
376	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
377	uio->uio_iov->iov_len -= space;
378	if (uio->uio_iov->iov_len == 0) {
379		uio->uio_iov++;
380		uio->uio_iovcnt--;
381	}
382
383	return (space);
384}
385
386struct mbuf *
387getsombuf(struct socket *so, int type)
388{
389	struct mbuf *m;
390
391	m = m_get(M_WAIT, type);
392	MCLAIM(m, so->so_mowner);
393	return m;
394}
395
396static int
397socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
398    void *arg0, void *arg1, void *arg2, void *arg3)
399{
400	int result;
401	enum kauth_network_req req;
402
403	result = KAUTH_RESULT_DEFER;
404	req = (enum kauth_network_req)arg0;
405
406	if ((action != KAUTH_NETWORK_SOCKET) &&
407	    (action != KAUTH_NETWORK_BIND))
408		return result;
409
410	switch (req) {
411	case KAUTH_REQ_NETWORK_BIND_PORT:
412		result = KAUTH_RESULT_ALLOW;
413		break;
414
415	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
416		/* Normal users can only drop their own connections. */
417		struct socket *so = (struct socket *)arg1;
418
419		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
420			result = KAUTH_RESULT_ALLOW;
421
422		break;
423		}
424
425	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
426		/* We allow "raw" routing/bluetooth sockets to anyone. */
427		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
428		    || (u_long)arg1 == PF_BLUETOOTH) {
429			result = KAUTH_RESULT_ALLOW;
430		} else {
431			/* Privileged, let secmodel handle this. */
432			if ((u_long)arg2 == SOCK_RAW)
433				break;
434		}
435
436		result = KAUTH_RESULT_ALLOW;
437
438		break;
439
440	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
441		result = KAUTH_RESULT_ALLOW;
442
443		break;
444
445	default:
446		break;
447	}
448
449	return result;
450}
451
452void
453soinit(void)
454{
455
456	sysctl_kern_somaxkva_setup();
457
458	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
459	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
460	cv_init(&socurkva_cv, "sokva");
461	cv_init(&pendfree_thread_cv, "sopendfr");
462	soinit2();
463
464	/* Set the initial adjusted socket buffer size. */
465	if (sb_max_set(sb_max))
466		panic("bad initial sb_max value: %lu", sb_max);
467
468	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
469	    socket_listener_cb, NULL);
470}
471
472void
473soinit1(void)
474{
475	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
476	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
477	if (error)
478		panic("soinit1 %d", error);
479}
480
481/*
482 * Socket operation routines.
483 * These routines are called by the routines in
484 * sys_socket.c or from a system process, and
485 * implement the semantics of socket operations by
486 * switching out to the protocol specific routines.
487 */
488/*ARGSUSED*/
489int
490socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
491	 struct socket *lockso)
492{
493	const struct protosw	*prp;
494	struct socket	*so;
495	uid_t		uid;
496	int		error;
497	kmutex_t	*lock;
498
499	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
500	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
501	    KAUTH_ARG(proto));
502	if (error != 0)
503		return error;
504
505	if (proto)
506		prp = pffindproto(dom, proto, type);
507	else
508		prp = pffindtype(dom, type);
509	if (prp == NULL) {
510		/* no support for domain */
511		if (pffinddomain(dom) == 0)
512			return EAFNOSUPPORT;
513		/* no support for socket type */
514		if (proto == 0 && type != 0)
515			return EPROTOTYPE;
516		return EPROTONOSUPPORT;
517	}
518	if (prp->pr_usrreq == NULL)
519		return EPROTONOSUPPORT;
520	if (prp->pr_type != type)
521		return EPROTOTYPE;
522
523	so = soget(true);
524	so->so_type = type;
525	so->so_proto = prp;
526	so->so_send = sosend;
527	so->so_receive = soreceive;
528#ifdef MBUFTRACE
529	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
530	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
531	so->so_mowner = &prp->pr_domain->dom_mowner;
532#endif
533	uid = kauth_cred_geteuid(l->l_cred);
534	so->so_uidinfo = uid_find(uid);
535	so->so_cpid = l->l_proc->p_pid;
536	if (lockso != NULL) {
537		/* Caller wants us to share a lock. */
538		lock = lockso->so_lock;
539		so->so_lock = lock;
540		mutex_obj_hold(lock);
541		mutex_enter(lock);
542	} else {
543		/* Lock assigned and taken during PRU_ATTACH. */
544	}
545	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
546	    (struct mbuf *)(long)proto, NULL, l);
547	KASSERT(solocked(so));
548	if (error != 0) {
549		so->so_state |= SS_NOFDREF;
550		sofree(so);
551		return error;
552	}
553	so->so_cred = kauth_cred_dup(l->l_cred);
554	sounlock(so);
555	*aso = so;
556	return 0;
557}
558
559/* On success, write file descriptor to fdout and return zero.  On
560 * failure, return non-zero; *fdout will be undefined.
561 */
562int
563fsocreate(int domain, struct socket **sop, int type, int protocol,
564    struct lwp *l, int *fdout)
565{
566	struct socket	*so;
567	struct file	*fp;
568	int		fd, error;
569	int		flags = type & SOCK_FLAGS_MASK;
570
571	type &= ~SOCK_FLAGS_MASK;
572	if ((error = fd_allocfile(&fp, &fd)) != 0)
573		return error;
574	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
575	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
576	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
577	fp->f_type = DTYPE_SOCKET;
578	fp->f_ops = &socketops;
579	error = socreate(domain, &so, type, protocol, l, NULL);
580	if (error != 0) {
581		fd_abort(curproc, fp, fd);
582	} else {
583		if (sop != NULL)
584			*sop = so;
585		fp->f_data = so;
586		fd_affix(curproc, fp, fd);
587		*fdout = fd;
588		if (flags & SOCK_NONBLOCK)
589			so->so_state |= SS_NBIO;
590	}
591	return error;
592}
593
594int
595sofamily(const struct socket *so)
596{
597	const struct protosw *pr;
598	const struct domain *dom;
599
600	if ((pr = so->so_proto) == NULL)
601		return AF_UNSPEC;
602	if ((dom = pr->pr_domain) == NULL)
603		return AF_UNSPEC;
604	return dom->dom_family;
605}
606
607int
608sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
609{
610	int	error;
611
612	solock(so);
613	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
614	sounlock(so);
615	return error;
616}
617
618int
619solisten(struct socket *so, int backlog, struct lwp *l)
620{
621	int	error;
622
623	solock(so);
624	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
625	    SS_ISDISCONNECTING)) != 0) {
626	    	sounlock(so);
627		return (EOPNOTSUPP);
628	}
629	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
630	    NULL, NULL, l);
631	if (error != 0) {
632		sounlock(so);
633		return error;
634	}
635	if (TAILQ_EMPTY(&so->so_q))
636		so->so_options |= SO_ACCEPTCONN;
637	if (backlog < 0)
638		backlog = 0;
639	so->so_qlimit = min(backlog, somaxconn);
640	sounlock(so);
641	return 0;
642}
643
644void
645sofree(struct socket *so)
646{
647	u_int refs;
648
649	KASSERT(solocked(so));
650
651	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
652		sounlock(so);
653		return;
654	}
655	if (so->so_head) {
656		/*
657		 * We must not decommission a socket that's on the accept(2)
658		 * queue.  If we do, then accept(2) may hang after select(2)
659		 * indicated that the listening socket was ready.
660		 */
661		if (!soqremque(so, 0)) {
662			sounlock(so);
663			return;
664		}
665	}
666	if (so->so_rcv.sb_hiwat)
667		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
668		    RLIM_INFINITY);
669	if (so->so_snd.sb_hiwat)
670		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
671		    RLIM_INFINITY);
672	sbrelease(&so->so_snd, so);
673	KASSERT(!cv_has_waiters(&so->so_cv));
674	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
675	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
676	sorflush(so);
677	refs = so->so_aborting;	/* XXX */
678	/* Remove acccept filter if one is present. */
679	if (so->so_accf != NULL)
680		(void)accept_filt_clear(so);
681	sounlock(so);
682	if (refs == 0)		/* XXX */
683		soput(so);
684}
685
686/*
687 * Close a socket on last file table reference removal.
688 * Initiate disconnect if connected.
689 * Free socket when disconnect complete.
690 */
691int
692soclose(struct socket *so)
693{
694	struct socket	*so2;
695	int		error;
696	int		error2;
697
698	error = 0;
699	solock(so);
700	if (so->so_options & SO_ACCEPTCONN) {
701		for (;;) {
702			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
703				KASSERT(solocked2(so, so2));
704				(void) soqremque(so2, 0);
705				/* soabort drops the lock. */
706				(void) soabort(so2);
707				solock(so);
708				continue;
709			}
710			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
711				KASSERT(solocked2(so, so2));
712				(void) soqremque(so2, 1);
713				/* soabort drops the lock. */
714				(void) soabort(so2);
715				solock(so);
716				continue;
717			}
718			break;
719		}
720	}
721	if (so->so_pcb == 0)
722		goto discard;
723	if (so->so_state & SS_ISCONNECTED) {
724		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
725			error = sodisconnect(so);
726			if (error)
727				goto drop;
728		}
729		if (so->so_options & SO_LINGER) {
730			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
731			    (SS_ISDISCONNECTING|SS_NBIO))
732				goto drop;
733			while (so->so_state & SS_ISCONNECTED) {
734				error = sowait(so, true, so->so_linger * hz);
735				if (error)
736					break;
737			}
738		}
739	}
740 drop:
741	if (so->so_pcb) {
742		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
743		    NULL, NULL, NULL, NULL);
744		if (error == 0)
745			error = error2;
746	}
747 discard:
748	if (so->so_state & SS_NOFDREF)
749		panic("soclose: NOFDREF");
750	kauth_cred_free(so->so_cred);
751	so->so_state |= SS_NOFDREF;
752	sofree(so);
753	return (error);
754}
755
756/*
757 * Must be called with the socket locked..  Will return with it unlocked.
758 */
759int
760soabort(struct socket *so)
761{
762	u_int refs;
763	int error;
764
765	KASSERT(solocked(so));
766	KASSERT(so->so_head == NULL);
767
768	so->so_aborting++;		/* XXX */
769	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
770	    NULL, NULL, NULL);
771	refs = --so->so_aborting;	/* XXX */
772	if (error || (refs == 0)) {
773		sofree(so);
774	} else {
775		sounlock(so);
776	}
777	return error;
778}
779
780int
781soaccept(struct socket *so, struct mbuf *nam)
782{
783	int	error;
784
785	KASSERT(solocked(so));
786
787	error = 0;
788	if ((so->so_state & SS_NOFDREF) == 0)
789		panic("soaccept: !NOFDREF");
790	so->so_state &= ~SS_NOFDREF;
791	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
792	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
793		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
794		    NULL, nam, NULL, NULL);
795	else
796		error = ECONNABORTED;
797
798	return (error);
799}
800
801int
802soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
803{
804	int		error;
805
806	KASSERT(solocked(so));
807
808	if (so->so_options & SO_ACCEPTCONN)
809		return (EOPNOTSUPP);
810	/*
811	 * If protocol is connection-based, can only connect once.
812	 * Otherwise, if connected, try to disconnect first.
813	 * This allows user to disconnect by connecting to, e.g.,
814	 * a null address.
815	 */
816	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
817	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
818	    (error = sodisconnect(so))))
819		error = EISCONN;
820	else
821		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
822		    NULL, nam, NULL, l);
823	return (error);
824}
825
826int
827soconnect2(struct socket *so1, struct socket *so2)
828{
829	int	error;
830
831	KASSERT(solocked2(so1, so2));
832
833	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
834	    NULL, (struct mbuf *)so2, NULL, NULL);
835	return (error);
836}
837
838int
839sodisconnect(struct socket *so)
840{
841	int	error;
842
843	KASSERT(solocked(so));
844
845	if ((so->so_state & SS_ISCONNECTED) == 0) {
846		error = ENOTCONN;
847	} else if (so->so_state & SS_ISDISCONNECTING) {
848		error = EALREADY;
849	} else {
850		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
851		    NULL, NULL, NULL, NULL);
852	}
853	return (error);
854}
855
856#define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
857/*
858 * Send on a socket.
859 * If send must go all at once and message is larger than
860 * send buffering, then hard error.
861 * Lock against other senders.
862 * If must go all at once and not enough room now, then
863 * inform user that this would block and do nothing.
864 * Otherwise, if nonblocking, send as much as possible.
865 * The data to be sent is described by "uio" if nonzero,
866 * otherwise by the mbuf chain "top" (which must be null
867 * if uio is not).  Data provided in mbuf chain must be small
868 * enough to send all at once.
869 *
870 * Returns nonzero on error, timeout or signal; callers
871 * must check for short counts if EINTR/ERESTART are returned.
872 * Data and control buffers are freed on return.
873 */
874int
875sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
876	struct mbuf *control, int flags, struct lwp *l)
877{
878	struct mbuf	**mp, *m;
879	struct proc	*p;
880	long		space, len, resid, clen, mlen;
881	int		error, s, dontroute, atomic;
882	short		wakeup_state = 0;
883
884	p = l->l_proc;
885	clen = 0;
886
887	/*
888	 * solock() provides atomicity of access.  splsoftnet() prevents
889	 * protocol processing soft interrupts from interrupting us and
890	 * blocking (expensive).
891	 */
892	s = splsoftnet();
893	solock(so);
894	atomic = sosendallatonce(so) || top;
895	if (uio)
896		resid = uio->uio_resid;
897	else
898		resid = top->m_pkthdr.len;
899	/*
900	 * In theory resid should be unsigned.
901	 * However, space must be signed, as it might be less than 0
902	 * if we over-committed, and we must use a signed comparison
903	 * of space and resid.  On the other hand, a negative resid
904	 * causes us to loop sending 0-length segments to the protocol.
905	 */
906	if (resid < 0) {
907		error = EINVAL;
908		goto out;
909	}
910	dontroute =
911	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
912	    (so->so_proto->pr_flags & PR_ATOMIC);
913	l->l_ru.ru_msgsnd++;
914	if (control)
915		clen = control->m_len;
916 restart:
917	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
918		goto out;
919	do {
920		if (so->so_state & SS_CANTSENDMORE) {
921			error = EPIPE;
922			goto release;
923		}
924		if (so->so_error) {
925			error = so->so_error;
926			so->so_error = 0;
927			goto release;
928		}
929		if ((so->so_state & SS_ISCONNECTED) == 0) {
930			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
931				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
932				    !(resid == 0 && clen != 0)) {
933					error = ENOTCONN;
934					goto release;
935				}
936			} else if (addr == 0) {
937				error = EDESTADDRREQ;
938				goto release;
939			}
940		}
941		space = sbspace(&so->so_snd);
942		if (flags & MSG_OOB)
943			space += 1024;
944		if ((atomic && resid > so->so_snd.sb_hiwat) ||
945		    clen > so->so_snd.sb_hiwat) {
946			error = EMSGSIZE;
947			goto release;
948		}
949		if (space < resid + clen &&
950		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
951			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
952				error = EWOULDBLOCK;
953				goto release;
954			}
955			sbunlock(&so->so_snd);
956			if (wakeup_state & SS_RESTARTSYS) {
957				error = ERESTART;
958				goto out;
959			}
960			error = sbwait(&so->so_snd);
961			if (error)
962				goto out;
963			wakeup_state = so->so_state;
964			goto restart;
965		}
966		wakeup_state = 0;
967		mp = &top;
968		space -= clen;
969		do {
970			if (uio == NULL) {
971				/*
972				 * Data is prepackaged in "top".
973				 */
974				resid = 0;
975				if (flags & MSG_EOR)
976					top->m_flags |= M_EOR;
977			} else do {
978				sounlock(so);
979				splx(s);
980				if (top == NULL) {
981					m = m_gethdr(M_WAIT, MT_DATA);
982					mlen = MHLEN;
983					m->m_pkthdr.len = 0;
984					m->m_pkthdr.rcvif = NULL;
985				} else {
986					m = m_get(M_WAIT, MT_DATA);
987					mlen = MLEN;
988				}
989				MCLAIM(m, so->so_snd.sb_mowner);
990				if (sock_loan_thresh >= 0 &&
991				    uio->uio_iov->iov_len >= sock_loan_thresh &&
992				    space >= sock_loan_thresh &&
993				    (len = sosend_loan(so, uio, m,
994						       space)) != 0) {
995					SOSEND_COUNTER_INCR(&sosend_loan_big);
996					space -= len;
997					goto have_data;
998				}
999				if (resid >= MINCLSIZE && space >= MCLBYTES) {
1000					SOSEND_COUNTER_INCR(&sosend_copy_big);
1001					m_clget(m, M_DONTWAIT);
1002					if ((m->m_flags & M_EXT) == 0)
1003						goto nopages;
1004					mlen = MCLBYTES;
1005					if (atomic && top == 0) {
1006						len = lmin(MCLBYTES - max_hdr,
1007						    resid);
1008						m->m_data += max_hdr;
1009					} else
1010						len = lmin(MCLBYTES, resid);
1011					space -= len;
1012				} else {
1013 nopages:
1014					SOSEND_COUNTER_INCR(&sosend_copy_small);
1015					len = lmin(lmin(mlen, resid), space);
1016					space -= len;
1017					/*
1018					 * For datagram protocols, leave room
1019					 * for protocol headers in first mbuf.
1020					 */
1021					if (atomic && top == 0 && len < mlen)
1022						MH_ALIGN(m, len);
1023				}
1024				error = uiomove(mtod(m, void *), (int)len, uio);
1025 have_data:
1026				resid = uio->uio_resid;
1027				m->m_len = len;
1028				*mp = m;
1029				top->m_pkthdr.len += len;
1030				s = splsoftnet();
1031				solock(so);
1032				if (error != 0)
1033					goto release;
1034				mp = &m->m_next;
1035				if (resid <= 0) {
1036					if (flags & MSG_EOR)
1037						top->m_flags |= M_EOR;
1038					break;
1039				}
1040			} while (space > 0 && atomic);
1041
1042			if (so->so_state & SS_CANTSENDMORE) {
1043				error = EPIPE;
1044				goto release;
1045			}
1046			if (dontroute)
1047				so->so_options |= SO_DONTROUTE;
1048			if (resid > 0)
1049				so->so_state |= SS_MORETOCOME;
1050			error = (*so->so_proto->pr_usrreq)(so,
1051			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1052			    top, addr, control, curlwp);
1053			if (dontroute)
1054				so->so_options &= ~SO_DONTROUTE;
1055			if (resid > 0)
1056				so->so_state &= ~SS_MORETOCOME;
1057			clen = 0;
1058			control = NULL;
1059			top = NULL;
1060			mp = &top;
1061			if (error != 0)
1062				goto release;
1063		} while (resid && space > 0);
1064	} while (resid);
1065
1066 release:
1067	sbunlock(&so->so_snd);
1068 out:
1069	sounlock(so);
1070	splx(s);
1071	if (top)
1072		m_freem(top);
1073	if (control)
1074		m_freem(control);
1075	return (error);
1076}
1077
1078/*
1079 * Following replacement or removal of the first mbuf on the first
1080 * mbuf chain of a socket buffer, push necessary state changes back
1081 * into the socket buffer so that other consumers see the values
1082 * consistently.  'nextrecord' is the callers locally stored value of
1083 * the original value of sb->sb_mb->m_nextpkt which must be restored
1084 * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
1085 */
1086static void
1087sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1088{
1089
1090	KASSERT(solocked(sb->sb_so));
1091
1092	/*
1093	 * First, update for the new value of nextrecord.  If necessary,
1094	 * make it the first record.
1095	 */
1096	if (sb->sb_mb != NULL)
1097		sb->sb_mb->m_nextpkt = nextrecord;
1098	else
1099		sb->sb_mb = nextrecord;
1100
1101        /*
1102         * Now update any dependent socket buffer fields to reflect
1103         * the new state.  This is an inline of SB_EMPTY_FIXUP, with
1104         * the addition of a second clause that takes care of the
1105         * case where sb_mb has been updated, but remains the last
1106         * record.
1107         */
1108        if (sb->sb_mb == NULL) {
1109                sb->sb_mbtail = NULL;
1110                sb->sb_lastrecord = NULL;
1111        } else if (sb->sb_mb->m_nextpkt == NULL)
1112                sb->sb_lastrecord = sb->sb_mb;
1113}
1114
1115/*
1116 * Implement receive operations on a socket.
1117 * We depend on the way that records are added to the sockbuf
1118 * by sbappend*.  In particular, each record (mbufs linked through m_next)
1119 * must begin with an address if the protocol so specifies,
1120 * followed by an optional mbuf or mbufs containing ancillary data,
1121 * and then zero or more mbufs of data.
1122 * In order to avoid blocking network interrupts for the entire time here,
1123 * we splx() while doing the actual copy to user space.
1124 * Although the sockbuf is locked, new data may still be appended,
1125 * and thus we must maintain consistency of the sockbuf during that time.
1126 *
1127 * The caller may receive the data as a single mbuf chain by supplying
1128 * an mbuf **mp0 for use in returning the chain.  The uio is then used
1129 * only for the count in uio_resid.
1130 */
1131int
1132soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1133	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1134{
1135	struct lwp *l = curlwp;
1136	struct mbuf	*m, **mp, *mt;
1137	size_t len, offset, moff, orig_resid;
1138	int atomic, flags, error, s, type;
1139	const struct protosw	*pr;
1140	struct mbuf	*nextrecord;
1141	int		mbuf_removed = 0;
1142	const struct domain *dom;
1143	short		wakeup_state = 0;
1144
1145	pr = so->so_proto;
1146	atomic = pr->pr_flags & PR_ATOMIC;
1147	dom = pr->pr_domain;
1148	mp = mp0;
1149	type = 0;
1150	orig_resid = uio->uio_resid;
1151
1152	if (paddr != NULL)
1153		*paddr = NULL;
1154	if (controlp != NULL)
1155		*controlp = NULL;
1156	if (flagsp != NULL)
1157		flags = *flagsp &~ MSG_EOR;
1158	else
1159		flags = 0;
1160
1161	if (flags & MSG_OOB) {
1162		m = m_get(M_WAIT, MT_DATA);
1163		solock(so);
1164		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1165		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1166		sounlock(so);
1167		if (error)
1168			goto bad;
1169		do {
1170			error = uiomove(mtod(m, void *),
1171			    MIN(uio->uio_resid, m->m_len), uio);
1172			m = m_free(m);
1173		} while (uio->uio_resid > 0 && error == 0 && m);
1174 bad:
1175		if (m != NULL)
1176			m_freem(m);
1177		return error;
1178	}
1179	if (mp != NULL)
1180		*mp = NULL;
1181
1182	/*
1183	 * solock() provides atomicity of access.  splsoftnet() prevents
1184	 * protocol processing soft interrupts from interrupting us and
1185	 * blocking (expensive).
1186	 */
1187	s = splsoftnet();
1188	solock(so);
1189	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1190		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1191
1192 restart:
1193	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1194		sounlock(so);
1195		splx(s);
1196		return error;
1197	}
1198
1199	m = so->so_rcv.sb_mb;
1200	/*
1201	 * If we have less data than requested, block awaiting more
1202	 * (subject to any timeout) if:
1203	 *   1. the current count is less than the low water mark,
1204	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1205	 *	receive operation at once if we block (resid <= hiwat), or
1206	 *   3. MSG_DONTWAIT is not set.
1207	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1208	 * we have to do the receive in sections, and thus risk returning
1209	 * a short count if a timeout or signal occurs after we start.
1210	 */
1211	if (m == NULL ||
1212	    ((flags & MSG_DONTWAIT) == 0 &&
1213	     so->so_rcv.sb_cc < uio->uio_resid &&
1214	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1215	      ((flags & MSG_WAITALL) &&
1216	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1217	     m->m_nextpkt == NULL && !atomic)) {
1218#ifdef DIAGNOSTIC
1219		if (m == NULL && so->so_rcv.sb_cc)
1220			panic("receive 1");
1221#endif
1222		if (so->so_error) {
1223			if (m != NULL)
1224				goto dontblock;
1225			error = so->so_error;
1226			if ((flags & MSG_PEEK) == 0)
1227				so->so_error = 0;
1228			goto release;
1229		}
1230		if (so->so_state & SS_CANTRCVMORE) {
1231			if (m != NULL)
1232				goto dontblock;
1233			else
1234				goto release;
1235		}
1236		for (; m != NULL; m = m->m_next)
1237			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1238				m = so->so_rcv.sb_mb;
1239				goto dontblock;
1240			}
1241		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1242		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1243			error = ENOTCONN;
1244			goto release;
1245		}
1246		if (uio->uio_resid == 0)
1247			goto release;
1248		if ((so->so_state & SS_NBIO) ||
1249		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1250			error = EWOULDBLOCK;
1251			goto release;
1252		}
1253		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1254		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1255		sbunlock(&so->so_rcv);
1256		if (wakeup_state & SS_RESTARTSYS)
1257			error = ERESTART;
1258		else
1259			error = sbwait(&so->so_rcv);
1260		if (error != 0) {
1261			sounlock(so);
1262			splx(s);
1263			return error;
1264		}
1265		wakeup_state = so->so_state;
1266		goto restart;
1267	}
1268 dontblock:
1269	/*
1270	 * On entry here, m points to the first record of the socket buffer.
1271	 * From this point onward, we maintain 'nextrecord' as a cache of the
1272	 * pointer to the next record in the socket buffer.  We must keep the
1273	 * various socket buffer pointers and local stack versions of the
1274	 * pointers in sync, pushing out modifications before dropping the
1275	 * socket lock, and re-reading them when picking it up.
1276	 *
1277	 * Otherwise, we will race with the network stack appending new data
1278	 * or records onto the socket buffer by using inconsistent/stale
1279	 * versions of the field, possibly resulting in socket buffer
1280	 * corruption.
1281	 *
1282	 * By holding the high-level sblock(), we prevent simultaneous
1283	 * readers from pulling off the front of the socket buffer.
1284	 */
1285	if (l != NULL)
1286		l->l_ru.ru_msgrcv++;
1287	KASSERT(m == so->so_rcv.sb_mb);
1288	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1289	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1290	nextrecord = m->m_nextpkt;
1291	if (pr->pr_flags & PR_ADDR) {
1292#ifdef DIAGNOSTIC
1293		if (m->m_type != MT_SONAME)
1294			panic("receive 1a");
1295#endif
1296		orig_resid = 0;
1297		if (flags & MSG_PEEK) {
1298			if (paddr)
1299				*paddr = m_copy(m, 0, m->m_len);
1300			m = m->m_next;
1301		} else {
1302			sbfree(&so->so_rcv, m);
1303			mbuf_removed = 1;
1304			if (paddr != NULL) {
1305				*paddr = m;
1306				so->so_rcv.sb_mb = m->m_next;
1307				m->m_next = NULL;
1308				m = so->so_rcv.sb_mb;
1309			} else {
1310				MFREE(m, so->so_rcv.sb_mb);
1311				m = so->so_rcv.sb_mb;
1312			}
1313			sbsync(&so->so_rcv, nextrecord);
1314		}
1315	}
1316
1317	/*
1318	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1319	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1320	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1321	 * perform externalization (or freeing if controlp == NULL).
1322	 */
1323	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1324		struct mbuf *cm = NULL, *cmn;
1325		struct mbuf **cme = &cm;
1326
1327		do {
1328			if (flags & MSG_PEEK) {
1329				if (controlp != NULL) {
1330					*controlp = m_copy(m, 0, m->m_len);
1331					controlp = &(*controlp)->m_next;
1332				}
1333				m = m->m_next;
1334			} else {
1335				sbfree(&so->so_rcv, m);
1336				so->so_rcv.sb_mb = m->m_next;
1337				m->m_next = NULL;
1338				*cme = m;
1339				cme = &(*cme)->m_next;
1340				m = so->so_rcv.sb_mb;
1341			}
1342		} while (m != NULL && m->m_type == MT_CONTROL);
1343		if ((flags & MSG_PEEK) == 0)
1344			sbsync(&so->so_rcv, nextrecord);
1345		for (; cm != NULL; cm = cmn) {
1346			cmn = cm->m_next;
1347			cm->m_next = NULL;
1348			type = mtod(cm, struct cmsghdr *)->cmsg_type;
1349			if (controlp != NULL) {
1350				if (dom->dom_externalize != NULL &&
1351				    type == SCM_RIGHTS) {
1352					sounlock(so);
1353					splx(s);
1354					error = (*dom->dom_externalize)(cm, l,
1355					    (flags & MSG_CMSG_CLOEXEC) ?
1356					    O_CLOEXEC : 0);
1357					s = splsoftnet();
1358					solock(so);
1359				}
1360				*controlp = cm;
1361				while (*controlp != NULL)
1362					controlp = &(*controlp)->m_next;
1363			} else {
1364				/*
1365				 * Dispose of any SCM_RIGHTS message that went
1366				 * through the read path rather than recv.
1367				 */
1368				if (dom->dom_dispose != NULL &&
1369				    type == SCM_RIGHTS) {
1370				    	sounlock(so);
1371					(*dom->dom_dispose)(cm);
1372					solock(so);
1373				}
1374				m_freem(cm);
1375			}
1376		}
1377		if (m != NULL)
1378			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1379		else
1380			nextrecord = so->so_rcv.sb_mb;
1381		orig_resid = 0;
1382	}
1383
1384	/* If m is non-NULL, we have some data to read. */
1385	if (__predict_true(m != NULL)) {
1386		type = m->m_type;
1387		if (type == MT_OOBDATA)
1388			flags |= MSG_OOB;
1389	}
1390	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1391	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1392
1393	moff = 0;
1394	offset = 0;
1395	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1396		if (m->m_type == MT_OOBDATA) {
1397			if (type != MT_OOBDATA)
1398				break;
1399		} else if (type == MT_OOBDATA)
1400			break;
1401#ifdef DIAGNOSTIC
1402		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1403			panic("receive 3");
1404#endif
1405		so->so_state &= ~SS_RCVATMARK;
1406		wakeup_state = 0;
1407		len = uio->uio_resid;
1408		if (so->so_oobmark && len > so->so_oobmark - offset)
1409			len = so->so_oobmark - offset;
1410		if (len > m->m_len - moff)
1411			len = m->m_len - moff;
1412		/*
1413		 * If mp is set, just pass back the mbufs.
1414		 * Otherwise copy them out via the uio, then free.
1415		 * Sockbuf must be consistent here (points to current mbuf,
1416		 * it points to next record) when we drop priority;
1417		 * we must note any additions to the sockbuf when we
1418		 * block interrupts again.
1419		 */
1420		if (mp == NULL) {
1421			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1422			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1423			sounlock(so);
1424			splx(s);
1425			error = uiomove(mtod(m, char *) + moff, len, uio);
1426			s = splsoftnet();
1427			solock(so);
1428			if (error != 0) {
1429				/*
1430				 * If any part of the record has been removed
1431				 * (such as the MT_SONAME mbuf, which will
1432				 * happen when PR_ADDR, and thus also
1433				 * PR_ATOMIC, is set), then drop the entire
1434				 * record to maintain the atomicity of the
1435				 * receive operation.
1436				 *
1437				 * This avoids a later panic("receive 1a")
1438				 * when compiled with DIAGNOSTIC.
1439				 */
1440				if (m && mbuf_removed && atomic)
1441					(void) sbdroprecord(&so->so_rcv);
1442
1443				goto release;
1444			}
1445		} else
1446			uio->uio_resid -= len;
1447		if (len == m->m_len - moff) {
1448			if (m->m_flags & M_EOR)
1449				flags |= MSG_EOR;
1450			if (flags & MSG_PEEK) {
1451				m = m->m_next;
1452				moff = 0;
1453			} else {
1454				nextrecord = m->m_nextpkt;
1455				sbfree(&so->so_rcv, m);
1456				if (mp) {
1457					*mp = m;
1458					mp = &m->m_next;
1459					so->so_rcv.sb_mb = m = m->m_next;
1460					*mp = NULL;
1461				} else {
1462					MFREE(m, so->so_rcv.sb_mb);
1463					m = so->so_rcv.sb_mb;
1464				}
1465				/*
1466				 * If m != NULL, we also know that
1467				 * so->so_rcv.sb_mb != NULL.
1468				 */
1469				KASSERT(so->so_rcv.sb_mb == m);
1470				if (m) {
1471					m->m_nextpkt = nextrecord;
1472					if (nextrecord == NULL)
1473						so->so_rcv.sb_lastrecord = m;
1474				} else {
1475					so->so_rcv.sb_mb = nextrecord;
1476					SB_EMPTY_FIXUP(&so->so_rcv);
1477				}
1478				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1479				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1480			}
1481		} else if (flags & MSG_PEEK)
1482			moff += len;
1483		else {
1484			if (mp != NULL) {
1485				mt = m_copym(m, 0, len, M_NOWAIT);
1486				if (__predict_false(mt == NULL)) {
1487					sounlock(so);
1488					mt = m_copym(m, 0, len, M_WAIT);
1489					solock(so);
1490				}
1491				*mp = mt;
1492			}
1493			m->m_data += len;
1494			m->m_len -= len;
1495			so->so_rcv.sb_cc -= len;
1496		}
1497		if (so->so_oobmark) {
1498			if ((flags & MSG_PEEK) == 0) {
1499				so->so_oobmark -= len;
1500				if (so->so_oobmark == 0) {
1501					so->so_state |= SS_RCVATMARK;
1502					break;
1503				}
1504			} else {
1505				offset += len;
1506				if (offset == so->so_oobmark)
1507					break;
1508			}
1509		}
1510		if (flags & MSG_EOR)
1511			break;
1512		/*
1513		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1514		 * we must not quit until "uio->uio_resid == 0" or an error
1515		 * termination.  If a signal/timeout occurs, return
1516		 * with a short count but without error.
1517		 * Keep sockbuf locked against other readers.
1518		 */
1519		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1520		    !sosendallatonce(so) && !nextrecord) {
1521			if (so->so_error || so->so_state & SS_CANTRCVMORE)
1522				break;
1523			/*
1524			 * If we are peeking and the socket receive buffer is
1525			 * full, stop since we can't get more data to peek at.
1526			 */
1527			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1528				break;
1529			/*
1530			 * If we've drained the socket buffer, tell the
1531			 * protocol in case it needs to do something to
1532			 * get it filled again.
1533			 */
1534			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1535				(*pr->pr_usrreq)(so, PRU_RCVD,
1536				    NULL, (struct mbuf *)(long)flags, NULL, l);
1537			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1538			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1539			if (wakeup_state & SS_RESTARTSYS)
1540				error = ERESTART;
1541			else
1542				error = sbwait(&so->so_rcv);
1543			if (error != 0) {
1544				sbunlock(&so->so_rcv);
1545				sounlock(so);
1546				splx(s);
1547				return 0;
1548			}
1549			if ((m = so->so_rcv.sb_mb) != NULL)
1550				nextrecord = m->m_nextpkt;
1551			wakeup_state = so->so_state;
1552		}
1553	}
1554
1555	if (m && atomic) {
1556		flags |= MSG_TRUNC;
1557		if ((flags & MSG_PEEK) == 0)
1558			(void) sbdroprecord(&so->so_rcv);
1559	}
1560	if ((flags & MSG_PEEK) == 0) {
1561		if (m == NULL) {
1562			/*
1563			 * First part is an inline SB_EMPTY_FIXUP().  Second
1564			 * part makes sure sb_lastrecord is up-to-date if
1565			 * there is still data in the socket buffer.
1566			 */
1567			so->so_rcv.sb_mb = nextrecord;
1568			if (so->so_rcv.sb_mb == NULL) {
1569				so->so_rcv.sb_mbtail = NULL;
1570				so->so_rcv.sb_lastrecord = NULL;
1571			} else if (nextrecord->m_nextpkt == NULL)
1572				so->so_rcv.sb_lastrecord = nextrecord;
1573		}
1574		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1575		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1576		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1577			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1578			    (struct mbuf *)(long)flags, NULL, l);
1579	}
1580	if (orig_resid == uio->uio_resid && orig_resid &&
1581	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1582		sbunlock(&so->so_rcv);
1583		goto restart;
1584	}
1585
1586	if (flagsp != NULL)
1587		*flagsp |= flags;
1588 release:
1589	sbunlock(&so->so_rcv);
1590	sounlock(so);
1591	splx(s);
1592	return error;
1593}
1594
1595int
1596soshutdown(struct socket *so, int how)
1597{
1598	const struct protosw	*pr;
1599	int	error;
1600
1601	KASSERT(solocked(so));
1602
1603	pr = so->so_proto;
1604	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1605		return (EINVAL);
1606
1607	if (how == SHUT_RD || how == SHUT_RDWR) {
1608		sorflush(so);
1609		error = 0;
1610	}
1611	if (how == SHUT_WR || how == SHUT_RDWR)
1612		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1613		    NULL, NULL, NULL);
1614
1615	return error;
1616}
1617
1618void
1619sorestart(struct socket *so)
1620{
1621	/*
1622	 * An application has called close() on an fd on which another
1623	 * of its threads has called a socket system call.
1624	 * Mark this and wake everyone up, and code that would block again
1625	 * instead returns ERESTART.
1626	 * On system call re-entry the fd is validated and EBADF returned.
1627	 * Any other fd will block again on the 2nd syscall.
1628	 */
1629	solock(so);
1630	so->so_state |= SS_RESTARTSYS;
1631	cv_broadcast(&so->so_cv);
1632	cv_broadcast(&so->so_snd.sb_cv);
1633	cv_broadcast(&so->so_rcv.sb_cv);
1634	sounlock(so);
1635}
1636
1637void
1638sorflush(struct socket *so)
1639{
1640	struct sockbuf	*sb, asb;
1641	const struct protosw	*pr;
1642
1643	KASSERT(solocked(so));
1644
1645	sb = &so->so_rcv;
1646	pr = so->so_proto;
1647	socantrcvmore(so);
1648	sb->sb_flags |= SB_NOINTR;
1649	(void )sblock(sb, M_WAITOK);
1650	sbunlock(sb);
1651	asb = *sb;
1652	/*
1653	 * Clear most of the sockbuf structure, but leave some of the
1654	 * fields valid.
1655	 */
1656	memset(&sb->sb_startzero, 0,
1657	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1658	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1659		sounlock(so);
1660		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1661		solock(so);
1662	}
1663	sbrelease(&asb, so);
1664}
1665
1666/*
1667 * internal set SOL_SOCKET options
1668 */
1669static int
1670sosetopt1(struct socket *so, const struct sockopt *sopt)
1671{
1672	int error = EINVAL, optval, opt;
1673	struct linger l;
1674	struct timeval tv;
1675
1676	switch ((opt = sopt->sopt_name)) {
1677
1678	case SO_ACCEPTFILTER:
1679		error = accept_filt_setopt(so, sopt);
1680		KASSERT(solocked(so));
1681		break;
1682
1683  	case SO_LINGER:
1684 		error = sockopt_get(sopt, &l, sizeof(l));
1685		solock(so);
1686 		if (error)
1687 			break;
1688 		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1689 		    l.l_linger > (INT_MAX / hz)) {
1690			error = EDOM;
1691			break;
1692		}
1693 		so->so_linger = l.l_linger;
1694 		if (l.l_onoff)
1695 			so->so_options |= SO_LINGER;
1696 		else
1697 			so->so_options &= ~SO_LINGER;
1698   		break;
1699
1700	case SO_DEBUG:
1701	case SO_KEEPALIVE:
1702	case SO_DONTROUTE:
1703	case SO_USELOOPBACK:
1704	case SO_BROADCAST:
1705	case SO_REUSEADDR:
1706	case SO_REUSEPORT:
1707	case SO_OOBINLINE:
1708	case SO_TIMESTAMP:
1709	case SO_NOSIGPIPE:
1710#ifdef SO_OTIMESTAMP
1711	case SO_OTIMESTAMP:
1712#endif
1713		error = sockopt_getint(sopt, &optval);
1714		solock(so);
1715		if (error)
1716			break;
1717		if (optval)
1718			so->so_options |= opt;
1719		else
1720			so->so_options &= ~opt;
1721		break;
1722
1723	case SO_SNDBUF:
1724	case SO_RCVBUF:
1725	case SO_SNDLOWAT:
1726	case SO_RCVLOWAT:
1727		error = sockopt_getint(sopt, &optval);
1728		solock(so);
1729		if (error)
1730			break;
1731
1732		/*
1733		 * Values < 1 make no sense for any of these
1734		 * options, so disallow them.
1735		 */
1736		if (optval < 1) {
1737			error = EINVAL;
1738			break;
1739		}
1740
1741		switch (opt) {
1742		case SO_SNDBUF:
1743			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1744				error = ENOBUFS;
1745				break;
1746			}
1747			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1748			break;
1749
1750		case SO_RCVBUF:
1751			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1752				error = ENOBUFS;
1753				break;
1754			}
1755			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1756			break;
1757
1758		/*
1759		 * Make sure the low-water is never greater than
1760		 * the high-water.
1761		 */
1762		case SO_SNDLOWAT:
1763			if (optval > so->so_snd.sb_hiwat)
1764				optval = so->so_snd.sb_hiwat;
1765
1766			so->so_snd.sb_lowat = optval;
1767			break;
1768
1769		case SO_RCVLOWAT:
1770			if (optval > so->so_rcv.sb_hiwat)
1771				optval = so->so_rcv.sb_hiwat;
1772
1773			so->so_rcv.sb_lowat = optval;
1774			break;
1775		}
1776		break;
1777
1778#ifdef COMPAT_50
1779	case SO_OSNDTIMEO:
1780	case SO_ORCVTIMEO: {
1781		struct timeval50 otv;
1782		error = sockopt_get(sopt, &otv, sizeof(otv));
1783		if (error) {
1784			solock(so);
1785			break;
1786		}
1787		timeval50_to_timeval(&otv, &tv);
1788		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1789		error = 0;
1790		/*FALLTHROUGH*/
1791	}
1792#endif /* COMPAT_50 */
1793
1794	case SO_SNDTIMEO:
1795	case SO_RCVTIMEO:
1796		if (error)
1797			error = sockopt_get(sopt, &tv, sizeof(tv));
1798		solock(so);
1799		if (error)
1800			break;
1801
1802		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1803			error = EDOM;
1804			break;
1805		}
1806
1807		optval = tv.tv_sec * hz + tv.tv_usec / tick;
1808		if (optval == 0 && tv.tv_usec != 0)
1809			optval = 1;
1810
1811		switch (opt) {
1812		case SO_SNDTIMEO:
1813			so->so_snd.sb_timeo = optval;
1814			break;
1815		case SO_RCVTIMEO:
1816			so->so_rcv.sb_timeo = optval;
1817			break;
1818		}
1819		break;
1820
1821	default:
1822		solock(so);
1823		error = ENOPROTOOPT;
1824		break;
1825	}
1826	KASSERT(solocked(so));
1827	return error;
1828}
1829
1830int
1831sosetopt(struct socket *so, struct sockopt *sopt)
1832{
1833	int error, prerr;
1834
1835	if (sopt->sopt_level == SOL_SOCKET) {
1836		error = sosetopt1(so, sopt);
1837		KASSERT(solocked(so));
1838	} else {
1839		error = ENOPROTOOPT;
1840		solock(so);
1841	}
1842
1843	if ((error == 0 || error == ENOPROTOOPT) &&
1844	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1845		/* give the protocol stack a shot */
1846		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1847		if (prerr == 0)
1848			error = 0;
1849		else if (prerr != ENOPROTOOPT)
1850			error = prerr;
1851	}
1852	sounlock(so);
1853	return error;
1854}
1855
1856/*
1857 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1858 */
1859int
1860so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1861    const void *val, size_t valsize)
1862{
1863	struct sockopt sopt;
1864	int error;
1865
1866	KASSERT(valsize == 0 || val != NULL);
1867
1868	sockopt_init(&sopt, level, name, valsize);
1869	sockopt_set(&sopt, val, valsize);
1870
1871	error = sosetopt(so, &sopt);
1872
1873	sockopt_destroy(&sopt);
1874
1875	return error;
1876}
1877
1878/*
1879 * internal get SOL_SOCKET options
1880 */
1881static int
1882sogetopt1(struct socket *so, struct sockopt *sopt)
1883{
1884	int error, optval, opt;
1885	struct linger l;
1886	struct timeval tv;
1887
1888	switch ((opt = sopt->sopt_name)) {
1889
1890	case SO_ACCEPTFILTER:
1891		error = accept_filt_getopt(so, sopt);
1892		break;
1893
1894	case SO_LINGER:
1895		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1896		l.l_linger = so->so_linger;
1897
1898		error = sockopt_set(sopt, &l, sizeof(l));
1899		break;
1900
1901	case SO_USELOOPBACK:
1902	case SO_DONTROUTE:
1903	case SO_DEBUG:
1904	case SO_KEEPALIVE:
1905	case SO_REUSEADDR:
1906	case SO_REUSEPORT:
1907	case SO_BROADCAST:
1908	case SO_OOBINLINE:
1909	case SO_TIMESTAMP:
1910	case SO_NOSIGPIPE:
1911#ifdef SO_OTIMESTAMP
1912	case SO_OTIMESTAMP:
1913#endif
1914		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1915		break;
1916
1917	case SO_TYPE:
1918		error = sockopt_setint(sopt, so->so_type);
1919		break;
1920
1921	case SO_ERROR:
1922		error = sockopt_setint(sopt, so->so_error);
1923		so->so_error = 0;
1924		break;
1925
1926	case SO_SNDBUF:
1927		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1928		break;
1929
1930	case SO_RCVBUF:
1931		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1932		break;
1933
1934	case SO_SNDLOWAT:
1935		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1936		break;
1937
1938	case SO_RCVLOWAT:
1939		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1940		break;
1941
1942#ifdef COMPAT_50
1943	case SO_OSNDTIMEO:
1944	case SO_ORCVTIMEO: {
1945		struct timeval50 otv;
1946
1947		optval = (opt == SO_OSNDTIMEO ?
1948		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1949
1950		otv.tv_sec = optval / hz;
1951		otv.tv_usec = (optval % hz) * tick;
1952
1953		error = sockopt_set(sopt, &otv, sizeof(otv));
1954		break;
1955	}
1956#endif /* COMPAT_50 */
1957
1958	case SO_SNDTIMEO:
1959	case SO_RCVTIMEO:
1960		optval = (opt == SO_SNDTIMEO ?
1961		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1962
1963		tv.tv_sec = optval / hz;
1964		tv.tv_usec = (optval % hz) * tick;
1965
1966		error = sockopt_set(sopt, &tv, sizeof(tv));
1967		break;
1968
1969	case SO_OVERFLOWED:
1970		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1971		break;
1972
1973	default:
1974		error = ENOPROTOOPT;
1975		break;
1976	}
1977
1978	return (error);
1979}
1980
1981int
1982sogetopt(struct socket *so, struct sockopt *sopt)
1983{
1984	int		error;
1985
1986	solock(so);
1987	if (sopt->sopt_level != SOL_SOCKET) {
1988		if (so->so_proto && so->so_proto->pr_ctloutput) {
1989			error = ((*so->so_proto->pr_ctloutput)
1990			    (PRCO_GETOPT, so, sopt));
1991		} else
1992			error = (ENOPROTOOPT);
1993	} else {
1994		error = sogetopt1(so, sopt);
1995	}
1996	sounlock(so);
1997	return (error);
1998}
1999
2000/*
2001 * alloc sockopt data buffer buffer
2002 *	- will be released at destroy
2003 */
2004static int
2005sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2006{
2007
2008	KASSERT(sopt->sopt_size == 0);
2009
2010	if (len > sizeof(sopt->sopt_buf)) {
2011		sopt->sopt_data = kmem_zalloc(len, kmflag);
2012		if (sopt->sopt_data == NULL)
2013			return ENOMEM;
2014	} else
2015		sopt->sopt_data = sopt->sopt_buf;
2016
2017	sopt->sopt_size = len;
2018	return 0;
2019}
2020
2021/*
2022 * initialise sockopt storage
2023 *	- MAY sleep during allocation
2024 */
2025void
2026sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2027{
2028
2029	memset(sopt, 0, sizeof(*sopt));
2030
2031	sopt->sopt_level = level;
2032	sopt->sopt_name = name;
2033	(void)sockopt_alloc(sopt, size, KM_SLEEP);
2034}
2035
2036/*
2037 * destroy sockopt storage
2038 *	- will release any held memory references
2039 */
2040void
2041sockopt_destroy(struct sockopt *sopt)
2042{
2043
2044	if (sopt->sopt_data != sopt->sopt_buf)
2045		kmem_free(sopt->sopt_data, sopt->sopt_size);
2046
2047	memset(sopt, 0, sizeof(*sopt));
2048}
2049
2050/*
2051 * set sockopt value
2052 *	- value is copied into sockopt
2053 * 	- memory is allocated when necessary, will not sleep
2054 */
2055int
2056sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2057{
2058	int error;
2059
2060	if (sopt->sopt_size == 0) {
2061		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2062		if (error)
2063			return error;
2064	}
2065
2066	KASSERT(sopt->sopt_size == len);
2067	memcpy(sopt->sopt_data, buf, len);
2068	return 0;
2069}
2070
2071/*
2072 * common case of set sockopt integer value
2073 */
2074int
2075sockopt_setint(struct sockopt *sopt, int val)
2076{
2077
2078	return sockopt_set(sopt, &val, sizeof(int));
2079}
2080
2081/*
2082 * get sockopt value
2083 *	- correct size must be given
2084 */
2085int
2086sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2087{
2088
2089	if (sopt->sopt_size != len)
2090		return EINVAL;
2091
2092	memcpy(buf, sopt->sopt_data, len);
2093	return 0;
2094}
2095
2096/*
2097 * common case of get sockopt integer value
2098 */
2099int
2100sockopt_getint(const struct sockopt *sopt, int *valp)
2101{
2102
2103	return sockopt_get(sopt, valp, sizeof(int));
2104}
2105
2106/*
2107 * set sockopt value from mbuf
2108 *	- ONLY for legacy code
2109 *	- mbuf is released by sockopt
2110 *	- will not sleep
2111 */
2112int
2113sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2114{
2115	size_t len;
2116	int error;
2117
2118	len = m_length(m);
2119
2120	if (sopt->sopt_size == 0) {
2121		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2122		if (error)
2123			return error;
2124	}
2125
2126	KASSERT(sopt->sopt_size == len);
2127	m_copydata(m, 0, len, sopt->sopt_data);
2128	m_freem(m);
2129
2130	return 0;
2131}
2132
2133/*
2134 * get sockopt value into mbuf
2135 *	- ONLY for legacy code
2136 *	- mbuf to be released by the caller
2137 *	- will not sleep
2138 */
2139struct mbuf *
2140sockopt_getmbuf(const struct sockopt *sopt)
2141{
2142	struct mbuf *m;
2143
2144	if (sopt->sopt_size > MCLBYTES)
2145		return NULL;
2146
2147	m = m_get(M_DONTWAIT, MT_SOOPTS);
2148	if (m == NULL)
2149		return NULL;
2150
2151	if (sopt->sopt_size > MLEN) {
2152		MCLGET(m, M_DONTWAIT);
2153		if ((m->m_flags & M_EXT) == 0) {
2154			m_free(m);
2155			return NULL;
2156		}
2157	}
2158
2159	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2160	m->m_len = sopt->sopt_size;
2161
2162	return m;
2163}
2164
2165void
2166sohasoutofband(struct socket *so)
2167{
2168
2169	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2170	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2171}
2172
2173static void
2174filt_sordetach(struct knote *kn)
2175{
2176	struct socket	*so;
2177
2178	so = ((file_t *)kn->kn_obj)->f_data;
2179	solock(so);
2180	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2181	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2182		so->so_rcv.sb_flags &= ~SB_KNOTE;
2183	sounlock(so);
2184}
2185
2186/*ARGSUSED*/
2187static int
2188filt_soread(struct knote *kn, long hint)
2189{
2190	struct socket	*so;
2191	int rv;
2192
2193	so = ((file_t *)kn->kn_obj)->f_data;
2194	if (hint != NOTE_SUBMIT)
2195		solock(so);
2196	kn->kn_data = so->so_rcv.sb_cc;
2197	if (so->so_state & SS_CANTRCVMORE) {
2198		kn->kn_flags |= EV_EOF;
2199		kn->kn_fflags = so->so_error;
2200		rv = 1;
2201	} else if (so->so_error)	/* temporary udp error */
2202		rv = 1;
2203	else if (kn->kn_sfflags & NOTE_LOWAT)
2204		rv = (kn->kn_data >= kn->kn_sdata);
2205	else
2206		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2207	if (hint != NOTE_SUBMIT)
2208		sounlock(so);
2209	return rv;
2210}
2211
2212static void
2213filt_sowdetach(struct knote *kn)
2214{
2215	struct socket	*so;
2216
2217	so = ((file_t *)kn->kn_obj)->f_data;
2218	solock(so);
2219	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2220	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2221		so->so_snd.sb_flags &= ~SB_KNOTE;
2222	sounlock(so);
2223}
2224
2225/*ARGSUSED*/
2226static int
2227filt_sowrite(struct knote *kn, long hint)
2228{
2229	struct socket	*so;
2230	int rv;
2231
2232	so = ((file_t *)kn->kn_obj)->f_data;
2233	if (hint != NOTE_SUBMIT)
2234		solock(so);
2235	kn->kn_data = sbspace(&so->so_snd);
2236	if (so->so_state & SS_CANTSENDMORE) {
2237		kn->kn_flags |= EV_EOF;
2238		kn->kn_fflags = so->so_error;
2239		rv = 1;
2240	} else if (so->so_error)	/* temporary udp error */
2241		rv = 1;
2242	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2243	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2244		rv = 0;
2245	else if (kn->kn_sfflags & NOTE_LOWAT)
2246		rv = (kn->kn_data >= kn->kn_sdata);
2247	else
2248		rv = (kn->kn_data >= so->so_snd.sb_lowat);
2249	if (hint != NOTE_SUBMIT)
2250		sounlock(so);
2251	return rv;
2252}
2253
2254/*ARGSUSED*/
2255static int
2256filt_solisten(struct knote *kn, long hint)
2257{
2258	struct socket	*so;
2259	int rv;
2260
2261	so = ((file_t *)kn->kn_obj)->f_data;
2262
2263	/*
2264	 * Set kn_data to number of incoming connections, not
2265	 * counting partial (incomplete) connections.
2266	 */
2267	if (hint != NOTE_SUBMIT)
2268		solock(so);
2269	kn->kn_data = so->so_qlen;
2270	rv = (kn->kn_data > 0);
2271	if (hint != NOTE_SUBMIT)
2272		sounlock(so);
2273	return rv;
2274}
2275
2276static const struct filterops solisten_filtops =
2277	{ 1, NULL, filt_sordetach, filt_solisten };
2278static const struct filterops soread_filtops =
2279	{ 1, NULL, filt_sordetach, filt_soread };
2280static const struct filterops sowrite_filtops =
2281	{ 1, NULL, filt_sowdetach, filt_sowrite };
2282
2283int
2284soo_kqfilter(struct file *fp, struct knote *kn)
2285{
2286	struct socket	*so;
2287	struct sockbuf	*sb;
2288
2289	so = ((file_t *)kn->kn_obj)->f_data;
2290	solock(so);
2291	switch (kn->kn_filter) {
2292	case EVFILT_READ:
2293		if (so->so_options & SO_ACCEPTCONN)
2294			kn->kn_fop = &solisten_filtops;
2295		else
2296			kn->kn_fop = &soread_filtops;
2297		sb = &so->so_rcv;
2298		break;
2299	case EVFILT_WRITE:
2300		kn->kn_fop = &sowrite_filtops;
2301		sb = &so->so_snd;
2302		break;
2303	default:
2304		sounlock(so);
2305		return (EINVAL);
2306	}
2307	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2308	sb->sb_flags |= SB_KNOTE;
2309	sounlock(so);
2310	return (0);
2311}
2312
2313static int
2314sodopoll(struct socket *so, int events)
2315{
2316	int revents;
2317
2318	revents = 0;
2319
2320	if (events & (POLLIN | POLLRDNORM))
2321		if (soreadable(so))
2322			revents |= events & (POLLIN | POLLRDNORM);
2323
2324	if (events & (POLLOUT | POLLWRNORM))
2325		if (sowritable(so))
2326			revents |= events & (POLLOUT | POLLWRNORM);
2327
2328	if (events & (POLLPRI | POLLRDBAND))
2329		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2330			revents |= events & (POLLPRI | POLLRDBAND);
2331
2332	return revents;
2333}
2334
2335int
2336sopoll(struct socket *so, int events)
2337{
2338	int revents = 0;
2339
2340#ifndef DIAGNOSTIC
2341	/*
2342	 * Do a quick, unlocked check in expectation that the socket
2343	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
2344	 * as the solocked() assertions will fail.
2345	 */
2346	if ((revents = sodopoll(so, events)) != 0)
2347		return revents;
2348#endif
2349
2350	solock(so);
2351	if ((revents = sodopoll(so, events)) == 0) {
2352		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2353			selrecord(curlwp, &so->so_rcv.sb_sel);
2354			so->so_rcv.sb_flags |= SB_NOTIFY;
2355		}
2356
2357		if (events & (POLLOUT | POLLWRNORM)) {
2358			selrecord(curlwp, &so->so_snd.sb_sel);
2359			so->so_snd.sb_flags |= SB_NOTIFY;
2360		}
2361	}
2362	sounlock(so);
2363
2364	return revents;
2365}
2366
2367
2368#include <sys/sysctl.h>
2369
2370static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2371
2372/*
2373 * sysctl helper routine for kern.somaxkva.  ensures that the given
2374 * value is not too small.
2375 * (XXX should we maybe make sure it's not too large as well?)
2376 */
2377static int
2378sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2379{
2380	int error, new_somaxkva;
2381	struct sysctlnode node;
2382
2383	new_somaxkva = somaxkva;
2384	node = *rnode;
2385	node.sysctl_data = &new_somaxkva;
2386	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2387	if (error || newp == NULL)
2388		return (error);
2389
2390	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2391		return (EINVAL);
2392
2393	mutex_enter(&so_pendfree_lock);
2394	somaxkva = new_somaxkva;
2395	cv_broadcast(&socurkva_cv);
2396	mutex_exit(&so_pendfree_lock);
2397
2398	return (error);
2399}
2400
2401static void
2402sysctl_kern_somaxkva_setup(void)
2403{
2404
2405	KASSERT(socket_sysctllog == NULL);
2406	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2407		       CTLFLAG_PERMANENT,
2408		       CTLTYPE_NODE, "kern", NULL,
2409		       NULL, 0, NULL, 0,
2410		       CTL_KERN, CTL_EOL);
2411
2412	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2413		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2414		       CTLTYPE_INT, "somaxkva",
2415		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
2416				    "used for socket buffers"),
2417		       sysctl_kern_somaxkva, 0, NULL, 0,
2418		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2419}
2420