1/*	$NetBSD$	*/
2
3/*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice immediately at the beginning of the file, without modification,
41 *    this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 *    John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 *    are met.
49 */
50
51/*
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used.  It does not support all features of
54 * sockets, but does do everything that pipes normally do.
55 *
56 * This code has two modes of operation, a small write mode and a large
57 * write mode.  The small write mode acts like conventional pipes with
58 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
63 *
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching.  PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD$");
72
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/proc.h>
76#include <sys/fcntl.h>
77#include <sys/file.h>
78#include <sys/filedesc.h>
79#include <sys/filio.h>
80#include <sys/kernel.h>
81#include <sys/ttycom.h>
82#include <sys/stat.h>
83#include <sys/poll.h>
84#include <sys/signalvar.h>
85#include <sys/vnode.h>
86#include <sys/uio.h>
87#include <sys/select.h>
88#include <sys/mount.h>
89#include <sys/syscallargs.h>
90#include <sys/sysctl.h>
91#include <sys/kauth.h>
92#include <sys/atomic.h>
93#include <sys/pipe.h>
94
95#include <uvm/uvm_extern.h>
96
97/*
98 * Use this to disable direct I/O and decrease the code size:
99 * #define PIPE_NODIRECT
100 */
101
102/* XXX Disabled for now; rare hangs switching between direct/buffered */
103#define PIPE_NODIRECT
104
105static int	pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
106static int	pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
107static int	pipe_close(file_t *);
108static int	pipe_poll(file_t *, int);
109static int	pipe_kqfilter(file_t *, struct knote *);
110static int	pipe_stat(file_t *, struct stat *);
111static int	pipe_ioctl(file_t *, u_long, void *);
112static void	pipe_restart(file_t *);
113
114static const struct fileops pipeops = {
115	.fo_read = pipe_read,
116	.fo_write = pipe_write,
117	.fo_ioctl = pipe_ioctl,
118	.fo_fcntl = fnullop_fcntl,
119	.fo_poll = pipe_poll,
120	.fo_stat = pipe_stat,
121	.fo_close = pipe_close,
122	.fo_kqfilter = pipe_kqfilter,
123	.fo_restart = pipe_restart,
124};
125
126/*
127 * Default pipe buffer size(s), this can be kind-of large now because pipe
128 * space is pageable.  The pipe code will try to maintain locality of
129 * reference for performance reasons, so small amounts of outstanding I/O
130 * will not wipe the cache.
131 */
132#define	MINPIPESIZE	(PIPE_SIZE / 3)
133#define	MAXPIPESIZE	(2 * PIPE_SIZE / 3)
134
135/*
136 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
137 * is there so that on large systems, we don't exhaust it.
138 */
139#define	MAXPIPEKVA	(8 * 1024 * 1024)
140static u_int	maxpipekva = MAXPIPEKVA;
141
142/*
143 * Limit for direct transfers, we cannot, of course limit
144 * the amount of kva for pipes in general though.
145 */
146#define	LIMITPIPEKVA	(16 * 1024 * 1024)
147static u_int	limitpipekva = LIMITPIPEKVA;
148
149/*
150 * Limit the number of "big" pipes
151 */
152#define	LIMITBIGPIPES	32
153static u_int	maxbigpipes = LIMITBIGPIPES;
154static u_int	nbigpipe = 0;
155
156/*
157 * Amount of KVA consumed by pipe buffers.
158 */
159static u_int	amountpipekva = 0;
160
161static void	pipeclose(struct pipe *);
162static void	pipe_free_kmem(struct pipe *);
163static int	pipe_create(struct pipe **, pool_cache_t);
164static int	pipelock(struct pipe *, int);
165static inline void pipeunlock(struct pipe *);
166static void	pipeselwakeup(struct pipe *, struct pipe *, int);
167#ifndef PIPE_NODIRECT
168static int	pipe_direct_write(file_t *, struct pipe *, struct uio *);
169#endif
170static int	pipespace(struct pipe *, int);
171static int	pipe_ctor(void *, void *, int);
172static void	pipe_dtor(void *, void *);
173
174#ifndef PIPE_NODIRECT
175static int	pipe_loan_alloc(struct pipe *, int);
176static void	pipe_loan_free(struct pipe *);
177#endif /* PIPE_NODIRECT */
178
179static pool_cache_t	pipe_wr_cache;
180static pool_cache_t	pipe_rd_cache;
181
182void
183pipe_init(void)
184{
185
186	/* Writer side is not automatically allocated KVA. */
187	pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
188	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
189	KASSERT(pipe_wr_cache != NULL);
190
191	/* Reader side gets preallocated KVA. */
192	pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
193	    NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
194	KASSERT(pipe_rd_cache != NULL);
195}
196
197static int
198pipe_ctor(void *arg, void *obj, int flags)
199{
200	struct pipe *pipe;
201	vaddr_t va;
202
203	pipe = obj;
204
205	memset(pipe, 0, sizeof(struct pipe));
206	if (arg != NULL) {
207		/* Preallocate space. */
208		va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
209		    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
210		KASSERT(va != 0);
211		pipe->pipe_kmem = va;
212		atomic_add_int(&amountpipekva, PIPE_SIZE);
213	}
214	cv_init(&pipe->pipe_rcv, "pipe_rd");
215	cv_init(&pipe->pipe_wcv, "pipe_wr");
216	cv_init(&pipe->pipe_draincv, "pipe_drn");
217	cv_init(&pipe->pipe_lkcv, "pipe_lk");
218	selinit(&pipe->pipe_sel);
219	pipe->pipe_state = PIPE_SIGNALR;
220
221	return 0;
222}
223
224static void
225pipe_dtor(void *arg, void *obj)
226{
227	struct pipe *pipe;
228
229	pipe = obj;
230
231	cv_destroy(&pipe->pipe_rcv);
232	cv_destroy(&pipe->pipe_wcv);
233	cv_destroy(&pipe->pipe_draincv);
234	cv_destroy(&pipe->pipe_lkcv);
235	seldestroy(&pipe->pipe_sel);
236	if (pipe->pipe_kmem != 0) {
237		uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
238		    UVM_KMF_PAGEABLE);
239		atomic_add_int(&amountpipekva, -PIPE_SIZE);
240	}
241}
242
243/*
244 * The pipe system call for the DTYPE_PIPE type of pipes
245 */
246int
247pipe1(struct lwp *l, register_t *retval, int flags)
248{
249	struct pipe *rpipe, *wpipe;
250	file_t *rf, *wf;
251	int fd, error;
252	proc_t *p;
253
254	if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
255		return EINVAL;
256	p = curproc;
257	rpipe = wpipe = NULL;
258	if ((error = pipe_create(&rpipe, pipe_rd_cache)) ||
259	    (error = pipe_create(&wpipe, pipe_wr_cache))) {
260		goto free2;
261	}
262	rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
263	wpipe->pipe_lock = rpipe->pipe_lock;
264	mutex_obj_hold(wpipe->pipe_lock);
265
266	error = fd_allocfile(&rf, &fd);
267	if (error)
268		goto free2;
269	retval[0] = fd;
270
271	error = fd_allocfile(&wf, &fd);
272	if (error)
273		goto free3;
274	retval[1] = fd;
275
276	rf->f_flag = FREAD | flags;
277	rf->f_type = DTYPE_PIPE;
278	rf->f_data = (void *)rpipe;
279	rf->f_ops = &pipeops;
280	fd_set_exclose(l, (int)retval[0], (flags & O_CLOEXEC) != 0);
281
282	wf->f_flag = FWRITE | flags;
283	wf->f_type = DTYPE_PIPE;
284	wf->f_data = (void *)wpipe;
285	wf->f_ops = &pipeops;
286	fd_set_exclose(l, (int)retval[1], (flags & O_CLOEXEC) != 0);
287
288	rpipe->pipe_peer = wpipe;
289	wpipe->pipe_peer = rpipe;
290
291	fd_affix(p, rf, (int)retval[0]);
292	fd_affix(p, wf, (int)retval[1]);
293	return (0);
294free3:
295	fd_abort(p, rf, (int)retval[0]);
296free2:
297	pipeclose(wpipe);
298	pipeclose(rpipe);
299
300	return (error);
301}
302
303/*
304 * Allocate kva for pipe circular buffer, the space is pageable
305 * This routine will 'realloc' the size of a pipe safely, if it fails
306 * it will retain the old buffer.
307 * If it fails it will return ENOMEM.
308 */
309static int
310pipespace(struct pipe *pipe, int size)
311{
312	void *buffer;
313
314	/*
315	 * Allocate pageable virtual address space.  Physical memory is
316	 * allocated on demand.
317	 */
318	if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
319		buffer = (void *)pipe->pipe_kmem;
320	} else {
321		buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
322		    0, UVM_KMF_PAGEABLE);
323		if (buffer == NULL)
324			return (ENOMEM);
325		atomic_add_int(&amountpipekva, size);
326	}
327
328	/* free old resources if we're resizing */
329	pipe_free_kmem(pipe);
330	pipe->pipe_buffer.buffer = buffer;
331	pipe->pipe_buffer.size = size;
332	pipe->pipe_buffer.in = 0;
333	pipe->pipe_buffer.out = 0;
334	pipe->pipe_buffer.cnt = 0;
335	return (0);
336}
337
338/*
339 * Initialize and allocate VM and memory for pipe.
340 */
341static int
342pipe_create(struct pipe **pipep, pool_cache_t cache)
343{
344	struct pipe *pipe;
345	int error;
346
347	pipe = pool_cache_get(cache, PR_WAITOK);
348	KASSERT(pipe != NULL);
349	*pipep = pipe;
350	error = 0;
351	getnanotime(&pipe->pipe_btime);
352	pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
353	pipe->pipe_lock = NULL;
354	if (cache == pipe_rd_cache) {
355		error = pipespace(pipe, PIPE_SIZE);
356	} else {
357		pipe->pipe_buffer.buffer = NULL;
358		pipe->pipe_buffer.size = 0;
359		pipe->pipe_buffer.in = 0;
360		pipe->pipe_buffer.out = 0;
361		pipe->pipe_buffer.cnt = 0;
362	}
363	return error;
364}
365
366/*
367 * Lock a pipe for I/O, blocking other access
368 * Called with pipe spin lock held.
369 */
370static int
371pipelock(struct pipe *pipe, int catch)
372{
373	int error;
374
375	KASSERT(mutex_owned(pipe->pipe_lock));
376
377	while (pipe->pipe_state & PIPE_LOCKFL) {
378		pipe->pipe_state |= PIPE_LWANT;
379		if (catch) {
380			error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
381			if (error != 0)
382				return error;
383		} else
384			cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
385	}
386
387	pipe->pipe_state |= PIPE_LOCKFL;
388
389	return 0;
390}
391
392/*
393 * unlock a pipe I/O lock
394 */
395static inline void
396pipeunlock(struct pipe *pipe)
397{
398
399	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
400
401	pipe->pipe_state &= ~PIPE_LOCKFL;
402	if (pipe->pipe_state & PIPE_LWANT) {
403		pipe->pipe_state &= ~PIPE_LWANT;
404		cv_broadcast(&pipe->pipe_lkcv);
405	}
406}
407
408/*
409 * Select/poll wakup. This also sends SIGIO to peer connected to
410 * 'sigpipe' side of pipe.
411 */
412static void
413pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
414{
415	int band;
416
417	switch (code) {
418	case POLL_IN:
419		band = POLLIN|POLLRDNORM;
420		break;
421	case POLL_OUT:
422		band = POLLOUT|POLLWRNORM;
423		break;
424	case POLL_HUP:
425		band = POLLHUP;
426		break;
427	case POLL_ERR:
428		band = POLLERR;
429		break;
430	default:
431		band = 0;
432#ifdef DIAGNOSTIC
433		printf("bad siginfo code %d in pipe notification.\n", code);
434#endif
435		break;
436	}
437
438	selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
439
440	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
441		return;
442
443	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
444}
445
446static int
447pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
448    int flags)
449{
450	struct pipe *rpipe = (struct pipe *) fp->f_data;
451	struct pipebuf *bp = &rpipe->pipe_buffer;
452	kmutex_t *lock = rpipe->pipe_lock;
453	int error;
454	size_t nread = 0;
455	size_t size;
456	size_t ocnt;
457	unsigned int wakeup_state = 0;
458
459	mutex_enter(lock);
460	++rpipe->pipe_busy;
461	ocnt = bp->cnt;
462
463again:
464	error = pipelock(rpipe, 1);
465	if (error)
466		goto unlocked_error;
467
468	while (uio->uio_resid) {
469		/*
470		 * Normal pipe buffer receive.
471		 */
472		if (bp->cnt > 0) {
473			size = bp->size - bp->out;
474			if (size > bp->cnt)
475				size = bp->cnt;
476			if (size > uio->uio_resid)
477				size = uio->uio_resid;
478
479			mutex_exit(lock);
480			error = uiomove((char *)bp->buffer + bp->out, size, uio);
481			mutex_enter(lock);
482			if (error)
483				break;
484
485			bp->out += size;
486			if (bp->out >= bp->size)
487				bp->out = 0;
488
489			bp->cnt -= size;
490
491			/*
492			 * If there is no more to read in the pipe, reset
493			 * its pointers to the beginning.  This improves
494			 * cache hit stats.
495			 */
496			if (bp->cnt == 0) {
497				bp->in = 0;
498				bp->out = 0;
499			}
500			nread += size;
501			continue;
502		}
503
504#ifndef PIPE_NODIRECT
505		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
506			/*
507			 * Direct copy, bypassing a kernel buffer.
508			 */
509			void *va;
510			u_int gen;
511
512			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
513
514			size = rpipe->pipe_map.cnt;
515			if (size > uio->uio_resid)
516				size = uio->uio_resid;
517
518			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
519			gen = rpipe->pipe_map.egen;
520			mutex_exit(lock);
521
522			/*
523			 * Consume emap and read the data from loaned pages.
524			 */
525			uvm_emap_consume(gen);
526			error = uiomove(va, size, uio);
527
528			mutex_enter(lock);
529			if (error)
530				break;
531			nread += size;
532			rpipe->pipe_map.pos += size;
533			rpipe->pipe_map.cnt -= size;
534			if (rpipe->pipe_map.cnt == 0) {
535				rpipe->pipe_state &= ~PIPE_DIRECTR;
536				cv_broadcast(&rpipe->pipe_wcv);
537			}
538			continue;
539		}
540#endif
541		/*
542		 * Break if some data was read.
543		 */
544		if (nread > 0)
545			break;
546
547		/*
548		 * Detect EOF condition.
549		 * Read returns 0 on EOF, no need to set error.
550		 */
551		if (rpipe->pipe_state & PIPE_EOF)
552			break;
553
554		/*
555		 * Don't block on non-blocking I/O.
556		 */
557		if (fp->f_flag & FNONBLOCK) {
558			error = EAGAIN;
559			break;
560		}
561
562		/*
563		 * Unlock the pipe buffer for our remaining processing.
564		 * We will either break out with an error or we will
565		 * sleep and relock to loop.
566		 */
567		pipeunlock(rpipe);
568
569		/*
570		 * Re-check to see if more direct writes are pending.
571		 */
572		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
573			goto again;
574
575#if 1   /* XXX (dsl) I'm sure these aren't needed here ... */
576		/*
577		 * We want to read more, wake up select/poll.
578		 */
579		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
580
581		/*
582		 * If the "write-side" is blocked, wake it up now.
583		 */
584		cv_broadcast(&rpipe->pipe_wcv);
585#endif
586
587		if (wakeup_state & PIPE_RESTART) {
588			error = ERESTART;
589			goto unlocked_error;
590		}
591
592		/* Now wait until the pipe is filled */
593		error = cv_wait_sig(&rpipe->pipe_rcv, lock);
594		if (error != 0)
595			goto unlocked_error;
596		wakeup_state = rpipe->pipe_state;
597		goto again;
598	}
599
600	if (error == 0)
601		getnanotime(&rpipe->pipe_atime);
602	pipeunlock(rpipe);
603
604unlocked_error:
605	--rpipe->pipe_busy;
606	if (rpipe->pipe_busy == 0) {
607		rpipe->pipe_state &= ~PIPE_RESTART;
608		cv_broadcast(&rpipe->pipe_draincv);
609	}
610	if (bp->cnt < MINPIPESIZE) {
611		cv_broadcast(&rpipe->pipe_wcv);
612	}
613
614	/*
615	 * If anything was read off the buffer, signal to the writer it's
616	 * possible to write more data. Also send signal if we are here for the
617	 * first time after last write.
618	 */
619	if ((bp->size - bp->cnt) >= PIPE_BUF
620	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
621		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
622		rpipe->pipe_state &= ~PIPE_SIGNALR;
623	}
624
625	mutex_exit(lock);
626	return (error);
627}
628
629#ifndef PIPE_NODIRECT
630/*
631 * Allocate structure for loan transfer.
632 */
633static int
634pipe_loan_alloc(struct pipe *wpipe, int npages)
635{
636	vsize_t len;
637
638	len = (vsize_t)npages << PAGE_SHIFT;
639	atomic_add_int(&amountpipekva, len);
640	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
641	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
642	if (wpipe->pipe_map.kva == 0) {
643		atomic_add_int(&amountpipekva, -len);
644		return (ENOMEM);
645	}
646
647	wpipe->pipe_map.npages = npages;
648	wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
649	    KM_SLEEP);
650	return (0);
651}
652
653/*
654 * Free resources allocated for loan transfer.
655 */
656static void
657pipe_loan_free(struct pipe *wpipe)
658{
659	vsize_t len;
660
661	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
662	uvm_emap_remove(wpipe->pipe_map.kva, len);	/* XXX */
663	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
664	wpipe->pipe_map.kva = 0;
665	atomic_add_int(&amountpipekva, -len);
666	kmem_free(wpipe->pipe_map.pgs,
667	    wpipe->pipe_map.npages * sizeof(struct vm_page *));
668	wpipe->pipe_map.pgs = NULL;
669}
670
671/*
672 * NetBSD direct write, using uvm_loan() mechanism.
673 * This implements the pipe buffer write mechanism.  Note that only
674 * a direct write OR a normal pipe write can be pending at any given time.
675 * If there are any characters in the pipe buffer, the direct write will
676 * be deferred until the receiving process grabs all of the bytes from
677 * the pipe buffer.  Then the direct mapping write is set-up.
678 *
679 * Called with the long-term pipe lock held.
680 */
681static int
682pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
683{
684	struct vm_page **pgs;
685	vaddr_t bbase, base, bend;
686	vsize_t blen, bcnt;
687	int error, npages;
688	voff_t bpos;
689	kmutex_t *lock = wpipe->pipe_lock;
690
691	KASSERT(mutex_owned(wpipe->pipe_lock));
692	KASSERT(wpipe->pipe_map.cnt == 0);
693
694	mutex_exit(lock);
695
696	/*
697	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
698	 * not aligned to PAGE_SIZE.
699	 */
700	bbase = (vaddr_t)uio->uio_iov->iov_base;
701	base = trunc_page(bbase);
702	bend = round_page(bbase + uio->uio_iov->iov_len);
703	blen = bend - base;
704	bpos = bbase - base;
705
706	if (blen > PIPE_DIRECT_CHUNK) {
707		blen = PIPE_DIRECT_CHUNK;
708		bend = base + blen;
709		bcnt = PIPE_DIRECT_CHUNK - bpos;
710	} else {
711		bcnt = uio->uio_iov->iov_len;
712	}
713	npages = blen >> PAGE_SHIFT;
714
715	/*
716	 * Free the old kva if we need more pages than we have
717	 * allocated.
718	 */
719	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
720		pipe_loan_free(wpipe);
721
722	/* Allocate new kva. */
723	if (wpipe->pipe_map.kva == 0) {
724		error = pipe_loan_alloc(wpipe, npages);
725		if (error) {
726			mutex_enter(lock);
727			return (error);
728		}
729	}
730
731	/* Loan the write buffer memory from writer process */
732	pgs = wpipe->pipe_map.pgs;
733	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
734			 pgs, UVM_LOAN_TOPAGE);
735	if (error) {
736		pipe_loan_free(wpipe);
737		mutex_enter(lock);
738		return (ENOMEM); /* so that caller fallback to ordinary write */
739	}
740
741	/* Enter the loaned pages to KVA, produce new emap generation number. */
742	uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
743	wpipe->pipe_map.egen = uvm_emap_produce();
744
745	/* Now we can put the pipe in direct write mode */
746	wpipe->pipe_map.pos = bpos;
747	wpipe->pipe_map.cnt = bcnt;
748
749	/*
750	 * But before we can let someone do a direct read, we
751	 * have to wait until the pipe is drained.  Release the
752	 * pipe lock while we wait.
753	 */
754	mutex_enter(lock);
755	wpipe->pipe_state |= PIPE_DIRECTW;
756	pipeunlock(wpipe);
757
758	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
759		cv_broadcast(&wpipe->pipe_rcv);
760		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
761		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
762			error = EPIPE;
763	}
764
765	/* Pipe is drained; next read will off the direct buffer */
766	wpipe->pipe_state |= PIPE_DIRECTR;
767
768	/* Wait until the reader is done */
769	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
770		cv_broadcast(&wpipe->pipe_rcv);
771		pipeselwakeup(wpipe, wpipe, POLL_IN);
772		error = cv_wait_sig(&wpipe->pipe_wcv, lock);
773		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
774			error = EPIPE;
775	}
776
777	/* Take pipe out of direct write mode */
778	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
779
780	/* Acquire the pipe lock and cleanup */
781	(void)pipelock(wpipe, 0);
782	mutex_exit(lock);
783
784	if (pgs != NULL) {
785		/* XXX: uvm_emap_remove */
786		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
787	}
788	if (error || amountpipekva > maxpipekva)
789		pipe_loan_free(wpipe);
790
791	mutex_enter(lock);
792	if (error) {
793		pipeselwakeup(wpipe, wpipe, POLL_ERR);
794
795		/*
796		 * If nothing was read from what we offered, return error
797		 * straight on. Otherwise update uio resid first. Caller
798		 * will deal with the error condition, returning short
799		 * write, error, or restarting the write(2) as appropriate.
800		 */
801		if (wpipe->pipe_map.cnt == bcnt) {
802			wpipe->pipe_map.cnt = 0;
803			cv_broadcast(&wpipe->pipe_wcv);
804			return (error);
805		}
806
807		bcnt -= wpipe->pipe_map.cnt;
808	}
809
810	uio->uio_resid -= bcnt;
811	/* uio_offset not updated, not set/used for write(2) */
812	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
813	uio->uio_iov->iov_len -= bcnt;
814	if (uio->uio_iov->iov_len == 0) {
815		uio->uio_iov++;
816		uio->uio_iovcnt--;
817	}
818
819	wpipe->pipe_map.cnt = 0;
820	return (error);
821}
822#endif /* !PIPE_NODIRECT */
823
824static int
825pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
826    int flags)
827{
828	struct pipe *wpipe, *rpipe;
829	struct pipebuf *bp;
830	kmutex_t *lock;
831	int error;
832	unsigned int wakeup_state = 0;
833
834	/* We want to write to our peer */
835	rpipe = (struct pipe *) fp->f_data;
836	lock = rpipe->pipe_lock;
837	error = 0;
838
839	mutex_enter(lock);
840	wpipe = rpipe->pipe_peer;
841
842	/*
843	 * Detect loss of pipe read side, issue SIGPIPE if lost.
844	 */
845	if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
846		mutex_exit(lock);
847		return EPIPE;
848	}
849	++wpipe->pipe_busy;
850
851	/* Aquire the long-term pipe lock */
852	if ((error = pipelock(wpipe, 1)) != 0) {
853		--wpipe->pipe_busy;
854		if (wpipe->pipe_busy == 0) {
855			wpipe->pipe_state &= ~PIPE_RESTART;
856			cv_broadcast(&wpipe->pipe_draincv);
857		}
858		mutex_exit(lock);
859		return (error);
860	}
861
862	bp = &wpipe->pipe_buffer;
863
864	/*
865	 * If it is advantageous to resize the pipe buffer, do so.
866	 */
867	if ((uio->uio_resid > PIPE_SIZE) &&
868	    (nbigpipe < maxbigpipes) &&
869#ifndef PIPE_NODIRECT
870	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
871#endif
872	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
873
874		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
875			atomic_inc_uint(&nbigpipe);
876	}
877
878	while (uio->uio_resid) {
879		size_t space;
880
881#ifndef PIPE_NODIRECT
882		/*
883		 * Pipe buffered writes cannot be coincidental with
884		 * direct writes.  Also, only one direct write can be
885		 * in progress at any one time.  We wait until the currently
886		 * executing direct write is completed before continuing.
887		 *
888		 * We break out if a signal occurs or the reader goes away.
889		 */
890		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
891			cv_broadcast(&wpipe->pipe_rcv);
892			pipeunlock(wpipe);
893			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
894			(void)pipelock(wpipe, 0);
895			if (wpipe->pipe_state & PIPE_EOF)
896				error = EPIPE;
897		}
898		if (error)
899			break;
900
901		/*
902		 * If the transfer is large, we can gain performance if
903		 * we do process-to-process copies directly.
904		 * If the write is non-blocking, we don't use the
905		 * direct write mechanism.
906		 *
907		 * The direct write mechanism will detect the reader going
908		 * away on us.
909		 */
910		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
911		    (fp->f_flag & FNONBLOCK) == 0 &&
912		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
913			error = pipe_direct_write(fp, wpipe, uio);
914
915			/*
916			 * Break out if error occurred, unless it's ENOMEM.
917			 * ENOMEM means we failed to allocate some resources
918			 * for direct write, so we just fallback to ordinary
919			 * write. If the direct write was successful,
920			 * process rest of data via ordinary write.
921			 */
922			if (error == 0)
923				continue;
924
925			if (error != ENOMEM)
926				break;
927		}
928#endif /* PIPE_NODIRECT */
929
930		space = bp->size - bp->cnt;
931
932		/* Writes of size <= PIPE_BUF must be atomic. */
933		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
934			space = 0;
935
936		if (space > 0) {
937			int size;	/* Transfer size */
938			int segsize;	/* first segment to transfer */
939
940			/*
941			 * Transfer size is minimum of uio transfer
942			 * and free space in pipe buffer.
943			 */
944			if (space > uio->uio_resid)
945				size = uio->uio_resid;
946			else
947				size = space;
948			/*
949			 * First segment to transfer is minimum of
950			 * transfer size and contiguous space in
951			 * pipe buffer.  If first segment to transfer
952			 * is less than the transfer size, we've got
953			 * a wraparound in the buffer.
954			 */
955			segsize = bp->size - bp->in;
956			if (segsize > size)
957				segsize = size;
958
959			/* Transfer first segment */
960			mutex_exit(lock);
961			error = uiomove((char *)bp->buffer + bp->in, segsize,
962			    uio);
963
964			if (error == 0 && segsize < size) {
965				/*
966				 * Transfer remaining part now, to
967				 * support atomic writes.  Wraparound
968				 * happened.
969				 */
970				KASSERT(bp->in + segsize == bp->size);
971				error = uiomove(bp->buffer,
972				    size - segsize, uio);
973			}
974			mutex_enter(lock);
975			if (error)
976				break;
977
978			bp->in += size;
979			if (bp->in >= bp->size) {
980				KASSERT(bp->in == size - segsize + bp->size);
981				bp->in = size - segsize;
982			}
983
984			bp->cnt += size;
985			KASSERT(bp->cnt <= bp->size);
986			wakeup_state = 0;
987		} else {
988			/*
989			 * If the "read-side" has been blocked, wake it up now.
990			 */
991			cv_broadcast(&wpipe->pipe_rcv);
992
993			/*
994			 * Don't block on non-blocking I/O.
995			 */
996			if (fp->f_flag & FNONBLOCK) {
997				error = EAGAIN;
998				break;
999			}
1000
1001			/*
1002			 * We have no more space and have something to offer,
1003			 * wake up select/poll.
1004			 */
1005			if (bp->cnt)
1006				pipeselwakeup(wpipe, wpipe, POLL_IN);
1007
1008			if (wakeup_state & PIPE_RESTART) {
1009				error = ERESTART;
1010				break;
1011			}
1012
1013			pipeunlock(wpipe);
1014			error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1015			(void)pipelock(wpipe, 0);
1016			if (error != 0)
1017				break;
1018			/*
1019			 * If read side wants to go away, we just issue a signal
1020			 * to ourselves.
1021			 */
1022			if (wpipe->pipe_state & PIPE_EOF) {
1023				error = EPIPE;
1024				break;
1025			}
1026			wakeup_state = wpipe->pipe_state;
1027		}
1028	}
1029
1030	--wpipe->pipe_busy;
1031	if (wpipe->pipe_busy == 0) {
1032		wpipe->pipe_state &= ~PIPE_RESTART;
1033		cv_broadcast(&wpipe->pipe_draincv);
1034	}
1035	if (bp->cnt > 0) {
1036		cv_broadcast(&wpipe->pipe_rcv);
1037	}
1038
1039	/*
1040	 * Don't return EPIPE if I/O was successful
1041	 */
1042	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1043		error = 0;
1044
1045	if (error == 0)
1046		getnanotime(&wpipe->pipe_mtime);
1047
1048	/*
1049	 * We have something to offer, wake up select/poll.
1050	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1051	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1052	 */
1053	if (bp->cnt)
1054		pipeselwakeup(wpipe, wpipe, POLL_IN);
1055
1056	/*
1057	 * Arrange for next read(2) to do a signal.
1058	 */
1059	wpipe->pipe_state |= PIPE_SIGNALR;
1060
1061	pipeunlock(wpipe);
1062	mutex_exit(lock);
1063	return (error);
1064}
1065
1066/*
1067 * We implement a very minimal set of ioctls for compatibility with sockets.
1068 */
1069int
1070pipe_ioctl(file_t *fp, u_long cmd, void *data)
1071{
1072	struct pipe *pipe = fp->f_data;
1073	kmutex_t *lock = pipe->pipe_lock;
1074
1075	switch (cmd) {
1076
1077	case FIONBIO:
1078		return (0);
1079
1080	case FIOASYNC:
1081		mutex_enter(lock);
1082		if (*(int *)data) {
1083			pipe->pipe_state |= PIPE_ASYNC;
1084		} else {
1085			pipe->pipe_state &= ~PIPE_ASYNC;
1086		}
1087		mutex_exit(lock);
1088		return (0);
1089
1090	case FIONREAD:
1091		mutex_enter(lock);
1092#ifndef PIPE_NODIRECT
1093		if (pipe->pipe_state & PIPE_DIRECTW)
1094			*(int *)data = pipe->pipe_map.cnt;
1095		else
1096#endif
1097			*(int *)data = pipe->pipe_buffer.cnt;
1098		mutex_exit(lock);
1099		return (0);
1100
1101	case FIONWRITE:
1102		/* Look at other side */
1103		pipe = pipe->pipe_peer;
1104		mutex_enter(lock);
1105#ifndef PIPE_NODIRECT
1106		if (pipe->pipe_state & PIPE_DIRECTW)
1107			*(int *)data = pipe->pipe_map.cnt;
1108		else
1109#endif
1110			*(int *)data = pipe->pipe_buffer.cnt;
1111		mutex_exit(lock);
1112		return (0);
1113
1114	case FIONSPACE:
1115		/* Look at other side */
1116		pipe = pipe->pipe_peer;
1117		mutex_enter(lock);
1118#ifndef PIPE_NODIRECT
1119		/*
1120		 * If we're in direct-mode, we don't really have a
1121		 * send queue, and any other write will block. Thus
1122		 * zero seems like the best answer.
1123		 */
1124		if (pipe->pipe_state & PIPE_DIRECTW)
1125			*(int *)data = 0;
1126		else
1127#endif
1128			*(int *)data = pipe->pipe_buffer.size -
1129			    pipe->pipe_buffer.cnt;
1130		mutex_exit(lock);
1131		return (0);
1132
1133	case TIOCSPGRP:
1134	case FIOSETOWN:
1135		return fsetown(&pipe->pipe_pgid, cmd, data);
1136
1137	case TIOCGPGRP:
1138	case FIOGETOWN:
1139		return fgetown(pipe->pipe_pgid, cmd, data);
1140
1141	}
1142	return (EPASSTHROUGH);
1143}
1144
1145int
1146pipe_poll(file_t *fp, int events)
1147{
1148	struct pipe *rpipe = fp->f_data;
1149	struct pipe *wpipe;
1150	int eof = 0;
1151	int revents = 0;
1152
1153	mutex_enter(rpipe->pipe_lock);
1154	wpipe = rpipe->pipe_peer;
1155
1156	if (events & (POLLIN | POLLRDNORM))
1157		if ((rpipe->pipe_buffer.cnt > 0) ||
1158#ifndef PIPE_NODIRECT
1159		    (rpipe->pipe_state & PIPE_DIRECTR) ||
1160#endif
1161		    (rpipe->pipe_state & PIPE_EOF))
1162			revents |= events & (POLLIN | POLLRDNORM);
1163
1164	eof |= (rpipe->pipe_state & PIPE_EOF);
1165
1166	if (wpipe == NULL)
1167		revents |= events & (POLLOUT | POLLWRNORM);
1168	else {
1169		if (events & (POLLOUT | POLLWRNORM))
1170			if ((wpipe->pipe_state & PIPE_EOF) || (
1171#ifndef PIPE_NODIRECT
1172			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1173#endif
1174			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1175				revents |= events & (POLLOUT | POLLWRNORM);
1176
1177		eof |= (wpipe->pipe_state & PIPE_EOF);
1178	}
1179
1180	if (wpipe == NULL || eof)
1181		revents |= POLLHUP;
1182
1183	if (revents == 0) {
1184		if (events & (POLLIN | POLLRDNORM))
1185			selrecord(curlwp, &rpipe->pipe_sel);
1186
1187		if (events & (POLLOUT | POLLWRNORM))
1188			selrecord(curlwp, &wpipe->pipe_sel);
1189	}
1190	mutex_exit(rpipe->pipe_lock);
1191
1192	return (revents);
1193}
1194
1195static int
1196pipe_stat(file_t *fp, struct stat *ub)
1197{
1198	struct pipe *pipe = fp->f_data;
1199
1200	mutex_enter(pipe->pipe_lock);
1201	memset(ub, 0, sizeof(*ub));
1202	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1203	ub->st_blksize = pipe->pipe_buffer.size;
1204	if (ub->st_blksize == 0 && pipe->pipe_peer)
1205		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1206	ub->st_size = pipe->pipe_buffer.cnt;
1207	ub->st_blocks = (ub->st_size) ? 1 : 0;
1208	ub->st_atimespec = pipe->pipe_atime;
1209	ub->st_mtimespec = pipe->pipe_mtime;
1210	ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1211	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1212	ub->st_gid = kauth_cred_getegid(fp->f_cred);
1213
1214	/*
1215	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1216	 * XXX (st_dev, st_ino) should be unique.
1217	 */
1218	mutex_exit(pipe->pipe_lock);
1219	return 0;
1220}
1221
1222static int
1223pipe_close(file_t *fp)
1224{
1225	struct pipe *pipe = fp->f_data;
1226
1227	fp->f_data = NULL;
1228	pipeclose(pipe);
1229	return (0);
1230}
1231
1232static void
1233pipe_restart(file_t *fp)
1234{
1235	struct pipe *pipe = fp->f_data;
1236
1237	/*
1238	 * Unblock blocked reads/writes in order to allow close() to complete.
1239	 * System calls return ERESTART so that the fd is revalidated.
1240	 * (Partial writes return the transfer length.)
1241	 */
1242	mutex_enter(pipe->pipe_lock);
1243	pipe->pipe_state |= PIPE_RESTART;
1244	/* Wakeup both cvs, maybe we only need one, but maybe there are some
1245	 * other paths where wakeup is needed, and it saves deciding which! */
1246	cv_broadcast(&pipe->pipe_rcv);
1247	cv_broadcast(&pipe->pipe_wcv);
1248	mutex_exit(pipe->pipe_lock);
1249}
1250
1251static void
1252pipe_free_kmem(struct pipe *pipe)
1253{
1254
1255	if (pipe->pipe_buffer.buffer != NULL) {
1256		if (pipe->pipe_buffer.size > PIPE_SIZE) {
1257			atomic_dec_uint(&nbigpipe);
1258		}
1259		if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1260			uvm_km_free(kernel_map,
1261			    (vaddr_t)pipe->pipe_buffer.buffer,
1262			    pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1263			atomic_add_int(&amountpipekva,
1264			    -pipe->pipe_buffer.size);
1265		}
1266		pipe->pipe_buffer.buffer = NULL;
1267	}
1268#ifndef PIPE_NODIRECT
1269	if (pipe->pipe_map.kva != 0) {
1270		pipe_loan_free(pipe);
1271		pipe->pipe_map.cnt = 0;
1272		pipe->pipe_map.kva = 0;
1273		pipe->pipe_map.pos = 0;
1274		pipe->pipe_map.npages = 0;
1275	}
1276#endif /* !PIPE_NODIRECT */
1277}
1278
1279/*
1280 * Shutdown the pipe.
1281 */
1282static void
1283pipeclose(struct pipe *pipe)
1284{
1285	kmutex_t *lock;
1286	struct pipe *ppipe;
1287
1288	if (pipe == NULL)
1289		return;
1290
1291	KASSERT(cv_is_valid(&pipe->pipe_rcv));
1292	KASSERT(cv_is_valid(&pipe->pipe_wcv));
1293	KASSERT(cv_is_valid(&pipe->pipe_draincv));
1294	KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1295
1296	lock = pipe->pipe_lock;
1297	if (lock == NULL)
1298		/* Must have failed during create */
1299		goto free_resources;
1300
1301	mutex_enter(lock);
1302	pipeselwakeup(pipe, pipe, POLL_HUP);
1303
1304	/*
1305	 * If the other side is blocked, wake it up saying that
1306	 * we want to close it down.
1307	 */
1308	pipe->pipe_state |= PIPE_EOF;
1309	if (pipe->pipe_busy) {
1310		while (pipe->pipe_busy) {
1311			cv_broadcast(&pipe->pipe_wcv);
1312			cv_wait_sig(&pipe->pipe_draincv, lock);
1313		}
1314	}
1315
1316	/*
1317	 * Disconnect from peer.
1318	 */
1319	if ((ppipe = pipe->pipe_peer) != NULL) {
1320		pipeselwakeup(ppipe, ppipe, POLL_HUP);
1321		ppipe->pipe_state |= PIPE_EOF;
1322		cv_broadcast(&ppipe->pipe_rcv);
1323		ppipe->pipe_peer = NULL;
1324	}
1325
1326	/*
1327	 * Any knote objects still left in the list are
1328	 * the one attached by peer.  Since no one will
1329	 * traverse this list, we just clear it.
1330	 */
1331	SLIST_INIT(&pipe->pipe_sel.sel_klist);
1332
1333	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1334	mutex_exit(lock);
1335	mutex_obj_free(lock);
1336
1337	/*
1338	 * Free resources.
1339	 */
1340    free_resources:
1341	pipe->pipe_pgid = 0;
1342	pipe->pipe_state = PIPE_SIGNALR;
1343	pipe_free_kmem(pipe);
1344	if (pipe->pipe_kmem != 0) {
1345		pool_cache_put(pipe_rd_cache, pipe);
1346	} else {
1347		pool_cache_put(pipe_wr_cache, pipe);
1348	}
1349}
1350
1351static void
1352filt_pipedetach(struct knote *kn)
1353{
1354	struct pipe *pipe;
1355	kmutex_t *lock;
1356
1357	pipe = ((file_t *)kn->kn_obj)->f_data;
1358	lock = pipe->pipe_lock;
1359
1360	mutex_enter(lock);
1361
1362	switch(kn->kn_filter) {
1363	case EVFILT_WRITE:
1364		/* Need the peer structure, not our own. */
1365		pipe = pipe->pipe_peer;
1366
1367		/* If reader end already closed, just return. */
1368		if (pipe == NULL) {
1369			mutex_exit(lock);
1370			return;
1371		}
1372
1373		break;
1374	default:
1375		/* Nothing to do. */
1376		break;
1377	}
1378
1379	KASSERT(kn->kn_hook == pipe);
1380	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1381	mutex_exit(lock);
1382}
1383
1384static int
1385filt_piperead(struct knote *kn, long hint)
1386{
1387	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1388	struct pipe *wpipe;
1389
1390	if ((hint & NOTE_SUBMIT) == 0) {
1391		mutex_enter(rpipe->pipe_lock);
1392	}
1393	wpipe = rpipe->pipe_peer;
1394	kn->kn_data = rpipe->pipe_buffer.cnt;
1395
1396	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1397		kn->kn_data = rpipe->pipe_map.cnt;
1398
1399	if ((rpipe->pipe_state & PIPE_EOF) ||
1400	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1401		kn->kn_flags |= EV_EOF;
1402		if ((hint & NOTE_SUBMIT) == 0) {
1403			mutex_exit(rpipe->pipe_lock);
1404		}
1405		return (1);
1406	}
1407
1408	if ((hint & NOTE_SUBMIT) == 0) {
1409		mutex_exit(rpipe->pipe_lock);
1410	}
1411	return (kn->kn_data > 0);
1412}
1413
1414static int
1415filt_pipewrite(struct knote *kn, long hint)
1416{
1417	struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1418	struct pipe *wpipe;
1419
1420	if ((hint & NOTE_SUBMIT) == 0) {
1421		mutex_enter(rpipe->pipe_lock);
1422	}
1423	wpipe = rpipe->pipe_peer;
1424
1425	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1426		kn->kn_data = 0;
1427		kn->kn_flags |= EV_EOF;
1428		if ((hint & NOTE_SUBMIT) == 0) {
1429			mutex_exit(rpipe->pipe_lock);
1430		}
1431		return (1);
1432	}
1433	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1434	if (wpipe->pipe_state & PIPE_DIRECTW)
1435		kn->kn_data = 0;
1436
1437	if ((hint & NOTE_SUBMIT) == 0) {
1438		mutex_exit(rpipe->pipe_lock);
1439	}
1440	return (kn->kn_data >= PIPE_BUF);
1441}
1442
1443static const struct filterops pipe_rfiltops =
1444	{ 1, NULL, filt_pipedetach, filt_piperead };
1445static const struct filterops pipe_wfiltops =
1446	{ 1, NULL, filt_pipedetach, filt_pipewrite };
1447
1448static int
1449pipe_kqfilter(file_t *fp, struct knote *kn)
1450{
1451	struct pipe *pipe;
1452	kmutex_t *lock;
1453
1454	pipe = ((file_t *)kn->kn_obj)->f_data;
1455	lock = pipe->pipe_lock;
1456
1457	mutex_enter(lock);
1458
1459	switch (kn->kn_filter) {
1460	case EVFILT_READ:
1461		kn->kn_fop = &pipe_rfiltops;
1462		break;
1463	case EVFILT_WRITE:
1464		kn->kn_fop = &pipe_wfiltops;
1465		pipe = pipe->pipe_peer;
1466		if (pipe == NULL) {
1467			/* Other end of pipe has been closed. */
1468			mutex_exit(lock);
1469			return (EBADF);
1470		}
1471		break;
1472	default:
1473		mutex_exit(lock);
1474		return (EINVAL);
1475	}
1476
1477	kn->kn_hook = pipe;
1478	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1479	mutex_exit(lock);
1480
1481	return (0);
1482}
1483
1484/*
1485 * Handle pipe sysctls.
1486 */
1487SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1488{
1489
1490	sysctl_createv(clog, 0, NULL, NULL,
1491		       CTLFLAG_PERMANENT,
1492		       CTLTYPE_NODE, "kern", NULL,
1493		       NULL, 0, NULL, 0,
1494		       CTL_KERN, CTL_EOL);
1495	sysctl_createv(clog, 0, NULL, NULL,
1496		       CTLFLAG_PERMANENT,
1497		       CTLTYPE_NODE, "pipe",
1498		       SYSCTL_DESCR("Pipe settings"),
1499		       NULL, 0, NULL, 0,
1500		       CTL_KERN, KERN_PIPE, CTL_EOL);
1501
1502	sysctl_createv(clog, 0, NULL, NULL,
1503		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1504		       CTLTYPE_INT, "maxkvasz",
1505		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
1506				    "used for pipes"),
1507		       NULL, 0, &maxpipekva, 0,
1508		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1509	sysctl_createv(clog, 0, NULL, NULL,
1510		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1511		       CTLTYPE_INT, "maxloankvasz",
1512		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
1513		       NULL, 0, &limitpipekva, 0,
1514		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1515	sysctl_createv(clog, 0, NULL, NULL,
1516		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1517		       CTLTYPE_INT, "maxbigpipes",
1518		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1519		       NULL, 0, &maxbigpipes, 0,
1520		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1521	sysctl_createv(clog, 0, NULL, NULL,
1522		       CTLFLAG_PERMANENT,
1523		       CTLTYPE_INT, "nbigpipes",
1524		       SYSCTL_DESCR("Number of \"big\" pipes"),
1525		       NULL, 0, &nbigpipe, 0,
1526		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1527	sysctl_createv(clog, 0, NULL, NULL,
1528		       CTLFLAG_PERMANENT,
1529		       CTLTYPE_INT, "kvasize",
1530		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1531				    "buffers"),
1532		       NULL, 0, &amountpipekva, 0,
1533		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1534}
1535