1/*	$NetBSD$	*/
2
3/*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/*
30 * reference:
31 * -	Magazines and Vmem: Extending the Slab Allocator
32 *	to Many CPUs and Arbitrary Resources
33 *	http://www.usenix.org/event/usenix01/bonwick.html
34 */
35
36#include <sys/cdefs.h>
37__KERNEL_RCSID(0, "$NetBSD$");
38
39#if defined(_KERNEL)
40#include "opt_ddb.h"
41#define	QCACHE
42#endif /* defined(_KERNEL) */
43
44#include <sys/param.h>
45#include <sys/hash.h>
46#include <sys/queue.h>
47#include <sys/bitops.h>
48
49#if defined(_KERNEL)
50#include <sys/systm.h>
51#include <sys/kernel.h>	/* hz */
52#include <sys/callout.h>
53#include <sys/kmem.h>
54#include <sys/pool.h>
55#include <sys/vmem.h>
56#include <sys/workqueue.h>
57#include <sys/atomic.h>
58#include <uvm/uvm.h>
59#include <uvm/uvm_extern.h>
60#include <uvm/uvm_km.h>
61#include <uvm/uvm_page.h>
62#include <uvm/uvm_pdaemon.h>
63#else /* defined(_KERNEL) */
64#include "../sys/vmem.h"
65#endif /* defined(_KERNEL) */
66
67
68#if defined(_KERNEL)
69#include <sys/evcnt.h>
70#define VMEM_EVCNT_DEFINE(name) \
71struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
72    "vmemev", #name); \
73EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
74#define VMEM_EVCNT_INCR(ev)	vmem_evcnt_##ev.ev_count++
75#define VMEM_EVCNT_DECR(ev)	vmem_evcnt_##ev.ev_count--
76
77VMEM_EVCNT_DEFINE(bt_pages)
78VMEM_EVCNT_DEFINE(bt_count)
79VMEM_EVCNT_DEFINE(bt_inuse)
80
81#define	LOCK_DECL(name)		\
82    kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
83
84#define CONDVAR_DECL(name)	\
85    kcondvar_t name;
86
87#else /* defined(_KERNEL) */
88#include <stdio.h>
89#include <errno.h>
90#include <assert.h>
91#include <stdlib.h>
92#include <string.h>
93
94#define VMEM_EVCNT_INCR(ev)	/* nothing */
95#define VMEM_EVCNT_DECR(ev)	/* nothing */
96
97#define	UNITTEST
98#define	KASSERT(a)		assert(a)
99#define	LOCK_DECL(name)		/* nothing */
100#define	CONDVAR_DECL(name)	/* nothing */
101#define	VMEM_CONDVAR_INIT(vm, wchan)	/* nothing */
102#define	VMEM_CONDVAR_BROADCAST(vm)	/* nothing */
103#define	mutex_init(a, b, c)	/* nothing */
104#define	mutex_destroy(a)	/* nothing */
105#define	mutex_enter(a)		/* nothing */
106#define	mutex_tryenter(a)	true
107#define	mutex_exit(a)		/* nothing */
108#define	mutex_owned(a)		/* nothing */
109#define	ASSERT_SLEEPABLE()	/* nothing */
110#define	panic(...)		printf(__VA_ARGS__); abort()
111#endif /* defined(_KERNEL) */
112
113struct vmem;
114struct vmem_btag;
115
116#if defined(VMEM_SANITY)
117static void vmem_check(vmem_t *);
118#else /* defined(VMEM_SANITY) */
119#define vmem_check(vm)	/* nothing */
120#endif /* defined(VMEM_SANITY) */
121
122#define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
123
124#define	VMEM_HASHSIZE_MIN	1	/* XXX */
125#define	VMEM_HASHSIZE_MAX	65536	/* XXX */
126#define	VMEM_HASHSIZE_INIT	1
127
128#define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
129
130CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
131LIST_HEAD(vmem_freelist, vmem_btag);
132LIST_HEAD(vmem_hashlist, vmem_btag);
133
134#if defined(QCACHE)
135#define	VMEM_QCACHE_IDX_MAX	32
136
137#define	QC_NAME_MAX	16
138
139struct qcache {
140	pool_cache_t qc_cache;
141	vmem_t *qc_vmem;
142	char qc_name[QC_NAME_MAX];
143};
144typedef struct qcache qcache_t;
145#define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
146#endif /* defined(QCACHE) */
147
148#define	VMEM_NAME_MAX	16
149
150/* vmem arena */
151struct vmem {
152	CONDVAR_DECL(vm_cv);
153	LOCK_DECL(vm_lock);
154	vm_flag_t vm_flags;
155	vmem_import_t *vm_importfn;
156	vmem_release_t *vm_releasefn;
157	size_t vm_nfreetags;
158	LIST_HEAD(, vmem_btag) vm_freetags;
159	void *vm_arg;
160	struct vmem_seglist vm_seglist;
161	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
162	size_t vm_hashsize;
163	size_t vm_nbusytag;
164	struct vmem_hashlist *vm_hashlist;
165	struct vmem_hashlist vm_hash0;
166	size_t vm_quantum_mask;
167	int vm_quantum_shift;
168	size_t vm_size;
169	size_t vm_inuse;
170	char vm_name[VMEM_NAME_MAX+1];
171	LIST_ENTRY(vmem) vm_alllist;
172
173#if defined(QCACHE)
174	/* quantum cache */
175	size_t vm_qcache_max;
176	struct pool_allocator vm_qcache_allocator;
177	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
178	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
179#endif /* defined(QCACHE) */
180};
181
182#define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
183#define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
184#define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
185#define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
186#define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
187#define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
188
189#if defined(_KERNEL)
190#define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
191#define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
192#define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
193#define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)
194#endif /* defined(_KERNEL) */
195
196/* boundary tag */
197struct vmem_btag {
198	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
199	union {
200		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
201		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
202	} bt_u;
203#define	bt_hashlist	bt_u.u_hashlist
204#define	bt_freelist	bt_u.u_freelist
205	vmem_addr_t bt_start;
206	vmem_size_t bt_size;
207	int bt_type;
208};
209
210#define	BT_TYPE_SPAN		1
211#define	BT_TYPE_SPAN_STATIC	2
212#define	BT_TYPE_FREE		3
213#define	BT_TYPE_BUSY		4
214#define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
215
216#define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)
217
218typedef struct vmem_btag bt_t;
219
220#if defined(_KERNEL)
221static kmutex_t vmem_list_lock;
222static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
223#endif /* defined(_KERNEL) */
224
225/* ---- misc */
226
227#define	VMEM_ALIGNUP(addr, align) \
228	(-(-(addr) & -(align)))
229
230#define	VMEM_CROSS_P(addr1, addr2, boundary) \
231	((((addr1) ^ (addr2)) & -(boundary)) != 0)
232
233#define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
234#define	SIZE2ORDER(size)	((int)ilog2(size))
235
236#if !defined(_KERNEL)
237#define	xmalloc(sz, flags)	malloc(sz)
238#define	xfree(p, sz)		free(p)
239#define	bt_alloc(vm, flags)	malloc(sizeof(bt_t))
240#define	bt_free(vm, bt)		free(bt)
241#else /* defined(_KERNEL) */
242
243#define	xmalloc(sz, flags) \
244    kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
245#define	xfree(p, sz)		kmem_free(p, sz);
246
247#define BT_MINRESERVE 6
248#define BT_MAXFREE 64
249#define STATIC_VMEM_COUNT 5
250#define STATIC_BT_COUNT 200
251/* must be equal or greater then qcache multiplier for kmem_va_arena */
252#define STATIC_QC_POOL_COUNT 8
253
254static struct vmem static_vmems[STATIC_VMEM_COUNT];
255static int static_vmem_count = STATIC_VMEM_COUNT;
256
257static struct vmem_btag static_bts[STATIC_BT_COUNT];
258static int static_bt_count = STATIC_BT_COUNT;
259
260static struct pool_cache static_qc_pools[STATIC_QC_POOL_COUNT];
261static int static_qc_pool_count = STATIC_QC_POOL_COUNT;
262
263vmem_t *kmem_va_meta_arena;
264vmem_t *kmem_meta_arena;
265
266static kmutex_t vmem_refill_lock;
267static kmutex_t vmem_btag_lock;
268static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
269static size_t vmem_btag_freelist_count = 0;
270static size_t vmem_btag_count = STATIC_BT_COUNT;
271
272/* ---- boundary tag */
273
274#define	BT_PER_PAGE	(PAGE_SIZE / sizeof(bt_t))
275
276static int bt_refill(vmem_t *vm, vm_flag_t flags);
277
278static int
279bt_refillglobal(vm_flag_t flags)
280{
281	vmem_addr_t va;
282	bt_t *btp;
283	bt_t *bt;
284	int i;
285
286	mutex_enter(&vmem_refill_lock);
287
288	mutex_enter(&vmem_btag_lock);
289	if (vmem_btag_freelist_count > (BT_MINRESERVE * 16)) {
290		mutex_exit(&vmem_btag_lock);
291		mutex_exit(&vmem_refill_lock);
292		return 0;
293	}
294	mutex_exit(&vmem_btag_lock);
295
296	if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
297	    (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
298		mutex_exit(&vmem_refill_lock);
299		return ENOMEM;
300	}
301	VMEM_EVCNT_INCR(bt_pages);
302
303	mutex_enter(&vmem_btag_lock);
304	btp = (void *) va;
305	for (i = 0; i < (BT_PER_PAGE); i++) {
306		bt = btp;
307		memset(bt, 0, sizeof(*bt));
308		LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
309		    bt_freelist);
310		vmem_btag_freelist_count++;
311		vmem_btag_count++;
312		VMEM_EVCNT_INCR(bt_count);
313		btp++;
314	}
315	mutex_exit(&vmem_btag_lock);
316
317	bt_refill(kmem_arena, (flags & ~VM_FITMASK)
318	    | VM_INSTANTFIT | VM_POPULATING);
319	bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK)
320	    | VM_INSTANTFIT | VM_POPULATING);
321	bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK)
322	    | VM_INSTANTFIT | VM_POPULATING);
323
324	mutex_exit(&vmem_refill_lock);
325
326	return 0;
327}
328
329static int
330bt_refill(vmem_t *vm, vm_flag_t flags)
331{
332	bt_t *bt;
333
334	if (!(flags & VM_POPULATING)) {
335		bt_refillglobal(flags);
336	}
337
338	VMEM_LOCK(vm);
339	mutex_enter(&vmem_btag_lock);
340	while (!LIST_EMPTY(&vmem_btag_freelist) &&
341	    vm->vm_nfreetags < (BT_MINRESERVE * 2)) {
342		bt = LIST_FIRST(&vmem_btag_freelist);
343		LIST_REMOVE(bt, bt_freelist);
344		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
345		vm->vm_nfreetags++;
346		vmem_btag_freelist_count--;
347	}
348	mutex_exit(&vmem_btag_lock);
349
350	if (vm->vm_nfreetags == 0) {
351		VMEM_UNLOCK(vm);
352		return ENOMEM;
353	}
354	VMEM_UNLOCK(vm);
355
356	return 0;
357}
358
359static inline bt_t *
360bt_alloc(vmem_t *vm, vm_flag_t flags)
361{
362	bt_t *bt;
363again:
364	VMEM_LOCK(vm);
365	if (vm->vm_nfreetags < BT_MINRESERVE &&
366	    (flags & VM_POPULATING) == 0) {
367		VMEM_UNLOCK(vm);
368		if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
369			return NULL;
370		}
371		goto again;
372	}
373	bt = LIST_FIRST(&vm->vm_freetags);
374	LIST_REMOVE(bt, bt_freelist);
375	vm->vm_nfreetags--;
376	VMEM_UNLOCK(vm);
377	VMEM_EVCNT_INCR(bt_inuse);
378
379	return bt;
380}
381
382static inline void
383bt_free(vmem_t *vm, bt_t *bt)
384{
385
386	VMEM_LOCK(vm);
387	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
388	vm->vm_nfreetags++;
389	while (vm->vm_nfreetags > BT_MAXFREE) {
390		bt = LIST_FIRST(&vm->vm_freetags);
391		LIST_REMOVE(bt, bt_freelist);
392		vm->vm_nfreetags--;
393		mutex_enter(&vmem_btag_lock);
394		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
395		vmem_btag_freelist_count++;
396		mutex_exit(&vmem_btag_lock);
397	}
398	VMEM_UNLOCK(vm);
399	VMEM_EVCNT_DECR(bt_inuse);
400}
401
402#endif	/* defined(_KERNEL) */
403
404/*
405 * freelist[0] ... [1, 1]
406 * freelist[1] ... [2, 3]
407 * freelist[2] ... [4, 7]
408 * freelist[3] ... [8, 15]
409 *  :
410 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
411 *  :
412 */
413
414static struct vmem_freelist *
415bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
416{
417	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
418	const int idx = SIZE2ORDER(qsize);
419
420	KASSERT(size != 0 && qsize != 0);
421	KASSERT((size & vm->vm_quantum_mask) == 0);
422	KASSERT(idx >= 0);
423	KASSERT(idx < VMEM_MAXORDER);
424
425	return &vm->vm_freelist[idx];
426}
427
428/*
429 * bt_freehead_toalloc: return the freelist for the given size and allocation
430 * strategy.
431 *
432 * for VM_INSTANTFIT, return the list in which any blocks are large enough
433 * for the requested size.  otherwise, return the list which can have blocks
434 * large enough for the requested size.
435 */
436
437static struct vmem_freelist *
438bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
439{
440	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
441	int idx = SIZE2ORDER(qsize);
442
443	KASSERT(size != 0 && qsize != 0);
444	KASSERT((size & vm->vm_quantum_mask) == 0);
445
446	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
447		idx++;
448		/* check too large request? */
449	}
450	KASSERT(idx >= 0);
451	KASSERT(idx < VMEM_MAXORDER);
452
453	return &vm->vm_freelist[idx];
454}
455
456/* ---- boundary tag hash */
457
458static struct vmem_hashlist *
459bt_hashhead(vmem_t *vm, vmem_addr_t addr)
460{
461	struct vmem_hashlist *list;
462	unsigned int hash;
463
464	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
465	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
466
467	return list;
468}
469
470static bt_t *
471bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
472{
473	struct vmem_hashlist *list;
474	bt_t *bt;
475
476	list = bt_hashhead(vm, addr);
477	LIST_FOREACH(bt, list, bt_hashlist) {
478		if (bt->bt_start == addr) {
479			break;
480		}
481	}
482
483	return bt;
484}
485
486static void
487bt_rembusy(vmem_t *vm, bt_t *bt)
488{
489
490	KASSERT(vm->vm_nbusytag > 0);
491	vm->vm_inuse -= bt->bt_size;
492	vm->vm_nbusytag--;
493	LIST_REMOVE(bt, bt_hashlist);
494}
495
496static void
497bt_insbusy(vmem_t *vm, bt_t *bt)
498{
499	struct vmem_hashlist *list;
500
501	KASSERT(bt->bt_type == BT_TYPE_BUSY);
502
503	list = bt_hashhead(vm, bt->bt_start);
504	LIST_INSERT_HEAD(list, bt, bt_hashlist);
505	vm->vm_nbusytag++;
506	vm->vm_inuse += bt->bt_size;
507}
508
509/* ---- boundary tag list */
510
511static void
512bt_remseg(vmem_t *vm, bt_t *bt)
513{
514
515	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
516}
517
518static void
519bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
520{
521
522	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
523}
524
525static void
526bt_insseg_tail(vmem_t *vm, bt_t *bt)
527{
528
529	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
530}
531
532static void
533bt_remfree(vmem_t *vm, bt_t *bt)
534{
535
536	KASSERT(bt->bt_type == BT_TYPE_FREE);
537
538	LIST_REMOVE(bt, bt_freelist);
539}
540
541static void
542bt_insfree(vmem_t *vm, bt_t *bt)
543{
544	struct vmem_freelist *list;
545
546	list = bt_freehead_tofree(vm, bt->bt_size);
547	LIST_INSERT_HEAD(list, bt, bt_freelist);
548}
549
550/* ---- vmem internal functions */
551
552#if defined(QCACHE)
553static inline vm_flag_t
554prf_to_vmf(int prflags)
555{
556	vm_flag_t vmflags;
557
558	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
559	if ((prflags & PR_WAITOK) != 0) {
560		vmflags = VM_SLEEP;
561	} else {
562		vmflags = VM_NOSLEEP;
563	}
564	return vmflags;
565}
566
567static inline int
568vmf_to_prf(vm_flag_t vmflags)
569{
570	int prflags;
571
572	if ((vmflags & VM_SLEEP) != 0) {
573		prflags = PR_WAITOK;
574	} else {
575		prflags = PR_NOWAIT;
576	}
577	return prflags;
578}
579
580static size_t
581qc_poolpage_size(size_t qcache_max)
582{
583	int i;
584
585	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
586		/* nothing */
587	}
588	return ORDER2SIZE(i);
589}
590
591static void *
592qc_poolpage_alloc(struct pool *pool, int prflags)
593{
594	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
595	vmem_t *vm = qc->qc_vmem;
596	vmem_addr_t addr;
597
598	if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
599	    prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
600		return NULL;
601	return (void *)addr;
602}
603
604static void
605qc_poolpage_free(struct pool *pool, void *addr)
606{
607	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
608	vmem_t *vm = qc->qc_vmem;
609
610	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
611}
612
613static void
614qc_init(vmem_t *vm, size_t qcache_max, int ipl)
615{
616	qcache_t *prevqc;
617	struct pool_allocator *pa;
618	int qcache_idx_max;
619	int i;
620
621	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
622	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
623		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
624	}
625	vm->vm_qcache_max = qcache_max;
626	pa = &vm->vm_qcache_allocator;
627	memset(pa, 0, sizeof(*pa));
628	pa->pa_alloc = qc_poolpage_alloc;
629	pa->pa_free = qc_poolpage_free;
630	pa->pa_pagesz = qc_poolpage_size(qcache_max);
631
632	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
633	prevqc = NULL;
634	for (i = qcache_idx_max; i > 0; i--) {
635		qcache_t *qc = &vm->vm_qcache_store[i - 1];
636		size_t size = i << vm->vm_quantum_shift;
637		pool_cache_t pc;
638
639		qc->qc_vmem = vm;
640		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
641		    vm->vm_name, size);
642
643		if (vm->vm_flags & VM_BOOTSTRAP) {
644			KASSERT(static_qc_pool_count > 0);
645			pc = &static_qc_pools[--static_qc_pool_count];
646			pool_cache_bootstrap(pc, size,
647			    ORDER2SIZE(vm->vm_quantum_shift), 0,
648			    PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
649			    qc->qc_name, pa, ipl, NULL, NULL, NULL);
650		} else {
651			pc = pool_cache_init(size,
652			    ORDER2SIZE(vm->vm_quantum_shift), 0,
653			    PR_NOALIGN | PR_NOTOUCH /* XXX */,
654			    qc->qc_name, pa, ipl, NULL, NULL, NULL);
655		}
656		qc->qc_cache = pc;
657		KASSERT(qc->qc_cache != NULL);	/* XXX */
658		if (prevqc != NULL &&
659		    qc->qc_cache->pc_pool.pr_itemsperpage ==
660		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
661			if (vm->vm_flags & VM_BOOTSTRAP) {
662				pool_cache_bootstrap_destroy(pc);
663				//static_qc_pool_count++;
664			} else {
665				pool_cache_destroy(qc->qc_cache);
666			}
667			vm->vm_qcache[i - 1] = prevqc;
668			continue;
669		}
670		qc->qc_cache->pc_pool.pr_qcache = qc;
671		vm->vm_qcache[i - 1] = qc;
672		prevqc = qc;
673	}
674}
675
676static void
677qc_destroy(vmem_t *vm)
678{
679	const qcache_t *prevqc;
680	int i;
681	int qcache_idx_max;
682
683	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
684	prevqc = NULL;
685	for (i = 0; i < qcache_idx_max; i++) {
686		qcache_t *qc = vm->vm_qcache[i];
687
688		if (prevqc == qc) {
689			continue;
690		}
691		if (vm->vm_flags & VM_BOOTSTRAP) {
692			pool_cache_bootstrap_destroy(qc->qc_cache);
693		} else {
694			pool_cache_destroy(qc->qc_cache);
695		}
696		prevqc = qc;
697	}
698}
699#endif
700
701#if defined(_KERNEL)
702void
703vmem_bootstrap(void)
704{
705
706	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
707	mutex_init(&vmem_refill_lock, MUTEX_DEFAULT, IPL_VM);
708	mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
709
710	while (static_bt_count-- > 0) {
711		bt_t *bt = &static_bts[static_bt_count];
712		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
713		VMEM_EVCNT_INCR(bt_count);
714		vmem_btag_freelist_count++;
715	}
716}
717
718void
719vmem_init(vmem_t *vm)
720{
721
722	kmem_va_meta_arena = vmem_create("vmem-va", 0, 0, PAGE_SIZE,
723	    vmem_alloc, vmem_free, vm,
724	    0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
725	    IPL_VM);
726
727	kmem_meta_arena = vmem_create("vmem-meta", 0, 0, PAGE_SIZE,
728	    uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
729	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
730}
731#endif /* defined(_KERNEL) */
732
733static int
734vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
735    int spanbttype)
736{
737	bt_t *btspan;
738	bt_t *btfree;
739
740	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
741	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
742	KASSERT(spanbttype == BT_TYPE_SPAN ||
743	    spanbttype == BT_TYPE_SPAN_STATIC);
744
745	btspan = bt_alloc(vm, flags);
746	if (btspan == NULL) {
747		return ENOMEM;
748	}
749	btfree = bt_alloc(vm, flags);
750	if (btfree == NULL) {
751		bt_free(vm, btspan);
752		return ENOMEM;
753	}
754
755	btspan->bt_type = spanbttype;
756	btspan->bt_start = addr;
757	btspan->bt_size = size;
758
759	btfree->bt_type = BT_TYPE_FREE;
760	btfree->bt_start = addr;
761	btfree->bt_size = size;
762
763	VMEM_LOCK(vm);
764	bt_insseg_tail(vm, btspan);
765	bt_insseg(vm, btfree, btspan);
766	bt_insfree(vm, btfree);
767	vm->vm_size += size;
768	VMEM_UNLOCK(vm);
769
770	return 0;
771}
772
773static void
774vmem_destroy1(vmem_t *vm)
775{
776
777#if defined(QCACHE)
778	qc_destroy(vm);
779#endif /* defined(QCACHE) */
780	if (vm->vm_hashlist != NULL) {
781		int i;
782
783		for (i = 0; i < vm->vm_hashsize; i++) {
784			bt_t *bt;
785
786			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
787				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
788				bt_free(vm, bt);
789			}
790		}
791		if (vm->vm_hashlist != &vm->vm_hash0) {
792			xfree(vm->vm_hashlist,
793			    sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
794		}
795	}
796
797	while (vm->vm_nfreetags > 0) {
798		bt_t *bt = LIST_FIRST(&vm->vm_freetags);
799		LIST_REMOVE(bt, bt_freelist);
800		vm->vm_nfreetags--;
801		mutex_enter(&vmem_btag_lock);
802#if defined (_KERNEL)
803		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
804		vmem_btag_freelist_count++;
805#endif /* defined(_KERNEL) */
806		mutex_exit(&vmem_btag_lock);
807	}
808
809	VMEM_LOCK_DESTROY(vm);
810	xfree(vm, sizeof(*vm));
811}
812
813static int
814vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
815{
816	vmem_addr_t addr;
817	int rc;
818
819	if (vm->vm_importfn == NULL) {
820		return EINVAL;
821	}
822
823	if (vm->vm_flags & VM_LARGEIMPORT) {
824		size *= 8;
825	}
826
827	if (vm->vm_flags & VM_XIMPORT) {
828		rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
829		    &size, flags, &addr);
830	} else {
831		rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
832	}
833	if (rc) {
834		return ENOMEM;
835	}
836
837	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
838		(*vm->vm_releasefn)(vm->vm_arg, addr, size);
839		return ENOMEM;
840	}
841
842	return 0;
843}
844
845static int
846vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
847{
848	bt_t *bt;
849	int i;
850	struct vmem_hashlist *newhashlist;
851	struct vmem_hashlist *oldhashlist;
852	size_t oldhashsize;
853
854	KASSERT(newhashsize > 0);
855
856	newhashlist =
857	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
858	if (newhashlist == NULL) {
859		return ENOMEM;
860	}
861	for (i = 0; i < newhashsize; i++) {
862		LIST_INIT(&newhashlist[i]);
863	}
864
865	if (!VMEM_TRYLOCK(vm)) {
866		xfree(newhashlist,
867		    sizeof(struct vmem_hashlist *) * newhashsize);
868		return EBUSY;
869	}
870	oldhashlist = vm->vm_hashlist;
871	oldhashsize = vm->vm_hashsize;
872	vm->vm_hashlist = newhashlist;
873	vm->vm_hashsize = newhashsize;
874	if (oldhashlist == NULL) {
875		VMEM_UNLOCK(vm);
876		return 0;
877	}
878	for (i = 0; i < oldhashsize; i++) {
879		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
880			bt_rembusy(vm, bt); /* XXX */
881			bt_insbusy(vm, bt);
882		}
883	}
884	VMEM_UNLOCK(vm);
885
886	if (oldhashlist != &vm->vm_hash0) {
887		xfree(oldhashlist,
888		    sizeof(struct vmem_hashlist *) * oldhashsize);
889	}
890
891	return 0;
892}
893
894/*
895 * vmem_fit: check if a bt can satisfy the given restrictions.
896 *
897 * it's a caller's responsibility to ensure the region is big enough
898 * before calling us.
899 */
900
901static int
902vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
903    vmem_size_t phase, vmem_size_t nocross,
904    vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
905{
906	vmem_addr_t start;
907	vmem_addr_t end;
908
909	KASSERT(size > 0);
910	KASSERT(bt->bt_size >= size); /* caller's responsibility */
911
912	/*
913	 * XXX assumption: vmem_addr_t and vmem_size_t are
914	 * unsigned integer of the same size.
915	 */
916
917	start = bt->bt_start;
918	if (start < minaddr) {
919		start = minaddr;
920	}
921	end = BT_END(bt);
922	if (end > maxaddr) {
923		end = maxaddr;
924	}
925	if (start > end) {
926		return ENOMEM;
927	}
928
929	start = VMEM_ALIGNUP(start - phase, align) + phase;
930	if (start < bt->bt_start) {
931		start += align;
932	}
933	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
934		KASSERT(align < nocross);
935		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
936	}
937	if (start <= end && end - start >= size - 1) {
938		KASSERT((start & (align - 1)) == phase);
939		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
940		KASSERT(minaddr <= start);
941		KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
942		KASSERT(bt->bt_start <= start);
943		KASSERT(BT_END(bt) - start >= size - 1);
944		*addrp = start;
945		return 0;
946	}
947	return ENOMEM;
948}
949
950
951/*
952 * vmem_create_internal: creates a vmem arena.
953 */
954
955static vmem_t *
956vmem_create_internal(const char *name, vmem_addr_t base, vmem_size_t size,
957    vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
958    void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
959{
960	vmem_t *vm = NULL;
961	int i;
962
963	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
964	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
965	KASSERT(quantum > 0);
966
967	if (flags & VM_BOOTSTRAP) {
968#if defined(_KERNEL)
969		KASSERT(static_vmem_count > 0);
970		vm = &static_vmems[--static_vmem_count];
971#endif /* defined(_KERNEL) */
972	} else {
973		vm = xmalloc(sizeof(*vm), flags);
974	}
975	if (vm == NULL) {
976		return NULL;
977	}
978
979	VMEM_CONDVAR_INIT(vm, "vmem");
980	VMEM_LOCK_INIT(vm, ipl);
981	vm->vm_flags = flags;
982	vm->vm_nfreetags = 0;
983	LIST_INIT(&vm->vm_freetags);
984	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
985	vm->vm_quantum_mask = quantum - 1;
986	vm->vm_quantum_shift = SIZE2ORDER(quantum);
987	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
988	vm->vm_importfn = importfn;
989	vm->vm_releasefn = releasefn;
990	vm->vm_arg = arg;
991	vm->vm_nbusytag = 0;
992	vm->vm_size = 0;
993	vm->vm_inuse = 0;
994#if defined(QCACHE)
995	qc_init(vm, qcache_max, ipl);
996#endif /* defined(QCACHE) */
997
998	CIRCLEQ_INIT(&vm->vm_seglist);
999	for (i = 0; i < VMEM_MAXORDER; i++) {
1000		LIST_INIT(&vm->vm_freelist[i]);
1001	}
1002	vm->vm_hashlist = NULL;
1003	if (flags & VM_BOOTSTRAP) {
1004		vm->vm_hashsize = 1;
1005		vm->vm_hashlist = &vm->vm_hash0;
1006	} else if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
1007		vmem_destroy1(vm);
1008		return NULL;
1009	}
1010
1011	if (size != 0) {
1012		if (vmem_add(vm, base, size, flags) != 0) {
1013			vmem_destroy1(vm);
1014			return NULL;
1015		}
1016	}
1017
1018#if defined(_KERNEL)
1019	if (flags & VM_BOOTSTRAP) {
1020		bt_refill(vm, VM_NOSLEEP);
1021	}
1022
1023	mutex_enter(&vmem_list_lock);
1024	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1025	mutex_exit(&vmem_list_lock);
1026#endif /* defined(_KERNEL) */
1027
1028	return vm;
1029}
1030
1031
1032/* ---- vmem API */
1033
1034/*
1035 * vmem_create: create an arena.
1036 *
1037 * => must not be called from interrupt context.
1038 */
1039
1040vmem_t *
1041vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1042    vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1043    vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1044{
1045
1046	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1047	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1048	KASSERT((flags & (VM_XIMPORT)) == 0);
1049
1050	return vmem_create_internal(name, base, size, quantum,
1051	    importfn, releasefn, source, qcache_max, flags, ipl);
1052}
1053
1054/*
1055 * vmem_xcreate: create an arena takes alternative import func.
1056 *
1057 * => must not be called from interrupt context.
1058 */
1059
1060vmem_t *
1061vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1062    vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1063    vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1064{
1065
1066	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1067	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1068	KASSERT((flags & (VM_XIMPORT)) == 0);
1069
1070	return vmem_create_internal(name, base, size, quantum,
1071	    (vmem_import_t *)importfn, releasefn, source,
1072	    qcache_max, flags | VM_XIMPORT, ipl);
1073}
1074
1075void
1076vmem_destroy(vmem_t *vm)
1077{
1078
1079#if defined(_KERNEL)
1080	mutex_enter(&vmem_list_lock);
1081	LIST_REMOVE(vm, vm_alllist);
1082	mutex_exit(&vmem_list_lock);
1083#endif /* defined(_KERNEL) */
1084
1085	vmem_destroy1(vm);
1086}
1087
1088vmem_size_t
1089vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1090{
1091
1092	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1093}
1094
1095/*
1096 * vmem_alloc:
1097 *
1098 * => caller must ensure appropriate spl,
1099 *    if the arena can be accessed from interrupt context.
1100 */
1101
1102int
1103vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1104{
1105	const vm_flag_t strat __unused = flags & VM_FITMASK;
1106
1107	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1108	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1109
1110	KASSERT(size > 0);
1111	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1112	if ((flags & VM_SLEEP) != 0) {
1113		ASSERT_SLEEPABLE();
1114	}
1115
1116#if defined(QCACHE)
1117	if (size <= vm->vm_qcache_max) {
1118		void *p;
1119		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1120		qcache_t *qc = vm->vm_qcache[qidx - 1];
1121
1122		p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1123		if (addrp != NULL)
1124			*addrp = (vmem_addr_t)p;
1125		return (p == NULL) ? ENOMEM : 0;
1126	}
1127#endif /* defined(QCACHE) */
1128
1129	return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1130	    flags, addrp);
1131}
1132
1133int
1134vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1135    const vmem_size_t phase, const vmem_size_t nocross,
1136    const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1137    vmem_addr_t *addrp)
1138{
1139	struct vmem_freelist *list;
1140	struct vmem_freelist *first;
1141	struct vmem_freelist *end;
1142	bt_t *bt;
1143	bt_t *btnew;
1144	bt_t *btnew2;
1145	const vmem_size_t size = vmem_roundup_size(vm, size0);
1146	vm_flag_t strat = flags & VM_FITMASK;
1147	vmem_addr_t start;
1148	int rc;
1149
1150	KASSERT(size0 > 0);
1151	KASSERT(size > 0);
1152	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1153	if ((flags & VM_SLEEP) != 0) {
1154		ASSERT_SLEEPABLE();
1155	}
1156	KASSERT((align & vm->vm_quantum_mask) == 0);
1157	KASSERT((align & (align - 1)) == 0);
1158	KASSERT((phase & vm->vm_quantum_mask) == 0);
1159	KASSERT((nocross & vm->vm_quantum_mask) == 0);
1160	KASSERT((nocross & (nocross - 1)) == 0);
1161	KASSERT((align == 0 && phase == 0) || phase < align);
1162	KASSERT(nocross == 0 || nocross >= size);
1163	KASSERT(minaddr <= maxaddr);
1164	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1165
1166	if (align == 0) {
1167		align = vm->vm_quantum_mask + 1;
1168	}
1169
1170	/*
1171	 * allocate boundary tags before acquiring the vmem lock.
1172	 */
1173	btnew = bt_alloc(vm, flags);
1174	if (btnew == NULL) {
1175		return ENOMEM;
1176	}
1177	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1178	if (btnew2 == NULL) {
1179		bt_free(vm, btnew);
1180		return ENOMEM;
1181	}
1182
1183	/*
1184	 * choose a free block from which we allocate.
1185	 */
1186retry_strat:
1187	first = bt_freehead_toalloc(vm, size, strat);
1188	end = &vm->vm_freelist[VMEM_MAXORDER];
1189retry:
1190	bt = NULL;
1191	VMEM_LOCK(vm);
1192	vmem_check(vm);
1193	if (strat == VM_INSTANTFIT) {
1194		/*
1195		 * just choose the first block which satisfies our restrictions.
1196		 *
1197		 * note that we don't need to check the size of the blocks
1198		 * because any blocks found on these list should be larger than
1199		 * the given size.
1200		 */
1201		for (list = first; list < end; list++) {
1202			bt = LIST_FIRST(list);
1203			if (bt != NULL) {
1204				rc = vmem_fit(bt, size, align, phase,
1205				    nocross, minaddr, maxaddr, &start);
1206				if (rc == 0) {
1207					goto gotit;
1208				}
1209				/*
1210				 * don't bother to follow the bt_freelist link
1211				 * here.  the list can be very long and we are
1212				 * told to run fast.  blocks from the later free
1213				 * lists are larger and have better chances to
1214				 * satisfy our restrictions.
1215				 */
1216			}
1217		}
1218	} else { /* VM_BESTFIT */
1219		/*
1220		 * we assume that, for space efficiency, it's better to
1221		 * allocate from a smaller block.  thus we will start searching
1222		 * from the lower-order list than VM_INSTANTFIT.
1223		 * however, don't bother to find the smallest block in a free
1224		 * list because the list can be very long.  we can revisit it
1225		 * if/when it turns out to be a problem.
1226		 *
1227		 * note that the 'first' list can contain blocks smaller than
1228		 * the requested size.  thus we need to check bt_size.
1229		 */
1230		for (list = first; list < end; list++) {
1231			LIST_FOREACH(bt, list, bt_freelist) {
1232				if (bt->bt_size >= size) {
1233					rc = vmem_fit(bt, size, align, phase,
1234					    nocross, minaddr, maxaddr, &start);
1235					if (rc == 0) {
1236						goto gotit;
1237					}
1238				}
1239			}
1240		}
1241	}
1242	VMEM_UNLOCK(vm);
1243#if 1
1244	if (strat == VM_INSTANTFIT) {
1245		strat = VM_BESTFIT;
1246		goto retry_strat;
1247	}
1248#endif
1249	if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1250
1251		/*
1252		 * XXX should try to import a region large enough to
1253		 * satisfy restrictions?
1254		 */
1255
1256		goto fail;
1257	}
1258	/* XXX eeek, minaddr & maxaddr not respected */
1259	if (vmem_import(vm, size, flags) == 0) {
1260		goto retry;
1261	}
1262	/* XXX */
1263
1264	if ((flags & VM_SLEEP) != 0) {
1265#if defined(_KERNEL) && !defined(_RUMPKERNEL)
1266		mutex_spin_enter(&uvm_fpageqlock);
1267		uvm_kick_pdaemon();
1268		mutex_spin_exit(&uvm_fpageqlock);
1269#endif
1270		VMEM_LOCK(vm);
1271		VMEM_CONDVAR_WAIT(vm);
1272		VMEM_UNLOCK(vm);
1273		goto retry;
1274	}
1275fail:
1276	bt_free(vm, btnew);
1277	bt_free(vm, btnew2);
1278	return ENOMEM;
1279
1280gotit:
1281	KASSERT(bt->bt_type == BT_TYPE_FREE);
1282	KASSERT(bt->bt_size >= size);
1283	bt_remfree(vm, bt);
1284	vmem_check(vm);
1285	if (bt->bt_start != start) {
1286		btnew2->bt_type = BT_TYPE_FREE;
1287		btnew2->bt_start = bt->bt_start;
1288		btnew2->bt_size = start - bt->bt_start;
1289		bt->bt_start = start;
1290		bt->bt_size -= btnew2->bt_size;
1291		bt_insfree(vm, btnew2);
1292		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1293		btnew2 = NULL;
1294		vmem_check(vm);
1295	}
1296	KASSERT(bt->bt_start == start);
1297	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1298		/* split */
1299		btnew->bt_type = BT_TYPE_BUSY;
1300		btnew->bt_start = bt->bt_start;
1301		btnew->bt_size = size;
1302		bt->bt_start = bt->bt_start + size;
1303		bt->bt_size -= size;
1304		bt_insfree(vm, bt);
1305		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1306		bt_insbusy(vm, btnew);
1307		vmem_check(vm);
1308		VMEM_UNLOCK(vm);
1309	} else {
1310		bt->bt_type = BT_TYPE_BUSY;
1311		bt_insbusy(vm, bt);
1312		vmem_check(vm);
1313		VMEM_UNLOCK(vm);
1314		bt_free(vm, btnew);
1315		btnew = bt;
1316	}
1317	if (btnew2 != NULL) {
1318		bt_free(vm, btnew2);
1319	}
1320	KASSERT(btnew->bt_size >= size);
1321	btnew->bt_type = BT_TYPE_BUSY;
1322
1323	if (addrp != NULL)
1324		*addrp = btnew->bt_start;
1325	return 0;
1326}
1327
1328/*
1329 * vmem_free:
1330 *
1331 * => caller must ensure appropriate spl,
1332 *    if the arena can be accessed from interrupt context.
1333 */
1334
1335void
1336vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1337{
1338
1339	KASSERT(size > 0);
1340
1341#if defined(QCACHE)
1342	if (size <= vm->vm_qcache_max) {
1343		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1344		qcache_t *qc = vm->vm_qcache[qidx - 1];
1345
1346		pool_cache_put(qc->qc_cache, (void *)addr);
1347		return;
1348	}
1349#endif /* defined(QCACHE) */
1350
1351	vmem_xfree(vm, addr, size);
1352}
1353
1354void
1355vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1356{
1357	bt_t *bt;
1358	bt_t *t;
1359	LIST_HEAD(, vmem_btag) tofree;
1360
1361	LIST_INIT(&tofree);
1362
1363	KASSERT(size > 0);
1364
1365	VMEM_LOCK(vm);
1366
1367	bt = bt_lookupbusy(vm, addr);
1368	KASSERT(bt != NULL);
1369	KASSERT(bt->bt_start == addr);
1370	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1371	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1372	KASSERT(bt->bt_type == BT_TYPE_BUSY);
1373	bt_rembusy(vm, bt);
1374	bt->bt_type = BT_TYPE_FREE;
1375
1376	/* coalesce */
1377	t = CIRCLEQ_NEXT(bt, bt_seglist);
1378	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1379		KASSERT(BT_END(bt) < t->bt_start);	/* YYY */
1380		bt_remfree(vm, t);
1381		bt_remseg(vm, t);
1382		bt->bt_size += t->bt_size;
1383		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1384	}
1385	t = CIRCLEQ_PREV(bt, bt_seglist);
1386	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1387		KASSERT(BT_END(t) < bt->bt_start);	/* YYY */
1388		bt_remfree(vm, t);
1389		bt_remseg(vm, t);
1390		bt->bt_size += t->bt_size;
1391		bt->bt_start = t->bt_start;
1392		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1393	}
1394
1395	t = CIRCLEQ_PREV(bt, bt_seglist);
1396	KASSERT(t != NULL);
1397	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1398	if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1399	    t->bt_size == bt->bt_size) {
1400		vmem_addr_t spanaddr;
1401		vmem_size_t spansize;
1402
1403		KASSERT(t->bt_start == bt->bt_start);
1404		spanaddr = bt->bt_start;
1405		spansize = bt->bt_size;
1406		bt_remseg(vm, bt);
1407		LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1408		bt_remseg(vm, t);
1409		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1410		vm->vm_size -= spansize;
1411		VMEM_CONDVAR_BROADCAST(vm);
1412		VMEM_UNLOCK(vm);
1413		(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1414	} else {
1415		bt_insfree(vm, bt);
1416		VMEM_CONDVAR_BROADCAST(vm);
1417		VMEM_UNLOCK(vm);
1418	}
1419
1420	while (!LIST_EMPTY(&tofree)) {
1421		t = LIST_FIRST(&tofree);
1422		LIST_REMOVE(t, bt_freelist);
1423		bt_free(vm, t);
1424	}
1425}
1426
1427/*
1428 * vmem_add:
1429 *
1430 * => caller must ensure appropriate spl,
1431 *    if the arena can be accessed from interrupt context.
1432 */
1433
1434int
1435vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1436{
1437
1438	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1439}
1440
1441/*
1442 * vmem_size: information about arenas size
1443 *
1444 * => return free/allocated size in arena
1445 */
1446vmem_size_t
1447vmem_size(vmem_t *vm, int typemask)
1448{
1449
1450	switch (typemask) {
1451	case VMEM_ALLOC:
1452		return vm->vm_inuse;
1453	case VMEM_FREE:
1454		return vm->vm_size - vm->vm_inuse;
1455	case VMEM_FREE|VMEM_ALLOC:
1456		return vm->vm_size;
1457	default:
1458		panic("vmem_size");
1459	}
1460}
1461
1462/* ---- rehash */
1463
1464#if defined(_KERNEL)
1465static struct callout vmem_rehash_ch;
1466static int vmem_rehash_interval;
1467static struct workqueue *vmem_rehash_wq;
1468static struct work vmem_rehash_wk;
1469
1470static void
1471vmem_rehash_all(struct work *wk, void *dummy)
1472{
1473	vmem_t *vm;
1474
1475	KASSERT(wk == &vmem_rehash_wk);
1476	mutex_enter(&vmem_list_lock);
1477	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1478		size_t desired;
1479		size_t current;
1480
1481		if (!VMEM_TRYLOCK(vm)) {
1482			continue;
1483		}
1484		desired = vm->vm_nbusytag;
1485		current = vm->vm_hashsize;
1486		VMEM_UNLOCK(vm);
1487
1488		if (desired > VMEM_HASHSIZE_MAX) {
1489			desired = VMEM_HASHSIZE_MAX;
1490		} else if (desired < VMEM_HASHSIZE_MIN) {
1491			desired = VMEM_HASHSIZE_MIN;
1492		}
1493		if (desired > current * 2 || desired * 2 < current) {
1494			vmem_rehash(vm, desired, VM_NOSLEEP);
1495		}
1496	}
1497	mutex_exit(&vmem_list_lock);
1498
1499	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1500}
1501
1502static void
1503vmem_rehash_all_kick(void *dummy)
1504{
1505
1506	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1507}
1508
1509void
1510vmem_rehash_start(void)
1511{
1512	int error;
1513
1514	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1515	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1516	if (error) {
1517		panic("%s: workqueue_create %d\n", __func__, error);
1518	}
1519	callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1520	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1521
1522	vmem_rehash_interval = hz * 10;
1523	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1524}
1525#endif /* defined(_KERNEL) */
1526
1527/* ---- debug */
1528
1529#if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1530
1531static void bt_dump(const bt_t *, void (*)(const char *, ...));
1532
1533static const char *
1534bt_type_string(int type)
1535{
1536	static const char * const table[] = {
1537		[BT_TYPE_BUSY] = "busy",
1538		[BT_TYPE_FREE] = "free",
1539		[BT_TYPE_SPAN] = "span",
1540		[BT_TYPE_SPAN_STATIC] = "static span",
1541	};
1542
1543	if (type >= __arraycount(table)) {
1544		return "BOGUS";
1545	}
1546	return table[type];
1547}
1548
1549static void
1550bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1551{
1552
1553	(*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1554	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1555	    bt->bt_type, bt_type_string(bt->bt_type));
1556}
1557
1558static void
1559vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1560{
1561	const bt_t *bt;
1562	int i;
1563
1564	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1565	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1566		bt_dump(bt, pr);
1567	}
1568
1569	for (i = 0; i < VMEM_MAXORDER; i++) {
1570		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1571
1572		if (LIST_EMPTY(fl)) {
1573			continue;
1574		}
1575
1576		(*pr)("freelist[%d]\n", i);
1577		LIST_FOREACH(bt, fl, bt_freelist) {
1578			bt_dump(bt, pr);
1579		}
1580	}
1581}
1582
1583#endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1584
1585#if defined(DDB)
1586static bt_t *
1587vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1588{
1589	bt_t *bt;
1590
1591	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1592		if (BT_ISSPAN_P(bt)) {
1593			continue;
1594		}
1595		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1596			return bt;
1597		}
1598	}
1599
1600	return NULL;
1601}
1602
1603void
1604vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1605{
1606	vmem_t *vm;
1607
1608	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1609		bt_t *bt;
1610
1611		bt = vmem_whatis_lookup(vm, addr);
1612		if (bt == NULL) {
1613			continue;
1614		}
1615		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1616		    (void *)addr, (void *)bt->bt_start,
1617		    (size_t)(addr - bt->bt_start), vm->vm_name,
1618		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1619	}
1620}
1621
1622void
1623vmem_printall(const char *modif, void (*pr)(const char *, ...))
1624{
1625	const vmem_t *vm;
1626
1627	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1628		vmem_dump(vm, pr);
1629	}
1630}
1631
1632void
1633vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1634{
1635	const vmem_t *vm = (const void *)addr;
1636
1637	vmem_dump(vm, pr);
1638}
1639#endif /* defined(DDB) */
1640
1641#if defined(_KERNEL)
1642#define vmem_printf printf
1643#else
1644#include <stdio.h>
1645#include <stdarg.h>
1646
1647static void
1648vmem_printf(const char *fmt, ...)
1649{
1650	va_list ap;
1651	va_start(ap, fmt);
1652	vprintf(fmt, ap);
1653	va_end(ap);
1654}
1655#endif
1656
1657#if defined(VMEM_SANITY)
1658
1659static bool
1660vmem_check_sanity(vmem_t *vm)
1661{
1662	const bt_t *bt, *bt2;
1663
1664	KASSERT(vm != NULL);
1665
1666	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1667		if (bt->bt_start > BT_END(bt)) {
1668			printf("corrupted tag\n");
1669			bt_dump(bt, vmem_printf);
1670			return false;
1671		}
1672	}
1673	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1674		CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1675			if (bt == bt2) {
1676				continue;
1677			}
1678			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1679				continue;
1680			}
1681			if (bt->bt_start <= BT_END(bt2) &&
1682			    bt2->bt_start <= BT_END(bt)) {
1683				printf("overwrapped tags\n");
1684				bt_dump(bt, vmem_printf);
1685				bt_dump(bt2, vmem_printf);
1686				return false;
1687			}
1688		}
1689	}
1690
1691	return true;
1692}
1693
1694static void
1695vmem_check(vmem_t *vm)
1696{
1697
1698	if (!vmem_check_sanity(vm)) {
1699		panic("insanity vmem %p", vm);
1700	}
1701}
1702
1703#endif /* defined(VMEM_SANITY) */
1704
1705#if defined(UNITTEST)
1706int
1707main(void)
1708{
1709	int rc;
1710	vmem_t *vm;
1711	vmem_addr_t p;
1712	struct reg {
1713		vmem_addr_t p;
1714		vmem_size_t sz;
1715		bool x;
1716	} *reg = NULL;
1717	int nreg = 0;
1718	int nalloc = 0;
1719	int nfree = 0;
1720	vmem_size_t total = 0;
1721#if 1
1722	vm_flag_t strat = VM_INSTANTFIT;
1723#else
1724	vm_flag_t strat = VM_BESTFIT;
1725#endif
1726
1727	vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1728#ifdef _KERNEL
1729	    IPL_NONE
1730#else
1731	    0
1732#endif
1733	    );
1734	if (vm == NULL) {
1735		printf("vmem_create\n");
1736		exit(EXIT_FAILURE);
1737	}
1738	vmem_dump(vm, vmem_printf);
1739
1740	rc = vmem_add(vm, 0, 50, VM_SLEEP);
1741	assert(rc == 0);
1742	rc = vmem_add(vm, 100, 200, VM_SLEEP);
1743	assert(rc == 0);
1744	rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1745	assert(rc == 0);
1746	rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1747	assert(rc == 0);
1748	rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1749	assert(rc == 0);
1750	rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1751	assert(rc == 0);
1752	rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1753	assert(rc == 0);
1754	rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1755	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1756	assert(rc != 0);
1757	rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1758	assert(rc == 0 && p == 0);
1759	vmem_xfree(vm, p, 50);
1760	rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1761	assert(rc == 0 && p == 0);
1762	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1763	    0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1764	assert(rc != 0);
1765	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1766	    0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1767	assert(rc != 0);
1768	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1769	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1770	assert(rc == 0);
1771	vmem_dump(vm, vmem_printf);
1772	for (;;) {
1773		struct reg *r;
1774		int t = rand() % 100;
1775
1776		if (t > 45) {
1777			/* alloc */
1778			vmem_size_t sz = rand() % 500 + 1;
1779			bool x;
1780			vmem_size_t align, phase, nocross;
1781			vmem_addr_t minaddr, maxaddr;
1782
1783			if (t > 70) {
1784				x = true;
1785				/* XXX */
1786				align = 1 << (rand() % 15);
1787				phase = rand() % 65536;
1788				nocross = 1 << (rand() % 15);
1789				if (align <= phase) {
1790					phase = 0;
1791				}
1792				if (VMEM_CROSS_P(phase, phase + sz - 1,
1793				    nocross)) {
1794					nocross = 0;
1795				}
1796				do {
1797					minaddr = rand() % 50000;
1798					maxaddr = rand() % 70000;
1799				} while (minaddr > maxaddr);
1800				printf("=== xalloc %" PRIu64
1801				    " align=%" PRIu64 ", phase=%" PRIu64
1802				    ", nocross=%" PRIu64 ", min=%" PRIu64
1803				    ", max=%" PRIu64 "\n",
1804				    (uint64_t)sz,
1805				    (uint64_t)align,
1806				    (uint64_t)phase,
1807				    (uint64_t)nocross,
1808				    (uint64_t)minaddr,
1809				    (uint64_t)maxaddr);
1810				rc = vmem_xalloc(vm, sz, align, phase, nocross,
1811				    minaddr, maxaddr, strat|VM_SLEEP, &p);
1812			} else {
1813				x = false;
1814				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1815				rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1816			}
1817			printf("-> %" PRIu64 "\n", (uint64_t)p);
1818			vmem_dump(vm, vmem_printf);
1819			if (rc != 0) {
1820				if (x) {
1821					continue;
1822				}
1823				break;
1824			}
1825			nreg++;
1826			reg = realloc(reg, sizeof(*reg) * nreg);
1827			r = &reg[nreg - 1];
1828			r->p = p;
1829			r->sz = sz;
1830			r->x = x;
1831			total += sz;
1832			nalloc++;
1833		} else if (nreg != 0) {
1834			/* free */
1835			r = &reg[rand() % nreg];
1836			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1837			    (uint64_t)r->p, (uint64_t)r->sz);
1838			if (r->x) {
1839				vmem_xfree(vm, r->p, r->sz);
1840			} else {
1841				vmem_free(vm, r->p, r->sz);
1842			}
1843			total -= r->sz;
1844			vmem_dump(vm, vmem_printf);
1845			*r = reg[nreg - 1];
1846			nreg--;
1847			nfree++;
1848		}
1849		printf("total=%" PRIu64 "\n", (uint64_t)total);
1850	}
1851	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1852	    (uint64_t)total, nalloc, nfree);
1853	exit(EXIT_SUCCESS);
1854}
1855#endif /* defined(UNITTEST) */
1856