1/*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2/*	$NetBSD: if_rum.c,v 1.39 2011/08/25 02:27:31 pgoyette Exp $	*/
3
4/*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26#include <sys/cdefs.h>
27__KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.39 2011/08/25 02:27:31 pgoyette Exp $");
28
29
30#include <sys/param.h>
31#include <sys/sockio.h>
32#include <sys/sysctl.h>
33#include <sys/mbuf.h>
34#include <sys/kernel.h>
35#include <sys/socket.h>
36#include <sys/systm.h>
37#include <sys/malloc.h>
38#include <sys/module.h>
39#include <sys/conf.h>
40#include <sys/device.h>
41
42#include <sys/bus.h>
43#include <machine/endian.h>
44#include <sys/intr.h>
45
46#include <net/bpf.h>
47#include <net/if.h>
48#include <net/if_arp.h>
49#include <net/if_dl.h>
50#include <net/if_ether.h>
51#include <net/if_media.h>
52#include <net/if_types.h>
53
54#include <netinet/in.h>
55#include <netinet/in_systm.h>
56#include <netinet/in_var.h>
57#include <netinet/ip.h>
58
59#include <net80211/ieee80211_netbsd.h>
60#include <net80211/ieee80211_var.h>
61#include <net80211/ieee80211_amrr.h>
62#include <net80211/ieee80211_radiotap.h>
63
64#include <dev/firmload.h>
65
66#include <dev/usb/usb.h>
67#include <dev/usb/usbdi.h>
68#include <dev/usb/usbdi_util.h>
69#include <dev/usb/usbdevs.h>
70
71#include <dev/usb/if_rumreg.h>
72#include <dev/usb/if_rumvar.h>
73
74#ifdef USB_DEBUG
75#define RUM_DEBUG
76#endif
77
78#ifdef RUM_DEBUG
79#define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
80#define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
81int rum_debug = 1;
82#else
83#define DPRINTF(x)
84#define DPRINTFN(n, x)
85#endif
86
87/* various supported device vendors/products */
88static const struct usb_devno rum_devs[] = {
89	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
90	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
91	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
92	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
93	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
94	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
95	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
96	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
97	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
98	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
99	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
103	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
104	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
105	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
106	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
107	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
108	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
109	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
110	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
111	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
112	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
113	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
114	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
115	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
116	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
117	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
118	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
119	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
120	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
121	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
122	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
123	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
124	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
125	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
126	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
127	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
128	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
129	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
130	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
131	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
132	{ USB_VENDOR_RALINK_2,          USB_PRODUCT_RALINK_2_RT2573 },
133	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
134	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
135	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
136	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 }
137};
138
139static int		rum_attachhook(void *);
140static int		rum_alloc_tx_list(struct rum_softc *);
141static void		rum_free_tx_list(struct rum_softc *);
142static int		rum_alloc_rx_list(struct rum_softc *);
143static void		rum_free_rx_list(struct rum_softc *);
144static int		rum_media_change(struct ifnet *);
145static void		rum_next_scan(void *);
146static void		rum_task(void *);
147static int		rum_newstate(struct ieee80211com *,
148			    enum ieee80211_state, int);
149static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
150			    usbd_status);
151static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
152			    usbd_status);
153static uint8_t		rum_rxrate(const struct rum_rx_desc *);
154static int		rum_ack_rate(struct ieee80211com *, int);
155static uint16_t		rum_txtime(int, int, uint32_t);
156static uint8_t		rum_plcp_signal(int);
157static void		rum_setup_tx_desc(struct rum_softc *,
158			    struct rum_tx_desc *, uint32_t, uint16_t, int,
159			    int);
160static int		rum_tx_data(struct rum_softc *, struct mbuf *,
161			    struct ieee80211_node *);
162static void		rum_start(struct ifnet *);
163static void		rum_watchdog(struct ifnet *);
164static int		rum_ioctl(struct ifnet *, u_long, void *);
165static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
166			    int);
167static uint32_t		rum_read(struct rum_softc *, uint16_t);
168static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
169			    int);
170static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
171static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
172			    size_t);
173static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
174static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
175static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
176static void		rum_select_antenna(struct rum_softc *);
177static void		rum_enable_mrr(struct rum_softc *);
178static void		rum_set_txpreamble(struct rum_softc *);
179static void		rum_set_basicrates(struct rum_softc *);
180static void		rum_select_band(struct rum_softc *,
181			    struct ieee80211_channel *);
182static void		rum_set_chan(struct rum_softc *,
183			    struct ieee80211_channel *);
184static void		rum_enable_tsf_sync(struct rum_softc *);
185static void		rum_update_slot(struct rum_softc *);
186static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
187static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
188static void		rum_update_promisc(struct rum_softc *);
189static const char	*rum_get_rf(int);
190static void		rum_read_eeprom(struct rum_softc *);
191static int		rum_bbp_init(struct rum_softc *);
192static int		rum_init(struct ifnet *);
193static void		rum_stop(struct ifnet *, int);
194static int		rum_load_microcode(struct rum_softc *, const u_char *,
195			    size_t);
196static int		rum_prepare_beacon(struct rum_softc *);
197static void		rum_newassoc(struct ieee80211_node *, int);
198static void		rum_amrr_start(struct rum_softc *,
199			    struct ieee80211_node *);
200static void		rum_amrr_timeout(void *);
201static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
202			    usbd_status status);
203
204/*
205 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
206 */
207static const struct ieee80211_rateset rum_rateset_11a =
208	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
209
210static const struct ieee80211_rateset rum_rateset_11b =
211	{ 4, { 2, 4, 11, 22 } };
212
213static const struct ieee80211_rateset rum_rateset_11g =
214	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
215
216static const struct {
217	uint32_t	reg;
218	uint32_t	val;
219} rum_def_mac[] = {
220	RT2573_DEF_MAC
221};
222
223static const struct {
224	uint8_t	reg;
225	uint8_t	val;
226} rum_def_bbp[] = {
227	RT2573_DEF_BBP
228};
229
230static const struct rfprog {
231	uint8_t		chan;
232	uint32_t	r1, r2, r3, r4;
233}  rum_rf5226[] = {
234	RT2573_RF5226
235}, rum_rf5225[] = {
236	RT2573_RF5225
237};
238
239static int rum_match(device_t, cfdata_t, void *);
240static void rum_attach(device_t, device_t, void *);
241static int rum_detach(device_t, int);
242static int rum_activate(device_t, enum devact);
243extern struct cfdriver rum_cd;
244CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
245    rum_detach, rum_activate);
246
247static int
248rum_match(device_t parent, cfdata_t match, void *aux)
249{
250	struct usb_attach_arg *uaa = aux;
251
252	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
253	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
254}
255
256static int
257rum_attachhook(void *xsc)
258{
259	struct rum_softc *sc = xsc;
260	firmware_handle_t fwh;
261	const char *name = "rum-rt2573";
262	u_char *ucode;
263	size_t size;
264	int error;
265
266	if ((error = firmware_open("rum", name, &fwh)) != 0) {
267		printf("%s: failed loadfirmware of file %s (error %d)\n",
268		    device_xname(sc->sc_dev), name, error);
269		return error;
270	}
271	size = firmware_get_size(fwh);
272	ucode = firmware_malloc(size);
273	if (ucode == NULL) {
274		printf("%s: failed to allocate firmware memory\n",
275		    device_xname(sc->sc_dev));
276		firmware_close(fwh);
277		return ENOMEM;
278	}
279	error = firmware_read(fwh, 0, ucode, size);
280	firmware_close(fwh);
281	if (error != 0) {
282		printf("%s: failed to read firmware (error %d)\n",
283		    device_xname(sc->sc_dev), error);
284		firmware_free(ucode, 0);
285		return error;
286	}
287
288	if (rum_load_microcode(sc, ucode, size) != 0) {
289		printf("%s: could not load 8051 microcode\n",
290		    device_xname(sc->sc_dev));
291		firmware_free(ucode, 0);
292		return ENXIO;
293	}
294
295	firmware_free(ucode, 0);
296	sc->sc_flags |= RT2573_FWLOADED;
297
298	return 0;
299}
300
301static void
302rum_attach(device_t parent, device_t self, void *aux)
303{
304	struct rum_softc *sc = device_private(self);
305	struct usb_attach_arg *uaa = aux;
306	struct ieee80211com *ic = &sc->sc_ic;
307	struct ifnet *ifp = &sc->sc_if;
308	usb_interface_descriptor_t *id;
309	usb_endpoint_descriptor_t *ed;
310	usbd_status error;
311	char *devinfop;
312	int i, ntries;
313	uint32_t tmp;
314
315	sc->sc_dev = self;
316	sc->sc_udev = uaa->device;
317	sc->sc_flags = 0;
318
319	aprint_naive("\n");
320	aprint_normal("\n");
321
322	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
323	aprint_normal_dev(self, "%s\n", devinfop);
324	usbd_devinfo_free(devinfop);
325
326	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
327		aprint_error_dev(self, "could not set configuration no\n");
328		return;
329	}
330
331	/* get the first interface handle */
332	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
333	    &sc->sc_iface);
334	if (error != 0) {
335		aprint_error_dev(self, "could not get interface handle\n");
336		return;
337	}
338
339	/*
340	 * Find endpoints.
341	 */
342	id = usbd_get_interface_descriptor(sc->sc_iface);
343
344	sc->sc_rx_no = sc->sc_tx_no = -1;
345	for (i = 0; i < id->bNumEndpoints; i++) {
346		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
347		if (ed == NULL) {
348			aprint_error_dev(self,
349			    "no endpoint descriptor for iface %d\n", i);
350			return;
351		}
352
353		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
354		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
355			sc->sc_rx_no = ed->bEndpointAddress;
356		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
357		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
358			sc->sc_tx_no = ed->bEndpointAddress;
359	}
360	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
361		aprint_error_dev(self, "missing endpoint\n");
362		return;
363	}
364
365	usb_init_task(&sc->sc_task, rum_task, sc);
366	callout_init(&sc->sc_scan_ch, 0);
367
368	sc->amrr.amrr_min_success_threshold =  1;
369	sc->amrr.amrr_max_success_threshold = 10;
370	callout_init(&sc->sc_amrr_ch, 0);
371
372	/* retrieve RT2573 rev. no */
373	for (ntries = 0; ntries < 1000; ntries++) {
374		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
375			break;
376		DELAY(1000);
377	}
378	if (ntries == 1000) {
379		aprint_error_dev(self, "timeout waiting for chip to settle\n");
380		return;
381	}
382
383	/* retrieve MAC address and various other things from EEPROM */
384	rum_read_eeprom(sc);
385
386	aprint_normal_dev(self,
387	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
388	    sc->macbbp_rev, tmp,
389	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
390
391	ic->ic_ifp = ifp;
392	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
393	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
394	ic->ic_state = IEEE80211_S_INIT;
395
396	/* set device capabilities */
397	ic->ic_caps =
398	    IEEE80211_C_IBSS |		/* IBSS mode supported */
399	    IEEE80211_C_MONITOR |	/* monitor mode supported */
400	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
401	    IEEE80211_C_TXPMGT |	/* tx power management */
402	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
403	    IEEE80211_C_SHSLOT |	/* short slot time supported */
404	    IEEE80211_C_WPA;		/* 802.11i */
405
406	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
407		/* set supported .11a rates */
408		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
409
410		/* set supported .11a channels */
411		for (i = 34; i <= 46; i += 4) {
412			ic->ic_channels[i].ic_freq =
413			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
414			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
415		}
416		for (i = 36; i <= 64; i += 4) {
417			ic->ic_channels[i].ic_freq =
418			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
419			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
420		}
421		for (i = 100; i <= 140; i += 4) {
422			ic->ic_channels[i].ic_freq =
423			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
424			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
425		}
426		for (i = 149; i <= 165; i += 4) {
427			ic->ic_channels[i].ic_freq =
428			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
429			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
430		}
431	}
432
433	/* set supported .11b and .11g rates */
434	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
435	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
436
437	/* set supported .11b and .11g channels (1 through 14) */
438	for (i = 1; i <= 14; i++) {
439		ic->ic_channels[i].ic_freq =
440		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
441		ic->ic_channels[i].ic_flags =
442		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
443		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
444	}
445
446	ifp->if_softc = sc;
447	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
448	ifp->if_init = rum_init;
449	ifp->if_ioctl = rum_ioctl;
450	ifp->if_start = rum_start;
451	ifp->if_watchdog = rum_watchdog;
452	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
453	IFQ_SET_READY(&ifp->if_snd);
454	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
455
456	if_attach(ifp);
457	ieee80211_ifattach(ic);
458	ic->ic_newassoc = rum_newassoc;
459
460	/* override state transition machine */
461	sc->sc_newstate = ic->ic_newstate;
462	ic->ic_newstate = rum_newstate;
463	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
464
465	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
466	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
467	    &sc->sc_drvbpf);
468
469	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
470	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
471	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
472
473	sc->sc_txtap_len = sizeof sc->sc_txtapu;
474	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
475	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
476
477	ieee80211_announce(ic);
478
479	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
480	    sc->sc_dev);
481
482	return;
483}
484
485static int
486rum_detach(device_t self, int flags)
487{
488	struct rum_softc *sc = device_private(self);
489	struct ieee80211com *ic = &sc->sc_ic;
490	struct ifnet *ifp = &sc->sc_if;
491	int s;
492
493	if (!ifp->if_softc)
494		return 0;
495
496	s = splusb();
497
498	rum_stop(ifp, 1);
499	usb_rem_task(sc->sc_udev, &sc->sc_task);
500	callout_stop(&sc->sc_scan_ch);
501	callout_stop(&sc->sc_amrr_ch);
502
503	if (sc->amrr_xfer != NULL) {
504		usbd_free_xfer(sc->amrr_xfer);
505		sc->amrr_xfer = NULL;
506	}
507
508	if (sc->sc_rx_pipeh != NULL) {
509		usbd_abort_pipe(sc->sc_rx_pipeh);
510		usbd_close_pipe(sc->sc_rx_pipeh);
511	}
512
513	if (sc->sc_tx_pipeh != NULL) {
514		usbd_abort_pipe(sc->sc_tx_pipeh);
515		usbd_close_pipe(sc->sc_tx_pipeh);
516	}
517
518	bpf_detach(ifp);
519	ieee80211_ifdetach(ic);	/* free all nodes */
520	if_detach(ifp);
521
522	splx(s);
523
524	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
525
526	return 0;
527}
528
529static int
530rum_alloc_tx_list(struct rum_softc *sc)
531{
532	struct rum_tx_data *data;
533	int i, error;
534
535	sc->tx_cur = sc->tx_queued = 0;
536
537	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
538		data = &sc->tx_data[i];
539
540		data->sc = sc;
541
542		data->xfer = usbd_alloc_xfer(sc->sc_udev);
543		if (data->xfer == NULL) {
544			printf("%s: could not allocate tx xfer\n",
545			    device_xname(sc->sc_dev));
546			error = ENOMEM;
547			goto fail;
548		}
549
550		data->buf = usbd_alloc_buffer(data->xfer,
551		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
552		if (data->buf == NULL) {
553			printf("%s: could not allocate tx buffer\n",
554			    device_xname(sc->sc_dev));
555			error = ENOMEM;
556			goto fail;
557		}
558
559		/* clean Tx descriptor */
560		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
561	}
562
563	return 0;
564
565fail:	rum_free_tx_list(sc);
566	return error;
567}
568
569static void
570rum_free_tx_list(struct rum_softc *sc)
571{
572	struct rum_tx_data *data;
573	int i;
574
575	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
576		data = &sc->tx_data[i];
577
578		if (data->xfer != NULL) {
579			usbd_free_xfer(data->xfer);
580			data->xfer = NULL;
581		}
582
583		if (data->ni != NULL) {
584			ieee80211_free_node(data->ni);
585			data->ni = NULL;
586		}
587	}
588}
589
590static int
591rum_alloc_rx_list(struct rum_softc *sc)
592{
593	struct rum_rx_data *data;
594	int i, error;
595
596	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
597		data = &sc->rx_data[i];
598
599		data->sc = sc;
600
601		data->xfer = usbd_alloc_xfer(sc->sc_udev);
602		if (data->xfer == NULL) {
603			printf("%s: could not allocate rx xfer\n",
604			    device_xname(sc->sc_dev));
605			error = ENOMEM;
606			goto fail;
607		}
608
609		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
610			printf("%s: could not allocate rx buffer\n",
611			    device_xname(sc->sc_dev));
612			error = ENOMEM;
613			goto fail;
614		}
615
616		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
617		if (data->m == NULL) {
618			printf("%s: could not allocate rx mbuf\n",
619			    device_xname(sc->sc_dev));
620			error = ENOMEM;
621			goto fail;
622		}
623
624		MCLGET(data->m, M_DONTWAIT);
625		if (!(data->m->m_flags & M_EXT)) {
626			printf("%s: could not allocate rx mbuf cluster\n",
627			    device_xname(sc->sc_dev));
628			error = ENOMEM;
629			goto fail;
630		}
631
632		data->buf = mtod(data->m, uint8_t *);
633	}
634
635	return 0;
636
637fail:	rum_free_rx_list(sc);
638	return error;
639}
640
641static void
642rum_free_rx_list(struct rum_softc *sc)
643{
644	struct rum_rx_data *data;
645	int i;
646
647	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
648		data = &sc->rx_data[i];
649
650		if (data->xfer != NULL) {
651			usbd_free_xfer(data->xfer);
652			data->xfer = NULL;
653		}
654
655		if (data->m != NULL) {
656			m_freem(data->m);
657			data->m = NULL;
658		}
659	}
660}
661
662static int
663rum_media_change(struct ifnet *ifp)
664{
665	int error;
666
667	error = ieee80211_media_change(ifp);
668	if (error != ENETRESET)
669		return error;
670
671	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
672		rum_init(ifp);
673
674	return 0;
675}
676
677/*
678 * This function is called periodically (every 200ms) during scanning to
679 * switch from one channel to another.
680 */
681static void
682rum_next_scan(void *arg)
683{
684	struct rum_softc *sc = arg;
685	struct ieee80211com *ic = &sc->sc_ic;
686	int s;
687
688	s = splnet();
689	if (ic->ic_state == IEEE80211_S_SCAN)
690		ieee80211_next_scan(ic);
691	splx(s);
692}
693
694static void
695rum_task(void *arg)
696{
697	struct rum_softc *sc = arg;
698	struct ieee80211com *ic = &sc->sc_ic;
699	enum ieee80211_state ostate;
700	struct ieee80211_node *ni;
701	uint32_t tmp;
702
703	ostate = ic->ic_state;
704
705	switch (sc->sc_state) {
706	case IEEE80211_S_INIT:
707		if (ostate == IEEE80211_S_RUN) {
708			/* abort TSF synchronization */
709			tmp = rum_read(sc, RT2573_TXRX_CSR9);
710			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
711		}
712		break;
713
714	case IEEE80211_S_SCAN:
715		rum_set_chan(sc, ic->ic_curchan);
716		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
717		break;
718
719	case IEEE80211_S_AUTH:
720		rum_set_chan(sc, ic->ic_curchan);
721		break;
722
723	case IEEE80211_S_ASSOC:
724		rum_set_chan(sc, ic->ic_curchan);
725		break;
726
727	case IEEE80211_S_RUN:
728		rum_set_chan(sc, ic->ic_curchan);
729
730		ni = ic->ic_bss;
731
732		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
733			rum_update_slot(sc);
734			rum_enable_mrr(sc);
735			rum_set_txpreamble(sc);
736			rum_set_basicrates(sc);
737			rum_set_bssid(sc, ni->ni_bssid);
738		}
739
740		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
741		    ic->ic_opmode == IEEE80211_M_IBSS)
742			rum_prepare_beacon(sc);
743
744		if (ic->ic_opmode != IEEE80211_M_MONITOR)
745			rum_enable_tsf_sync(sc);
746
747		if (ic->ic_opmode == IEEE80211_M_STA) {
748			/* fake a join to init the tx rate */
749			rum_newassoc(ic->ic_bss, 1);
750
751			/* enable automatic rate adaptation in STA mode */
752			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
753				rum_amrr_start(sc, ni);
754		}
755
756		break;
757	}
758
759	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
760}
761
762static int
763rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
764{
765	struct rum_softc *sc = ic->ic_ifp->if_softc;
766
767	usb_rem_task(sc->sc_udev, &sc->sc_task);
768	callout_stop(&sc->sc_scan_ch);
769	callout_stop(&sc->sc_amrr_ch);
770
771	/* do it in a process context */
772	sc->sc_state = nstate;
773	sc->sc_arg = arg;
774	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
775
776	return 0;
777}
778
779/* quickly determine if a given rate is CCK or OFDM */
780#define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
781
782#define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
783#define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
784
785static void
786rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
787{
788	struct rum_tx_data *data = priv;
789	struct rum_softc *sc = data->sc;
790	struct ifnet *ifp = &sc->sc_if;
791	int s;
792
793	if (status != USBD_NORMAL_COMPLETION) {
794		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
795			return;
796
797		printf("%s: could not transmit buffer: %s\n",
798		    device_xname(sc->sc_dev), usbd_errstr(status));
799
800		if (status == USBD_STALLED)
801			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
802
803		ifp->if_oerrors++;
804		return;
805	}
806
807	s = splnet();
808
809	ieee80211_free_node(data->ni);
810	data->ni = NULL;
811
812	sc->tx_queued--;
813	ifp->if_opackets++;
814
815	DPRINTFN(10, ("tx done\n"));
816
817	sc->sc_tx_timer = 0;
818	ifp->if_flags &= ~IFF_OACTIVE;
819	rum_start(ifp);
820
821	splx(s);
822}
823
824static void
825rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
826{
827	struct rum_rx_data *data = priv;
828	struct rum_softc *sc = data->sc;
829	struct ieee80211com *ic = &sc->sc_ic;
830	struct ifnet *ifp = &sc->sc_if;
831	struct rum_rx_desc *desc;
832	struct ieee80211_frame *wh;
833	struct ieee80211_node *ni;
834	struct mbuf *mnew, *m;
835	int s, len;
836
837	if (status != USBD_NORMAL_COMPLETION) {
838		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
839			return;
840
841		if (status == USBD_STALLED)
842			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
843		goto skip;
844	}
845
846	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
847
848	if (len < (int)(RT2573_RX_DESC_SIZE +
849		        sizeof(struct ieee80211_frame_min))) {
850		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
851		    len));
852		ifp->if_ierrors++;
853		goto skip;
854	}
855
856	desc = (struct rum_rx_desc *)data->buf;
857
858	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
859		/*
860		 * This should not happen since we did not request to receive
861		 * those frames when we filled RT2573_TXRX_CSR0.
862		 */
863		DPRINTFN(5, ("CRC error\n"));
864		ifp->if_ierrors++;
865		goto skip;
866	}
867
868	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
869	if (mnew == NULL) {
870		printf("%s: could not allocate rx mbuf\n",
871		    device_xname(sc->sc_dev));
872		ifp->if_ierrors++;
873		goto skip;
874	}
875
876	MCLGET(mnew, M_DONTWAIT);
877	if (!(mnew->m_flags & M_EXT)) {
878		printf("%s: could not allocate rx mbuf cluster\n",
879		    device_xname(sc->sc_dev));
880		m_freem(mnew);
881		ifp->if_ierrors++;
882		goto skip;
883	}
884
885	m = data->m;
886	data->m = mnew;
887	data->buf = mtod(data->m, uint8_t *);
888
889	/* finalize mbuf */
890	m->m_pkthdr.rcvif = ifp;
891	m->m_data = (void *)(desc + 1);
892	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
893
894	s = splnet();
895
896	if (sc->sc_drvbpf != NULL) {
897		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
898
899		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
900		tap->wr_rate = rum_rxrate(desc);
901		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
902		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
903		tap->wr_antenna = sc->rx_ant;
904		tap->wr_antsignal = desc->rssi;
905
906		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
907	}
908
909	wh = mtod(m, struct ieee80211_frame *);
910	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
911
912	/* send the frame to the 802.11 layer */
913	ieee80211_input(ic, m, ni, desc->rssi, 0);
914
915	/* node is no longer needed */
916	ieee80211_free_node(ni);
917
918	splx(s);
919
920	DPRINTFN(15, ("rx done\n"));
921
922skip:	/* setup a new transfer */
923	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
924	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
925	usbd_transfer(xfer);
926}
927
928/*
929 * This function is only used by the Rx radiotap code. It returns the rate at
930 * which a given frame was received.
931 */
932static uint8_t
933rum_rxrate(const struct rum_rx_desc *desc)
934{
935	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
936		/* reverse function of rum_plcp_signal */
937		switch (desc->rate) {
938		case 0xb:	return 12;
939		case 0xf:	return 18;
940		case 0xa:	return 24;
941		case 0xe:	return 36;
942		case 0x9:	return 48;
943		case 0xd:	return 72;
944		case 0x8:	return 96;
945		case 0xc:	return 108;
946		}
947	} else {
948		if (desc->rate == 10)
949			return 2;
950		if (desc->rate == 20)
951			return 4;
952		if (desc->rate == 55)
953			return 11;
954		if (desc->rate == 110)
955			return 22;
956	}
957	return 2;	/* should not get there */
958}
959
960/*
961 * Return the expected ack rate for a frame transmitted at rate `rate'.
962 * XXX: this should depend on the destination node basic rate set.
963 */
964static int
965rum_ack_rate(struct ieee80211com *ic, int rate)
966{
967	switch (rate) {
968	/* CCK rates */
969	case 2:
970		return 2;
971	case 4:
972	case 11:
973	case 22:
974		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
975
976	/* OFDM rates */
977	case 12:
978	case 18:
979		return 12;
980	case 24:
981	case 36:
982		return 24;
983	case 48:
984	case 72:
985	case 96:
986	case 108:
987		return 48;
988	}
989
990	/* default to 1Mbps */
991	return 2;
992}
993
994/*
995 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
996 * The function automatically determines the operating mode depending on the
997 * given rate. `flags' indicates whether short preamble is in use or not.
998 */
999static uint16_t
1000rum_txtime(int len, int rate, uint32_t flags)
1001{
1002	uint16_t txtime;
1003
1004	if (RUM_RATE_IS_OFDM(rate)) {
1005		/* IEEE Std 802.11a-1999, pp. 37 */
1006		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1007		txtime = 16 + 4 + 4 * txtime + 6;
1008	} else {
1009		/* IEEE Std 802.11b-1999, pp. 28 */
1010		txtime = (16 * len + rate - 1) / rate;
1011		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1012			txtime +=  72 + 24;
1013		else
1014			txtime += 144 + 48;
1015	}
1016	return txtime;
1017}
1018
1019static uint8_t
1020rum_plcp_signal(int rate)
1021{
1022	switch (rate) {
1023	/* CCK rates (returned values are device-dependent) */
1024	case 2:		return 0x0;
1025	case 4:		return 0x1;
1026	case 11:	return 0x2;
1027	case 22:	return 0x3;
1028
1029	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1030	case 12:	return 0xb;
1031	case 18:	return 0xf;
1032	case 24:	return 0xa;
1033	case 36:	return 0xe;
1034	case 48:	return 0x9;
1035	case 72:	return 0xd;
1036	case 96:	return 0x8;
1037	case 108:	return 0xc;
1038
1039	/* unsupported rates (should not get there) */
1040	default:	return 0xff;
1041	}
1042}
1043
1044static void
1045rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1046    uint32_t flags, uint16_t xflags, int len, int rate)
1047{
1048	struct ieee80211com *ic = &sc->sc_ic;
1049	uint16_t plcp_length;
1050	int remainder;
1051
1052	desc->flags = htole32(flags);
1053	desc->flags |= htole32(RT2573_TX_VALID);
1054	desc->flags |= htole32(len << 16);
1055
1056	desc->xflags = htole16(xflags);
1057
1058	desc->wme = htole16(
1059	    RT2573_QID(0) |
1060	    RT2573_AIFSN(2) |
1061	    RT2573_LOGCWMIN(4) |
1062	    RT2573_LOGCWMAX(10));
1063
1064	/* setup PLCP fields */
1065	desc->plcp_signal  = rum_plcp_signal(rate);
1066	desc->plcp_service = 4;
1067
1068	len += IEEE80211_CRC_LEN;
1069	if (RUM_RATE_IS_OFDM(rate)) {
1070		desc->flags |= htole32(RT2573_TX_OFDM);
1071
1072		plcp_length = len & 0xfff;
1073		desc->plcp_length_hi = plcp_length >> 6;
1074		desc->plcp_length_lo = plcp_length & 0x3f;
1075	} else {
1076		plcp_length = (16 * len + rate - 1) / rate;
1077		if (rate == 22) {
1078			remainder = (16 * len) % 22;
1079			if (remainder != 0 && remainder < 7)
1080				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1081		}
1082		desc->plcp_length_hi = plcp_length >> 8;
1083		desc->plcp_length_lo = plcp_length & 0xff;
1084
1085		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1086			desc->plcp_signal |= 0x08;
1087	}
1088}
1089
1090#define RUM_TX_TIMEOUT	5000
1091
1092static int
1093rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1094{
1095	struct ieee80211com *ic = &sc->sc_ic;
1096	struct rum_tx_desc *desc;
1097	struct rum_tx_data *data;
1098	struct ieee80211_frame *wh;
1099	struct ieee80211_key *k;
1100	uint32_t flags = 0;
1101	uint16_t dur;
1102	usbd_status error;
1103	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1104
1105	wh = mtod(m0, struct ieee80211_frame *);
1106
1107	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1108		k = ieee80211_crypto_encap(ic, ni, m0);
1109		if (k == NULL) {
1110			m_freem(m0);
1111			return ENOBUFS;
1112		}
1113
1114		/* packet header may have moved, reset our local pointer */
1115		wh = mtod(m0, struct ieee80211_frame *);
1116	}
1117
1118	/* compute actual packet length (including CRC and crypto overhead) */
1119	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1120
1121	/* pickup a rate */
1122	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1123	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1124	     IEEE80211_FC0_TYPE_MGT)) {
1125		/* mgmt/multicast frames are sent at the lowest avail. rate */
1126		rate = ni->ni_rates.rs_rates[0];
1127	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1128		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1129	} else
1130		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1131	if (rate == 0)
1132		rate = 2;	/* XXX should not happen */
1133	rate &= IEEE80211_RATE_VAL;
1134
1135	/* check if RTS/CTS or CTS-to-self protection must be used */
1136	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1137		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1138		if (pktlen > ic->ic_rtsthreshold) {
1139			needrts = 1;	/* RTS/CTS based on frame length */
1140		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1141		    RUM_RATE_IS_OFDM(rate)) {
1142			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1143				needcts = 1;	/* CTS-to-self */
1144			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1145				needrts = 1;	/* RTS/CTS */
1146		}
1147	}
1148	if (needrts || needcts) {
1149		struct mbuf *mprot;
1150		int protrate, ackrate;
1151
1152		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1153		ackrate  = rum_ack_rate(ic, rate);
1154
1155		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1156		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1157		      2 * sc->sifs;
1158		if (needrts) {
1159			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1160			    protrate), ic->ic_flags) + sc->sifs;
1161			mprot = ieee80211_get_rts(ic, wh, dur);
1162		} else {
1163			mprot = ieee80211_get_cts_to_self(ic, dur);
1164		}
1165		if (mprot == NULL) {
1166			aprint_error_dev(sc->sc_dev,
1167			    "couldn't allocate protection frame\n");
1168			m_freem(m0);
1169			return ENOBUFS;
1170		}
1171
1172		data = &sc->tx_data[sc->tx_cur];
1173		desc = (struct rum_tx_desc *)data->buf;
1174
1175		/* avoid multiple free() of the same node for each fragment */
1176		data->ni = ieee80211_ref_node(ni);
1177
1178		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1179		    data->buf + RT2573_TX_DESC_SIZE);
1180		rum_setup_tx_desc(sc, desc,
1181		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1182		    0, mprot->m_pkthdr.len, protrate);
1183
1184		/* no roundup necessary here */
1185		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1186
1187		/* XXX may want to pass the protection frame to BPF */
1188
1189		/* mbuf is no longer needed */
1190		m_freem(mprot);
1191
1192		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1193		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1194		    RUM_TX_TIMEOUT, rum_txeof);
1195		error = usbd_transfer(data->xfer);
1196		if (error != USBD_NORMAL_COMPLETION &&
1197		    error != USBD_IN_PROGRESS) {
1198			m_freem(m0);
1199			return error;
1200		}
1201
1202		sc->tx_queued++;
1203		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1204
1205		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1206	}
1207
1208	data = &sc->tx_data[sc->tx_cur];
1209	desc = (struct rum_tx_desc *)data->buf;
1210
1211	data->ni = ni;
1212
1213	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1214		flags |= RT2573_TX_NEED_ACK;
1215
1216		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1217		    ic->ic_flags) + sc->sifs;
1218		*(uint16_t *)wh->i_dur = htole16(dur);
1219
1220		/* tell hardware to set timestamp in probe responses */
1221		if ((wh->i_fc[0] &
1222		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1223		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1224			flags |= RT2573_TX_TIMESTAMP;
1225	}
1226
1227	if (sc->sc_drvbpf != NULL) {
1228		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1229
1230		tap->wt_flags = 0;
1231		tap->wt_rate = rate;
1232		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1233		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1234		tap->wt_antenna = sc->tx_ant;
1235
1236		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1237	}
1238
1239	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1240	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1241
1242	/* align end on a 4-bytes boundary */
1243	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1244
1245	/*
1246	 * No space left in the last URB to store the extra 4 bytes, force
1247	 * sending of another URB.
1248	 */
1249	if ((xferlen % 64) == 0)
1250		xferlen += 4;
1251
1252	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1253	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1254	    rate, xferlen));
1255
1256	/* mbuf is no longer needed */
1257	m_freem(m0);
1258
1259	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1260	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1261	error = usbd_transfer(data->xfer);
1262	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1263		return error;
1264
1265	sc->tx_queued++;
1266	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1267
1268	return 0;
1269}
1270
1271static void
1272rum_start(struct ifnet *ifp)
1273{
1274	struct rum_softc *sc = ifp->if_softc;
1275	struct ieee80211com *ic = &sc->sc_ic;
1276	struct ether_header *eh;
1277	struct ieee80211_node *ni;
1278	struct mbuf *m0;
1279
1280	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1281		return;
1282
1283	for (;;) {
1284		IF_POLL(&ic->ic_mgtq, m0);
1285		if (m0 != NULL) {
1286			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1287				ifp->if_flags |= IFF_OACTIVE;
1288				break;
1289			}
1290			IF_DEQUEUE(&ic->ic_mgtq, m0);
1291
1292			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1293			m0->m_pkthdr.rcvif = NULL;
1294			bpf_mtap3(ic->ic_rawbpf, m0);
1295			if (rum_tx_data(sc, m0, ni) != 0)
1296				break;
1297
1298		} else {
1299			if (ic->ic_state != IEEE80211_S_RUN)
1300				break;
1301			IFQ_POLL(&ifp->if_snd, m0);
1302			if (m0 == NULL)
1303				break;
1304			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1305				ifp->if_flags |= IFF_OACTIVE;
1306				break;
1307			}
1308			IFQ_DEQUEUE(&ifp->if_snd, m0);
1309			if (m0->m_len < (int)sizeof(struct ether_header) &&
1310			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1311				continue;
1312
1313			eh = mtod(m0, struct ether_header *);
1314			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1315			if (ni == NULL) {
1316				m_freem(m0);
1317				continue;
1318			}
1319			bpf_mtap(ifp, m0);
1320			m0 = ieee80211_encap(ic, m0, ni);
1321			if (m0 == NULL) {
1322				ieee80211_free_node(ni);
1323				continue;
1324			}
1325			bpf_mtap3(ic->ic_rawbpf, m0);
1326			if (rum_tx_data(sc, m0, ni) != 0) {
1327				ieee80211_free_node(ni);
1328				ifp->if_oerrors++;
1329				break;
1330			}
1331		}
1332
1333		sc->sc_tx_timer = 5;
1334		ifp->if_timer = 1;
1335	}
1336}
1337
1338static void
1339rum_watchdog(struct ifnet *ifp)
1340{
1341	struct rum_softc *sc = ifp->if_softc;
1342	struct ieee80211com *ic = &sc->sc_ic;
1343
1344	ifp->if_timer = 0;
1345
1346	if (sc->sc_tx_timer > 0) {
1347		if (--sc->sc_tx_timer == 0) {
1348			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1349			/*rum_init(ifp); XXX needs a process context! */
1350			ifp->if_oerrors++;
1351			return;
1352		}
1353		ifp->if_timer = 1;
1354	}
1355
1356	ieee80211_watchdog(ic);
1357}
1358
1359static int
1360rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1361{
1362#define IS_RUNNING(ifp) \
1363	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1364
1365	struct rum_softc *sc = ifp->if_softc;
1366	struct ieee80211com *ic = &sc->sc_ic;
1367	int s, error = 0;
1368
1369	s = splnet();
1370
1371	switch (cmd) {
1372	case SIOCSIFFLAGS:
1373		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1374			break;
1375		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1376		case IFF_UP|IFF_RUNNING:
1377			rum_update_promisc(sc);
1378			break;
1379		case IFF_UP:
1380			rum_init(ifp);
1381			break;
1382		case IFF_RUNNING:
1383			rum_stop(ifp, 1);
1384			break;
1385		case 0:
1386			break;
1387		}
1388		break;
1389
1390	case SIOCADDMULTI:
1391	case SIOCDELMULTI:
1392		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1393			error = 0;
1394		}
1395		break;
1396
1397	default:
1398		error = ieee80211_ioctl(ic, cmd, data);
1399	}
1400
1401	if (error == ENETRESET) {
1402		if (IS_RUNNING(ifp) &&
1403			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1404			rum_init(ifp);
1405		error = 0;
1406	}
1407
1408	splx(s);
1409
1410	return error;
1411#undef IS_RUNNING
1412}
1413
1414static void
1415rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1416{
1417	usb_device_request_t req;
1418	usbd_status error;
1419
1420	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1421	req.bRequest = RT2573_READ_EEPROM;
1422	USETW(req.wValue, 0);
1423	USETW(req.wIndex, addr);
1424	USETW(req.wLength, len);
1425
1426	error = usbd_do_request(sc->sc_udev, &req, buf);
1427	if (error != 0) {
1428		printf("%s: could not read EEPROM: %s\n",
1429		    device_xname(sc->sc_dev), usbd_errstr(error));
1430	}
1431}
1432
1433static uint32_t
1434rum_read(struct rum_softc *sc, uint16_t reg)
1435{
1436	uint32_t val;
1437
1438	rum_read_multi(sc, reg, &val, sizeof val);
1439
1440	return le32toh(val);
1441}
1442
1443static void
1444rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1445{
1446	usb_device_request_t req;
1447	usbd_status error;
1448
1449	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1450	req.bRequest = RT2573_READ_MULTI_MAC;
1451	USETW(req.wValue, 0);
1452	USETW(req.wIndex, reg);
1453	USETW(req.wLength, len);
1454
1455	error = usbd_do_request(sc->sc_udev, &req, buf);
1456	if (error != 0) {
1457		printf("%s: could not multi read MAC register: %s\n",
1458		    device_xname(sc->sc_dev), usbd_errstr(error));
1459	}
1460}
1461
1462static void
1463rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1464{
1465	uint32_t tmp = htole32(val);
1466
1467	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1468}
1469
1470static void
1471rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1472{
1473	usb_device_request_t req;
1474	usbd_status error;
1475
1476	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1477	req.bRequest = RT2573_WRITE_MULTI_MAC;
1478	USETW(req.wValue, 0);
1479	USETW(req.wIndex, reg);
1480	USETW(req.wLength, len);
1481
1482	error = usbd_do_request(sc->sc_udev, &req, buf);
1483	if (error != 0) {
1484		printf("%s: could not multi write MAC register: %s\n",
1485		    device_xname(sc->sc_dev), usbd_errstr(error));
1486	}
1487}
1488
1489static void
1490rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1491{
1492	uint32_t tmp;
1493	int ntries;
1494
1495	for (ntries = 0; ntries < 5; ntries++) {
1496		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1497			break;
1498	}
1499	if (ntries == 5) {
1500		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1501		return;
1502	}
1503
1504	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1505	rum_write(sc, RT2573_PHY_CSR3, tmp);
1506}
1507
1508static uint8_t
1509rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1510{
1511	uint32_t val;
1512	int ntries;
1513
1514	for (ntries = 0; ntries < 5; ntries++) {
1515		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1516			break;
1517	}
1518	if (ntries == 5) {
1519		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1520		return 0;
1521	}
1522
1523	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1524	rum_write(sc, RT2573_PHY_CSR3, val);
1525
1526	for (ntries = 0; ntries < 100; ntries++) {
1527		val = rum_read(sc, RT2573_PHY_CSR3);
1528		if (!(val & RT2573_BBP_BUSY))
1529			return val & 0xff;
1530		DELAY(1);
1531	}
1532
1533	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1534	return 0;
1535}
1536
1537static void
1538rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1539{
1540	uint32_t tmp;
1541	int ntries;
1542
1543	for (ntries = 0; ntries < 5; ntries++) {
1544		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1545			break;
1546	}
1547	if (ntries == 5) {
1548		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1549		return;
1550	}
1551
1552	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1553	    (reg & 3);
1554	rum_write(sc, RT2573_PHY_CSR4, tmp);
1555
1556	/* remember last written value in sc */
1557	sc->rf_regs[reg] = val;
1558
1559	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1560}
1561
1562static void
1563rum_select_antenna(struct rum_softc *sc)
1564{
1565	uint8_t bbp4, bbp77;
1566	uint32_t tmp;
1567
1568	bbp4  = rum_bbp_read(sc, 4);
1569	bbp77 = rum_bbp_read(sc, 77);
1570
1571	/* TBD */
1572
1573	/* make sure Rx is disabled before switching antenna */
1574	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1575	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1576
1577	rum_bbp_write(sc,  4, bbp4);
1578	rum_bbp_write(sc, 77, bbp77);
1579
1580	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1581}
1582
1583/*
1584 * Enable multi-rate retries for frames sent at OFDM rates.
1585 * In 802.11b/g mode, allow fallback to CCK rates.
1586 */
1587static void
1588rum_enable_mrr(struct rum_softc *sc)
1589{
1590	struct ieee80211com *ic = &sc->sc_ic;
1591	uint32_t tmp;
1592
1593	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1594
1595	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1596	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1597		tmp |= RT2573_MRR_CCK_FALLBACK;
1598	tmp |= RT2573_MRR_ENABLED;
1599
1600	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1601}
1602
1603static void
1604rum_set_txpreamble(struct rum_softc *sc)
1605{
1606	uint32_t tmp;
1607
1608	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1609
1610	tmp &= ~RT2573_SHORT_PREAMBLE;
1611	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1612		tmp |= RT2573_SHORT_PREAMBLE;
1613
1614	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1615}
1616
1617static void
1618rum_set_basicrates(struct rum_softc *sc)
1619{
1620	struct ieee80211com *ic = &sc->sc_ic;
1621
1622	/* update basic rate set */
1623	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1624		/* 11b basic rates: 1, 2Mbps */
1625		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1626	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1627		/* 11a basic rates: 6, 12, 24Mbps */
1628		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1629	} else {
1630		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1631		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1632	}
1633}
1634
1635/*
1636 * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1637 * driver.
1638 */
1639static void
1640rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1641{
1642	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1643	uint32_t tmp;
1644
1645	/* update all BBP registers that depend on the band */
1646	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1647	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1648	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1649		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1650		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1651	}
1652	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1653	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1654		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1655	}
1656
1657	sc->bbp17 = bbp17;
1658	rum_bbp_write(sc,  17, bbp17);
1659	rum_bbp_write(sc,  96, bbp96);
1660	rum_bbp_write(sc, 104, bbp104);
1661
1662	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1663	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1664		rum_bbp_write(sc, 75, 0x80);
1665		rum_bbp_write(sc, 86, 0x80);
1666		rum_bbp_write(sc, 88, 0x80);
1667	}
1668
1669	rum_bbp_write(sc, 35, bbp35);
1670	rum_bbp_write(sc, 97, bbp97);
1671	rum_bbp_write(sc, 98, bbp98);
1672
1673	tmp = rum_read(sc, RT2573_PHY_CSR0);
1674	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1675	if (IEEE80211_IS_CHAN_2GHZ(c))
1676		tmp |= RT2573_PA_PE_2GHZ;
1677	else
1678		tmp |= RT2573_PA_PE_5GHZ;
1679	rum_write(sc, RT2573_PHY_CSR0, tmp);
1680
1681	/* 802.11a uses a 16 microseconds short interframe space */
1682	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1683}
1684
1685static void
1686rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1687{
1688	struct ieee80211com *ic = &sc->sc_ic;
1689	const struct rfprog *rfprog;
1690	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1691	int8_t power;
1692	u_int i, chan;
1693
1694	chan = ieee80211_chan2ieee(ic, c);
1695	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1696		return;
1697
1698	/* select the appropriate RF settings based on what EEPROM says */
1699	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1700		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1701
1702	/* find the settings for this channel (we know it exists) */
1703	for (i = 0; rfprog[i].chan != chan; i++);
1704
1705	power = sc->txpow[i];
1706	if (power < 0) {
1707		bbp94 += power;
1708		power = 0;
1709	} else if (power > 31) {
1710		bbp94 += power - 31;
1711		power = 31;
1712	}
1713
1714	/*
1715	 * If we are switching from the 2GHz band to the 5GHz band or
1716	 * vice-versa, BBP registers need to be reprogrammed.
1717	 */
1718	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1719		rum_select_band(sc, c);
1720		rum_select_antenna(sc);
1721	}
1722	ic->ic_curchan = c;
1723
1724	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1725	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1726	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1727	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1728
1729	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1730	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1731	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1732	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1733
1734	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1735	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1736	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1737	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1738
1739	DELAY(10);
1740
1741	/* enable smart mode for MIMO-capable RFs */
1742	bbp3 = rum_bbp_read(sc, 3);
1743
1744	bbp3 &= ~RT2573_SMART_MODE;
1745	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1746		bbp3 |= RT2573_SMART_MODE;
1747
1748	rum_bbp_write(sc, 3, bbp3);
1749
1750	if (bbp94 != RT2573_BBPR94_DEFAULT)
1751		rum_bbp_write(sc, 94, bbp94);
1752}
1753
1754/*
1755 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1756 * and HostAP operating modes.
1757 */
1758static void
1759rum_enable_tsf_sync(struct rum_softc *sc)
1760{
1761	struct ieee80211com *ic = &sc->sc_ic;
1762	uint32_t tmp;
1763
1764	if (ic->ic_opmode != IEEE80211_M_STA) {
1765		/*
1766		 * Change default 16ms TBTT adjustment to 8ms.
1767		 * Must be done before enabling beacon generation.
1768		 */
1769		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1770	}
1771
1772	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1773
1774	/* set beacon interval (in 1/16ms unit) */
1775	tmp |= ic->ic_bss->ni_intval * 16;
1776
1777	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1778	if (ic->ic_opmode == IEEE80211_M_STA)
1779		tmp |= RT2573_TSF_MODE(1);
1780	else
1781		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1782
1783	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1784}
1785
1786static void
1787rum_update_slot(struct rum_softc *sc)
1788{
1789	struct ieee80211com *ic = &sc->sc_ic;
1790	uint8_t slottime;
1791	uint32_t tmp;
1792
1793	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1794
1795	tmp = rum_read(sc, RT2573_MAC_CSR9);
1796	tmp = (tmp & ~0xff) | slottime;
1797	rum_write(sc, RT2573_MAC_CSR9, tmp);
1798
1799	DPRINTF(("setting slot time to %uus\n", slottime));
1800}
1801
1802static void
1803rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1804{
1805	uint32_t tmp;
1806
1807	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1808	rum_write(sc, RT2573_MAC_CSR4, tmp);
1809
1810	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1811	rum_write(sc, RT2573_MAC_CSR5, tmp);
1812}
1813
1814static void
1815rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1816{
1817	uint32_t tmp;
1818
1819	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1820	rum_write(sc, RT2573_MAC_CSR2, tmp);
1821
1822	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1823	rum_write(sc, RT2573_MAC_CSR3, tmp);
1824}
1825
1826static void
1827rum_update_promisc(struct rum_softc *sc)
1828{
1829	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1830	uint32_t tmp;
1831
1832	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1833
1834	tmp &= ~RT2573_DROP_NOT_TO_ME;
1835	if (!(ifp->if_flags & IFF_PROMISC))
1836		tmp |= RT2573_DROP_NOT_TO_ME;
1837
1838	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1839
1840	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1841	    "entering" : "leaving"));
1842}
1843
1844static const char *
1845rum_get_rf(int rev)
1846{
1847	switch (rev) {
1848	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1849	case RT2573_RF_2528:	return "RT2528";
1850	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1851	case RT2573_RF_5226:	return "RT5226";
1852	default:		return "unknown";
1853	}
1854}
1855
1856static void
1857rum_read_eeprom(struct rum_softc *sc)
1858{
1859	struct ieee80211com *ic = &sc->sc_ic;
1860	uint16_t val;
1861#ifdef RUM_DEBUG
1862	int i;
1863#endif
1864
1865	/* read MAC/BBP type */
1866	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1867	sc->macbbp_rev = le16toh(val);
1868
1869	/* read MAC address */
1870	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1871
1872	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1873	val = le16toh(val);
1874	sc->rf_rev =   (val >> 11) & 0x1f;
1875	sc->hw_radio = (val >> 10) & 0x1;
1876	sc->rx_ant =   (val >> 4)  & 0x3;
1877	sc->tx_ant =   (val >> 2)  & 0x3;
1878	sc->nb_ant =   val & 0x3;
1879
1880	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1881
1882	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1883	val = le16toh(val);
1884	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1885	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1886
1887	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1888	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1889
1890	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1891	val = le16toh(val);
1892	if ((val & 0xff) != 0xff)
1893		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1894
1895	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1896	val = le16toh(val);
1897	if ((val & 0xff) != 0xff)
1898		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1899
1900	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1901	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1902
1903	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1904	val = le16toh(val);
1905	if ((val & 0xff) != 0xff)
1906		sc->rffreq = val & 0xff;
1907
1908	DPRINTF(("RF freq=%d\n", sc->rffreq));
1909
1910	/* read Tx power for all a/b/g channels */
1911	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1912	/* XXX default Tx power for 802.11a channels */
1913	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1914#ifdef RUM_DEBUG
1915	for (i = 0; i < 14; i++)
1916		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1917#endif
1918
1919	/* read default values for BBP registers */
1920	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1921#ifdef RUM_DEBUG
1922	for (i = 0; i < 14; i++) {
1923		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1924			continue;
1925		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1926		    sc->bbp_prom[i].val));
1927	}
1928#endif
1929}
1930
1931static int
1932rum_bbp_init(struct rum_softc *sc)
1933{
1934#define N(a)	(sizeof (a) / sizeof ((a)[0]))
1935	unsigned int i, ntries;
1936	uint8_t val;
1937
1938	/* wait for BBP to be ready */
1939	for (ntries = 0; ntries < 100; ntries++) {
1940		val = rum_bbp_read(sc, 0);
1941		if (val != 0 && val != 0xff)
1942			break;
1943		DELAY(1000);
1944	}
1945	if (ntries == 100) {
1946		printf("%s: timeout waiting for BBP\n",
1947		    device_xname(sc->sc_dev));
1948		return EIO;
1949	}
1950
1951	/* initialize BBP registers to default values */
1952	for (i = 0; i < N(rum_def_bbp); i++)
1953		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1954
1955	/* write vendor-specific BBP values (from EEPROM) */
1956	for (i = 0; i < 16; i++) {
1957		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1958			continue;
1959		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1960	}
1961
1962	return 0;
1963#undef N
1964}
1965
1966static int
1967rum_init(struct ifnet *ifp)
1968{
1969#define N(a)	(sizeof (a) / sizeof ((a)[0]))
1970	struct rum_softc *sc = ifp->if_softc;
1971	struct ieee80211com *ic = &sc->sc_ic;
1972	struct rum_rx_data *data;
1973	uint32_t tmp;
1974	usbd_status error = 0;
1975	unsigned int i, ntries;
1976
1977	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1978		if (rum_attachhook(sc))
1979			goto fail;
1980	}
1981
1982	rum_stop(ifp, 0);
1983
1984	/* initialize MAC registers to default values */
1985	for (i = 0; i < N(rum_def_mac); i++)
1986		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1987
1988	/* set host ready */
1989	rum_write(sc, RT2573_MAC_CSR1, 3);
1990	rum_write(sc, RT2573_MAC_CSR1, 0);
1991
1992	/* wait for BBP/RF to wakeup */
1993	for (ntries = 0; ntries < 1000; ntries++) {
1994		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1995			break;
1996		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1997		DELAY(1000);
1998	}
1999	if (ntries == 1000) {
2000		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2001		    device_xname(sc->sc_dev));
2002		goto fail;
2003	}
2004
2005	if ((error = rum_bbp_init(sc)) != 0)
2006		goto fail;
2007
2008	/* select default channel */
2009	rum_select_band(sc, ic->ic_curchan);
2010	rum_select_antenna(sc);
2011	rum_set_chan(sc, ic->ic_curchan);
2012
2013	/* clear STA registers */
2014	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2015
2016	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2017	rum_set_macaddr(sc, ic->ic_myaddr);
2018
2019	/* initialize ASIC */
2020	rum_write(sc, RT2573_MAC_CSR1, 4);
2021
2022	/*
2023	 * Allocate xfer for AMRR statistics requests.
2024	 */
2025	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2026	if (sc->amrr_xfer == NULL) {
2027		printf("%s: could not allocate AMRR xfer\n",
2028		    device_xname(sc->sc_dev));
2029		goto fail;
2030	}
2031
2032	/*
2033	 * Open Tx and Rx USB bulk pipes.
2034	 */
2035	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2036	    &sc->sc_tx_pipeh);
2037	if (error != 0) {
2038		printf("%s: could not open Tx pipe: %s\n",
2039		    device_xname(sc->sc_dev), usbd_errstr(error));
2040		goto fail;
2041	}
2042
2043	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2044	    &sc->sc_rx_pipeh);
2045	if (error != 0) {
2046		printf("%s: could not open Rx pipe: %s\n",
2047		    device_xname(sc->sc_dev), usbd_errstr(error));
2048		goto fail;
2049	}
2050
2051	/*
2052	 * Allocate Tx and Rx xfer queues.
2053	 */
2054	error = rum_alloc_tx_list(sc);
2055	if (error != 0) {
2056		printf("%s: could not allocate Tx list\n",
2057		    device_xname(sc->sc_dev));
2058		goto fail;
2059	}
2060
2061	error = rum_alloc_rx_list(sc);
2062	if (error != 0) {
2063		printf("%s: could not allocate Rx list\n",
2064		    device_xname(sc->sc_dev));
2065		goto fail;
2066	}
2067
2068	/*
2069	 * Start up the receive pipe.
2070	 */
2071	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2072		data = &sc->rx_data[i];
2073
2074		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2075		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2076		error = usbd_transfer(data->xfer);
2077		if (error != USBD_NORMAL_COMPLETION &&
2078		    error != USBD_IN_PROGRESS) {
2079			printf("%s: could not queue Rx transfer\n",
2080			    device_xname(sc->sc_dev));
2081			goto fail;
2082		}
2083	}
2084
2085	/* update Rx filter */
2086	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2087
2088	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2089	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2090		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2091		       RT2573_DROP_ACKCTS;
2092		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2093			tmp |= RT2573_DROP_TODS;
2094		if (!(ifp->if_flags & IFF_PROMISC))
2095			tmp |= RT2573_DROP_NOT_TO_ME;
2096	}
2097	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2098
2099	ifp->if_flags &= ~IFF_OACTIVE;
2100	ifp->if_flags |= IFF_RUNNING;
2101
2102	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2103		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2104	else
2105		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2106
2107	return 0;
2108
2109fail:	rum_stop(ifp, 1);
2110	return error;
2111#undef N
2112}
2113
2114static void
2115rum_stop(struct ifnet *ifp, int disable)
2116{
2117	struct rum_softc *sc = ifp->if_softc;
2118	struct ieee80211com *ic = &sc->sc_ic;
2119	uint32_t tmp;
2120
2121	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2122
2123	sc->sc_tx_timer = 0;
2124	ifp->if_timer = 0;
2125	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2126
2127	/* disable Rx */
2128	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2129	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2130
2131	/* reset ASIC */
2132	rum_write(sc, RT2573_MAC_CSR1, 3);
2133	rum_write(sc, RT2573_MAC_CSR1, 0);
2134
2135	if (sc->amrr_xfer != NULL) {
2136		usbd_free_xfer(sc->amrr_xfer);
2137		sc->amrr_xfer = NULL;
2138	}
2139
2140	if (sc->sc_rx_pipeh != NULL) {
2141		usbd_abort_pipe(sc->sc_rx_pipeh);
2142		usbd_close_pipe(sc->sc_rx_pipeh);
2143		sc->sc_rx_pipeh = NULL;
2144	}
2145
2146	if (sc->sc_tx_pipeh != NULL) {
2147		usbd_abort_pipe(sc->sc_tx_pipeh);
2148		usbd_close_pipe(sc->sc_tx_pipeh);
2149		sc->sc_tx_pipeh = NULL;
2150	}
2151
2152	rum_free_rx_list(sc);
2153	rum_free_tx_list(sc);
2154}
2155
2156static int
2157rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2158{
2159	usb_device_request_t req;
2160	uint16_t reg = RT2573_MCU_CODE_BASE;
2161	usbd_status error;
2162
2163	/* copy firmware image into NIC */
2164	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2165		rum_write(sc, reg, UGETDW(ucode));
2166
2167	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2168	req.bRequest = RT2573_MCU_CNTL;
2169	USETW(req.wValue, RT2573_MCU_RUN);
2170	USETW(req.wIndex, 0);
2171	USETW(req.wLength, 0);
2172
2173	error = usbd_do_request(sc->sc_udev, &req, NULL);
2174	if (error != 0) {
2175		printf("%s: could not run firmware: %s\n",
2176		    device_xname(sc->sc_dev), usbd_errstr(error));
2177	}
2178	return error;
2179}
2180
2181static int
2182rum_prepare_beacon(struct rum_softc *sc)
2183{
2184	struct ieee80211com *ic = &sc->sc_ic;
2185	struct rum_tx_desc desc;
2186	struct mbuf *m0;
2187	int rate;
2188
2189	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2190	if (m0 == NULL) {
2191		aprint_error_dev(sc->sc_dev,
2192		    "could not allocate beacon frame\n");
2193		return ENOBUFS;
2194	}
2195
2196	/* send beacons at the lowest available rate */
2197	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2198
2199	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2200	    m0->m_pkthdr.len, rate);
2201
2202	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2203	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2204
2205	/* copy beacon header and payload into NIC memory */
2206	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2207	    m0->m_pkthdr.len);
2208
2209	m_freem(m0);
2210
2211	return 0;
2212}
2213
2214static void
2215rum_newassoc(struct ieee80211_node *ni, int isnew)
2216{
2217	/* start with lowest Tx rate */
2218	ni->ni_txrate = 0;
2219}
2220
2221static void
2222rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2223{
2224	int i;
2225
2226	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2227	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2228
2229	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2230
2231	/* set rate to some reasonable initial value */
2232	for (i = ni->ni_rates.rs_nrates - 1;
2233	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2234	     i--);
2235	ni->ni_txrate = i;
2236
2237	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2238}
2239
2240static void
2241rum_amrr_timeout(void *arg)
2242{
2243	struct rum_softc *sc = arg;
2244	usb_device_request_t req;
2245
2246	/*
2247	 * Asynchronously read statistic registers (cleared by read).
2248	 */
2249	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2250	req.bRequest = RT2573_READ_MULTI_MAC;
2251	USETW(req.wValue, 0);
2252	USETW(req.wIndex, RT2573_STA_CSR0);
2253	USETW(req.wLength, sizeof sc->sta);
2254
2255	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2256	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2257	    rum_amrr_update);
2258	(void)usbd_transfer(sc->amrr_xfer);
2259}
2260
2261static void
2262rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2263    usbd_status status)
2264{
2265	struct rum_softc *sc = (struct rum_softc *)priv;
2266	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2267
2268	if (status != USBD_NORMAL_COMPLETION) {
2269		printf("%s: could not retrieve Tx statistics - cancelling "
2270		    "automatic rate control\n", device_xname(sc->sc_dev));
2271		return;
2272	}
2273
2274	/* count TX retry-fail as Tx errors */
2275	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2276
2277	sc->amn.amn_retrycnt =
2278	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2279	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2280	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2281
2282	sc->amn.amn_txcnt =
2283	    sc->amn.amn_retrycnt +
2284	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2285
2286	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2287
2288	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2289}
2290
2291static int
2292rum_activate(device_t self, enum devact act)
2293{
2294	switch (act) {
2295	case DVACT_DEACTIVATE:
2296		/*if_deactivate(&sc->sc_ic.ic_if);*/
2297		return 0;
2298	default:
2299		return 0;
2300	}
2301}
2302
2303MODULE(MODULE_CLASS_DRIVER, if_rum, NULL);
2304
2305#ifdef _MODULE
2306#include "ioconf.c"
2307#endif
2308
2309static int
2310if_rum_modcmd(modcmd_t cmd, void *aux)
2311{
2312	int error = 0;
2313
2314	switch (cmd) {
2315	case MODULE_CMD_INIT:
2316#ifdef _MODULE
2317		error = config_init_component(cfdriver_ioconf_rum,
2318		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2319#endif
2320		return error;
2321	case MODULE_CMD_FINI:
2322#ifdef _MODULE
2323		error = config_fini_component(cfdriver_ioconf_rum,
2324		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2325#endif
2326		return error;
2327	default:
2328		return ENOTTY;
2329	}
2330}
2331