1/*	$NetBSD: sdhc.c,v 1.43 2013/01/10 17:19:33 jmcneill Exp $	*/
2/*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
3
4/*
5 * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20/*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25#include <sys/cdefs.h>
26__KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.10.2.4 2013/01/02 23:34:56 riz Exp $");
27
28#ifdef _KERNEL_OPT
29#include "opt_sdmmc.h"
30#endif
31
32#include <sys/param.h>
33#include <sys/device.h>
34#include <sys/kernel.h>
35#include <sys/kthread.h>
36#include <sys/malloc.h>
37#include <sys/systm.h>
38#include <sys/mutex.h>
39#include <sys/condvar.h>
40
41#include <dev/sdmmc/sdhcreg.h>
42#include <dev/sdmmc/sdhcvar.h>
43#include <dev/sdmmc/sdmmcchip.h>
44#include <dev/sdmmc/sdmmcreg.h>
45#include <dev/sdmmc/sdmmcvar.h>
46
47#ifdef SDHC_DEBUG
48int sdhcdebug = 1;
49#define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
50void	sdhc_dump_regs(struct sdhc_host *);
51#else
52#define DPRINTF(n,s)	do {} while (0)
53#endif
54
55#define SDHC_COMMAND_TIMEOUT	hz
56#define SDHC_BUFFER_TIMEOUT	hz
57#define SDHC_TRANSFER_TIMEOUT	hz
58#define SDHC_DMA_TIMEOUT	hz
59
60struct sdhc_host {
61	struct sdhc_softc *sc;		/* host controller device */
62
63	bus_space_tag_t iot;		/* host register set tag */
64	bus_space_handle_t ioh;		/* host register set handle */
65	bus_dma_tag_t dmat;		/* host DMA tag */
66
67	device_t sdmmc;			/* generic SD/MMC device */
68
69	struct kmutex host_mtx;
70
71	u_int clkbase;			/* base clock frequency in KHz */
72	int maxblklen;			/* maximum block length */
73	uint32_t ocr;			/* OCR value from capabilities */
74
75	uint8_t regs[14];		/* host controller state */
76
77	uint16_t intr_status;		/* soft interrupt status */
78	uint16_t intr_error_status;	/* soft error status */
79	struct kmutex intr_mtx;
80	struct kcondvar intr_cv;
81
82	int specver;			/* spec. version */
83
84	uint32_t flags;			/* flags for this host */
85#define SHF_USE_DMA		0x0001
86#define SHF_USE_4BIT_MODE	0x0002
87#define SHF_USE_8BIT_MODE	0x0004
88};
89
90#define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
91
92static uint8_t
93hread1(struct sdhc_host *hp, bus_size_t reg)
94{
95	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
96		return bus_space_read_1(hp->iot, hp->ioh, reg);
97
98	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
99}
100
101static uint16_t
102hread2(struct sdhc_host *hp, bus_size_t reg)
103{
104	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
105		return bus_space_read_2(hp->iot, hp->ioh, reg);
106
107	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
108}
109
110#define HREAD1(hp, reg)		hread1(hp, reg)
111#define HREAD2(hp, reg)		hread2(hp, reg)
112#define HREAD4(hp, reg)		\
113	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
114
115
116static void
117hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
118{
119	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
120		bus_space_write_1(hp->iot, hp->ioh, o, val);
121	} else {
122		const size_t shift = 8 * (o & 3);
123		o &= -4;
124		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
125		tmp = (val << shift) | (tmp & ~(0xff << shift));
126		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
127	}
128}
129
130static void
131hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
132{
133	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
134		bus_space_write_2(hp->iot, hp->ioh, o, val);
135	} else {
136		const size_t shift = 8 * (o & 2);
137		o &= -4;
138		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
139		tmp = (val << shift) | (tmp & ~(0xffff << shift));
140		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
141	}
142}
143
144#define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
145#define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
146#define HWRITE4(hp, reg, val)						\
147	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
148
149#define HCLR1(hp, reg, bits)						\
150	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
151#define HCLR2(hp, reg, bits)						\
152	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
153#define HCLR4(hp, reg, bits)						\
154	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
155#define HSET1(hp, reg, bits)						\
156	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
157#define HSET2(hp, reg, bits)						\
158	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
159#define HSET4(hp, reg, bits)						\
160	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
161
162static int	sdhc_host_reset(sdmmc_chipset_handle_t);
163static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
164static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
165static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
166static int	sdhc_card_detect(sdmmc_chipset_handle_t);
167static int	sdhc_write_protect(sdmmc_chipset_handle_t);
168static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
169static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
170static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
171static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
172static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
173static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
174static void	sdhc_exec_command(sdmmc_chipset_handle_t,
175		    struct sdmmc_command *);
176static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
177static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
178static int	sdhc_soft_reset(struct sdhc_host *, int);
179static int	sdhc_wait_intr(struct sdhc_host *, int, int);
180static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
181static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
182static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
183static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
184static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
185static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
186static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
187
188
189static struct sdmmc_chip_functions sdhc_functions = {
190	/* host controller reset */
191	sdhc_host_reset,
192
193	/* host controller capabilities */
194	sdhc_host_ocr,
195	sdhc_host_maxblklen,
196
197	/* card detection */
198	sdhc_card_detect,
199
200	/* write protect */
201	sdhc_write_protect,
202
203	/* bus power, clock frequency and width */
204	sdhc_bus_power,
205	sdhc_bus_clock,
206	sdhc_bus_width,
207	sdhc_bus_rod,
208
209	/* command execution */
210	sdhc_exec_command,
211
212	/* card interrupt */
213	sdhc_card_enable_intr,
214	sdhc_card_intr_ack
215};
216
217/*
218 * Called by attachment driver.  For each SD card slot there is one SD
219 * host controller standard register set. (1.3)
220 */
221int
222sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
223    bus_space_handle_t ioh, bus_size_t iosize)
224{
225	struct sdmmcbus_attach_args saa;
226	struct sdhc_host *hp;
227	uint32_t caps;
228	uint16_t sdhcver;
229
230	/* Allocate one more host structure. */
231	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
232	if (hp == NULL) {
233		aprint_error_dev(sc->sc_dev,
234		    "couldn't alloc memory (sdhc host)\n");
235		goto err1;
236	}
237	sc->sc_host[sc->sc_nhosts++] = hp;
238
239	/* Fill in the new host structure. */
240	hp->sc = sc;
241	hp->iot = iot;
242	hp->ioh = ioh;
243	hp->dmat = sc->sc_dmat;
244
245	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
246	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
247	cv_init(&hp->intr_cv, "sdhcintr");
248
249	sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
250	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
251	hp->specver = SDHC_SPEC_VERSION(sdhcver);
252	switch (SDHC_SPEC_VERSION(sdhcver)) {
253	case SDHC_SPEC_VERS_100:
254		aprint_normal("1.0");
255		break;
256
257	case SDHC_SPEC_VERS_200:
258		aprint_normal("2.0");
259		break;
260
261	case SDHC_SPEC_VERS_300:
262		aprint_normal("3.0");
263		break;
264
265	default:
266		aprint_normal("unknown version(0x%x)",
267		    SDHC_SPEC_VERSION(sdhcver));
268		break;
269	}
270	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
271
272	/*
273	 * Reset the host controller and enable interrupts.
274	 */
275	(void)sdhc_host_reset(hp);
276
277	/* Determine host capabilities. */
278	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
279		caps = sc->sc_caps;
280	} else {
281		mutex_enter(&hp->host_mtx);
282		caps = HREAD4(hp, SDHC_CAPABILITIES);
283		mutex_exit(&hp->host_mtx);
284	}
285
286#if notyet
287	/* Use DMA if the host system and the controller support it. */
288	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
289	 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
290	   && ISSET(caps, SDHC_DMA_SUPPORT)))) {
291		SET(hp->flags, SHF_USE_DMA);
292		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
293	}
294#endif
295
296	/*
297	 * Determine the base clock frequency. (2.2.24)
298	 */
299	if (hp->specver == SDHC_SPEC_VERS_300) {
300		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
301	} else {
302		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
303	}
304	if (hp->clkbase == 0) {
305		if (sc->sc_clkbase == 0) {
306			/* The attachment driver must tell us. */
307			aprint_error_dev(sc->sc_dev,"unknown base clock frequency\n");
308			goto err;
309		}
310		hp->clkbase = sc->sc_clkbase;
311	}
312	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
313		/* SDHC 1.0 supports only 10-63 MHz. */
314		aprint_error_dev(sc->sc_dev,
315		    "base clock frequency out of range: %u MHz\n",
316		    hp->clkbase / 1000);
317		goto err;
318	}
319	DPRINTF(1,("%s: base clock frequency %u MHz\n",
320	    device_xname(sc->sc_dev), hp->clkbase / 1000));
321
322	/*
323	 * XXX Set the data timeout counter value according to
324	 * capabilities. (2.2.15)
325	 */
326	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
327#if 0
328	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
329		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
330#endif
331
332	/*
333	 * Determine SD bus voltage levels supported by the controller.
334	 */
335	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
336		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
337	}
338	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
339		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
340	}
341	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
342		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
343	}
344
345	/*
346	 * Determine the maximum block length supported by the host
347	 * controller. (2.2.24)
348	 */
349	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
350	case SDHC_MAX_BLK_LEN_512:
351		hp->maxblklen = 512;
352		break;
353
354	case SDHC_MAX_BLK_LEN_1024:
355		hp->maxblklen = 1024;
356		break;
357
358	case SDHC_MAX_BLK_LEN_2048:
359		hp->maxblklen = 2048;
360		break;
361
362	case SDHC_MAX_BLK_LEN_4096:
363		hp->maxblklen = 4096;
364		break;
365
366	default:
367		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
368		goto err;
369	}
370	DPRINTF(1, ("%s: max block length %u byte%s\n",
371	    device_xname(sc->sc_dev), hp->maxblklen,
372	    hp->maxblklen > 1 ? "s" : ""));
373
374	/*
375	 * Attach the generic SD/MMC bus driver.  (The bus driver must
376	 * not invoke any chipset functions before it is attached.)
377	 */
378	memset(&saa, 0, sizeof(saa));
379	saa.saa_busname = "sdmmc";
380	saa.saa_sct = &sdhc_functions;
381	saa.saa_sch = hp;
382	saa.saa_dmat = hp->dmat;
383	saa.saa_clkmax = hp->clkbase;
384	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
385		saa.saa_clkmin = hp->clkbase / 256 / 2046;
386	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
387		saa.saa_clkmin = hp->clkbase / 256 / 16;
388	else if (hp->specver == SDHC_SPEC_VERS_300)
389		saa.saa_clkmin = hp->clkbase / 0x3ff;
390	else
391		saa.saa_clkmin = hp->clkbase / 256;
392
393	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
394	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
395		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
396	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
397		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
398#if notyet
399	if (ISSET(hp->flags, SHF_USE_DMA))
400		saa.saa_caps |= SMC_CAPS_DMA;
401#endif
402	hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
403
404	return 0;
405
406err:
407	cv_destroy(&hp->intr_cv);
408	mutex_destroy(&hp->intr_mtx);
409	mutex_destroy(&hp->host_mtx);
410	free(hp, M_DEVBUF);
411	sc->sc_host[--sc->sc_nhosts] = NULL;
412err1:
413	return 1;
414}
415
416int
417sdhc_detach(device_t dev, int flags)
418{
419	struct sdhc_host *hp = (struct sdhc_host *)dev;
420	struct sdhc_softc *sc = hp->sc;
421	int rv = 0;
422
423	if (hp->sdmmc)
424		rv = config_detach(hp->sdmmc, flags);
425
426	cv_destroy(&hp->intr_cv);
427	mutex_destroy(&hp->intr_mtx);
428	mutex_destroy(&hp->host_mtx);
429	free(hp, M_DEVBUF);
430	sc->sc_host[--sc->sc_nhosts] = NULL;
431
432	return rv;
433}
434
435bool
436sdhc_suspend(device_t dev, const pmf_qual_t *qual)
437{
438	struct sdhc_softc *sc = device_private(dev);
439	struct sdhc_host *hp;
440
441	/* XXX poll for command completion or suspend command
442	 * in progress */
443
444	/* Save the host controller state. */
445	for (size_t n = 0; n < sc->sc_nhosts; n++) {
446		hp = sc->sc_host[n];
447		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
448			for (size_t i = 0; i < sizeof hp->regs; i += 4) {
449				uint32_t v = HREAD4(hp, i);
450				hp->regs[i + 0] = (v >> 0);
451				hp->regs[i + 1] = (v >> 8);
452				if (i + 3 < sizeof hp->regs) {
453					hp->regs[i + 2] = (v >> 16);
454					hp->regs[i + 3] = (v >> 24);
455				}
456			}
457		} else {
458			for (size_t i = 0; i < sizeof hp->regs; i++) {
459				hp->regs[i] = HREAD1(hp, i);
460			}
461		}
462	}
463	return true;
464}
465
466bool
467sdhc_resume(device_t dev, const pmf_qual_t *qual)
468{
469	struct sdhc_softc *sc = device_private(dev);
470	struct sdhc_host *hp;
471
472	/* Restore the host controller state. */
473	for (size_t n = 0; n < sc->sc_nhosts; n++) {
474		hp = sc->sc_host[n];
475		(void)sdhc_host_reset(hp);
476		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
477			for (size_t i = 0; i < sizeof hp->regs; i += 4) {
478				if (i + 3 < sizeof hp->regs) {
479					HWRITE4(hp, i,
480					    (hp->regs[i + 0] << 0)
481					    | (hp->regs[i + 1] << 8)
482					    | (hp->regs[i + 2] << 16)
483					    | (hp->regs[i + 3] << 24));
484				} else {
485					HWRITE4(hp, i,
486					    (hp->regs[i + 0] << 0)
487					    | (hp->regs[i + 1] << 8));
488				}
489			}
490		} else {
491			for (size_t i = 0; i < sizeof hp->regs; i++) {
492				HWRITE1(hp, i, hp->regs[i]);
493			}
494		}
495	}
496	return true;
497}
498
499bool
500sdhc_shutdown(device_t dev, int flags)
501{
502	struct sdhc_softc *sc = device_private(dev);
503	struct sdhc_host *hp;
504
505	/* XXX chip locks up if we don't disable it before reboot. */
506	for (size_t i = 0; i < sc->sc_nhosts; i++) {
507		hp = sc->sc_host[i];
508		(void)sdhc_host_reset(hp);
509	}
510	return true;
511}
512
513/*
514 * Reset the host controller.  Called during initialization, when
515 * cards are removed, upon resume, and during error recovery.
516 */
517static int
518sdhc_host_reset1(sdmmc_chipset_handle_t sch)
519{
520	struct sdhc_host *hp = (struct sdhc_host *)sch;
521	uint32_t sdhcimask;
522	int error;
523
524	/* Don't lock. */
525
526	/* Disable all interrupts. */
527	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
528		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
529	} else {
530		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
531	}
532
533	/*
534	 * Reset the entire host controller and wait up to 100ms for
535	 * the controller to clear the reset bit.
536	 */
537	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
538	if (error)
539		goto out;
540
541	/* Set data timeout counter value to max for now. */
542	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
543#if 0
544	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
545		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
546#endif
547
548	/* Enable interrupts. */
549	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
550	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
551	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
552	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
553	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
554		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
555		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
556		sdhcimask ^=
557		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
558		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
559		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
560	} else {
561		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
562		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
563		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
564		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
565		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
566	}
567
568out:
569	return error;
570}
571
572static int
573sdhc_host_reset(sdmmc_chipset_handle_t sch)
574{
575	struct sdhc_host *hp = (struct sdhc_host *)sch;
576	int error;
577
578	mutex_enter(&hp->host_mtx);
579	error = sdhc_host_reset1(sch);
580	mutex_exit(&hp->host_mtx);
581
582	return error;
583}
584
585static uint32_t
586sdhc_host_ocr(sdmmc_chipset_handle_t sch)
587{
588	struct sdhc_host *hp = (struct sdhc_host *)sch;
589
590	return hp->ocr;
591}
592
593static int
594sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
595{
596	struct sdhc_host *hp = (struct sdhc_host *)sch;
597
598	return hp->maxblklen;
599}
600
601/*
602 * Return non-zero if the card is currently inserted.
603 */
604static int
605sdhc_card_detect(sdmmc_chipset_handle_t sch)
606{
607	struct sdhc_host *hp = (struct sdhc_host *)sch;
608	int r;
609
610	mutex_enter(&hp->host_mtx);
611	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
612	mutex_exit(&hp->host_mtx);
613
614	return r ? 1 : 0;
615}
616
617/*
618 * Return non-zero if the card is currently write-protected.
619 */
620static int
621sdhc_write_protect(sdmmc_chipset_handle_t sch)
622{
623	struct sdhc_host *hp = (struct sdhc_host *)sch;
624	int r;
625
626	mutex_enter(&hp->host_mtx);
627	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
628	mutex_exit(&hp->host_mtx);
629
630	if (!r)
631		return 1;
632	return 0;
633}
634
635/*
636 * Set or change SD bus voltage and enable or disable SD bus power.
637 * Return zero on success.
638 */
639static int
640sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
641{
642	struct sdhc_host *hp = (struct sdhc_host *)sch;
643	uint8_t vdd;
644	int error = 0;
645
646	mutex_enter(&hp->host_mtx);
647
648	/*
649	 * Disable bus power before voltage change.
650	 */
651	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
652	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
653		HWRITE1(hp, SDHC_POWER_CTL, 0);
654
655	/* If power is disabled, reset the host and return now. */
656	if (ocr == 0) {
657		(void)sdhc_host_reset1(hp);
658		goto out;
659	}
660
661	/*
662	 * Select the lowest voltage according to capabilities.
663	 */
664	ocr &= hp->ocr;
665	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
666		vdd = SDHC_VOLTAGE_1_8V;
667	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
668		vdd = SDHC_VOLTAGE_3_0V;
669	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
670		vdd = SDHC_VOLTAGE_3_3V;
671	} else {
672		/* Unsupported voltage level requested. */
673		error = EINVAL;
674		goto out;
675	}
676
677	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
678		/*
679		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
680		 * voltage ramp until power rises.
681		 */
682		HWRITE1(hp, SDHC_POWER_CTL,
683		    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
684		sdmmc_delay(10000);
685
686		/*
687		 * The host system may not power the bus due to battery low,
688		 * etc.  In that case, the host controller should clear the
689		 * bus power bit.
690		 */
691		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
692			error = ENXIO;
693			goto out;
694		}
695	}
696
697out:
698	mutex_exit(&hp->host_mtx);
699
700	return error;
701}
702
703/*
704 * Return the smallest possible base clock frequency divisor value
705 * for the CLOCK_CTL register to produce `freq' (KHz).
706 */
707static bool
708sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
709{
710	u_int div;
711
712	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
713		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
714			if ((hp->clkbase / div) <= freq) {
715				*divp = SDHC_SDCLK_CGM
716				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
717				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
718				return true;
719			}
720		}
721		/* No divisor found. */
722		return false;
723	}
724	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
725		u_int dvs = (hp->clkbase + freq - 1) / freq;
726		u_int roundup = dvs & 1;
727		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
728			if (dvs + roundup <= 16) {
729				dvs += roundup - 1;
730				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
731				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
732				DPRINTF(2,
733				    ("%s: divisor for freq %u is %u * %u\n",
734				    HDEVNAME(hp), freq, div * 2, dvs + 1));
735				return true;
736			}
737			/*
738			 * If we drop bits, we need to round up the divisor.
739			 */
740			roundup |= dvs & 1;
741		}
742		/* No divisor found. */
743		return false;
744	}
745	if (hp->specver == SDHC_SPEC_VERS_300) {
746		div = howmany(hp->clkbase, freq);
747		if (div > 0x3ff)
748			return false;
749		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
750			 << SDHC_SDCLK_XDIV_SHIFT) |
751			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
752			 << SDHC_SDCLK_DIV_SHIFT);
753		return true;
754	} else {
755		for (div = 1; div <= 256; div *= 2) {
756			if ((hp->clkbase / div) <= freq) {
757				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
758				//freq = hp->clkbase / div;
759				return true;
760			}
761		}
762		/* No divisor found. */
763		return false;
764	}
765	/* No divisor found. */
766	return false;
767}
768
769/*
770 * Set or change SDCLK frequency or disable the SD clock.
771 * Return zero on success.
772 */
773static int
774sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
775{
776	struct sdhc_host *hp = (struct sdhc_host *)sch;
777	u_int div;
778	u_int timo;
779	int error = 0;
780#ifdef DIAGNOSTIC
781	bool ispresent;
782#endif
783
784#ifdef DIAGNOSTIC
785	mutex_enter(&hp->host_mtx);
786	ispresent = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
787	mutex_exit(&hp->host_mtx);
788
789	/* Must not stop the clock if commands are in progress. */
790	if (ispresent && sdhc_card_detect(hp))
791		printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
792		    device_xname(hp->sc->sc_dev));
793#endif
794
795	mutex_enter(&hp->host_mtx);
796
797	/*
798	 * Stop SD clock before changing the frequency.
799	 */
800	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
801		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
802		if (freq == SDMMC_SDCLK_OFF) {
803			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
804			goto out;
805		}
806	} else {
807		HWRITE2(hp, SDHC_CLOCK_CTL, 0);
808		if (freq == SDMMC_SDCLK_OFF)
809			goto out;
810	}
811
812	/*
813	 * Set the minimum base clock frequency divisor.
814	 */
815	if (!sdhc_clock_divisor(hp, freq, &div)) {
816		/* Invalid base clock frequency or `freq' value. */
817		error = EINVAL;
818		goto out;
819	}
820	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
821		HWRITE4(hp, SDHC_CLOCK_CTL,
822		    div | (SDHC_TIMEOUT_MAX << 16));
823	} else {
824		HWRITE2(hp, SDHC_CLOCK_CTL, div);
825	}
826
827	/*
828	 * Start internal clock.  Wait 10ms for stabilization.
829	 */
830	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
831		sdmmc_delay(10000);
832		HSET4(hp, SDHC_CLOCK_CTL, 8|SDHC_INTCLK_ENABLE|SDHC_INTCLK_STABLE);
833	} else {
834		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
835		for (timo = 1000; timo > 0; timo--) {
836			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
837				break;
838			sdmmc_delay(10);
839		}
840		if (timo == 0) {
841			error = ETIMEDOUT;
842			goto out;
843		}
844	}
845
846	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
847		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
848		/*
849		 * Sending 80 clocks at 400kHz takes 200us.
850		 * So delay for that time + slop and then
851		 * check a few times for completion.
852		 */
853		sdmmc_delay(210);
854		for (timo = 10; timo > 0; timo--) {
855			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
856			    SDHC_INIT_ACTIVE))
857				break;
858			sdmmc_delay(10);
859		}
860		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
861		/*
862		 * Enable SD clock.
863		 */
864		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
865	} else {
866		/*
867		 * Enable SD clock.
868		 */
869		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
870
871		if (freq > 25000 &&
872		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
873			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
874		else
875			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
876	}
877
878out:
879	mutex_exit(&hp->host_mtx);
880
881	return error;
882}
883
884static int
885sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
886{
887	struct sdhc_host *hp = (struct sdhc_host *)sch;
888	int reg;
889
890	switch (width) {
891	case 1:
892	case 4:
893		break;
894
895	case 8:
896		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
897			break;
898		/* FALLTHROUGH */
899	default:
900		DPRINTF(0,("%s: unsupported bus width (%d)\n",
901		    HDEVNAME(hp), width));
902		return 1;
903	}
904
905	mutex_enter(&hp->host_mtx);
906	reg = HREAD1(hp, SDHC_HOST_CTL);
907	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
908		reg &= ~(SDHC_4BIT_MODE|SDHC_8BIT_MODE);
909		if (width == 4)
910			reg |= SDHC_4BIT_MODE;
911		else if (width == 8)
912			reg |= SDHC_8BIT_MODE;
913	} else {
914		reg &= ~SDHC_4BIT_MODE;
915		if (width == 4)
916			reg |= SDHC_4BIT_MODE;
917	}
918	HWRITE1(hp, SDHC_HOST_CTL, reg);
919	mutex_exit(&hp->host_mtx);
920
921	return 0;
922}
923
924static int
925sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
926{
927
928	/* Nothing ?? */
929	return 0;
930}
931
932static void
933sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
934{
935	struct sdhc_host *hp = (struct sdhc_host *)sch;
936
937	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
938		mutex_enter(&hp->host_mtx);
939		if (enable) {
940			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
941			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
942		} else {
943			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
944			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
945		}
946		mutex_exit(&hp->host_mtx);
947	}
948}
949
950static void
951sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
952{
953	struct sdhc_host *hp = (struct sdhc_host *)sch;
954
955	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
956		mutex_enter(&hp->host_mtx);
957		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
958		mutex_exit(&hp->host_mtx);
959	}
960}
961
962static int
963sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
964{
965	uint32_t state;
966	int timeout;
967
968	for (timeout = 10; timeout > 0; timeout--) {
969		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
970			return 0;
971		sdmmc_delay(10000);
972	}
973	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
974	    value, state));
975	return ETIMEDOUT;
976}
977
978static void
979sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
980{
981	struct sdhc_host *hp = (struct sdhc_host *)sch;
982	int error;
983
984#if 0
985	if (cmd->c_data) {
986		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
987		if (ISSET(hp->flags, SHF_USE_DMA)) {
988			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
989			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
990		} else {
991			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
992			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
993		}
994	}
995#endif
996
997	/*
998	 * Start the MMC command, or mark `cmd' as failed and return.
999	 */
1000	error = sdhc_start_command(hp, cmd);
1001	if (error) {
1002		cmd->c_error = error;
1003		goto out;
1004	}
1005
1006	/*
1007	 * Wait until the command phase is done, or until the command
1008	 * is marked done for any other reason.
1009	 */
1010	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1011		cmd->c_error = ETIMEDOUT;
1012		goto out;
1013	}
1014
1015	/*
1016	 * The host controller removes bits [0:7] from the response
1017	 * data (CRC) and we pass the data up unchanged to the bus
1018	 * driver (without padding).
1019	 */
1020	mutex_enter(&hp->host_mtx);
1021	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1022		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1023		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1024			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1025			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1026			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1027		}
1028	}
1029	mutex_exit(&hp->host_mtx);
1030	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1031
1032	/*
1033	 * If the command has data to transfer in any direction,
1034	 * execute the transfer now.
1035	 */
1036	if (cmd->c_error == 0 && cmd->c_data != NULL)
1037		sdhc_transfer_data(hp, cmd);
1038
1039out:
1040#if 0
1041	if (cmd->c_dmamap != NULL && cmd->c_error == 0
1042	    && ISSET(hp->flags, SHF_USE_DMA)
1043	    && ISSET(cmd->c_flags, SCF_CMD_READ) {
1044		if (((uintptr_t)cmd->c_data & PAGE_MASK) + cmd->c_datalen > PAGE_SIZE) {
1045			memcpy(cmd->c_data,
1046			    (void *)hp->sc->dma_map->dm_segs[0].ds_addr,
1047			    cmd->c_datalen);
1048		}
1049		bus_dmamap_unload(hp->sc->dt, hp->sc->dma_map);
1050	}
1051#endif
1052
1053	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1054	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1055		mutex_enter(&hp->host_mtx);
1056		/* Turn off the LED. */
1057		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1058		mutex_exit(&hp->host_mtx);
1059	}
1060	SET(cmd->c_flags, SCF_ITSDONE);
1061
1062	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1063	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1064	    cmd->c_flags, cmd->c_error));
1065}
1066
1067static int
1068sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1069{
1070	struct sdhc_softc * const sc = hp->sc;
1071	uint16_t blksize = 0;
1072	uint16_t blkcount = 0;
1073	uint16_t mode;
1074	uint16_t command;
1075	int error;
1076
1077	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1078	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1079	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1080
1081	/*
1082	 * The maximum block length for commands should be the minimum
1083	 * of the host buffer size and the card buffer size. (1.7.2)
1084	 */
1085
1086	/* Fragment the data into proper blocks. */
1087	if (cmd->c_datalen > 0) {
1088		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1089		blkcount = cmd->c_datalen / blksize;
1090		if (cmd->c_datalen % blksize > 0) {
1091			/* XXX: Split this command. (1.7.4) */
1092			aprint_error_dev(sc->sc_dev,
1093			    "data not a multiple of %u bytes\n", blksize);
1094			return EINVAL;
1095		}
1096	}
1097
1098	/* Check limit imposed by 9-bit block count. (1.7.2) */
1099	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1100		aprint_error_dev(sc->sc_dev, "too much data\n");
1101		return EINVAL;
1102	}
1103
1104	/* Prepare transfer mode register value. (2.2.5) */
1105	mode = 0;
1106	if (ISSET(cmd->c_flags, SCF_CMD_READ))
1107		mode |= SDHC_READ_MODE;
1108	if (blkcount > 0) {
1109		mode |= SDHC_BLOCK_COUNT_ENABLE;
1110		if (blkcount > 1) {
1111			mode |= SDHC_MULTI_BLOCK_MODE;
1112			/* XXX only for memory commands? */
1113			mode |= SDHC_AUTO_CMD12_ENABLE;
1114		}
1115	}
1116	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1117		if (cmd->c_dmamap->dm_nsegs == 1) {
1118			mode |= SDHC_DMA_ENABLE;
1119		} else {
1120			cmd->c_dmamap = NULL;
1121		}
1122	}
1123
1124	/*
1125	 * Prepare command register value. (2.2.6)
1126	 */
1127	command =
1128	 (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1129
1130	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1131		command |= SDHC_CRC_CHECK_ENABLE;
1132	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1133		command |= SDHC_INDEX_CHECK_ENABLE;
1134	if (cmd->c_data != NULL)
1135		command |= SDHC_DATA_PRESENT_SELECT;
1136
1137	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1138		command |= SDHC_NO_RESPONSE;
1139	else if (ISSET(cmd->c_flags, SCF_RSP_136))
1140		command |= SDHC_RESP_LEN_136;
1141	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1142		command |= SDHC_RESP_LEN_48_CHK_BUSY;
1143	else
1144		command |= SDHC_RESP_LEN_48;
1145
1146	/* Wait until command and data inhibit bits are clear. (1.5) */
1147	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1148	if (error)
1149		return error;
1150
1151	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1152	    HDEVNAME(hp), blksize, blkcount, mode, command));
1153
1154	mutex_enter(&hp->host_mtx);
1155
1156	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1157		/* Alert the user not to remove the card. */
1158		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1159	}
1160
1161	/* Set DMA start address. */
1162	if (ISSET(mode, SDHC_DMA_ENABLE))
1163		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1164
1165	/*
1166	 * Start a CPU data transfer.  Writing to the high order byte
1167	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1168	 */
1169	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1170		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1171		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1172		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1173	} else {
1174		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1175		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1176		if (blkcount > 1)
1177			HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1178		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1179		HWRITE2(hp, SDHC_COMMAND, command);
1180	}
1181
1182	mutex_exit(&hp->host_mtx);
1183
1184	return 0;
1185}
1186
1187static void
1188sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1189{
1190	int error;
1191
1192	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1193	    MMC_R1(cmd->c_resp), cmd->c_datalen));
1194
1195#ifdef SDHC_DEBUG
1196	/* XXX I forgot why I wanted to know when this happens :-( */
1197	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1198	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1199		aprint_error_dev(hp->sc->sc_dev,
1200		    "CMD52/53 error response flags %#x\n",
1201		    MMC_R1(cmd->c_resp) & 0xff00);
1202	}
1203#endif
1204
1205	if (cmd->c_dmamap != NULL)
1206		error = sdhc_transfer_data_dma(hp, cmd);
1207	else
1208		error = sdhc_transfer_data_pio(hp, cmd);
1209	if (error)
1210		cmd->c_error = error;
1211	SET(cmd->c_flags, SCF_ITSDONE);
1212
1213	DPRINTF(1,("%s: data transfer done (error=%d)\n",
1214	    HDEVNAME(hp), cmd->c_error));
1215}
1216
1217static int
1218sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1219{
1220	bus_dmamap_t dmap = cmd->c_dmamap;
1221	uint16_t blklen = cmd->c_blklen;
1222	uint16_t blkcnt = cmd->c_datalen / blklen;
1223	uint16_t remain;
1224	int error = 0;
1225
1226	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1227	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1228	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1229	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1230
1231	for (;;) {
1232		if (!sdhc_wait_intr(hp,
1233		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1234		    SDHC_DMA_TIMEOUT)) {
1235			error = ETIMEDOUT;
1236			break;
1237		}
1238
1239		/* single block mode */
1240		if (blkcnt == 1)
1241			break;
1242
1243		/* multi block mode */
1244		remain = HREAD2(hp, SDHC_BLOCK_COUNT);
1245		if (remain == 0)
1246			break;
1247
1248		HWRITE4(hp, SDHC_DMA_ADDR,
1249		    dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
1250	}
1251
1252#if 0
1253	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1254	    SDHC_TRANSFER_TIMEOUT))
1255		error = ETIMEDOUT;
1256#endif
1257
1258	return error;
1259}
1260
1261static int
1262sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1263{
1264	uint8_t *data = cmd->c_data;
1265	u_int len, datalen;
1266	u_int imask;
1267	u_int pmask;
1268	int error = 0;
1269	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1270
1271	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1272		imask = SDHC_BUFFER_READ_READY;
1273		pmask = SDHC_BUFFER_READ_ENABLE;
1274		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1275			pio_func = esdhc_read_data_pio;
1276		} else {
1277			pio_func = sdhc_read_data_pio;
1278		}
1279	} else {
1280		imask = SDHC_BUFFER_WRITE_READY;
1281		pmask = SDHC_BUFFER_WRITE_ENABLE;
1282		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1283			pio_func = esdhc_write_data_pio;
1284		} else {
1285			pio_func = sdhc_write_data_pio;
1286		}
1287	}
1288	datalen = cmd->c_datalen;
1289
1290	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1291	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1292	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1293
1294	while (datalen > 0) {
1295		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1296			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1297				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1298			} else {
1299				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1300			}
1301			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1302				error = ETIMEDOUT;
1303				break;
1304			}
1305
1306			error = sdhc_wait_state(hp, pmask, pmask);
1307			if (error)
1308				break;
1309		}
1310
1311		len = MIN(datalen, cmd->c_blklen);
1312		(*pio_func)(hp, data, len);
1313		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1314		    HDEVNAME(hp), len, data));
1315
1316		data += len;
1317		datalen -= len;
1318	}
1319
1320	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1321	    SDHC_TRANSFER_TIMEOUT))
1322		error = ETIMEDOUT;
1323
1324	return error;
1325}
1326
1327static void
1328sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1329{
1330
1331	if (((__uintptr_t)data & 3) == 0) {
1332		while (datalen > 3) {
1333			*(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1334			data += 4;
1335			datalen -= 4;
1336		}
1337		if (datalen > 1) {
1338			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1339			data += 2;
1340			datalen -= 2;
1341		}
1342		if (datalen > 0) {
1343			*data = HREAD1(hp, SDHC_DATA);
1344			data += 1;
1345			datalen -= 1;
1346		}
1347	} else if (((__uintptr_t)data & 1) == 0) {
1348		while (datalen > 1) {
1349			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1350			data += 2;
1351			datalen -= 2;
1352		}
1353		if (datalen > 0) {
1354			*data = HREAD1(hp, SDHC_DATA);
1355			data += 1;
1356			datalen -= 1;
1357		}
1358	} else {
1359		while (datalen > 0) {
1360			*data = HREAD1(hp, SDHC_DATA);
1361			data += 1;
1362			datalen -= 1;
1363		}
1364	}
1365}
1366
1367static void
1368sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1369{
1370
1371	if (((__uintptr_t)data & 3) == 0) {
1372		while (datalen > 3) {
1373			HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1374			data += 4;
1375			datalen -= 4;
1376		}
1377		if (datalen > 1) {
1378			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1379			data += 2;
1380			datalen -= 2;
1381		}
1382		if (datalen > 0) {
1383			HWRITE1(hp, SDHC_DATA, *data);
1384			data += 1;
1385			datalen -= 1;
1386		}
1387	} else if (((__uintptr_t)data & 1) == 0) {
1388		while (datalen > 1) {
1389			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1390			data += 2;
1391			datalen -= 2;
1392		}
1393		if (datalen > 0) {
1394			HWRITE1(hp, SDHC_DATA, *data);
1395			data += 1;
1396			datalen -= 1;
1397		}
1398	} else {
1399		while (datalen > 0) {
1400			HWRITE1(hp, SDHC_DATA, *data);
1401			data += 1;
1402			datalen -= 1;
1403		}
1404	}
1405}
1406
1407
1408static void
1409esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1410{
1411	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1412	uint32_t v;
1413
1414	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1415	size_t count = 0;
1416
1417	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1418		if (count == 0) {
1419			/*
1420			 * If we've drained "watermark" words, we need to wait
1421			 * a little bit so the read FIFO can refill.
1422			 */
1423			sdmmc_delay(10);
1424			count = watermark;
1425		}
1426		v = HREAD4(hp, SDHC_DATA);
1427		v = le32toh(v);
1428		*(uint32_t *)data = v;
1429		data += 4;
1430		datalen -= 4;
1431		status = HREAD2(hp, SDHC_NINTR_STATUS);
1432		count--;
1433	}
1434	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1435		if (count == 0) {
1436			sdmmc_delay(10);
1437		}
1438		v = HREAD4(hp, SDHC_DATA);
1439		v = le32toh(v);
1440		do {
1441			*data++ = v;
1442			v >>= 8;
1443		} while (--datalen > 0);
1444	}
1445}
1446
1447static void
1448esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1449{
1450	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1451	uint32_t v;
1452
1453	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1454	size_t count = watermark;
1455
1456	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1457		if (count == 0) {
1458			sdmmc_delay(10);
1459			count = watermark;
1460		}
1461		v = *(uint32_t *)data;
1462		v = htole32(v);
1463		HWRITE4(hp, SDHC_DATA, v);
1464		data += 4;
1465		datalen -= 4;
1466		status = HREAD2(hp, SDHC_NINTR_STATUS);
1467		count--;
1468	}
1469	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1470		if (count == 0) {
1471			sdmmc_delay(10);
1472		}
1473		v = *(uint32_t *)data;
1474		v = htole32(v);
1475		HWRITE4(hp, SDHC_DATA, v);
1476	}
1477}
1478
1479/* Prepare for another command. */
1480static int
1481sdhc_soft_reset(struct sdhc_host *hp, int mask)
1482{
1483	int timo;
1484
1485	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1486
1487	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1488	for (timo = 10; timo > 0; timo--) {
1489		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1490			break;
1491		sdmmc_delay(10000);
1492		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1493	}
1494	if (timo == 0) {
1495		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1496		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
1497		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1498		return ETIMEDOUT;
1499	}
1500
1501	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1502		HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1503	}
1504
1505	return 0;
1506}
1507
1508static int
1509sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1510{
1511	int status;
1512
1513	mask |= SDHC_ERROR_INTERRUPT;
1514
1515	mutex_enter(&hp->intr_mtx);
1516	status = hp->intr_status & mask;
1517	while (status == 0) {
1518		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1519		    == EWOULDBLOCK) {
1520			status |= SDHC_ERROR_INTERRUPT;
1521			break;
1522		}
1523		status = hp->intr_status & mask;
1524	}
1525	hp->intr_status &= ~status;
1526
1527	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1528	    hp->intr_error_status));
1529
1530	/* Command timeout has higher priority than command complete. */
1531	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1532		hp->intr_error_status = 0;
1533		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1534		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1535		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1536		}
1537		status = 0;
1538	}
1539	mutex_exit(&hp->intr_mtx);
1540
1541	return status;
1542}
1543
1544/*
1545 * Established by attachment driver at interrupt priority IPL_SDMMC.
1546 */
1547int
1548sdhc_intr(void *arg)
1549{
1550	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1551	struct sdhc_host *hp;
1552	int done = 0;
1553	uint16_t status;
1554	uint16_t error;
1555
1556	/* We got an interrupt, but we don't know from which slot. */
1557	for (size_t host = 0; host < sc->sc_nhosts; host++) {
1558		hp = sc->sc_host[host];
1559		if (hp == NULL)
1560			continue;
1561
1562		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1563			/* Find out which interrupts are pending. */
1564			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1565			status = xstatus;
1566			error = xstatus >> 16;
1567			if (error)
1568				xstatus |= SDHC_ERROR_INTERRUPT;
1569			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1570				continue; /* no interrupt for us */
1571			/* Acknowledge the interrupts we are about to handle. */
1572			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1573		} else {
1574			/* Find out which interrupts are pending. */
1575			error = 0;
1576			status = HREAD2(hp, SDHC_NINTR_STATUS);
1577			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1578				continue; /* no interrupt for us */
1579			/* Acknowledge the interrupts we are about to handle. */
1580			HWRITE2(hp, SDHC_NINTR_STATUS, status);
1581			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1582				/* Acknowledge error interrupts. */
1583				error = HREAD2(hp, SDHC_EINTR_STATUS);
1584				HWRITE2(hp, SDHC_EINTR_STATUS, error);
1585			}
1586		}
1587
1588		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1589		    status, error));
1590
1591		/* Claim this interrupt. */
1592		done = 1;
1593
1594		/*
1595		 * Service error interrupts.
1596		 */
1597		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1598		    SDHC_DATA_TIMEOUT_ERROR)) {
1599			hp->intr_error_status |= error;
1600			hp->intr_status |= status;
1601			cv_broadcast(&hp->intr_cv);
1602		}
1603
1604		/*
1605		 * Wake up the sdmmc event thread to scan for cards.
1606		 */
1607		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1608			sdmmc_needs_discover(hp->sdmmc);
1609			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1610				HCLR4(hp, SDHC_NINTR_STATUS_EN,
1611				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1612				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1613				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1614			}
1615		}
1616
1617		/*
1618		 * Wake up the blocking process to service command
1619		 * related interrupt(s).
1620		 */
1621		if (ISSET(status, SDHC_COMMAND_COMPLETE|
1622		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1623		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1624			hp->intr_status |= status;
1625			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1626				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1627				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1628			}
1629			cv_broadcast(&hp->intr_cv);
1630		}
1631
1632		/*
1633		 * Service SD card interrupts.
1634		 */
1635		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1636		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
1637			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1638			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1639			sdmmc_card_intr(hp->sdmmc);
1640		}
1641	}
1642
1643	return done;
1644}
1645
1646#ifdef SDHC_DEBUG
1647void
1648sdhc_dump_regs(struct sdhc_host *hp)
1649{
1650
1651	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
1652	    HREAD4(hp, SDHC_PRESENT_STATE));
1653	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1654		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
1655		    HREAD1(hp, SDHC_POWER_CTL));
1656	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
1657	    HREAD2(hp, SDHC_NINTR_STATUS));
1658	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
1659	    HREAD2(hp, SDHC_EINTR_STATUS));
1660	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
1661	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
1662	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
1663	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
1664	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
1665	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1666	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
1667	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1668	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
1669	    HREAD4(hp, SDHC_CAPABILITIES));
1670	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1671	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
1672}
1673#endif
1674