1/*	$NetBSD: if_stge.c,v 1.53 2011/03/12 16:52:05 phx Exp $	*/
2
3/*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.53 2011/03/12 16:52:05 phx Exp $");
39
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/kernel.h>
47#include <sys/socket.h>
48#include <sys/ioctl.h>
49#include <sys/errno.h>
50#include <sys/device.h>
51#include <sys/queue.h>
52
53#include <net/if.h>
54#include <net/if_dl.h>
55#include <net/if_media.h>
56#include <net/if_ether.h>
57
58#include <net/bpf.h>
59
60#include <sys/bus.h>
61#include <sys/intr.h>
62
63#include <dev/mii/mii.h>
64#include <dev/mii/miivar.h>
65#include <dev/mii/mii_bitbang.h>
66
67#include <dev/pci/pcireg.h>
68#include <dev/pci/pcivar.h>
69#include <dev/pci/pcidevs.h>
70
71#include <dev/pci/if_stgereg.h>
72
73#include <prop/proplib.h>
74
75/* #define	STGE_CU_BUG			1 */
76#define	STGE_VLAN_UNTAG			1
77/* #define	STGE_VLAN_CFI		1 */
78
79/*
80 * Transmit descriptor list size.
81 */
82#define	STGE_NTXDESC		256
83#define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
84#define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
85
86/*
87 * Receive descriptor list size.
88 */
89#define	STGE_NRXDESC		256
90#define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
91#define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
92
93/*
94 * Only interrupt every N frames.  Must be a power-of-two.
95 */
96#define	STGE_TXINTR_SPACING	16
97#define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98
99/*
100 * Control structures are DMA'd to the TC9021 chip.  We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104struct stge_control_data {
105	/*
106	 * The transmit descriptors.
107	 */
108	struct stge_tfd scd_txdescs[STGE_NTXDESC];
109
110	/*
111	 * The receive descriptors.
112	 */
113	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114};
115
116#define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
117#define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
118#define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
119
120/*
121 * Software state for transmit and receive jobs.
122 */
123struct stge_descsoft {
124	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125	bus_dmamap_t ds_dmamap;		/* our DMA map */
126};
127
128/*
129 * Software state per device.
130 */
131struct stge_softc {
132	device_t sc_dev;		/* generic device information */
133	bus_space_tag_t sc_st;		/* bus space tag */
134	bus_space_handle_t sc_sh;	/* bus space handle */
135	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136	struct ethercom sc_ethercom;	/* ethernet common data */
137	int sc_rev;			/* silicon revision */
138
139	void *sc_ih;			/* interrupt cookie */
140
141	struct mii_data sc_mii;		/* MII/media information */
142
143	callout_t sc_tick_ch;		/* tick callout */
144
145	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146#define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147
148	/*
149	 * Software state for transmit and receive descriptors.
150	 */
151	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153
154	/*
155	 * Control data structures.
156	 */
157	struct stge_control_data *sc_control_data;
158#define	sc_txdescs	sc_control_data->scd_txdescs
159#define	sc_rxdescs	sc_control_data->scd_rxdescs
160
161#ifdef STGE_EVENT_COUNTERS
162	/*
163	 * Event counters.
164	 */
165	struct evcnt sc_ev_txstall;	/* Tx stalled */
166	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
167	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
168	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
169
170	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
171	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
172	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
173	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
174	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
175	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
176	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
177
178	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
179	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
180	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
181
182	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
183	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
184	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
185#endif /* STGE_EVENT_COUNTERS */
186
187	int	sc_txpending;		/* number of Tx requests pending */
188	int	sc_txdirty;		/* first dirty Tx descriptor */
189	int	sc_txlast;		/* last used Tx descriptor */
190
191	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
192	int	sc_rxdiscard;
193	int	sc_rxlen;
194	struct mbuf *sc_rxhead;
195	struct mbuf *sc_rxtail;
196	struct mbuf **sc_rxtailp;
197
198	int	sc_txthresh;		/* Tx threshold */
199	uint32_t sc_usefiber:1;		/* if we're fiber */
200	uint32_t sc_stge1023:1;		/* are we a 1023 */
201	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
202	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
203	uint16_t sc_IntEnable;		/* prototype IntEnable register */
204	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
205	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
206};
207
208#define	STGE_RXCHAIN_RESET(sc)						\
209do {									\
210	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
211	*(sc)->sc_rxtailp = NULL;					\
212	(sc)->sc_rxlen = 0;						\
213} while (/*CONSTCOND*/0)
214
215#define	STGE_RXCHAIN_LINK(sc, m)					\
216do {									\
217	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
218	(sc)->sc_rxtailp = &(m)->m_next;				\
219} while (/*CONSTCOND*/0)
220
221#ifdef STGE_EVENT_COUNTERS
222#define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
223#else
224#define	STGE_EVCNT_INCR(ev)	/* nothing */
225#endif
226
227#define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
228#define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
229
230#define	STGE_CDTXSYNC(sc, x, ops)					\
231	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
232	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233
234#define	STGE_CDRXSYNC(sc, x, ops)					\
235	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
236	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237
238#define	STGE_INIT_RXDESC(sc, x)						\
239do {									\
240	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
241	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
242									\
243	/*								\
244	 * Note: We scoot the packet forward 2 bytes in the buffer	\
245	 * so that the payload after the Ethernet header is aligned	\
246	 * to a 4-byte boundary.					\
247	 */								\
248	__rfd->rfd_frag.frag_word0 =					\
249	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250	    FRAG_LEN(MCLBYTES - 2));					\
251	__rfd->rfd_next =						\
252	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
253	__rfd->rfd_status = 0;						\
254	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
255} while (/*CONSTCOND*/0)
256
257#define STGE_TIMEOUT 1000
258
259static void	stge_start(struct ifnet *);
260static void	stge_watchdog(struct ifnet *);
261static int	stge_ioctl(struct ifnet *, u_long, void *);
262static int	stge_init(struct ifnet *);
263static void	stge_stop(struct ifnet *, int);
264
265static bool	stge_shutdown(device_t, int);
266
267static void	stge_reset(struct stge_softc *);
268static void	stge_rxdrain(struct stge_softc *);
269static int	stge_add_rxbuf(struct stge_softc *, int);
270static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271static void	stge_tick(void *);
272
273static void	stge_stats_update(struct stge_softc *);
274
275static void	stge_set_filter(struct stge_softc *);
276
277static int	stge_intr(void *);
278static void	stge_txintr(struct stge_softc *);
279static void	stge_rxintr(struct stge_softc *);
280
281static int	stge_mii_readreg(device_t, int, int);
282static void	stge_mii_writereg(device_t, int, int, int);
283static void	stge_mii_statchg(device_t);
284
285static int	stge_match(device_t, cfdata_t, void *);
286static void	stge_attach(device_t, device_t, void *);
287
288int	stge_copy_small = 0;
289
290CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291    stge_match, stge_attach, NULL, NULL);
292
293static uint32_t stge_mii_bitbang_read(device_t);
294static void	stge_mii_bitbang_write(device_t, uint32_t);
295
296static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297	stge_mii_bitbang_read,
298	stge_mii_bitbang_write,
299	{
300		PC_MgmtData,		/* MII_BIT_MDO */
301		PC_MgmtData,		/* MII_BIT_MDI */
302		PC_MgmtClk,		/* MII_BIT_MDC */
303		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
304		0,			/* MII_BIT_DIR_PHY_HOST */
305	}
306};
307
308/*
309 * Devices supported by this driver.
310 */
311static const struct stge_product {
312	pci_vendor_id_t		stge_vendor;
313	pci_product_id_t	stge_product;
314	const char		*stge_name;
315} stge_products[] = {
316	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
317	  "Sundance ST-1023 Gigabit Ethernet" },
318
319	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
320	  "Sundance ST-2021 Gigabit Ethernet" },
321
322	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
323	  "Tamarack TC9021 Gigabit Ethernet" },
324
325	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
326	  "Tamarack TC9021 Gigabit Ethernet" },
327
328	/*
329	 * The Sundance sample boards use the Sundance vendor ID,
330	 * but the Tamarack product ID.
331	 */
332	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
333	  "Sundance TC9021 Gigabit Ethernet" },
334
335	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
336	  "Sundance TC9021 Gigabit Ethernet" },
337
338	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
339	  "D-Link DL-4000 Gigabit Ethernet" },
340
341	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
342	  "Antares Gigabit Ethernet" },
343
344	{ 0,				0,
345	  NULL },
346};
347
348static const struct stge_product *
349stge_lookup(const struct pci_attach_args *pa)
350{
351	const struct stge_product *sp;
352
353	for (sp = stge_products; sp->stge_name != NULL; sp++) {
354		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356			return (sp);
357	}
358	return (NULL);
359}
360
361static int
362stge_match(device_t parent, cfdata_t cf, void *aux)
363{
364	struct pci_attach_args *pa = aux;
365
366	if (stge_lookup(pa) != NULL)
367		return (1);
368
369	return (0);
370}
371
372static void
373stge_attach(device_t parent, device_t self, void *aux)
374{
375	struct stge_softc *sc = device_private(self);
376	struct pci_attach_args *pa = aux;
377	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378	pci_chipset_tag_t pc = pa->pa_pc;
379	pci_intr_handle_t ih;
380	const char *intrstr = NULL;
381	bus_space_tag_t iot, memt;
382	bus_space_handle_t ioh, memh;
383	bus_dma_segment_t seg;
384	prop_data_t data;
385	int ioh_valid, memh_valid;
386	int i, rseg, error;
387	const struct stge_product *sp;
388	uint8_t enaddr[ETHER_ADDR_LEN];
389
390	callout_init(&sc->sc_tick_ch, 0);
391
392	sp = stge_lookup(pa);
393	if (sp == NULL) {
394		printf("\n");
395		panic("ste_attach: impossible");
396	}
397
398	sc->sc_rev = PCI_REVISION(pa->pa_class);
399
400	pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
401
402	/*
403	 * Map the device.
404	 */
405	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
406	    PCI_MAPREG_TYPE_IO, 0,
407	    &iot, &ioh, NULL, NULL) == 0);
408	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
409	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
410	    &memt, &memh, NULL, NULL) == 0);
411
412	if (memh_valid) {
413		sc->sc_st = memt;
414		sc->sc_sh = memh;
415	} else if (ioh_valid) {
416		sc->sc_st = iot;
417		sc->sc_sh = ioh;
418	} else {
419		aprint_error_dev(self, "unable to map device registers\n");
420		return;
421	}
422
423	sc->sc_dmat = pa->pa_dmat;
424
425	/* Enable bus mastering. */
426	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
427	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
428	    PCI_COMMAND_MASTER_ENABLE);
429
430	/* power up chip */
431	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
432	    error != EOPNOTSUPP) {
433		aprint_error_dev(self, "cannot activate %d\n",
434		    error);
435		return;
436	}
437	/*
438	 * Map and establish our interrupt.
439	 */
440	if (pci_intr_map(pa, &ih)) {
441		aprint_error_dev(self, "unable to map interrupt\n");
442		return;
443	}
444	intrstr = pci_intr_string(pc, ih);
445	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
446	if (sc->sc_ih == NULL) {
447		aprint_error_dev(self, "unable to establish interrupt");
448		if (intrstr != NULL)
449			aprint_error(" at %s", intrstr);
450		aprint_error("\n");
451		return;
452	}
453	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
454
455	/*
456	 * Allocate the control data structures, and create and load the
457	 * DMA map for it.
458	 */
459	if ((error = bus_dmamem_alloc(sc->sc_dmat,
460	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
461	    0)) != 0) {
462		aprint_error_dev(self,
463		    "unable to allocate control data, error = %d\n",
464		    error);
465		goto fail_0;
466	}
467
468	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
469	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
470	    BUS_DMA_COHERENT)) != 0) {
471		aprint_error_dev(self,
472		    "unable to map control data, error = %d\n",
473		    error);
474		goto fail_1;
475	}
476
477	if ((error = bus_dmamap_create(sc->sc_dmat,
478	    sizeof(struct stge_control_data), 1,
479	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
480		aprint_error_dev(self,
481		    "unable to create control data DMA map, error = %d\n",
482		    error);
483		goto fail_2;
484	}
485
486	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
487	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
488	    0)) != 0) {
489		aprint_error_dev(self,
490		    "unable to load control data DMA map, error = %d\n",
491		    error);
492		goto fail_3;
493	}
494
495	/*
496	 * Create the transmit buffer DMA maps.  Note that rev B.3
497	 * and earlier seem to have a bug regarding multi-fragment
498	 * packets.  We need to limit the number of Tx segments on
499	 * such chips to 1.
500	 */
501	for (i = 0; i < STGE_NTXDESC; i++) {
502		if ((error = bus_dmamap_create(sc->sc_dmat,
503		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
504		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
505			aprint_error_dev(self,
506			    "unable to create tx DMA map %d, error = %d\n",
507			    i, error);
508			goto fail_4;
509		}
510	}
511
512	/*
513	 * Create the receive buffer DMA maps.
514	 */
515	for (i = 0; i < STGE_NRXDESC; i++) {
516		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
517		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
518			aprint_error_dev(self,
519			    "unable to create rx DMA map %d, error = %d\n",
520			    i, error);
521			goto fail_5;
522		}
523		sc->sc_rxsoft[i].ds_mbuf = NULL;
524	}
525
526	/*
527	 * Determine if we're copper or fiber.  It affects how we
528	 * reset the card.
529	 */
530	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
531	    AC_PhyMedia)
532		sc->sc_usefiber = 1;
533	else
534		sc->sc_usefiber = 0;
535
536	/*
537	 * Reset the chip to a known state.
538	 */
539	stge_reset(sc);
540
541	/*
542	 * Reading the station address from the EEPROM doesn't seem
543	 * to work, at least on my sample boards.  Instead, since
544	 * the reset sequence does AutoInit, read it from the station
545	 * address registers. For Sundance 1023 you can only read it
546	 * from EEPROM.
547	 */
548	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
549		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
550		    STGE_StationAddress0) & 0xff;
551		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
552		    STGE_StationAddress0) >> 8;
553		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
554		    STGE_StationAddress1) & 0xff;
555		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
556		    STGE_StationAddress1) >> 8;
557		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
558		    STGE_StationAddress2) & 0xff;
559		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
560		    STGE_StationAddress2) >> 8;
561		sc->sc_stge1023 = 0;
562	} else {
563		data = prop_dictionary_get(device_properties(self),
564		    "mac-address");
565		if (data != NULL) {
566			/*
567			 * Try to get the station address from device
568			 * properties first, in case the EEPROM is missing.
569			 */
570			KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
571			KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
572			(void)memcpy(enaddr, prop_data_data_nocopy(data),
573			    ETHER_ADDR_LEN);
574		} else {
575			uint16_t myaddr[ETHER_ADDR_LEN / 2];
576			for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
577				stge_read_eeprom(sc,
578				    STGE_EEPROM_StationAddress0 + i,
579				    &myaddr[i]);
580				myaddr[i] = le16toh(myaddr[i]);
581			}
582			(void)memcpy(enaddr, myaddr, sizeof(enaddr));
583		}
584		sc->sc_stge1023 = 1;
585	}
586
587	aprint_normal_dev(self, "Ethernet address %s\n",
588	    ether_sprintf(enaddr));
589
590	/*
591	 * Read some important bits from the PhyCtrl register.
592	 */
593	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
594	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
595
596	/*
597	 * Initialize our media structures and probe the MII.
598	 */
599	sc->sc_mii.mii_ifp = ifp;
600	sc->sc_mii.mii_readreg = stge_mii_readreg;
601	sc->sc_mii.mii_writereg = stge_mii_writereg;
602	sc->sc_mii.mii_statchg = stge_mii_statchg;
603	sc->sc_ethercom.ec_mii = &sc->sc_mii;
604	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
605	    ether_mediastatus);
606	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
607	    MII_OFFSET_ANY, MIIF_DOPAUSE);
608	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
609		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
610		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
611	} else
612		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
613
614	ifp = &sc->sc_ethercom.ec_if;
615	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
616	ifp->if_softc = sc;
617	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
618	ifp->if_ioctl = stge_ioctl;
619	ifp->if_start = stge_start;
620	ifp->if_watchdog = stge_watchdog;
621	ifp->if_init = stge_init;
622	ifp->if_stop = stge_stop;
623	IFQ_SET_READY(&ifp->if_snd);
624
625	/*
626	 * The manual recommends disabling early transmit, so we
627	 * do.  It's disabled anyway, if using IP checksumming,
628	 * since the entire packet must be in the FIFO in order
629	 * for the chip to perform the checksum.
630	 */
631	sc->sc_txthresh = 0x0fff;
632
633	/*
634	 * Disable MWI if the PCI layer tells us to.
635	 */
636	sc->sc_DMACtrl = 0;
637	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
638		sc->sc_DMACtrl |= DMAC_MWIDisable;
639
640	/*
641	 * We can support 802.1Q VLAN-sized frames and jumbo
642	 * Ethernet frames.
643	 *
644	 * XXX Figure out how to do hw-assisted VLAN tagging in
645	 * XXX a reasonable way on this chip.
646	 */
647	sc->sc_ethercom.ec_capabilities |=
648	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
649	    ETHERCAP_VLAN_HWTAGGING;
650
651	/*
652	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
653	 */
654	sc->sc_ethercom.ec_if.if_capabilities |=
655	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
656	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
657	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
658
659	/*
660	 * Attach the interface.
661	 */
662	if_attach(ifp);
663	ether_ifattach(ifp, enaddr);
664
665#ifdef STGE_EVENT_COUNTERS
666	/*
667	 * Attach event counters.
668	 */
669	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
670	    NULL, device_xname(self), "txstall");
671	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
672	    NULL, device_xname(self), "txdmaintr");
673	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
674	    NULL, device_xname(self), "txindintr");
675	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
676	    NULL, device_xname(self), "rxintr");
677
678	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
679	    NULL, device_xname(self), "txseg1");
680	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
681	    NULL, device_xname(self), "txseg2");
682	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
683	    NULL, device_xname(self), "txseg3");
684	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
685	    NULL, device_xname(self), "txseg4");
686	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
687	    NULL, device_xname(self), "txseg5");
688	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
689	    NULL, device_xname(self), "txsegmore");
690	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
691	    NULL, device_xname(self), "txcopy");
692
693	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
694	    NULL, device_xname(self), "rxipsum");
695	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
696	    NULL, device_xname(self), "rxtcpsum");
697	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
698	    NULL, device_xname(self), "rxudpsum");
699	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
700	    NULL, device_xname(self), "txipsum");
701	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
702	    NULL, device_xname(self), "txtcpsum");
703	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
704	    NULL, device_xname(self), "txudpsum");
705#endif /* STGE_EVENT_COUNTERS */
706
707	/*
708	 * Make sure the interface is shutdown during reboot.
709	 */
710	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
711		pmf_class_network_register(self, ifp);
712	else
713		aprint_error_dev(self, "couldn't establish power handler\n");
714
715	return;
716
717	/*
718	 * Free any resources we've allocated during the failed attach
719	 * attempt.  Do this in reverse order and fall through.
720	 */
721 fail_5:
722	for (i = 0; i < STGE_NRXDESC; i++) {
723		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
724			bus_dmamap_destroy(sc->sc_dmat,
725			    sc->sc_rxsoft[i].ds_dmamap);
726	}
727 fail_4:
728	for (i = 0; i < STGE_NTXDESC; i++) {
729		if (sc->sc_txsoft[i].ds_dmamap != NULL)
730			bus_dmamap_destroy(sc->sc_dmat,
731			    sc->sc_txsoft[i].ds_dmamap);
732	}
733	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
734 fail_3:
735	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
736 fail_2:
737	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
738	    sizeof(struct stge_control_data));
739 fail_1:
740	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
741 fail_0:
742	return;
743}
744
745/*
746 * stge_shutdown:
747 *
748 *	Make sure the interface is stopped at reboot time.
749 */
750static bool
751stge_shutdown(device_t self, int howto)
752{
753	struct stge_softc *sc = device_private(self);
754	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
755
756	stge_stop(ifp, 1);
757	stge_reset(sc);
758	return true;
759}
760
761static void
762stge_dma_wait(struct stge_softc *sc)
763{
764	int i;
765
766	for (i = 0; i < STGE_TIMEOUT; i++) {
767		delay(2);
768		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
769		     DMAC_TxDMAInProg) == 0)
770			break;
771	}
772
773	if (i == STGE_TIMEOUT)
774		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
775}
776
777/*
778 * stge_start:		[ifnet interface function]
779 *
780 *	Start packet transmission on the interface.
781 */
782static void
783stge_start(struct ifnet *ifp)
784{
785	struct stge_softc *sc = ifp->if_softc;
786	struct mbuf *m0;
787	struct stge_descsoft *ds;
788	struct stge_tfd *tfd;
789	bus_dmamap_t dmamap;
790	int error, firsttx, nexttx, opending, seg, totlen;
791	uint64_t csum_flags;
792
793	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
794		return;
795
796	/*
797	 * Remember the previous number of pending transmissions
798	 * and the first descriptor we will use.
799	 */
800	opending = sc->sc_txpending;
801	firsttx = STGE_NEXTTX(sc->sc_txlast);
802
803	/*
804	 * Loop through the send queue, setting up transmit descriptors
805	 * until we drain the queue, or use up all available transmit
806	 * descriptors.
807	 */
808	for (;;) {
809		struct m_tag *mtag;
810		uint64_t tfc;
811
812		/*
813		 * Grab a packet off the queue.
814		 */
815		IFQ_POLL(&ifp->if_snd, m0);
816		if (m0 == NULL)
817			break;
818
819		/*
820		 * Leave one unused descriptor at the end of the
821		 * list to prevent wrapping completely around.
822		 */
823		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
824			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
825			break;
826		}
827
828		/*
829		 * See if we have any VLAN stuff.
830		 */
831		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
832
833		/*
834		 * Get the last and next available transmit descriptor.
835		 */
836		nexttx = STGE_NEXTTX(sc->sc_txlast);
837		tfd = &sc->sc_txdescs[nexttx];
838		ds = &sc->sc_txsoft[nexttx];
839
840		dmamap = ds->ds_dmamap;
841
842		/*
843		 * Load the DMA map.  If this fails, the packet either
844		 * didn't fit in the alloted number of segments, or we
845		 * were short on resources.  For the too-many-segments
846		 * case, we simply report an error and drop the packet,
847		 * since we can't sanely copy a jumbo packet to a single
848		 * buffer.
849		 */
850		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
851		    BUS_DMA_NOWAIT);
852		if (error) {
853			if (error == EFBIG) {
854				printf("%s: Tx packet consumes too many "
855				    "DMA segments, dropping...\n",
856				    device_xname(sc->sc_dev));
857				IFQ_DEQUEUE(&ifp->if_snd, m0);
858				m_freem(m0);
859				continue;
860			}
861			/*
862			 * Short on resources, just stop for now.
863			 */
864			break;
865		}
866
867		IFQ_DEQUEUE(&ifp->if_snd, m0);
868
869		/*
870		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
871		 */
872
873		/* Sync the DMA map. */
874		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
875		    BUS_DMASYNC_PREWRITE);
876
877		/* Initialize the fragment list. */
878		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
879			tfd->tfd_frags[seg].frag_word0 =
880			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
881			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
882			totlen += dmamap->dm_segs[seg].ds_len;
883		}
884
885#ifdef STGE_EVENT_COUNTERS
886		switch (dmamap->dm_nsegs) {
887		case 1:
888			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
889			break;
890		case 2:
891			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
892			break;
893		case 3:
894			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
895			break;
896		case 4:
897			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
898			break;
899		case 5:
900			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
901			break;
902		default:
903			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
904			break;
905		}
906#endif /* STGE_EVENT_COUNTERS */
907
908		/*
909		 * Initialize checksumming flags in the descriptor.
910		 * Byte-swap constants so the compiler can optimize.
911		 */
912		csum_flags = 0;
913		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
914			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
915			csum_flags |= TFD_IPChecksumEnable;
916		}
917
918		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
919			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
920			csum_flags |= TFD_TCPChecksumEnable;
921		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
922			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
923			csum_flags |= TFD_UDPChecksumEnable;
924		}
925
926		/*
927		 * Initialize the descriptor and give it to the chip.
928		 * Check to see if we have a VLAN tag to insert.
929		 */
930
931		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
932		    TFD_FragCount(seg) | csum_flags |
933		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
934			TFD_TxDMAIndicate : 0);
935		if (mtag) {
936#if	0
937			struct ether_header *eh =
938			    mtod(m0, struct ether_header *);
939			u_int16_t etype = ntohs(eh->ether_type);
940			printf("%s: xmit (tag %d) etype %x\n",
941			   ifp->if_xname, *mtod(n, int *), etype);
942#endif
943			tfc |= TFD_VLANTagInsert |
944#ifdef	STGE_VLAN_CFI
945			    TFD_CFI |
946#endif
947			    TFD_VID(VLAN_TAG_VALUE(mtag));
948		}
949		tfd->tfd_control = htole64(tfc);
950
951		/* Sync the descriptor. */
952		STGE_CDTXSYNC(sc, nexttx,
953		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
954
955		/*
956		 * Kick the transmit DMA logic.
957		 */
958		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
959		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
960
961		/*
962		 * Store a pointer to the packet so we can free it later.
963		 */
964		ds->ds_mbuf = m0;
965
966		/* Advance the tx pointer. */
967		sc->sc_txpending++;
968		sc->sc_txlast = nexttx;
969
970		/*
971		 * Pass the packet to any BPF listeners.
972		 */
973		bpf_mtap(ifp, m0);
974	}
975
976	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
977		/* No more slots left; notify upper layer. */
978		ifp->if_flags |= IFF_OACTIVE;
979	}
980
981	if (sc->sc_txpending != opending) {
982		/*
983		 * We enqueued packets.  If the transmitter was idle,
984		 * reset the txdirty pointer.
985		 */
986		if (opending == 0)
987			sc->sc_txdirty = firsttx;
988
989		/* Set a watchdog timer in case the chip flakes out. */
990		ifp->if_timer = 5;
991	}
992}
993
994/*
995 * stge_watchdog:	[ifnet interface function]
996 *
997 *	Watchdog timer handler.
998 */
999static void
1000stge_watchdog(struct ifnet *ifp)
1001{
1002	struct stge_softc *sc = ifp->if_softc;
1003
1004	/*
1005	 * Sweep up first, since we don't interrupt every frame.
1006	 */
1007	stge_txintr(sc);
1008	if (sc->sc_txpending != 0) {
1009		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1010		ifp->if_oerrors++;
1011
1012		(void) stge_init(ifp);
1013
1014		/* Try to get more packets going. */
1015		stge_start(ifp);
1016	}
1017}
1018
1019/*
1020 * stge_ioctl:		[ifnet interface function]
1021 *
1022 *	Handle control requests from the operator.
1023 */
1024static int
1025stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1026{
1027	struct stge_softc *sc = ifp->if_softc;
1028	int s, error;
1029
1030	s = splnet();
1031
1032	error = ether_ioctl(ifp, cmd, data);
1033	if (error == ENETRESET) {
1034		error = 0;
1035
1036		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1037			;
1038		else if (ifp->if_flags & IFF_RUNNING) {
1039			/*
1040			 * Multicast list has changed; set the hardware filter
1041			 * accordingly.
1042			 */
1043			stge_set_filter(sc);
1044		}
1045	}
1046
1047	/* Try to get more packets going. */
1048	stge_start(ifp);
1049
1050	splx(s);
1051	return (error);
1052}
1053
1054/*
1055 * stge_intr:
1056 *
1057 *	Interrupt service routine.
1058 */
1059static int
1060stge_intr(void *arg)
1061{
1062	struct stge_softc *sc = arg;
1063	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1064	uint32_t txstat;
1065	int wantinit;
1066	uint16_t isr;
1067
1068	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1069	     IS_InterruptStatus) == 0)
1070		return (0);
1071
1072	for (wantinit = 0; wantinit == 0;) {
1073		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1074		if ((isr & sc->sc_IntEnable) == 0)
1075			break;
1076
1077		/* Host interface errors. */
1078		if (isr & IS_HostError) {
1079			printf("%s: Host interface error\n",
1080			    device_xname(sc->sc_dev));
1081			wantinit = 1;
1082			continue;
1083		}
1084
1085		/* Receive interrupts. */
1086		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1087			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1088			stge_rxintr(sc);
1089			if (isr & IS_RFDListEnd) {
1090				printf("%s: receive ring overflow\n",
1091				    device_xname(sc->sc_dev));
1092				/*
1093				 * XXX Should try to recover from this
1094				 * XXX more gracefully.
1095				 */
1096				wantinit = 1;
1097			}
1098		}
1099
1100		/* Transmit interrupts. */
1101		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1102#ifdef STGE_EVENT_COUNTERS
1103			if (isr & IS_TxDMAComplete)
1104				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1105#endif
1106			stge_txintr(sc);
1107		}
1108
1109		/* Statistics overflow. */
1110		if (isr & IS_UpdateStats)
1111			stge_stats_update(sc);
1112
1113		/* Transmission errors. */
1114		if (isr & IS_TxComplete) {
1115			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1116			for (;;) {
1117				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1118				    STGE_TxStatus);
1119				if ((txstat & TS_TxComplete) == 0)
1120					break;
1121				if (txstat & TS_TxUnderrun) {
1122					sc->sc_txthresh++;
1123					if (sc->sc_txthresh > 0x0fff)
1124						sc->sc_txthresh = 0x0fff;
1125					printf("%s: transmit underrun, new "
1126					    "threshold: %d bytes\n",
1127					    device_xname(sc->sc_dev),
1128					    sc->sc_txthresh << 5);
1129				}
1130				if (txstat & TS_MaxCollisions)
1131					printf("%s: excessive collisions\n",
1132					    device_xname(sc->sc_dev));
1133			}
1134			wantinit = 1;
1135		}
1136
1137	}
1138
1139	if (wantinit)
1140		stge_init(ifp);
1141
1142	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1143	    sc->sc_IntEnable);
1144
1145	/* Try to get more packets going. */
1146	stge_start(ifp);
1147
1148	return (1);
1149}
1150
1151/*
1152 * stge_txintr:
1153 *
1154 *	Helper; handle transmit interrupts.
1155 */
1156static void
1157stge_txintr(struct stge_softc *sc)
1158{
1159	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1160	struct stge_descsoft *ds;
1161	uint64_t control;
1162	int i;
1163
1164	ifp->if_flags &= ~IFF_OACTIVE;
1165
1166	/*
1167	 * Go through our Tx list and free mbufs for those
1168	 * frames which have been transmitted.
1169	 */
1170	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1171	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1172		ds = &sc->sc_txsoft[i];
1173
1174		STGE_CDTXSYNC(sc, i,
1175		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1176
1177		control = le64toh(sc->sc_txdescs[i].tfd_control);
1178		if ((control & TFD_TFDDone) == 0)
1179			break;
1180
1181		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1182		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1183		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1184		m_freem(ds->ds_mbuf);
1185		ds->ds_mbuf = NULL;
1186	}
1187
1188	/* Update the dirty transmit buffer pointer. */
1189	sc->sc_txdirty = i;
1190
1191	/*
1192	 * If there are no more pending transmissions, cancel the watchdog
1193	 * timer.
1194	 */
1195	if (sc->sc_txpending == 0)
1196		ifp->if_timer = 0;
1197}
1198
1199/*
1200 * stge_rxintr:
1201 *
1202 *	Helper; handle receive interrupts.
1203 */
1204static void
1205stge_rxintr(struct stge_softc *sc)
1206{
1207	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1208	struct stge_descsoft *ds;
1209	struct mbuf *m, *tailm;
1210	uint64_t status;
1211	int i, len;
1212
1213	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1214		ds = &sc->sc_rxsoft[i];
1215
1216		STGE_CDRXSYNC(sc, i,
1217		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1218
1219		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1220
1221		if ((status & RFD_RFDDone) == 0)
1222			break;
1223
1224		if (__predict_false(sc->sc_rxdiscard)) {
1225			STGE_INIT_RXDESC(sc, i);
1226			if (status & RFD_FrameEnd) {
1227				/* Reset our state. */
1228				sc->sc_rxdiscard = 0;
1229			}
1230			continue;
1231		}
1232
1233		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1234		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1235
1236		m = ds->ds_mbuf;
1237
1238		/*
1239		 * Add a new receive buffer to the ring.
1240		 */
1241		if (stge_add_rxbuf(sc, i) != 0) {
1242			/*
1243			 * Failed, throw away what we've done so
1244			 * far, and discard the rest of the packet.
1245			 */
1246			ifp->if_ierrors++;
1247			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1248			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1249			STGE_INIT_RXDESC(sc, i);
1250			if ((status & RFD_FrameEnd) == 0)
1251				sc->sc_rxdiscard = 1;
1252			if (sc->sc_rxhead != NULL)
1253				m_freem(sc->sc_rxhead);
1254			STGE_RXCHAIN_RESET(sc);
1255			continue;
1256		}
1257
1258#ifdef DIAGNOSTIC
1259		if (status & RFD_FrameStart) {
1260			KASSERT(sc->sc_rxhead == NULL);
1261			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1262		}
1263#endif
1264
1265		STGE_RXCHAIN_LINK(sc, m);
1266
1267		/*
1268		 * If this is not the end of the packet, keep
1269		 * looking.
1270		 */
1271		if ((status & RFD_FrameEnd) == 0) {
1272			sc->sc_rxlen += m->m_len;
1273			continue;
1274		}
1275
1276		/*
1277		 * Okay, we have the entire packet now...
1278		 */
1279		*sc->sc_rxtailp = NULL;
1280		m = sc->sc_rxhead;
1281		tailm = sc->sc_rxtail;
1282
1283		STGE_RXCHAIN_RESET(sc);
1284
1285		/*
1286		 * If the packet had an error, drop it.  Note we
1287		 * count the error later in the periodic stats update.
1288		 */
1289		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1290			      RFD_RxAlignmentError | RFD_RxFCSError |
1291			      RFD_RxLengthError)) {
1292			m_freem(m);
1293			continue;
1294		}
1295
1296		/*
1297		 * No errors.
1298		 *
1299		 * Note we have configured the chip to not include
1300		 * the CRC at the end of the packet.
1301		 */
1302		len = RFD_RxDMAFrameLen(status);
1303		tailm->m_len = len - sc->sc_rxlen;
1304
1305		/*
1306		 * If the packet is small enough to fit in a
1307		 * single header mbuf, allocate one and copy
1308		 * the data into it.  This greatly reduces
1309		 * memory consumption when we receive lots
1310		 * of small packets.
1311		 */
1312		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1313			struct mbuf *nm;
1314			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1315			if (nm == NULL) {
1316				ifp->if_ierrors++;
1317				m_freem(m);
1318				continue;
1319			}
1320			nm->m_data += 2;
1321			nm->m_pkthdr.len = nm->m_len = len;
1322			m_copydata(m, 0, len, mtod(nm, void *));
1323			m_freem(m);
1324			m = nm;
1325		}
1326
1327		/*
1328		 * Set the incoming checksum information for the packet.
1329		 */
1330		if (status & RFD_IPDetected) {
1331			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1332			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1333			if (status & RFD_IPError)
1334				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1335			if (status & RFD_TCPDetected) {
1336				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1337				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1338				if (status & RFD_TCPError)
1339					m->m_pkthdr.csum_flags |=
1340					    M_CSUM_TCP_UDP_BAD;
1341			} else if (status & RFD_UDPDetected) {
1342				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1343				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1344				if (status & RFD_UDPError)
1345					m->m_pkthdr.csum_flags |=
1346					    M_CSUM_TCP_UDP_BAD;
1347			}
1348		}
1349
1350		m->m_pkthdr.rcvif = ifp;
1351		m->m_pkthdr.len = len;
1352
1353		/*
1354		 * Pass this up to any BPF listeners, but only
1355		 * pass if up the stack if it's for us.
1356		 */
1357		bpf_mtap(ifp, m);
1358#ifdef	STGE_VLAN_UNTAG
1359		/*
1360		 * Check for VLAN tagged packets
1361		 */
1362		if (status & RFD_VLANDetected)
1363			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1364
1365#endif
1366#if	0
1367		if (status & RFD_VLANDetected) {
1368			struct ether_header *eh;
1369			u_int16_t etype;
1370
1371			eh = mtod(m, struct ether_header *);
1372			etype = ntohs(eh->ether_type);
1373			printf("%s: VLANtag detected (TCI %d) etype %x\n",
1374			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
1375			    etype);
1376		}
1377#endif
1378		/* Pass it on. */
1379		(*ifp->if_input)(ifp, m);
1380	}
1381
1382	/* Update the receive pointer. */
1383	sc->sc_rxptr = i;
1384}
1385
1386/*
1387 * stge_tick:
1388 *
1389 *	One second timer, used to tick the MII.
1390 */
1391static void
1392stge_tick(void *arg)
1393{
1394	struct stge_softc *sc = arg;
1395	int s;
1396
1397	s = splnet();
1398	mii_tick(&sc->sc_mii);
1399	stge_stats_update(sc);
1400	splx(s);
1401
1402	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1403}
1404
1405/*
1406 * stge_stats_update:
1407 *
1408 *	Read the TC9021 statistics counters.
1409 */
1410static void
1411stge_stats_update(struct stge_softc *sc)
1412{
1413	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1414	bus_space_tag_t st = sc->sc_st;
1415	bus_space_handle_t sh = sc->sc_sh;
1416
1417	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1418
1419	ifp->if_ipackets +=
1420	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1421
1422	ifp->if_ierrors +=
1423	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1424
1425	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1426
1427	ifp->if_opackets +=
1428	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1429
1430	ifp->if_collisions +=
1431	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1432	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1433	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1434
1435	ifp->if_oerrors +=
1436	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1437	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1438}
1439
1440/*
1441 * stge_reset:
1442 *
1443 *	Perform a soft reset on the TC9021.
1444 */
1445static void
1446stge_reset(struct stge_softc *sc)
1447{
1448	uint32_t ac;
1449	int i;
1450
1451	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1452
1453	/*
1454	 * Only assert RstOut if we're fiber.  We need GMII clocks
1455	 * to be present in order for the reset to complete on fiber
1456	 * cards.
1457	 */
1458	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1459	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1460	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1461	    (sc->sc_usefiber ? AC_RstOut : 0));
1462
1463	delay(50000);
1464
1465	for (i = 0; i < STGE_TIMEOUT; i++) {
1466		delay(5000);
1467		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1468		     AC_ResetBusy) == 0)
1469			break;
1470	}
1471
1472	if (i == STGE_TIMEOUT)
1473		printf("%s: reset failed to complete\n",
1474		    device_xname(sc->sc_dev));
1475
1476	delay(1000);
1477}
1478
1479/*
1480 * stge_init:		[ ifnet interface function ]
1481 *
1482 *	Initialize the interface.  Must be called at splnet().
1483 */
1484static int
1485stge_init(struct ifnet *ifp)
1486{
1487	struct stge_softc *sc = ifp->if_softc;
1488	bus_space_tag_t st = sc->sc_st;
1489	bus_space_handle_t sh = sc->sc_sh;
1490	struct stge_descsoft *ds;
1491	int i, error = 0;
1492
1493	/*
1494	 * Cancel any pending I/O.
1495	 */
1496	stge_stop(ifp, 0);
1497
1498	/*
1499	 * Reset the chip to a known state.
1500	 */
1501	stge_reset(sc);
1502
1503	/*
1504	 * Initialize the transmit descriptor ring.
1505	 */
1506	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1507	for (i = 0; i < STGE_NTXDESC; i++) {
1508		sc->sc_txdescs[i].tfd_next = htole64(
1509		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1510		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1511	}
1512	sc->sc_txpending = 0;
1513	sc->sc_txdirty = 0;
1514	sc->sc_txlast = STGE_NTXDESC - 1;
1515
1516	/*
1517	 * Initialize the receive descriptor and receive job
1518	 * descriptor rings.
1519	 */
1520	for (i = 0; i < STGE_NRXDESC; i++) {
1521		ds = &sc->sc_rxsoft[i];
1522		if (ds->ds_mbuf == NULL) {
1523			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1524				printf("%s: unable to allocate or map rx "
1525				    "buffer %d, error = %d\n",
1526				    device_xname(sc->sc_dev), i, error);
1527				/*
1528				 * XXX Should attempt to run with fewer receive
1529				 * XXX buffers instead of just failing.
1530				 */
1531				stge_rxdrain(sc);
1532				goto out;
1533			}
1534		} else
1535			STGE_INIT_RXDESC(sc, i);
1536	}
1537	sc->sc_rxptr = 0;
1538	sc->sc_rxdiscard = 0;
1539	STGE_RXCHAIN_RESET(sc);
1540
1541	/* Set the station address. */
1542	for (i = 0; i < 6; i++)
1543		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1544		    CLLADDR(ifp->if_sadl)[i]);
1545
1546	/*
1547	 * Set the statistics masks.  Disable all the RMON stats,
1548	 * and disable selected stats in the non-RMON stats registers.
1549	 */
1550	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1551	bus_space_write_4(st, sh, STGE_StatisticsMask,
1552	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1553	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1554	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1555	    (1U << 21));
1556
1557	/* Set up the receive filter. */
1558	stge_set_filter(sc);
1559
1560	/*
1561	 * Give the transmit and receive ring to the chip.
1562	 */
1563	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1564	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1565	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1566
1567	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1568	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1569	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1570
1571	/*
1572	 * Initialize the Tx auto-poll period.  It's OK to make this number
1573	 * large (255 is the max, but we use 127) -- we explicitly kick the
1574	 * transmit engine when there's actually a packet.
1575	 */
1576	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1577
1578	/* ..and the Rx auto-poll period. */
1579	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1580
1581	/* Initialize the Tx start threshold. */
1582	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1583
1584	/* RX DMA thresholds, from linux */
1585	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1586	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1587
1588	/*
1589	 * Initialize the Rx DMA interrupt control register.  We
1590	 * request an interrupt after every incoming packet, but
1591	 * defer it for 32us (64 * 512 ns).  When the number of
1592	 * interrupts pending reaches 8, we stop deferring the
1593	 * interrupt, and signal it immediately.
1594	 */
1595	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1596	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1597
1598	/*
1599	 * Initialize the interrupt mask.
1600	 */
1601	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1602	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1603	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1604	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1605
1606	/*
1607	 * Configure the DMA engine.
1608	 * XXX Should auto-tune TxBurstLimit.
1609	 */
1610	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1611	    DMAC_TxBurstLimit(3));
1612
1613	/*
1614	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1615	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1616	 * empty again.
1617	 */
1618	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1619	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1620
1621	/*
1622	 * Set the maximum frame size.
1623	 */
1624	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1625	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1626	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1627	     ETHER_VLAN_ENCAP_LEN : 0));
1628
1629	/*
1630	 * Initialize MacCtrl -- do it before setting the media,
1631	 * as setting the media will actually program the register.
1632	 *
1633	 * Note: We have to poke the IFS value before poking
1634	 * anything else.
1635	 */
1636	sc->sc_MACCtrl = MC_IFSSelect(0);
1637	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1638	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1639#ifdef	STGE_VLAN_UNTAG
1640	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1641#endif
1642
1643	if (sc->sc_rev >= 6) {		/* >= B.2 */
1644		/* Multi-frag frame bug work-around. */
1645		bus_space_write_2(st, sh, STGE_DebugCtrl,
1646		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1647
1648		/* Tx Poll Now bug work-around. */
1649		bus_space_write_2(st, sh, STGE_DebugCtrl,
1650		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1651		/* XXX ? from linux */
1652		bus_space_write_2(st, sh, STGE_DebugCtrl,
1653		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1654	}
1655
1656	/*
1657	 * Set the current media.
1658	 */
1659	if ((error = ether_mediachange(ifp)) != 0)
1660		goto out;
1661
1662	/*
1663	 * Start the one second MII clock.
1664	 */
1665	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1666
1667	/*
1668	 * ...all done!
1669	 */
1670	ifp->if_flags |= IFF_RUNNING;
1671	ifp->if_flags &= ~IFF_OACTIVE;
1672
1673 out:
1674	if (error)
1675		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1676	return (error);
1677}
1678
1679/*
1680 * stge_drain:
1681 *
1682 *	Drain the receive queue.
1683 */
1684static void
1685stge_rxdrain(struct stge_softc *sc)
1686{
1687	struct stge_descsoft *ds;
1688	int i;
1689
1690	for (i = 0; i < STGE_NRXDESC; i++) {
1691		ds = &sc->sc_rxsoft[i];
1692		if (ds->ds_mbuf != NULL) {
1693			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1694			ds->ds_mbuf->m_next = NULL;
1695			m_freem(ds->ds_mbuf);
1696			ds->ds_mbuf = NULL;
1697		}
1698	}
1699}
1700
1701/*
1702 * stge_stop:		[ ifnet interface function ]
1703 *
1704 *	Stop transmission on the interface.
1705 */
1706static void
1707stge_stop(struct ifnet *ifp, int disable)
1708{
1709	struct stge_softc *sc = ifp->if_softc;
1710	struct stge_descsoft *ds;
1711	int i;
1712
1713	/*
1714	 * Stop the one second clock.
1715	 */
1716	callout_stop(&sc->sc_tick_ch);
1717
1718	/* Down the MII. */
1719	mii_down(&sc->sc_mii);
1720
1721	/*
1722	 * Disable interrupts.
1723	 */
1724	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1725
1726	/*
1727	 * Stop receiver, transmitter, and stats update.
1728	 */
1729	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1730	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1731
1732	/*
1733	 * Stop the transmit and receive DMA.
1734	 */
1735	stge_dma_wait(sc);
1736	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1737	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1738	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1739	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1740
1741	/*
1742	 * Release any queued transmit buffers.
1743	 */
1744	for (i = 0; i < STGE_NTXDESC; i++) {
1745		ds = &sc->sc_txsoft[i];
1746		if (ds->ds_mbuf != NULL) {
1747			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1748			m_freem(ds->ds_mbuf);
1749			ds->ds_mbuf = NULL;
1750		}
1751	}
1752
1753	/*
1754	 * Mark the interface down and cancel the watchdog timer.
1755	 */
1756	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1757	ifp->if_timer = 0;
1758
1759	if (disable)
1760		stge_rxdrain(sc);
1761}
1762
1763static int
1764stge_eeprom_wait(struct stge_softc *sc)
1765{
1766	int i;
1767
1768	for (i = 0; i < STGE_TIMEOUT; i++) {
1769		delay(1000);
1770		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1771		     EC_EepromBusy) == 0)
1772			return (0);
1773	}
1774	return (1);
1775}
1776
1777/*
1778 * stge_read_eeprom:
1779 *
1780 *	Read data from the serial EEPROM.
1781 */
1782static void
1783stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1784{
1785
1786	if (stge_eeprom_wait(sc))
1787		printf("%s: EEPROM failed to come ready\n",
1788		    device_xname(sc->sc_dev));
1789
1790	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1791	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1792	if (stge_eeprom_wait(sc))
1793		printf("%s: EEPROM read timed out\n",
1794		    device_xname(sc->sc_dev));
1795	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1796}
1797
1798/*
1799 * stge_add_rxbuf:
1800 *
1801 *	Add a receive buffer to the indicated descriptor.
1802 */
1803static int
1804stge_add_rxbuf(struct stge_softc *sc, int idx)
1805{
1806	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1807	struct mbuf *m;
1808	int error;
1809
1810	MGETHDR(m, M_DONTWAIT, MT_DATA);
1811	if (m == NULL)
1812		return (ENOBUFS);
1813
1814	MCLGET(m, M_DONTWAIT);
1815	if ((m->m_flags & M_EXT) == 0) {
1816		m_freem(m);
1817		return (ENOBUFS);
1818	}
1819
1820	m->m_data = m->m_ext.ext_buf + 2;
1821	m->m_len = MCLBYTES - 2;
1822
1823	if (ds->ds_mbuf != NULL)
1824		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1825
1826	ds->ds_mbuf = m;
1827
1828	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1829	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1830	if (error) {
1831		printf("%s: can't load rx DMA map %d, error = %d\n",
1832		    device_xname(sc->sc_dev), idx, error);
1833		panic("stge_add_rxbuf");	/* XXX */
1834	}
1835
1836	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1837	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1838
1839	STGE_INIT_RXDESC(sc, idx);
1840
1841	return (0);
1842}
1843
1844/*
1845 * stge_set_filter:
1846 *
1847 *	Set up the receive filter.
1848 */
1849static void
1850stge_set_filter(struct stge_softc *sc)
1851{
1852	struct ethercom *ec = &sc->sc_ethercom;
1853	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1854	struct ether_multi *enm;
1855	struct ether_multistep step;
1856	uint32_t crc;
1857	uint32_t mchash[2];
1858
1859	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1860	if (ifp->if_flags & IFF_BROADCAST)
1861		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1862
1863	/* XXX: ST1023 only works in promiscuous mode */
1864	if (sc->sc_stge1023)
1865		ifp->if_flags |= IFF_PROMISC;
1866
1867	if (ifp->if_flags & IFF_PROMISC) {
1868		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1869		goto allmulti;
1870	}
1871
1872	/*
1873	 * Set up the multicast address filter by passing all multicast
1874	 * addresses through a CRC generator, and then using the low-order
1875	 * 6 bits as an index into the 64 bit multicast hash table.  The
1876	 * high order bits select the register, while the rest of the bits
1877	 * select the bit within the register.
1878	 */
1879
1880	memset(mchash, 0, sizeof(mchash));
1881
1882	ETHER_FIRST_MULTI(step, ec, enm);
1883	if (enm == NULL)
1884		goto done;
1885
1886	while (enm != NULL) {
1887		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1888			/*
1889			 * We must listen to a range of multicast addresses.
1890			 * For now, just accept all multicasts, rather than
1891			 * trying to set only those filter bits needed to match
1892			 * the range.  (At this time, the only use of address
1893			 * ranges is for IP multicast routing, for which the
1894			 * range is big enough to require all bits set.)
1895			 */
1896			goto allmulti;
1897		}
1898
1899		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1900
1901		/* Just want the 6 least significant bits. */
1902		crc &= 0x3f;
1903
1904		/* Set the corresponding bit in the hash table. */
1905		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1906
1907		ETHER_NEXT_MULTI(step, enm);
1908	}
1909
1910	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1911
1912	ifp->if_flags &= ~IFF_ALLMULTI;
1913	goto done;
1914
1915 allmulti:
1916	ifp->if_flags |= IFF_ALLMULTI;
1917	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1918
1919 done:
1920	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1921		/*
1922		 * Program the multicast hash table.
1923		 */
1924		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1925		    mchash[0]);
1926		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1927		    mchash[1]);
1928	}
1929
1930	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1931	    sc->sc_ReceiveMode);
1932}
1933
1934/*
1935 * stge_mii_readreg:	[mii interface function]
1936 *
1937 *	Read a PHY register on the MII of the TC9021.
1938 */
1939static int
1940stge_mii_readreg(device_t self, int phy, int reg)
1941{
1942
1943	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1944}
1945
1946/*
1947 * stge_mii_writereg:	[mii interface function]
1948 *
1949 *	Write a PHY register on the MII of the TC9021.
1950 */
1951static void
1952stge_mii_writereg(device_t self, int phy, int reg, int val)
1953{
1954
1955	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1956}
1957
1958/*
1959 * stge_mii_statchg:	[mii interface function]
1960 *
1961 *	Callback from MII layer when media changes.
1962 */
1963static void
1964stge_mii_statchg(device_t self)
1965{
1966	struct stge_softc *sc = device_private(self);
1967
1968	if (sc->sc_mii.mii_media_active & IFM_FDX)
1969		sc->sc_MACCtrl |= MC_DuplexSelect;
1970	else
1971		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1972
1973	/* XXX 802.1x flow-control? */
1974
1975	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1976}
1977
1978/*
1979 * sste_mii_bitbang_read: [mii bit-bang interface function]
1980 *
1981 *	Read the MII serial port for the MII bit-bang module.
1982 */
1983static uint32_t
1984stge_mii_bitbang_read(device_t self)
1985{
1986	struct stge_softc *sc = device_private(self);
1987
1988	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1989}
1990
1991/*
1992 * stge_mii_bitbang_write: [mii big-bang interface function]
1993 *
1994 *	Write the MII serial port for the MII bit-bang module.
1995 */
1996static void
1997stge_mii_bitbang_write(device_t self, uint32_t val)
1998{
1999	struct stge_softc *sc = device_private(self);
2000
2001	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2002	    val | sc->sc_PhyCtrl);
2003}
2004