1/*	$NetBSD: if_jme.c,v 1.18 2011/11/19 22:51:23 tls Exp $	*/
2
3/*
4 * Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*-
28 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 *    notice unmodified, this list of conditions, and the following
36 *    disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 *    notice, this list of conditions and the following disclaimer in the
39 *    documentation and/or other materials provided with the distribution.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 */
53
54
55/*
56 * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
57 * Ethernet Controllers.
58 */
59
60#include <sys/cdefs.h>
61__KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.18 2011/11/19 22:51:23 tls Exp $");
62
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/mbuf.h>
67#include <sys/protosw.h>
68#include <sys/socket.h>
69#include <sys/ioctl.h>
70#include <sys/errno.h>
71#include <sys/malloc.h>
72#include <sys/kernel.h>
73#include <sys/proc.h>	/* only for declaration of wakeup() used by vm.h */
74#include <sys/device.h>
75#include <sys/syslog.h>
76#include <sys/sysctl.h>
77
78#include <net/if.h>
79#if defined(SIOCSIFMEDIA)
80#include <net/if_media.h>
81#endif
82#include <net/if_types.h>
83#include <net/if_dl.h>
84#include <net/route.h>
85#include <net/netisr.h>
86
87#include <net/bpf.h>
88#include <net/bpfdesc.h>
89
90#include <sys/rnd.h>
91
92#include <netinet/in.h>
93#include <netinet/in_systm.h>
94#include <netinet/ip.h>
95
96#ifdef INET
97#include <netinet/in_var.h>
98#endif
99
100#include <netinet/tcp.h>
101
102#include <net/if_ether.h>
103#if defined(INET)
104#include <netinet/if_inarp.h>
105#endif
106
107#include <sys/bus.h>
108#include <sys/intr.h>
109
110#include <dev/pci/pcireg.h>
111#include <dev/pci/pcivar.h>
112#include <dev/pci/pcidevs.h>
113#include <dev/pci/if_jmereg.h>
114
115#include <dev/mii/mii.h>
116#include <dev/mii/miivar.h>
117
118struct jme_product_desc {
119	u_int32_t jme_product;
120	const char *jme_desc;
121};
122
123/* number of entries in transmit and receive rings */
124#define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))
125
126#define JME_DESC_INC(x, y)	((x) = ((x) + 1) % (y))
127
128/* Water mark to kick reclaiming Tx buffers. */
129#define JME_TX_DESC_HIWAT	(JME_NBUFS - (((JME_NBUFS) * 3) / 10))
130
131
132struct jme_softc {
133	device_t jme_dev;		/* base device */
134	bus_space_tag_t jme_bt_mac;
135	bus_space_handle_t jme_bh_mac;  /* Mac registers */
136	bus_space_tag_t jme_bt_phy;
137	bus_space_handle_t jme_bh_phy;  /* PHY registers */
138	bus_space_tag_t jme_bt_misc;
139	bus_space_handle_t jme_bh_misc; /* Misc registers */
140	bus_dma_tag_t jme_dmatag;
141	bus_dma_segment_t jme_txseg;	/* transmit ring seg */
142	bus_dmamap_t jme_txmap;		/* transmit ring DMA map */
143	struct jme_desc* jme_txring;	/* transmit ring */
144	bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
145	struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
146	int jme_tx_cons;		/* transmit ring consumer */
147	int jme_tx_prod;		/* transmit ring producer */
148	int jme_tx_cnt;			/* transmit ring active count */
149	bus_dma_segment_t jme_rxseg;	/* receive ring seg */
150	bus_dmamap_t jme_rxmap;		/* receive ring DMA map */
151	struct jme_desc* jme_rxring;	/* receive ring */
152	bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
153	struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
154	int jme_rx_cons;		/* receive ring consumer */
155	int jme_rx_prod;		/* receive ring producer */
156	void* jme_ih;			/* our interrupt */
157	struct ethercom jme_ec;
158	struct callout jme_tick_ch;	/* tick callout */
159	u_int8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
160	u_int8_t jme_phyaddr;		/* address of integrated phy */
161	u_int8_t jme_chip_rev;		/* chip revision */
162	u_int8_t jme_rev;		/* PCI revision */
163	mii_data_t jme_mii;		/* mii bus */
164	u_int32_t jme_flags;		/* device features, see below */
165	uint32_t jme_txcsr;		/* TX config register */
166	uint32_t jme_rxcsr;		/* RX config register */
167	krndsource_t rnd_source;
168	/* interrupt coalition parameters */
169	struct sysctllog *jme_clog;
170	int jme_intrxto;		/* interrupt RX timeout */
171	int jme_intrxct;		/* interrupt RX packets counter */
172	int jme_inttxto;		/* interrupt TX timeout */
173	int jme_inttxct;		/* interrupt TX packets counter */
174};
175
176#define JME_FLAG_FPGA	0x0001 /* FPGA version */
177#define JME_FLAG_GIGA	0x0002 /* giga Ethernet capable */
178
179
180#define jme_if	jme_ec.ec_if
181#define jme_bpf	jme_if.if_bpf
182
183typedef struct jme_softc jme_softc_t;
184typedef u_long ioctl_cmd_t;
185
186static int jme_pci_match(device_t, cfdata_t, void *);
187static void jme_pci_attach(device_t, device_t, void *);
188static void jme_intr_rx(jme_softc_t *);
189static int jme_intr(void *);
190
191static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
192static int jme_mediachange(struct ifnet *);
193static void jme_ifwatchdog(struct ifnet *);
194static bool jme_shutdown(device_t, int);
195
196static void jme_txeof(struct jme_softc *);
197static void jme_ifstart(struct ifnet *);
198static void jme_reset(jme_softc_t *);
199static int  jme_ifinit(struct ifnet *);
200static int  jme_init(struct ifnet *, int);
201static void jme_stop(struct ifnet *, int);
202// static void jme_restart(void *);
203static void jme_ticks(void *);
204static void jme_mac_config(jme_softc_t *);
205static void jme_set_filter(jme_softc_t *);
206
207int jme_mii_read(device_t, int, int);
208void jme_mii_write(device_t, int, int, int);
209void jme_statchg(device_t);
210
211static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
212static int jme_eeprom_macaddr(struct jme_softc *);
213static int jme_reg_macaddr(struct jme_softc *);
214
215#define JME_TIMEOUT		1000
216#define JME_PHY_TIMEOUT		1000
217#define JME_EEPROM_TIMEOUT	1000
218
219static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
220static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
221static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
222static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
223static int jme_root_num;
224
225
226CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
227    jme_pci_match, jme_pci_attach, NULL, NULL);
228
229static const struct jme_product_desc jme_products[] = {
230	{ PCI_PRODUCT_JMICRON_JMC250,
231	  "JMicron JMC250 Gigabit Ethernet Controller" },
232	{ PCI_PRODUCT_JMICRON_JMC260,
233	  "JMicron JMC260 Gigabit Ethernet Controller" },
234	{ 0, NULL },
235};
236
237static const struct jme_product_desc *jme_lookup_product(uint32_t);
238
239static const struct jme_product_desc *
240jme_lookup_product(uint32_t id)
241{
242	const struct jme_product_desc *jp;
243
244	for (jp = jme_products ; jp->jme_desc != NULL; jp++)
245		if (PCI_PRODUCT(id) == jp->jme_product)
246			return jp;
247
248	return NULL;
249}
250
251static int
252jme_pci_match(device_t parent, cfdata_t cf, void *aux)
253{
254	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
255
256	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_JMICRON)
257		return 0;
258
259	if (jme_lookup_product(pa->pa_id) != NULL)
260		return 1;
261
262	return 0;
263}
264
265static void
266jme_pci_attach(device_t parent, device_t self, void *aux)
267{
268	jme_softc_t *sc = device_private(self);
269	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
270	const struct jme_product_desc *jp;
271	struct ifnet * const ifp = &sc->jme_if;
272	bus_space_tag_t iot1, iot2, memt;
273	bus_space_handle_t ioh1, ioh2, memh;
274	bus_size_t size, size2;
275	pci_intr_handle_t intrhandle;
276	const char *intrstr;
277	pcireg_t csr;
278	int nsegs, i;
279	const struct sysctlnode *node;
280	int jme_nodenum;
281
282	sc->jme_dev = self;
283	aprint_normal("\n");
284	callout_init(&sc->jme_tick_ch, 0);
285
286	jp = jme_lookup_product(pa->pa_id);
287	if (jp == NULL)
288		panic("jme_pci_attach: impossible");
289
290	if (jp->jme_product == PCI_PRODUCT_JMICRON_JMC250)
291		sc->jme_flags = JME_FLAG_GIGA;
292
293	/*
294	 * Map the card space. Try Mem first.
295	 */
296	if (pci_mapreg_map(pa, JME_PCI_BAR0,
297	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
298	    0, &memt, &memh, NULL, &size) == 0) {
299		sc->jme_bt_mac = memt;
300		sc->jme_bh_mac = memh;
301		sc->jme_bt_phy = memt;
302		if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
303		    JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
304			aprint_error_dev(self, "can't subregion PHY space\n");
305			bus_space_unmap(memt, memh, size);
306			return;
307		}
308		sc->jme_bt_misc = memt;
309		if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
310		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
311			aprint_error_dev(self, "can't subregion misc space\n");
312			bus_space_unmap(memt, memh, size);
313			return;
314		}
315	} else {
316		if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
317		    0, &iot1, &ioh1, NULL, &size) != 0) {
318			aprint_error_dev(self, "can't map I/O space 1\n");
319			return;
320		}
321		sc->jme_bt_mac = iot1;
322		sc->jme_bh_mac = ioh1;
323		if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
324		    0, &iot2, &ioh2, NULL, &size2) != 0) {
325			aprint_error_dev(self, "can't map I/O space 2\n");
326			bus_space_unmap(iot1, ioh1, size);
327			return;
328		}
329		sc->jme_bt_phy = iot2;
330		sc->jme_bh_phy = ioh2;
331		sc->jme_bt_misc = iot2;
332		if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
333		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
334			aprint_error_dev(self, "can't subregion misc space\n");
335			bus_space_unmap(iot1, ioh1, size);
336			bus_space_unmap(iot2, ioh2, size2);
337			return;
338		}
339	}
340
341	if (pci_dma64_available(pa))
342		sc->jme_dmatag = pa->pa_dmat64;
343	else
344		sc->jme_dmatag = pa->pa_dmat;
345
346	/* Enable the device. */
347	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
348	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
349	    csr | PCI_COMMAND_MASTER_ENABLE);
350
351	aprint_normal_dev(self, "%s\n", jp->jme_desc);
352
353	sc->jme_rev = PCI_REVISION(pa->pa_class);
354
355	csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
356	if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
357	    CHIPMODE_NOT_FPGA)
358		sc->jme_flags |= JME_FLAG_FPGA;
359	sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
360	aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
361	    "0x%x", sc->jme_rev, sc->jme_chip_rev);
362	if (sc->jme_flags & JME_FLAG_FPGA)
363		aprint_verbose(" FPGA revision: 0x%x",
364		    (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
365	aprint_verbose("\n");
366
367	/*
368	 * Save PHY address.
369	 * Integrated JR0211 has fixed PHY address whereas FPGA version
370	 * requires PHY probing to get correct PHY address.
371	 */
372	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
373		sc->jme_phyaddr =
374		    bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
375				     JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
376	} else
377		sc->jme_phyaddr = 0;
378
379
380	jme_reset(sc);
381
382	/* read mac addr */
383	if (jme_eeprom_macaddr(sc) && jme_reg_macaddr(sc)) {
384		aprint_error_dev(self, "error reading Ethernet address\n");
385		/* return; */
386	}
387	aprint_normal_dev(self, "Ethernet address %s\n",
388	    ether_sprintf(sc->jme_enaddr));
389
390	/* Map and establish interrupts */
391	if (pci_intr_map(pa, &intrhandle)) {
392		aprint_error_dev(self, "couldn't map interrupt\n");
393		return;
394	}
395	intrstr = pci_intr_string(pa->pa_pc, intrhandle);
396	sc->jme_if.if_softc = sc;
397	sc->jme_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
398	    jme_intr, sc);
399	if (sc->jme_ih == NULL) {
400		aprint_error_dev(self, "couldn't establish interrupt");
401		if (intrstr != NULL)
402			aprint_error(" at %s", intrstr);
403		aprint_error("\n");
404		return;
405	}
406	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
407
408	/* allocate and map DMA-safe memory for transmit ring */
409	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
410	    &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
411	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
412	    nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
413	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
414	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
415	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
416	    bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
417	    PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
418		aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
419		return;
420	}
421	/* allocate and map DMA-safe memory for receive ring */
422	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
423	      &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
424	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
425	      nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
426	      BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
427	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
428	      BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
429	    bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
430	      PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
431		aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
432		return;
433	}
434	for (i = 0; i < JME_NBUFS; i++) {
435		sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
436		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
437		    JME_NBUFS, JME_MAX_TX_LEN, 0,
438		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
439		    &sc->jme_txmbufm[i]) != 0) {
440			aprint_error_dev(self, "can't allocate DMA TX map\n");
441			return;
442		}
443		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
444		    1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
445		    &sc->jme_rxmbufm[i]) != 0) {
446			aprint_error_dev(self, "can't allocate DMA RX map\n");
447			return;
448		}
449	}
450	/*
451	 * Initialize our media structures and probe the MII.
452	 *
453	 * Note that we don't care about the media instance.  We
454	 * are expecting to have multiple PHYs on the 10/100 cards,
455	 * and on those cards we exclude the internal PHY from providing
456	 * 10baseT.  By ignoring the instance, it allows us to not have
457	 * to specify it on the command line when switching media.
458	 */
459	sc->jme_mii.mii_ifp = ifp;
460	sc->jme_mii.mii_readreg = jme_mii_read;
461	sc->jme_mii.mii_writereg = jme_mii_write;
462	sc->jme_mii.mii_statchg = jme_statchg;
463	sc->jme_ec.ec_mii = &sc->jme_mii;
464	ifmedia_init(&sc->jme_mii.mii_media, IFM_IMASK, jme_mediachange,
465	    ether_mediastatus);
466	mii_attach(self, &sc->jme_mii, 0xffffffff, MII_PHY_ANY,
467	    MII_OFFSET_ANY, 0);
468	if (LIST_FIRST(&sc->jme_mii.mii_phys) == NULL) {
469		ifmedia_add(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
470		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_NONE);
471	} else
472		ifmedia_set(&sc->jme_mii.mii_media, IFM_ETHER|IFM_AUTO);
473
474	/*
475	 * We can support 802.1Q VLAN-sized frames.
476	 */
477	sc->jme_ec.ec_capabilities |=
478	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
479
480	if (sc->jme_flags & JME_FLAG_GIGA)
481		sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
482
483
484	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
485	ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
486	ifp->if_ioctl = jme_ifioctl;
487	ifp->if_start = jme_ifstart;
488	ifp->if_watchdog = jme_ifwatchdog;
489	ifp->if_init = jme_ifinit;
490	ifp->if_stop = jme_stop;
491	ifp->if_timer = 0;
492	ifp->if_capabilities |=
493	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
494	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
495	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
496	    IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
497	    IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
498	    IFCAP_TSOv4 | IFCAP_TSOv6;
499	IFQ_SET_READY(&ifp->if_snd);
500	if_attach(ifp);
501	ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);
502
503	/*
504	 * Add shutdown hook so that DMA is disabled prior to reboot.
505	 */
506	if (pmf_device_register1(self, NULL, NULL, jme_shutdown))
507		pmf_class_network_register(self, ifp);
508	else
509		aprint_error_dev(self, "couldn't establish power handler\n");
510
511	rnd_attach_source(&sc->rnd_source, device_xname(self),
512	    RND_TYPE_NET, 0);
513
514	sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
515	sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
516	sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
517	sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
518	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
519	    0, CTLTYPE_NODE, device_xname(sc->jme_dev),
520	    SYSCTL_DESCR("jme per-controller controls"),
521	    NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
522	    CTL_EOL) != 0) {
523		aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
524		return;
525	}
526	jme_nodenum = node->sysctl_num;
527
528	/* interrupt moderation sysctls */
529	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
530	    CTLFLAG_READWRITE,
531	    CTLTYPE_INT, "int_rxto",
532	    SYSCTL_DESCR("jme RX interrupt moderation timer"),
533	    jme_sysctl_intrxto, 0, sc,
534	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
535	    CTL_EOL) != 0) {
536		aprint_normal_dev(sc->jme_dev,
537		    "couldn't create int_rxto sysctl node\n");
538	}
539	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
540	    CTLFLAG_READWRITE,
541	    CTLTYPE_INT, "int_rxct",
542	    SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
543	    jme_sysctl_intrxct, 0, sc,
544	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
545	    CTL_EOL) != 0) {
546		aprint_normal_dev(sc->jme_dev,
547		    "couldn't create int_rxct sysctl node\n");
548	}
549	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
550	    CTLFLAG_READWRITE,
551	    CTLTYPE_INT, "int_txto",
552	    SYSCTL_DESCR("jme TX interrupt moderation timer"),
553	    jme_sysctl_inttxto, 0, sc,
554	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
555	    CTL_EOL) != 0) {
556		aprint_normal_dev(sc->jme_dev,
557		    "couldn't create int_txto sysctl node\n");
558	}
559	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
560	    CTLFLAG_READWRITE,
561	    CTLTYPE_INT, "int_txct",
562	    SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
563	    jme_sysctl_inttxct, 0, sc,
564	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
565	    CTL_EOL) != 0) {
566		aprint_normal_dev(sc->jme_dev,
567		    "couldn't create int_txct sysctl node\n");
568	}
569}
570
571static void
572jme_stop_rx(jme_softc_t *sc)
573{
574	uint32_t reg;
575	int i;
576
577	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
578	if ((reg & RXCSR_RX_ENB) == 0)
579		return;
580	reg &= ~RXCSR_RX_ENB;
581	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
582	for (i = JME_TIMEOUT / 10; i > 0; i--) {
583		DELAY(10);
584		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
585		    JME_RXCSR) & RXCSR_RX_ENB) == 0)
586			break;
587	}
588	if (i == 0)
589		aprint_error_dev(sc->jme_dev, "stopping recevier timeout!\n");
590
591}
592
593static void
594jme_stop_tx(jme_softc_t *sc)
595{
596	uint32_t reg;
597	int i;
598
599	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
600	if ((reg & TXCSR_TX_ENB) == 0)
601		return;
602	reg &= ~TXCSR_TX_ENB;
603	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
604	for (i = JME_TIMEOUT / 10; i > 0; i--) {
605		DELAY(10);
606		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
607		    JME_TXCSR) & TXCSR_TX_ENB) == 0)
608			break;
609	}
610	if (i == 0)
611		aprint_error_dev(sc->jme_dev,
612		    "stopping transmitter timeout!\n");
613}
614
615static void
616jme_reset(jme_softc_t *sc)
617{
618	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
619	DELAY(10);
620	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
621}
622
623static bool
624jme_shutdown(device_t self, int howto)
625{
626	jme_softc_t *sc;
627	struct ifnet *ifp;
628
629	sc = device_private(self);
630	ifp = &sc->jme_if;
631	jme_stop(ifp, 1);
632
633	return true;
634}
635
636static void
637jme_stop(struct ifnet *ifp, int disable)
638{
639	jme_softc_t *sc = ifp->if_softc;
640	int i;
641	/* Stop receiver, transmitter. */
642	jme_stop_rx(sc);
643	jme_stop_tx(sc);
644	/* free receive mbufs */
645	for (i = 0; i < JME_NBUFS; i++) {
646		if (sc->jme_rxmbuf[i]) {
647			bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
648			m_freem(sc->jme_rxmbuf[i]);
649		}
650		sc->jme_rxmbuf[i] = NULL;
651	}
652	/* process completed transmits */
653	jme_txeof(sc);
654	/* free abort pending transmits */
655	for (i = 0; i < JME_NBUFS; i++) {
656		if (sc->jme_txmbuf[i]) {
657			bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
658			m_freem(sc->jme_txmbuf[i]);
659			sc->jme_txmbuf[i] = NULL;
660		}
661	}
662	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
663	ifp->if_timer = 0;
664}
665
666#if 0
667static void
668jme_restart(void *v)
669{
670
671	jme_init(v);
672}
673#endif
674
675static int
676jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
677{
678	int error;
679	bus_dmamap_t map;
680	int i = sc->jme_rx_prod;
681
682	if (sc->jme_rxmbuf[i] != NULL) {
683		aprint_error_dev(sc->jme_dev,
684		    "mbuf already here: rxprod %d rxcons %d\n",
685		    sc->jme_rx_prod, sc->jme_rx_cons);
686		if (m)
687			m_freem(m);
688		return EINVAL;
689	}
690
691	if (m == NULL) {
692		sc->jme_rxmbuf[i] = NULL;
693		MGETHDR(m, M_DONTWAIT, MT_DATA);
694		if (m == NULL)
695			return (ENOBUFS);
696		MCLGET(m, M_DONTWAIT);
697		if ((m->m_flags & M_EXT) == 0) {
698			m_freem(m);
699			return (ENOBUFS);
700		}
701	}
702	map = sc->jme_rxmbufm[i];
703	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
704	KASSERT(m->m_len == MCLBYTES);
705
706	error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
707	    BUS_DMA_READ|BUS_DMA_NOWAIT);
708	if (error) {
709		sc->jme_rxmbuf[i] = NULL;
710		aprint_error_dev(sc->jme_dev,
711		    "unable to load rx DMA map %d, error = %d\n",
712		    i, error);
713		m_freem(m);
714		return (error);
715	}
716	bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
717	    BUS_DMASYNC_PREREAD);
718
719	sc->jme_rxmbuf[i] = m;
720
721	sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
722	sc->jme_rxring[i].addr_lo =
723	    htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
724	sc->jme_rxring[i].addr_hi =
725	    htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
726	sc->jme_rxring[i].flags =
727	    htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
728	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
729	    i * sizeof(struct jme_desc), sizeof(struct jme_desc),
730	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
731	JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
732	return (0);
733}
734
735static int
736jme_ifinit(struct ifnet *ifp)
737{
738	return jme_init(ifp, 1);
739}
740
741static int
742jme_init(struct ifnet *ifp, int do_ifinit)
743{
744	jme_softc_t *sc = ifp->if_softc;
745	int i, s;
746	uint8_t eaddr[ETHER_ADDR_LEN];
747	uint32_t reg;
748
749	s = splnet();
750	/* cancel any pending IO */
751	jme_stop(ifp, 1);
752	jme_reset(sc);
753	if ((sc->jme_if.if_flags & IFF_UP) == 0) {
754		splx(s);
755		return 0;
756	}
757	/* allocate receive ring */
758	sc->jme_rx_prod = 0;
759	for (i = 0; i < JME_NBUFS; i++) {
760		if (jme_add_rxbuf(sc, NULL) < 0) {
761			aprint_error_dev(sc->jme_dev,
762			    "can't allocate rx mbuf\n");
763			for (i--; i >= 0; i--) {
764				bus_dmamap_unload(sc->jme_dmatag,
765				    sc->jme_rxmbufm[i]);
766				m_freem(sc->jme_rxmbuf[i]);
767				sc->jme_rxmbuf[i] = NULL;
768			}
769			splx(s);
770			return ENOMEM;
771		}
772	}
773	/* init TX ring */
774	memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
775	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
776	    0, JME_NBUFS * sizeof(struct jme_desc),
777	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
778	for (i = 0; i < JME_NBUFS; i++)
779		sc->jme_txmbuf[i] = NULL;
780	sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;
781
782	/* Reprogram the station address. */
783	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
784	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
785	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
786	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
787	    JME_PAR1, eaddr[5] << 8 | eaddr[4]);
788
789	/*
790	 * Configure Tx queue.
791	 *  Tx priority queue weight value : 0
792	 *  Tx FIFO threshold for processing next packet : 16QW
793	 *  Maximum Tx DMA length : 512
794	 *  Allow Tx DMA burst.
795	 */
796	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
797	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
798	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
799	sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
800	sc->jme_txcsr |= TXCSR_DMA_BURST;
801	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
802	     JME_TXCSR, sc->jme_txcsr);
803
804	/* Set Tx descriptor counter. */
805	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
806	     JME_TXQDC, JME_NBUFS);
807
808	/* Set Tx ring address to the hardware. */
809	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
810	    JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
811	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
812	    JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));
813
814	/* Configure TxMAC parameters. */
815	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
816	    TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
817	    TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);
818
819	/*
820	 * Configure Rx queue.
821	 *  FIFO full threshold for transmitting Tx pause packet : 128T
822	 *  FIFO threshold for processing next packet : 128QW
823	 *  Rx queue 0 select
824	 *  Max Rx DMA length : 128
825	 *  Rx descriptor retry : 32
826	 *  Rx descriptor retry time gap : 256ns
827	 *  Don't receive runt/bad frame.
828	 */
829	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
830	/*
831	 * Since Rx FIFO size is 4K bytes, receiving frames larger
832	 * than 4K bytes will suffer from Rx FIFO overruns. So
833	 * decrease FIFO threshold to reduce the FIFO overruns for
834	 * frames larger than 4000 bytes.
835	 * For best performance of standard MTU sized frames use
836	 * maximum allowable FIFO threshold, 128QW.
837	 */
838	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
839	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
840		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
841	else
842		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
843	sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
844	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
845	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
846	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
847	     JME_RXCSR, sc->jme_rxcsr);
848
849	/* Set Rx descriptor counter. */
850	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
851	     JME_RXQDC, JME_NBUFS);
852
853	/* Set Rx ring address to the hardware. */
854	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
855	    JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
856	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
857	    JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));
858
859	/* Clear receive filter. */
860	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
861	/* Set up the receive filter. */
862	jme_set_filter(sc);
863
864	/*
865	 * Disable all WOL bits as WOL can interfere normal Rx
866	 * operation. Also clear WOL detection status bits.
867	 */
868	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
869	reg &= ~PMCS_WOL_ENB_MASK;
870	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);
871
872	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
873	/*
874	 * Pad 10bytes right before received frame. This will greatly
875	 * help Rx performance on strict-alignment architectures as
876	 * it does not need to copy the frame to align the payload.
877	 */
878	reg |= RXMAC_PAD_10BYTES;
879	if ((ifp->if_capenable &
880	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx|
881	     IFCAP_CSUM_TCPv6_Rx|IFCAP_CSUM_UDPv6_Rx)) != 0)
882		reg |= RXMAC_CSUM_ENB;
883	reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
884	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);
885
886	/* Configure general purpose reg0 */
887	reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
888	reg &= ~GPREG0_PCC_UNIT_MASK;
889	/* Set PCC timer resolution to micro-seconds unit. */
890	reg |= GPREG0_PCC_UNIT_US;
891	/*
892	 * Disable all shadow register posting as we have to read
893	 * JME_INTR_STATUS register in jme_int_task. Also it seems
894	 * that it's hard to synchronize interrupt status between
895	 * hardware and software with shadow posting due to
896	 * requirements of bus_dmamap_sync(9).
897	 */
898	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
899	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
900	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
901	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
902	/* Disable posting of DW0. */
903	reg &= ~GPREG0_POST_DW0_ENB;
904	/* Clear PME message. */
905	reg &= ~GPREG0_PME_ENB;
906	/* Set PHY address. */
907	reg &= ~GPREG0_PHY_ADDR_MASK;
908	reg |= sc->jme_phyaddr;
909	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);
910
911	/* Configure Tx queue 0 packet completion coalescing. */
912	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
913	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
914	reg |= PCCTX_COAL_TXQ0;
915	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
916
917	/* Configure Rx queue 0 packet completion coalescing. */
918	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
919	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
920	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
921
922	/* Disable Timers */
923	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0);
924	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
925	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);
926
927	/* Configure retry transmit period, retry limit value. */
928	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
929	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
930	    TXTRHD_RT_PERIOD_MASK) |
931	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
932	    TXTRHD_RT_LIMIT_SHIFT));
933
934	/* Disable RSS. */
935	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
936	    JME_RSSC, RSSC_DIS_RSS);
937
938	/* Initialize the interrupt mask. */
939	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
940	     JME_INTR_MASK_SET, JME_INTRS_ENABLE);
941	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
942	     JME_INTR_STATUS, 0xFFFFFFFF);
943
944	/* set media, if not already handling a media change */
945	if (do_ifinit) {
946		int error;
947		if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
948			error = 0;
949		else if (error != 0) {
950			aprint_error_dev(sc->jme_dev, "could not set media\n");
951			return error;
952		}
953	}
954
955	/* Program MAC with resolved speed/duplex/flow-control. */
956	jme_mac_config(sc);
957
958	/* Start receiver/transmitter. */
959	sc->jme_rx_cons = 0;
960	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
961	    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
962	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
963	    sc->jme_txcsr | TXCSR_TX_ENB);
964
965	/* start ticks calls */
966	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
967	sc->jme_if.if_flags |= IFF_RUNNING;
968	sc->jme_if.if_flags &= ~IFF_OACTIVE;
969	splx(s);
970	return 0;
971}
972
973
974int
975jme_mii_read(device_t self, int phy, int reg)
976{
977	struct jme_softc *sc = device_private(self);
978	int val, i;
979
980	/* For FPGA version, PHY address 0 should be ignored. */
981	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
982		if (phy == 0)
983			return (0);
984	} else {
985		if (sc->jme_phyaddr != phy)
986			return (0);
987	}
988
989	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
990	    SMI_OP_READ | SMI_OP_EXECUTE |
991	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
992	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
993		delay(10);
994		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
995		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
996			break;
997	}
998
999	if (i == 0) {
1000		aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
1001		return (0);
1002	}
1003
1004	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
1005}
1006
1007void
1008jme_mii_write(device_t self, int phy, int reg, int val)
1009{
1010	struct jme_softc *sc = device_private(self);
1011	int i;
1012
1013	/* For FPGA version, PHY address 0 should be ignored. */
1014	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
1015		if (phy == 0)
1016			return;
1017	} else {
1018		if (sc->jme_phyaddr != phy)
1019			return;
1020	}
1021
1022	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
1023	    SMI_OP_WRITE | SMI_OP_EXECUTE |
1024	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
1025	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
1026	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
1027		delay(10);
1028		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1029		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1030			break;
1031	}
1032
1033	if (i == 0)
1034		aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
1035
1036	return;
1037}
1038
1039void
1040jme_statchg(device_t self)
1041{
1042	jme_softc_t *sc = device_private(self);
1043	struct ifnet *ifp = &sc->jme_if;
1044	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING))
1045		jme_init(ifp, 0);
1046}
1047
1048static void
1049jme_intr_rx(jme_softc_t *sc) {
1050	struct mbuf *m, *mhead;
1051	bus_dmamap_t mmap;
1052	struct ifnet *ifp = &sc->jme_if;
1053	uint32_t flags,  buflen;
1054	int i, ipackets, nsegs, seg, error;
1055	struct jme_desc *desc;
1056
1057	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
1058	    sizeof(struct jme_desc) * JME_NBUFS,
1059	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1060#ifdef JMEDEBUG_RX
1061	printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
1062	    sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
1063#endif
1064	ipackets = 0;
1065	while((le32toh(sc->jme_rxring[sc->jme_rx_cons].flags) & JME_RD_OWN)
1066	    == 0) {
1067		i = sc->jme_rx_cons;
1068		desc = &sc->jme_rxring[i];
1069#ifdef JMEDEBUG_RX
1070		printf("rxintr i %d flags 0x%x buflen 0x%x\n",
1071		    i,  le32toh(desc->flags), le32toh(desc->buflen));
1072#endif
1073		if (sc->jme_rxmbuf[i] == NULL) {
1074			if ((error = jme_add_rxbuf(sc, NULL)) != 0) {
1075				aprint_error_dev(sc->jme_dev,
1076				    "can't add new mbuf to empty slot: %d\n",
1077				    error);
1078				break;
1079			}
1080			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1081			i = sc->jme_rx_cons;
1082			continue;
1083		}
1084		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
1085			break;
1086
1087		buflen = le32toh(desc->buflen);
1088		nsegs = JME_RX_NSEGS(buflen);
1089		flags = le32toh(desc->flags);
1090		if ((buflen & JME_RX_ERR_STAT) != 0 ||
1091		    JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
1092		    JME_RX_BYTES(buflen) >
1093		    (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
1094#ifdef JMEDEBUG_RX
1095			printf("rx error flags 0x%x buflen 0x%x\n",
1096			    flags, buflen);
1097#endif
1098			ifp->if_ierrors++;
1099			/* reuse the mbufs */
1100			for (seg = 0; seg < nsegs; seg++) {
1101				m = sc->jme_rxmbuf[i];
1102				sc->jme_rxmbuf[i] = NULL;
1103				mmap = sc->jme_rxmbufm[i];
1104				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1105				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1106				bus_dmamap_unload(sc->jme_dmatag, mmap);
1107				if ((error = jme_add_rxbuf(sc, m)) != 0)
1108					aprint_error_dev(sc->jme_dev,
1109					    "can't reuse mbuf: %d\n", error);
1110				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1111				i = sc->jme_rx_cons;
1112			}
1113			continue;
1114		}
1115		/* receive this packet */
1116		mhead = m = sc->jme_rxmbuf[i];
1117		sc->jme_rxmbuf[i] = NULL;
1118		mmap = sc->jme_rxmbufm[i];
1119		bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1120		    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1121		bus_dmamap_unload(sc->jme_dmatag, mmap);
1122		/* add a new buffer to chain */
1123		if (jme_add_rxbuf(sc, NULL) != 0) {
1124			if ((error = jme_add_rxbuf(sc, m)) != 0)
1125				aprint_error_dev(sc->jme_dev,
1126				    "can't reuse mbuf: %d\n", error);
1127			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1128			i = sc->jme_rx_cons;
1129			for (seg = 1; seg < nsegs; seg++) {
1130				m = sc->jme_rxmbuf[i];
1131				sc->jme_rxmbuf[i] = NULL;
1132				mmap = sc->jme_rxmbufm[i];
1133				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1134				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1135				bus_dmamap_unload(sc->jme_dmatag, mmap);
1136				if ((error = jme_add_rxbuf(sc, m)) != 0)
1137					aprint_error_dev(sc->jme_dev,
1138					    "can't reuse mbuf: %d\n", error);
1139				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1140				i = sc->jme_rx_cons;
1141			}
1142			ifp->if_ierrors++;
1143			continue;
1144		}
1145
1146		/* build mbuf chain: head, then remaining segments */
1147		m->m_pkthdr.rcvif = ifp;
1148		m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
1149		m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
1150		    m->m_pkthdr.len;
1151		m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
1152		JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1153		for (seg = 1; seg < nsegs; seg++) {
1154			i = sc->jme_rx_cons;
1155			m = sc->jme_rxmbuf[i];
1156			sc->jme_rxmbuf[i] = NULL;
1157			mmap = sc->jme_rxmbufm[i];
1158			bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1159			    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1160			bus_dmamap_unload(sc->jme_dmatag, mmap);
1161			if ((error = jme_add_rxbuf(sc, NULL)) != 0)
1162				aprint_error_dev(sc->jme_dev,
1163				    "can't add new mbuf: %d\n", error);
1164			m->m_flags &= ~M_PKTHDR;
1165			m_cat(mhead, m);
1166			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1167		}
1168		/* and adjust last mbuf's size */
1169		if (nsegs > 1) {
1170			m->m_len =
1171			    JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
1172		}
1173		ifp->if_ipackets++;
1174		ipackets++;
1175		bpf_mtap(ifp, mhead);
1176
1177		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
1178		    (flags & JME_RD_IPV4)) {
1179			mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1180			if (!(flags & JME_RD_IPCSUM))
1181				mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1182		}
1183		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
1184		    (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
1185			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1186			if (!(flags & JME_RD_TCPCSUM))
1187				mhead->m_pkthdr.csum_flags |=
1188				    M_CSUM_TCP_UDP_BAD;
1189		}
1190		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
1191		    (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
1192			mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1193			if (!(flags & JME_RD_UDPCSUM))
1194				mhead->m_pkthdr.csum_flags |=
1195				    M_CSUM_TCP_UDP_BAD;
1196		}
1197		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
1198		    (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
1199			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
1200			if (!(flags & JME_RD_TCPCSUM))
1201				mhead->m_pkthdr.csum_flags |=
1202				    M_CSUM_TCP_UDP_BAD;
1203		}
1204		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
1205		    (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
1206			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
1207			if (!(flags & JME_RD_UDPCSUM))
1208				mhead->m_pkthdr.csum_flags |=
1209				    M_CSUM_TCP_UDP_BAD;
1210		}
1211		if (flags & JME_RD_VLAN_TAG) {
1212			/* pass to vlan_input() */
1213			VLAN_INPUT_TAG(ifp, mhead,
1214			    (flags & JME_RD_VLAN_MASK), continue);
1215		}
1216		(*ifp->if_input)(ifp, mhead);
1217	}
1218	if (ipackets)
1219		rnd_add_uint32(&sc->rnd_source, ipackets);
1220}
1221
1222static int
1223jme_intr(void *v)
1224{
1225	jme_softc_t *sc = v;
1226	uint32_t istatus;
1227
1228	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1229	     JME_INTR_STATUS);
1230	if (istatus == 0 || istatus == 0xFFFFFFFF)
1231		return 0;
1232	/* Disable interrupts. */
1233	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1234	    JME_INTR_MASK_CLR, 0xFFFFFFFF);
1235again:
1236	/* and update istatus */
1237	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1238	     JME_INTR_STATUS);
1239	if ((istatus & JME_INTRS_CHECK) == 0)
1240		goto done;
1241	/* Reset PCC counter/timer and Ack interrupts. */
1242	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1243		istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1244	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1245		istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1246	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1247	     JME_INTR_STATUS, istatus);
1248
1249	if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
1250		goto done;
1251#ifdef JMEDEBUG_RX
1252	printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
1253	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
1254	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
1255	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
1256	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
1257	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
1258	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
1259	printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
1260	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
1261	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
1262	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
1263	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
1264	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
1265#endif
1266	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1267		jme_intr_rx(sc);
1268	if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
1269		/*
1270		 * Notify hardware availability of new Rx
1271		 * buffers.
1272		 * Reading RXCSR takes very long time under
1273		 * heavy load so cache RXCSR value and writes
1274		 * the ORed value with the kick command to
1275		 * the RXCSR. This saves one register access
1276		 * cycle.
1277		 */
1278		sc->jme_rx_cons = 0;
1279		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1280		    JME_RXCSR,
1281		    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
1282	}
1283	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1284		jme_ifstart(&sc->jme_if);
1285
1286	goto again;
1287
1288done:
1289	/* enable interrupts. */
1290	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1291	    JME_INTR_MASK_SET, JME_INTRS_ENABLE);
1292	return 1;
1293}
1294
1295
1296static int
1297jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1298{
1299	struct jme_softc *sc = ifp->if_softc;
1300	int s, error;
1301	struct ifreq *ifr;
1302	struct ifcapreq *ifcr;
1303
1304	s = splnet();
1305	/*
1306	 * we can't support at the same time jumbo frames and
1307	 * TX checksums offload/TSO
1308	 */
1309	switch(cmd) {
1310	case SIOCSIFMTU:
1311		ifr = data;
1312		if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
1313		    (ifp->if_capenable & (
1314		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1315		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1316		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1317			splx(s);
1318			return EINVAL;
1319		}
1320		break;
1321	case SIOCSIFCAP:
1322		ifcr = data;
1323		if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
1324		    (ifcr->ifcr_capenable & (
1325		    IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx|
1326		    IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_UDPv6_Tx|
1327		    IFCAP_TSOv4|IFCAP_TSOv6)) != 0) {
1328			splx(s);
1329			return EINVAL;
1330		}
1331		break;
1332	}
1333
1334	error = ether_ioctl(ifp, cmd, data);
1335	if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
1336		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1337			jme_set_filter(sc);
1338			error = 0;
1339		} else {
1340			error = jme_init(ifp, 0);
1341		}
1342	}
1343	splx(s);
1344	return error;
1345}
1346
1347static int
1348jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1349{
1350	struct jme_desc *txd;
1351	struct jme_desc *desc;
1352	struct mbuf *m;
1353	struct m_tag *mtag;
1354	int error, i, prod, headdsc, nsegs;
1355	uint32_t cflags, tso_segsz;
1356
1357	if (((*m_head)->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0){
1358		/*
1359		 * Due to the adherence to NDIS specification JMC250
1360		 * assumes upper stack computed TCP pseudo checksum
1361		 * without including payload length. This breaks
1362		 * checksum offload for TSO case so recompute TCP
1363		 * pseudo checksum for JMC250. Hopefully this wouldn't
1364		 * be much burden on modern CPUs.
1365		 */
1366		bool v4 = ((*m_head)->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1367		int iphl = v4 ?
1368		    M_CSUM_DATA_IPv4_IPHL((*m_head)->m_pkthdr.csum_data) :
1369		    M_CSUM_DATA_IPv6_HL((*m_head)->m_pkthdr.csum_data);
1370		/*
1371		 * note: we support vlan offloading, so we should never have
1372		 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
1373		 * right.
1374		 */
1375		int hlen = ETHER_HDR_LEN + iphl;
1376
1377		if (__predict_false((*m_head)->m_len <
1378		    (hlen + sizeof(struct tcphdr)))) {
1379			   /*
1380			    * TCP/IP headers are not in the first mbuf; we need
1381			    * to do this the slow and painful way.  Let's just
1382			    * hope this doesn't happen very often.
1383			    */
1384			   struct tcphdr th;
1385
1386			   m_copydata((*m_head), hlen, sizeof(th), &th);
1387			   if (v4) {
1388				    struct ip ip;
1389
1390				    m_copydata((*m_head), ETHER_HDR_LEN,
1391				    sizeof(ip), &ip);
1392				    ip.ip_len = 0;
1393				    m_copyback((*m_head),
1394					 ETHER_HDR_LEN + offsetof(struct ip, ip_len),
1395					 sizeof(ip.ip_len), &ip.ip_len);
1396				    th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1397					 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1398			   } else {
1399#if INET6
1400				    struct ip6_hdr ip6;
1401
1402				    m_copydata((*m_head), ETHER_HDR_LEN,
1403				    sizeof(ip6), &ip6);
1404				    ip6.ip6_plen = 0;
1405				    m_copyback((*m_head), ETHER_HDR_LEN +
1406				    offsetof(struct ip6_hdr, ip6_plen),
1407					 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1408				    th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1409					 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1410#endif /* INET6 */
1411			   }
1412			   m_copyback((*m_head),
1413			    hlen + offsetof(struct tcphdr, th_sum),
1414				sizeof(th.th_sum), &th.th_sum);
1415
1416			   hlen += th.th_off << 2;
1417		} else {
1418			   /*
1419			    * TCP/IP headers are in the first mbuf; we can do
1420			    * this the easy way.
1421			    */
1422			   struct tcphdr *th;
1423
1424			   if (v4) {
1425				    struct ip *ip =
1426					 (void *)(mtod((*m_head), char *) +
1427					ETHER_HDR_LEN);
1428				    th = (void *)(mtod((*m_head), char *) + hlen);
1429
1430				    ip->ip_len = 0;
1431				    th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1432					 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1433			   } else {
1434#if INET6
1435				    struct ip6_hdr *ip6 =
1436				    (void *)(mtod((*m_head), char *) +
1437				    ETHER_HDR_LEN);
1438				    th = (void *)(mtod((*m_head), char *) + hlen);
1439
1440				    ip6->ip6_plen = 0;
1441				    th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1442					 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1443#endif /* INET6 */
1444			   }
1445			hlen += th->th_off << 2;
1446		}
1447
1448	}
1449
1450	prod = sc->jme_tx_prod;
1451	txd = &sc->jme_txring[prod];
1452
1453	error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
1454	    *m_head, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1455	if (error) {
1456		if (error == EFBIG) {
1457			log(LOG_ERR, "%s: Tx packet consumes too many "
1458			    "DMA segments, dropping...\n",
1459			    device_xname(sc->jme_dev));
1460			m_freem(*m_head);
1461			m_head = NULL;
1462		}
1463		return (error);
1464	}
1465	/*
1466	 * Check descriptor overrun. Leave one free descriptor.
1467	 * Since we always use 64bit address mode for transmitting,
1468	 * each Tx request requires one more dummy descriptor.
1469	 */
1470	nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
1471#ifdef JMEDEBUG_TX
1472	printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
1473#endif
1474	if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
1475		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
1476		return (ENOBUFS);
1477	}
1478	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
1479	    0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1480
1481	m = *m_head;
1482	cflags = 0;
1483	tso_segsz = 0;
1484	/* Configure checksum offload and TSO. */
1485	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4|M_CSUM_TSOv6)) != 0) {
1486		tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
1487		cflags |= JME_TD_TSO;
1488	} else {
1489		if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
1490			cflags |= JME_TD_IPCSUM;
1491		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_TCPv6)) != 0)
1492			cflags |= JME_TD_TCPCSUM;
1493		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4|M_CSUM_UDPv6)) != 0)
1494			cflags |= JME_TD_UDPCSUM;
1495	}
1496	/* Configure VLAN. */
1497	if ((mtag = VLAN_OUTPUT_TAG(&sc->jme_ec, m)) != NULL) {
1498		cflags |= (VLAN_TAG_VALUE(mtag) & JME_TD_VLAN_MASK);
1499		cflags |= JME_TD_VLAN_TAG;
1500	}
1501
1502	desc = &sc->jme_txring[prod];
1503	desc->flags = htole32(cflags);
1504	desc->buflen = htole32(tso_segsz);
1505	desc->addr_hi = htole32(m->m_pkthdr.len);
1506	desc->addr_lo = 0;
1507	headdsc = prod;
1508	sc->jme_tx_cnt++;
1509	JME_DESC_INC(prod, JME_NBUFS);
1510	for (i = 0; i < nsegs; i++) {
1511		desc = &sc->jme_txring[prod];
1512		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1513		desc->buflen =
1514		    htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
1515		desc->addr_hi = htole32(
1516		    JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1517		desc->addr_lo = htole32(
1518		    JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1519		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1520		    prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
1521		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1522		sc->jme_txmbuf[prod] = NULL;
1523		sc->jme_tx_cnt++;
1524		JME_DESC_INC(prod, JME_NBUFS);
1525	}
1526
1527	/* Update producer index. */
1528	sc->jme_tx_prod = prod;
1529#ifdef JMEDEBUG_TX
1530	printf("jme_encap prod now %d\n", sc->jme_tx_prod);
1531#endif
1532	/*
1533	 * Finally request interrupt and give the first descriptor
1534	 * owenership to hardware.
1535	 */
1536	desc = &sc->jme_txring[headdsc];
1537	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1538	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1539	    headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
1540	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1541
1542	sc->jme_txmbuf[headdsc] = m;
1543	return (0);
1544}
1545
1546static void
1547jme_txeof(struct jme_softc *sc)
1548{
1549	struct ifnet *ifp;
1550	struct jme_desc *desc;
1551	uint32_t status;
1552	int cons, cons0, nsegs, seg;
1553
1554	ifp = &sc->jme_if;
1555
1556#ifdef JMEDEBUG_TX
1557	printf("jme_txeof cons %d prod %d\n",
1558	    sc->jme_tx_cons, sc->jme_tx_prod);
1559	printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1560	    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1561	    "JME_TXTRHD 0x%x\n",
1562	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1563	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1564	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1565	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1566	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1567	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1568	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1569	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1570	for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
1571		desc = &sc->jme_txring[cons];
1572		printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
1573		    desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
1574		JME_DESC_INC(cons, JME_NBUFS);
1575	}
1576#endif
1577
1578	cons = sc->jme_tx_cons;
1579	if (cons == sc->jme_tx_prod)
1580		return;
1581
1582	/*
1583	 * Go through our Tx list and free mbufs for those
1584	 * frames which have been transmitted.
1585	 */
1586	for (; cons != sc->jme_tx_prod;) {
1587		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1588		    cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
1589		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1590
1591		desc = &sc->jme_txring[cons];
1592		status = le32toh(desc->flags);
1593#ifdef JMEDEBUG_TX
1594		printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
1595		    sc->jme_txmbufm[cons]->dm_nsegs);
1596#endif
1597		if (status & JME_TD_OWN)
1598			break;
1599
1600		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
1601			ifp->if_oerrors++;
1602		else {
1603			ifp->if_opackets++;
1604			if ((status & JME_TD_COLLISION) != 0)
1605				ifp->if_collisions +=
1606				    le32toh(desc->buflen) &
1607				    JME_TD_BUF_LEN_MASK;
1608		}
1609		/*
1610		 * Only the first descriptor of multi-descriptor
1611		 * transmission is updated so driver have to skip entire
1612		 * chained buffers for the transmiited frame. In other
1613		 * words, JME_TD_OWN bit is valid only at the first
1614		 * descriptor of a multi-descriptor transmission.
1615		 */
1616		nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
1617		cons0 = cons;
1618		JME_DESC_INC(cons, JME_NBUFS);
1619		for (seg = 1; seg < nsegs + 1; seg++) {
1620			bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1621			    cons * sizeof(struct jme_desc),
1622			    sizeof(struct jme_desc),
1623			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1624			sc->jme_txring[cons].flags = 0;
1625			JME_DESC_INC(cons, JME_NBUFS);
1626		}
1627		/* Reclaim transferred mbufs. */
1628		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
1629		    0, sc->jme_txmbufm[cons0]->dm_mapsize,
1630		    BUS_DMASYNC_POSTWRITE);
1631		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);
1632
1633		KASSERT(sc->jme_txmbuf[cons0] != NULL);
1634		m_freem(sc->jme_txmbuf[cons0]);
1635		sc->jme_txmbuf[cons0] = NULL;
1636		sc->jme_tx_cnt -= nsegs + 1;
1637		KASSERT(sc->jme_tx_cnt >= 0);
1638		sc->jme_if.if_flags &= ~IFF_OACTIVE;
1639	}
1640	sc->jme_tx_cons = cons;
1641	/* Unarm watchog timer when there is no pending descriptors in queue. */
1642	if (sc->jme_tx_cnt == 0)
1643		ifp->if_timer = 0;
1644#ifdef JMEDEBUG_TX
1645	printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
1646#endif
1647}
1648
1649static void
1650jme_ifstart(struct ifnet *ifp)
1651{
1652	jme_softc_t *sc = ifp->if_softc;
1653	struct mbuf *mb_head;
1654	int enq;
1655
1656	/*
1657	 * check if we can free some desc.
1658	 * Clear TX interrupt status to reset TX coalescing counters.
1659	 */
1660	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1661	     JME_INTR_STATUS, INTR_TXQ_COMP);
1662	jme_txeof(sc);
1663
1664	if ((sc->jme_if.if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1665		return;
1666	for (enq = 0;; enq++) {
1667nexttx:
1668		/* Grab a paquet for output */
1669		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1670		if (mb_head == NULL) {
1671#ifdef JMEDEBUG_TX
1672			printf("%s: nothing to send\n", __func__);
1673#endif
1674			break;
1675		}
1676		/* try to add this mbuf to the TX ring */
1677		if (jme_encap(sc, &mb_head)) {
1678			if (mb_head == NULL) {
1679				ifp->if_oerrors++;
1680				/* packet dropped, try next one */
1681				goto nexttx;
1682			}
1683			/* resource shortage, try again later */
1684			IF_PREPEND(&ifp->if_snd, mb_head);
1685			ifp->if_flags |= IFF_OACTIVE;
1686			break;
1687		}
1688		/* Pass packet to bpf if there is a listener */
1689		bpf_mtap(ifp, mb_head);
1690	}
1691#ifdef JMEDEBUG_TX
1692	printf("jme_ifstart enq %d\n", enq);
1693#endif
1694	if (enq) {
1695		/*
1696		 * Set a 5 second timer just in case we don't hear from
1697		 * the card again.
1698		 */
1699		ifp->if_timer = 5;
1700		/*
1701		 * Reading TXCSR takes very long time under heavy load
1702		 * so cache TXCSR value and writes the ORed value with
1703		 * the kick command to the TXCSR. This saves one register
1704		 * access cycle.
1705		 */
1706		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
1707		  sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1708#ifdef JMEDEBUG_TX
1709		printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1710		    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1711		    "JME_TXTRHD 0x%x\n",
1712		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1713		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1714		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1715		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1716		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1717		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1718		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1719		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1720#endif
1721	}
1722}
1723
1724static void
1725jme_ifwatchdog(struct ifnet *ifp)
1726{
1727	jme_softc_t *sc = ifp->if_softc;
1728
1729	if ((ifp->if_flags & IFF_RUNNING) == 0)
1730		return;
1731	printf("%s: device timeout\n", device_xname(sc->jme_dev));
1732	ifp->if_oerrors++;
1733	jme_init(ifp, 0);
1734}
1735
1736static int
1737jme_mediachange(struct ifnet *ifp)
1738{
1739	int error;
1740	jme_softc_t *sc = ifp->if_softc;
1741
1742	if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
1743		error = 0;
1744	else if (error != 0) {
1745		aprint_error_dev(sc->jme_dev, "could not set media\n");
1746		return error;
1747	}
1748	return 0;
1749}
1750
1751static void
1752jme_ticks(void *v)
1753{
1754	jme_softc_t *sc = v;
1755	int s = splnet();
1756
1757	/* Tick the MII. */
1758	mii_tick(&sc->jme_mii);
1759
1760	/* every seconds */
1761	callout_reset(&sc->jme_tick_ch, hz, jme_ticks, sc);
1762	splx(s);
1763}
1764
1765static void
1766jme_mac_config(jme_softc_t *sc)
1767{
1768	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1769	struct mii_data *mii = &sc->jme_mii;
1770
1771	ghc = 0;
1772	rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1773	rxmac &= ~RXMAC_FC_ENB;
1774	txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
1775	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1776	txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
1777	txpause &= ~TXPFC_PAUSE_ENB;
1778
1779	if (mii->mii_media_active & IFM_FDX) {
1780		ghc |= GHC_FULL_DUPLEX;
1781		rxmac &= ~RXMAC_COLL_DET_ENB;
1782		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1783		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1784		    TXMAC_FRAME_BURST);
1785		/* Disable retry transmit timer/retry limit. */
1786		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1787		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
1788		    & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1789	} else {
1790		rxmac |= RXMAC_COLL_DET_ENB;
1791		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1792		/* Enable retry transmit timer/retry limit. */
1793		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1794		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)		    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1795	}
1796	/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1797	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1798	case IFM_10_T:
1799		ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100;
1800		break;
1801	case IFM_100_TX:
1802		ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100;
1803		break;
1804	case IFM_1000_T:
1805		ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000;
1806		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1807			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1808		break;
1809	default:
1810		break;
1811	}
1812	if ((sc->jme_flags & JME_FLAG_GIGA) &&
1813	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
1814		/*
1815		 * Workaround occasional packet loss issue of JMC250 A2
1816		 * when it runs on half-duplex media.
1817		 */
1818#ifdef JMEDEBUG
1819		printf("JME250 A2 workaround\n");
1820#endif
1821		gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1822		    JME_GPREG1);
1823		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1824			gpreg &= ~GPREG1_HDPX_FIX;
1825		else
1826			gpreg |= GPREG1_HDPX_FIX;
1827		bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1828		    JME_GPREG1, gpreg);
1829		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
1830		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
1831			/* Extend interface FIFO depth. */
1832			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1833			    0x1B, 0x0000);
1834		} else {
1835			/* Select default interface FIFO depth. */
1836			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1837			    0x1B, 0x0004);
1838		}
1839	}
1840	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
1841	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
1842	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
1843	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
1844}
1845
1846static void
1847jme_set_filter(jme_softc_t *sc)
1848{
1849	struct ifnet *ifp = &sc->jme_if;
1850	struct ether_multistep step;
1851	struct ether_multi *enm;
1852	uint32_t hash[2] = {0, 0};
1853	int i;
1854	uint32_t rxcfg;
1855
1856	rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1857	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
1858	    RXMAC_ALLMULTI);
1859	/* Always accept frames destined to our station address. */
1860	rxcfg |= RXMAC_UNICAST;
1861	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1862		rxcfg |= RXMAC_BROADCAST;
1863	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1864		if ((ifp->if_flags & IFF_PROMISC) != 0)
1865			rxcfg |= RXMAC_PROMISC;
1866		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1867			rxcfg |= RXMAC_ALLMULTI;
1868		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1869		     JME_MAR0, 0xFFFFFFFF);
1870		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1871		     JME_MAR1, 0xFFFFFFFF);
1872		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1873		     JME_RXMAC, rxcfg);
1874		return;
1875	}
1876	/*
1877	 * Set up the multicast address filter by passing all multicast
1878	 * addresses through a CRC generator, and then using the low-order
1879	 * 6 bits as an index into the 64 bit multicast hash table.  The
1880	 * high order bits select the register, while the rest of the bits
1881	 * select the bit within the register.
1882	 */
1883	rxcfg |= RXMAC_MULTICAST;
1884	memset(hash, 0, sizeof(hash));
1885
1886	ETHER_FIRST_MULTI(step, &sc->jme_ec, enm);
1887	while (enm != NULL) {
1888#ifdef JEMDBUG
1889		printf("%s: addrs %s %s\n", __func__,
1890		   ether_sprintf(enm->enm_addrlo),
1891		   ether_sprintf(enm->enm_addrhi));
1892#endif
1893		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
1894			i = ether_crc32_be(enm->enm_addrlo, 6);
1895			/* Just want the 6 least significant bits. */
1896			i &= 0x3f;
1897			hash[i / 32] |= 1 << (i%32);
1898		} else {
1899			hash[0] = hash[1] = 0xffffffff;
1900			sc->jme_if.if_flags |= IFF_ALLMULTI;
1901			break;
1902		}
1903		ETHER_NEXT_MULTI(step, enm);
1904	}
1905#ifdef JMEDEBUG
1906	printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
1907#endif
1908	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
1909	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
1910	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
1911}
1912
1913#if 0
1914static int
1915jme_multicast_hash(uint8_t *a)
1916{
1917	int hash;
1918
1919#define DA(addr,bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
1920#define xor8(a,b,c,d,e,f,g,h)						\
1921	(((a != 0) + (b != 0) + (c != 0) + (d != 0) + 			\
1922	  (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
1923
1924	hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
1925	    DA(a,36), DA(a,42));
1926	hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
1927	    DA(a,37), DA(a,43)) << 1;
1928	hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
1929	    DA(a,38), DA(a,44)) << 2;
1930	hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
1931	    DA(a,39), DA(a,45)) << 3;
1932	hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
1933	    DA(a,40), DA(a,46)) << 4;
1934	hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
1935	    DA(a,41), DA(a,47)) << 5;
1936
1937	return hash;
1938}
1939#endif
1940
1941static int
1942jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
1943{
1944	 uint32_t reg;
1945	 int i;
1946
1947	 *val = 0;
1948	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1949		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1950		      JME_SMBCSR);
1951		  if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
1952			   break;
1953		  delay(10);
1954	 }
1955
1956	 if (i == 0) {
1957		  aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
1958		  return (ETIMEDOUT);
1959	 }
1960
1961	 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
1962	 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
1963	     JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
1964	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1965		  delay(10);
1966		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1967		      JME_SMBINTF);
1968		  if ((reg & SMBINTF_CMD_TRIGGER) == 0)
1969			   break;
1970	 }
1971
1972	 if (i == 0) {
1973		  aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
1974		  return (ETIMEDOUT);
1975	 }
1976
1977	 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
1978	 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
1979	 return (0);
1980}
1981
1982
1983static int
1984jme_eeprom_macaddr(struct jme_softc *sc)
1985{
1986	uint8_t eaddr[ETHER_ADDR_LEN];
1987	uint8_t fup, reg, val;
1988	uint32_t offset;
1989	int match;
1990
1991	offset = 0;
1992	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1993	    fup != JME_EEPROM_SIG0)
1994		return (ENOENT);
1995	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1996	    fup != JME_EEPROM_SIG1)
1997		return (ENOENT);
1998	match = 0;
1999	do {
2000		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
2001			break;
2002		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
2003		    == (fup & (JME_EEPROM_FUNC_MASK|JME_EEPROM_PAGE_MASK))) {
2004			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
2005				break;
2006			if (reg >= JME_PAR0 &&
2007			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
2008				if (jme_eeprom_read_byte(sc, offset + 2,
2009				    &val) != 0)
2010					break;
2011				eaddr[reg - JME_PAR0] = val;
2012				match++;
2013			}
2014		}
2015		if (fup & JME_EEPROM_DESC_END)
2016			break;
2017
2018		/* Try next eeprom descriptor. */
2019		offset += JME_EEPROM_DESC_BYTES;
2020	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
2021
2022	if (match == ETHER_ADDR_LEN) {
2023		memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN);
2024		return (0);
2025	}
2026
2027	return (ENOENT);
2028}
2029
2030static int
2031jme_reg_macaddr(struct jme_softc *sc)
2032{
2033	uint32_t par0, par1;
2034
2035	par0 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0);
2036	par1 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1);
2037	par1 &= 0xffff;
2038	if ((par0 == 0 && par1 == 0) ||
2039	    (par0 == 0xffffffff && par1 == 0xffff)) {
2040		return (ENOENT);
2041	} else {
2042		sc->jme_enaddr[0] = (par0 >> 0) & 0xff;
2043		sc->jme_enaddr[1] = (par0 >> 8) & 0xff;
2044		sc->jme_enaddr[2] = (par0 >> 16) & 0xff;
2045		sc->jme_enaddr[3] = (par0 >> 24) & 0xff;
2046		sc->jme_enaddr[4] = (par1 >> 0) & 0xff;
2047		sc->jme_enaddr[5] = (par1 >> 8) & 0xff;
2048	}
2049	return (0);
2050}
2051
2052/*
2053 * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
2054 * set up in jme_pci_attach()
2055 */
2056SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
2057{
2058	int rc;
2059	const struct sysctlnode *node;
2060
2061	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2062	    0, CTLTYPE_NODE, "hw", NULL,
2063	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2064		goto err;
2065	}
2066
2067	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2068	    0, CTLTYPE_NODE, "jme",
2069	    SYSCTL_DESCR("jme interface controls"),
2070	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2071		goto err;
2072	}
2073
2074	jme_root_num = node->sysctl_num;
2075	return;
2076
2077err:
2078	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2079}
2080
2081static int
2082jme_sysctl_intrxto(SYSCTLFN_ARGS)
2083{
2084	int error, t;
2085	struct sysctlnode node;
2086	struct jme_softc *sc;
2087	uint32_t reg;
2088
2089	node = *rnode;
2090	sc = node.sysctl_data;
2091	t = sc->jme_intrxto;
2092	node.sysctl_data = &t;
2093	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2094	if (error || newp == NULL)
2095		return error;
2096
2097	if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
2098		return EINVAL;
2099
2100	/*
2101	 * update the softc with sysctl-changed value, and mark
2102	 * for hardware update
2103	 */
2104	sc->jme_intrxto = t;
2105	/* Configure Rx queue 0 packet completion coalescing. */
2106	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2107	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2108	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2109	return 0;
2110}
2111
2112static int
2113jme_sysctl_intrxct(SYSCTLFN_ARGS)
2114{
2115	int error, t;
2116	struct sysctlnode node;
2117	struct jme_softc *sc;
2118	uint32_t reg;
2119
2120	node = *rnode;
2121	sc = node.sysctl_data;
2122	t = sc->jme_intrxct;
2123	node.sysctl_data = &t;
2124	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2125	if (error || newp == NULL)
2126		return error;
2127
2128	if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
2129		return EINVAL;
2130
2131	/*
2132	 * update the softc with sysctl-changed value, and mark
2133	 * for hardware update
2134	 */
2135	sc->jme_intrxct = t;
2136	/* Configure Rx queue 0 packet completion coalescing. */
2137	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2138	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2139	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2140	return 0;
2141}
2142
2143static int
2144jme_sysctl_inttxto(SYSCTLFN_ARGS)
2145{
2146	int error, t;
2147	struct sysctlnode node;
2148	struct jme_softc *sc;
2149	uint32_t reg;
2150
2151	node = *rnode;
2152	sc = node.sysctl_data;
2153	t = sc->jme_inttxto;
2154	node.sysctl_data = &t;
2155	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2156	if (error || newp == NULL)
2157		return error;
2158
2159	if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
2160		return EINVAL;
2161
2162	/*
2163	 * update the softc with sysctl-changed value, and mark
2164	 * for hardware update
2165	 */
2166	sc->jme_inttxto = t;
2167	/* Configure Tx queue 0 packet completion coalescing. */
2168	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2169	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2170	reg |= PCCTX_COAL_TXQ0;
2171	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2172	return 0;
2173}
2174
2175static int
2176jme_sysctl_inttxct(SYSCTLFN_ARGS)
2177{
2178	int error, t;
2179	struct sysctlnode node;
2180	struct jme_softc *sc;
2181	uint32_t reg;
2182
2183	node = *rnode;
2184	sc = node.sysctl_data;
2185	t = sc->jme_inttxct;
2186	node.sysctl_data = &t;
2187	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2188	if (error || newp == NULL)
2189		return error;
2190
2191	if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
2192		return EINVAL;
2193
2194	/*
2195	 * update the softc with sysctl-changed value, and mark
2196	 * for hardware update
2197	 */
2198	sc->jme_inttxct = t;
2199	/* Configure Tx queue 0 packet completion coalescing. */
2200	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2201	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2202	reg |= PCCTX_COAL_TXQ0;
2203	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2204	return 0;
2205}
2206